python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional @dataclass class GPTQAInputExample(object): """ A single set of features of a QA example for GPT-like model """ unique_id: int input_ids: List[int] input_attn_mask: List[int] training_mask_end: int = None labels: List[int] = None example_index: int = None context_span_index: int = None is_impossible: Optional[bool] = False
NeMo-main
nemo/collections/nlp/data/question_answering/input_example/qa_gpt_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional @dataclass class S2SQAInputExample(object): """ A single set of features of a QA example for T5/BART-like model """ unique_id: int input_ids: List[int] input_attn_mask: List[int] labels: List[int] = None example_index: int = None context_span_index: int = None is_impossible: Optional[bool] = False
NeMo-main
nemo/collections/nlp/data/question_answering/input_example/qa_s2s_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ijson import numpy as np from nemo.collections.nlp.data.data_utils import DataProcessor from nemo.collections.nlp.data.question_answering.input_example.qa_input_example import QAExample from nemo.utils import logging TRAINING_MODE = "train" EVALUATION_MODE = "eval" INFERENCE_MODE = "infer" class QAProcessor(DataProcessor): """ Processor for a QA dataset, expected in SQuAD format. Args: data_file: data file path mode: TRAINING_MODE/EVALUATION_MODE/INFERENCE_MODE for creating training/evaluation/inference dataset """ def __init__(self, data_file: str, mode: str): self.data_file = data_file self.mode = mode # Memoizes documents to reduce memory use (as the same document is often used for many questions) self.doc_id = 0 self.context_text_to_doc_id = {} self.doc_id_to_context_text = {} def get_examples(self): """ Get examples from raw json file """ if self.data_file is None: raise ValueError(f"{self.mode} data file is None.") # remove this line and the replace cache line below - which is a temp fix with open(self.data_file.replace('_cache', ''), "r", encoding="utf-8") as reader: input_data = ijson.items(reader, "data.item") examples = [] for entry in input_data: len_docs = [] title = entry["title"] for paragraph in entry["paragraphs"]: context_text = paragraph["context"] for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] if not question_text: continue start_position_character = None answer_text = None answers = [] if "is_impossible" in qa: is_impossible = qa["is_impossible"] or len(qa["answers"]) < 1 else: is_impossible = False if not is_impossible: if self.mode in [TRAINING_MODE, EVALUATION_MODE]: answer = qa["answers"][0] answer_text = answer["text"] start_position_character = answer["answer_start"] if self.mode == EVALUATION_MODE: answers = qa["answers"] if context_text in self.context_text_to_doc_id: doc_id = self.context_text_to_doc_id[context_text] else: doc_id = self.doc_id self.context_text_to_doc_id[context_text] = doc_id self.doc_id_to_context_text[doc_id] = context_text self.doc_id += 1 len_docs.append(len(context_text)) example = QAExample( qas_id=qas_id, question_text=question_text, context_text=context_text, context_id=doc_id, answer_text=answer_text, start_position_character=start_position_character, title=title, is_impossible=is_impossible, answers=answers, ) examples.append(example) logging.info('mean no. of chars in doc: {}'.format(np.mean(len_docs))) logging.info('max no. of chars in doc: {}'.format(np.max(len_docs))) return examples
NeMo-main
nemo/collections/nlp/data/question_answering/data_processor/qa_processing.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.question_answering.data_processor.qa_processing import QAProcessor
NeMo-main
nemo/collections/nlp/data/question_answering/data_processor/__init__.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import numpy as np from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.data_utils import get_stats from nemo.core.classes import Dataset from nemo.core.neural_types import ChannelType, LabelsType, MaskType, NeuralType from nemo.utils import logging __all__ = ['IntentSlotClassificationDataset', 'IntentSlotInferenceDataset'] def get_features( queries, max_seq_length, tokenizer, pad_label=128, raw_slots=None, ignore_extra_tokens=False, ignore_start_end=False, ): all_subtokens = [] all_loss_mask = [] all_subtokens_mask = [] all_segment_ids = [] all_input_ids = [] all_input_mask = [] sent_lengths = [] all_slots = [] with_label = False if raw_slots is not None: with_label = True for i, query in enumerate(queries): words = query.strip().split() subtokens = [tokenizer.cls_token] loss_mask = [1 - ignore_start_end] subtokens_mask = [0] if with_label: slots = [pad_label] for j, word in enumerate(words): word_tokens = tokenizer.text_to_tokens(word) # to handle emojis that could be neglected during tokenization if len(word.strip()) > 0 and len(word_tokens) == 0: word_tokens = [tokenizer.ids_to_tokens(tokenizer.unk_id)] subtokens.extend(word_tokens) loss_mask.append(1) loss_mask.extend([int(not ignore_extra_tokens)] * (len(word_tokens) - 1)) subtokens_mask.append(1) subtokens_mask.extend([0] * (len(word_tokens) - 1)) if with_label: slots.extend([raw_slots[i][j]] * len(word_tokens)) subtokens.append(tokenizer.sep_token) loss_mask.append(1 - ignore_start_end) subtokens_mask.append(0) sent_lengths.append(len(subtokens)) all_subtokens.append(subtokens) all_loss_mask.append(loss_mask) all_subtokens_mask.append(subtokens_mask) all_input_mask.append([1] * len(subtokens)) if with_label: slots.append(pad_label) all_slots.append(slots) max_seq_length_data = max(sent_lengths) max_seq_length = min(max_seq_length, max_seq_length_data) if max_seq_length > 0 else max_seq_length_data logging.info(f'Setting max length to: {max_seq_length}') get_stats(sent_lengths) too_long_count = 0 for i, subtokens in enumerate(all_subtokens): if len(subtokens) > max_seq_length: subtokens = [tokenizer.cls_token] + subtokens[-max_seq_length + 1 :] all_input_mask[i] = [1] + all_input_mask[i][-max_seq_length + 1 :] all_loss_mask[i] = [1 - ignore_start_end] + all_loss_mask[i][-max_seq_length + 1 :] all_subtokens_mask[i] = [0] + all_subtokens_mask[i][-max_seq_length + 1 :] if with_label: all_slots[i] = [pad_label] + all_slots[i][-max_seq_length + 1 :] too_long_count += 1 all_input_ids.append([tokenizer.tokens_to_ids(t) for t in subtokens]) if len(subtokens) < max_seq_length: extra = max_seq_length - len(subtokens) all_input_ids[i] = all_input_ids[i] + [0] * extra all_loss_mask[i] = all_loss_mask[i] + [0] * extra all_subtokens_mask[i] = all_subtokens_mask[i] + [0] * extra all_input_mask[i] = all_input_mask[i] + [0] * extra if with_label: all_slots[i] = all_slots[i] + [pad_label] * extra all_segment_ids.append([0] * max_seq_length) logging.info(f'{too_long_count} are longer than {max_seq_length}') # May be useful for debugging logging.debug("*** Some Examples of Processed Data ***") for i in range(min(len(all_input_ids), 5)): logging.debug("i: %s" % (i)) logging.debug("subtokens: %s" % " ".join(list(map(str, all_subtokens[i])))) logging.debug("loss_mask: %s" % " ".join(list(map(str, all_loss_mask[i])))) logging.debug("input_mask: %s" % " ".join(list(map(str, all_input_mask[i])))) logging.debug("subtokens_mask: %s" % " ".join(list(map(str, all_subtokens_mask[i])))) if with_label: logging.debug("slots_label: %s" % " ".join(list(map(str, all_slots[i])))) return (all_input_ids, all_segment_ids, all_input_mask, all_loss_mask, all_subtokens_mask, all_slots) class IntentSlotClassificationDataset(Dataset): """ Creates dataset to use for the task of joint intent and slot classification with pretrained model. Converts from raw data to an instance that can be used by NMDataLayer. For dataset to use during inference without labels, see IntentSlotDataset. Args: input_file: file to sequence + label. the first line is header (sentence [tab] label) each line should be [sentence][tab][label] slot_file: file to slot labels, each line corresponding to slot labels for a sentence in input_file. No header. max_seq_length: max sequence length minus 2 for [CLS] and [SEP] tokenizer: such as NemoBertTokenizer num_samples: number of samples you want to use for the dataset. If -1, use all dataset. Useful for testing. pad_label: pad value use for slot labels. by default, it's the neutral label. ignore_extra_tokens: whether to ignore extra tokens in the loss_mask. ignore_start_end: whether to ignore bos and eos tokens in the loss_mask. do_lower_case: convert query to lower case or not """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'intent_labels': NeuralType(('B'), LabelsType()), 'slot_labels': NeuralType(('B', 'T'), LabelsType()), } def __init__( self, input_file: str, slot_file: str, max_seq_length: int, tokenizer: TokenizerSpec, num_samples: int = -1, pad_label: int = 128, ignore_extra_tokens: bool = False, ignore_start_end: bool = False, do_lower_case: bool = False, ): if num_samples == 0: raise ValueError("num_samples has to be positive", num_samples) with open(slot_file, 'r') as f: slot_lines = f.readlines() with open(input_file, 'r') as f: input_lines = f.readlines()[1:] assert len(slot_lines) == len(input_lines) dataset = list(zip(slot_lines, input_lines)) if num_samples > 0: dataset = dataset[:num_samples] raw_slots, queries, raw_intents = [], [], [] for slot_line, input_line in dataset: raw_slots.append([int(slot) for slot in slot_line.strip().split()]) parts = input_line.strip().split() raw_intents.append(int(parts[-1])) query = ' '.join(parts[:-1]) if do_lower_case: query = query.lower() queries.append(query) features = get_features( queries, max_seq_length, tokenizer, pad_label=pad_label, raw_slots=raw_slots, ignore_extra_tokens=ignore_extra_tokens, ignore_start_end=ignore_start_end, ) self.all_input_ids = features[0] self.all_segment_ids = features[1] self.all_input_mask = features[2] self.all_loss_mask = features[3] self.all_subtokens_mask = features[4] self.all_slots = features[5] self.all_intents = raw_intents def __len__(self): return len(self.all_input_ids) def __getitem__(self, idx): return ( np.array(self.all_input_ids[idx]), np.array(self.all_segment_ids[idx]), np.array(self.all_input_mask[idx], dtype=np.long), np.array(self.all_loss_mask[idx]), np.array(self.all_subtokens_mask[idx]), self.all_intents[idx], np.array(self.all_slots[idx]), ) class IntentSlotInferenceDataset(Dataset): """ Creates dataset to use for the task of joint intent and slot classification with pretrained model. This is to be used during inference only. It uses list of queries as the input. Args: queries (list): list of queries to run inference on max_seq_length (int): max sequence length minus 2 for [CLS] and [SEP] tokenizer (Tokenizer): such as NemoBertTokenizer pad_label (int): pad value use for slot labels. by default, it's the neutral label. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """ Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), } def __init__(self, queries, max_seq_length, tokenizer, do_lower_case): if do_lower_case: for idx, query in enumerate(queries): queries[idx] = queries[idx].lower() features = get_features(queries, max_seq_length, tokenizer) self.all_input_ids = features[0] self.all_segment_ids = features[1] self.all_input_mask = features[2] self.all_loss_mask = features[3] self.all_subtokens_mask = features[4] def __len__(self): return len(self.all_input_ids) def __getitem__(self, idx): return ( np.array(self.all_input_ids[idx]), np.array(self.all_segment_ids[idx]), np.array(self.all_input_mask[idx], dtype=np.long), np.array(self.all_loss_mask[idx]), np.array(self.all_subtokens_mask[idx]), )
NeMo-main
nemo/collections/nlp/data/intent_slot_classification/intent_slot_classification_dataset.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.intent_slot_classification import IntentSlotClassificationDataset from nemo.collections.nlp.data.intent_slot_classification.intent_slot_classification_dataset import get_features from nemo.core.neural_types import ChannelType, LabelsType, MaskType, NeuralType __all__ = ['MultiLabelIntentSlotClassificationDataset'] class MultiLabelIntentSlotClassificationDataset(IntentSlotClassificationDataset): """ Creates dataset to use for the task of multi-label joint intent and slot classification with pretrained model. Converts from raw data to an instance that can be used by NMDataLayer. Args: input_file: file containing sentences + labels. The first line is header (sentence [tab] label) each line should be [sentence][tab][label] where label can be multiple labels separated by a comma slot_file: file containing slot labels, each line corresponding to slot labels for a sentence in input_file. No header. num_intents: total number of intents in dict.intents file max_seq_length: max sequence length minus 2 for [CLS] and [SEP] tokenizer: such as NemoBertTokenizer num_samples: number of samples you want to use for the dataset. If -1, use all dataset. Useful for testing. pad_label: pad value use for slot labels. by default, it's the neutral label. ignore_extra_tokens: whether to ignore extra tokens in the loss_mask. ignore_start_end: whether to ignore bos and eos tokens in the loss_mask. do_lower_case: convert query to lower case or not """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'intent_labels': [NeuralType(('B'), LabelsType())], 'slot_labels': NeuralType(('B', 'T'), LabelsType()), } def __init__( self, input_file: str, slot_file: str, num_intents: int, max_seq_length: int, tokenizer: TokenizerSpec, num_samples: int = -1, pad_label: int = 128, ignore_extra_tokens: bool = False, ignore_start_end: bool = False, do_lower_case: bool = False, ): if num_samples == 0: raise ValueError("num_samples has to be positive", num_samples) with open(slot_file, 'r') as f: slot_lines = f.readlines() with open(input_file, 'r') as f: input_lines = f.readlines()[1:] assert len(slot_lines) == len(input_lines) dataset = list(zip(slot_lines, input_lines)) if num_samples > 0: dataset = dataset[:num_samples] raw_slots, queries, raw_intents = [], [], [] for slot_line, input_line in dataset: raw_slots.append([int(slot) for slot in slot_line.strip().split()]) parts = input_line.strip().split("\t")[1:][0] parts = list(map(int, parts.split(","))) parts = [1 if label in parts else 0 for label in range(num_intents)] raw_intents.append(tuple(parts)) tokens = input_line.strip().split("\t")[0].split() query = ' '.join(tokens) if do_lower_case: query = query.lower() queries.append(query) features = get_features( queries, max_seq_length, tokenizer, pad_label=pad_label, raw_slots=raw_slots, ignore_extra_tokens=ignore_extra_tokens, ignore_start_end=ignore_start_end, ) self.all_input_ids = features[0] self.all_segment_ids = features[1] self.all_input_mask = features[2] self.all_loss_mask = features[3] self.all_subtokens_mask = features[4] self.all_slots = features[5] self.all_intents = raw_intents
NeMo-main
nemo/collections/nlp/data/intent_slot_classification/multi_label_intent_slot_classification_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.intent_slot_classification.intent_slot_classification_dataset import ( IntentSlotClassificationDataset, IntentSlotInferenceDataset, ) from nemo.collections.nlp.data.intent_slot_classification.intent_slot_classification_descriptor import ( IntentSlotDataDesc, ) from nemo.collections.nlp.data.intent_slot_classification.multi_label_intent_slot_classification_dataset import ( MultiLabelIntentSlotClassificationDataset, ) from nemo.collections.nlp.data.intent_slot_classification.multi_label_intent_slot_classification_descriptor import ( MultiLabelIntentSlotDataDesc, )
NeMo-main
nemo/collections/nlp/data/intent_slot_classification/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from typing import List from nemo.collections.nlp.data.data_utils.data_preprocessing import ( fill_class_weights, get_freq_weights, get_freq_weights_bce_with_logits_loss, get_label_stats, get_labels_to_labels_id_mapping, get_multi_label_stats, if_exist, ) from nemo.utils import logging class MultiLabelIntentSlotDataDesc: """ Convert the raw data to the standard format supported by MultiLabelIntentSlotDataDesc. By default, the None label for slots is 'O'. MultiLabelIntentSlotDataDesc requires two files: input_file: file containing sentences + labels. the first line is header (sentence [tab] label) each line should be [sentence][tab][label] where label is a string of comma separated values. Example: 1 or 1,2 are both valid labels slot_file: file containing slot labels, each line corresponding to slot labels for a sentence in input_file. No header. To keep the mapping from label index to label consistent during training and inferencing we require the following files: dicts.intents.csv: each line is an intent. The first line corresponding to the 0 intent label, the second line corresponding to the 1 intent label, and so on. dicts.slots.csv: each line is a slot. The first line corresponding to the 0 slot label, the second line corresponding to the 1 slot label, and so on. Args: data_dir: the directory of the dataset modes: ['train', 'test', 'dev'], none_slot_label: the label for slots that aren't identified defaulted to 'O' pad_label: the int used for padding. If set to -1, it'll be set to the whatever the None label is. """ def __init__( self, data_dir: str, modes: List[str] = ["train", "test", "dev"], none_slot_label: str = "O", pad_label: int = -1, ): if not if_exist(data_dir, ["dict.intents.csv", "dict.slots.csv"]): raise FileNotFoundError( "Make sure that your data follows the standard format " "supported by MultiLabelIntentSlotDataset. Your data must " "contain dict.intents.csv and dict.slots.csv." ) self.data_dir = data_dir self.intent_dict_file = self.data_dir + "/dict.intents.csv" self.slot_dict_file = self.data_dir + "/dict.slots.csv" self.intents_label_ids = get_labels_to_labels_id_mapping(self.intent_dict_file) self.num_intents = len(self.intents_label_ids) self.slots_label_ids = get_labels_to_labels_id_mapping(self.slot_dict_file) self.num_slots = len(self.slots_label_ids) infold = self.data_dir for mode in modes: if not if_exist(self.data_dir, [f"{mode}.tsv"]): logging.info(f" Stats calculation for {mode} mode" f" is skipped as {mode}.tsv was not found.") continue logging.info(f" Stats calculating for {mode} mode...") slot_file = f"{self.data_dir}/{mode}_slots.tsv" with open(slot_file, "r") as f: slot_lines = f.readlines() input_file = f"{self.data_dir}/{mode}.tsv" with open(input_file, "r") as f: input_lines = f.readlines()[1:] # Skipping headers at index 0 if len(slot_lines) != len(input_lines): raise ValueError( "Make sure that the number of slot lines match the " "number of intent lines. There should be a 1-1 " "correspondence between every slot and intent lines." ) dataset = list(zip(slot_lines, input_lines)) raw_slots, raw_intents = [], [] for slot_line, input_line in dataset: slot_list = [int(slot) for slot in slot_line.strip().split()] raw_slots.append(slot_list) parts = input_line.strip().split("\t")[1:][0] parts = list(map(int, parts.split(","))) parts = [1 if label in parts else 0 for label in range(self.num_intents)] raw_intents.append(tuple(parts)) logging.info(f"Three most popular intents in {mode} mode:") total_intents, intent_label_freq, max_id = get_multi_label_stats( raw_intents, infold + f"/{mode}_intent_stats.tsv" ) merged_slots = itertools.chain.from_iterable(raw_slots) logging.info(f"Three most popular slots in {mode} mode:") slots_total, slots_label_freq, max_id = get_label_stats(merged_slots, infold + f"/{mode}_slot_stats.tsv") logging.info(f"Total Number of Intent Labels: {total_intents}") logging.info(f"Intent Label Frequencies: {intent_label_freq}") logging.info(f"Total Number of Slots: {slots_total}") logging.info(f"Slots Label Frequencies: {slots_label_freq}") if mode == "train": intent_weights_dict = get_freq_weights_bce_with_logits_loss(intent_label_freq) logging.info(f"Intent Weights: {intent_weights_dict}") slot_weights_dict = get_freq_weights(slots_label_freq) logging.info(f"Slot Weights: {slot_weights_dict}") self.intent_weights = fill_class_weights(intent_weights_dict, self.num_intents - 1) self.slot_weights = fill_class_weights(slot_weights_dict, self.num_slots - 1) if pad_label != -1: self.pad_label = pad_label else: if none_slot_label not in self.slots_label_ids: raise ValueError(f"none_slot_label {none_slot_label} not " f"found in {self.slot_dict_file}.") self.pad_label = self.slots_label_ids[none_slot_label]
NeMo-main
nemo/collections/nlp/data/intent_slot_classification/multi_label_intent_slot_classification_descriptor.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from typing import List from nemo.collections.nlp.data.data_utils.data_preprocessing import ( fill_class_weights, get_freq_weights, get_label_stats, if_exist, ) from nemo.utils import logging class IntentSlotDataDesc: """ Convert the raw data to the standard format supported by IntentSlotDataDesc. By default, the None label for slots is 'O'. IntentSlotDataDesc requires two files: input_file: file to sequence + label. the first line is header (sentence [tab] label) each line should be [sentence][tab][label] slot_file: file to slot labels, each line corresponding to slot labels for a sentence in input_file. No header. To keep the mapping from label index to label consistent during training and inferencing we require the following files: dicts.intents.csv: each line is an intent. The first line corresponding to the 0 intent label, the second line corresponding to the 1 intent label, and so on. dicts.slots.csv: each line is a slot. The first line corresponding to the 0 slot label, the second line corresponding to the 1 slot label, and so on. Args: data_dir: the directory of the dataset modes: ['train', 'test', 'dev'], none_slot_label: the label for slots that aren't identified defaulted to 'O' pad_label: the int used for padding. If set to -1, it'll be set to the whatever the None label is. """ def __init__( self, data_dir: str, modes: List[str] = ['train', 'test', 'dev'], none_slot_label: str = 'O', pad_label: int = -1, ): if not if_exist(data_dir, ['dict.intents.csv', 'dict.slots.csv']): raise FileNotFoundError( "Make sure that your data follows the standard format " "supported by JointIntentSlotDataset. Your data must " "contain dict.intents.csv and dict.slots.csv." ) self.data_dir = data_dir self.intent_dict_file = self.data_dir + '/dict.intents.csv' self.slot_dict_file = self.data_dir + '/dict.slots.csv' self.intents_label_ids = IntentSlotDataDesc.label2idx(self.intent_dict_file) self.num_intents = len(self.intents_label_ids) self.slots_label_ids = IntentSlotDataDesc.label2idx(self.slot_dict_file) self.num_slots = len(self.slots_label_ids) infold = self.data_dir for mode in modes: if not if_exist(self.data_dir, [f'{mode}.tsv']): logging.info(f' Stats calculation for {mode} mode' f' is skipped as {mode}.tsv was not found.') continue logging.info(f' Stats calculating for {mode} mode...') slot_file = f'{self.data_dir}/{mode}_slots.tsv' with open(slot_file, 'r') as f: slot_lines = f.readlines() input_file = f'{self.data_dir}/{mode}.tsv' with open(input_file, 'r') as f: input_lines = f.readlines()[1:] # Skipping headers at index 0 if len(slot_lines) != len(input_lines): raise ValueError( "Make sure that the number of slot lines match the " "number of intent lines. There should be a 1-1 " "correspondence between every slot and intent lines." ) dataset = list(zip(slot_lines, input_lines)) raw_slots, raw_intents = [], [] for slot_line, input_line in dataset: slot_list = [int(slot) for slot in slot_line.strip().split()] raw_slots.append(slot_list) parts = input_line.strip().split() raw_intents.append(int(parts[-1])) logging.info(f'Three most popular intents in {mode} mode:') total_intents, intent_label_freq, max_id = get_label_stats( raw_intents, infold + f'/{mode}_intent_stats.tsv' ) merged_slots = itertools.chain.from_iterable(raw_slots) logging.info(f'Three most popular slots in {mode} mode:') slots_total, slots_label_freq, max_id = get_label_stats(merged_slots, infold + f'/{mode}_slot_stats.tsv') logging.info(f'Total Number of Intents: {total_intents}') logging.info(f'Intent Label Frequencies: {intent_label_freq}') logging.info(f'Total Number of Slots: {slots_total}') logging.info(f'Slots Label Frequencies: {slots_label_freq}') if mode == 'train': intent_weights_dict = get_freq_weights(intent_label_freq) logging.info(f'Intent Weights: {intent_weights_dict}') slot_weights_dict = get_freq_weights(slots_label_freq) logging.info(f'Slot Weights: {slot_weights_dict}') self.intent_weights = fill_class_weights(intent_weights_dict, self.num_intents - 1) self.slot_weights = fill_class_weights(slot_weights_dict, self.num_slots - 1) if pad_label != -1: self.pad_label = pad_label else: if none_slot_label not in self.slots_label_ids: raise ValueError(f'none_slot_label {none_slot_label} not ' f'found in {self.slot_dict_file}.') self.pad_label = self.slots_label_ids[none_slot_label] @staticmethod def label2idx(file): lines = open(file, 'r').readlines() lines = [line.strip() for line in lines if line.strip()] labels = {lines[i]: i for i in range(len(lines))} return labels @staticmethod def intent_slot_dicts(data_dir): ''' Return Intent and slot dictionaries ''' intent_dict_file = data_dir + '/dict.intents.csv' slot_dict_file = data_dir + '/dict.slots.csv' intents_labels = open(intent_dict_file, 'r').readlines() intents_labels = [line.strip() for line in intents_labels if line.strip()] slots_labels = open(slot_dict_file, 'r').readlines() slots_labels = [line.strip() for line in slots_labels if line.strip()] return intents_labels, slots_labels
NeMo-main
nemo/collections/nlp/data/intent_slot_classification/intent_slot_classification_descriptor.py
# Copyright 2019 The Google Research Authors. # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from collections import OrderedDict from os import path from typing import Dict, List, Optional, Tuple, Union from transformers import PreTrainedTokenizerBase """Build BERT Examples from asr hypothesis, customization candidates, target labels, span info. """ class BertExample(object): """Class for training and inference examples for BERT. Attributes: features: Feature dictionary. """ def __init__( self, input_ids: List[int], input_mask: List[int], segment_ids: List[int], input_ids_for_subwords: List[int], input_mask_for_subwords: List[int], segment_ids_for_subwords: List[int], character_pos_to_subword_pos: List[int], fragment_indices: List[Tuple[int, int, int]], labels_mask: List[int], labels: List[int], spans: List[Tuple[int, int, int]], default_label: int, ) -> None: """Inputs to the example wrapper Args: input_ids: indices of single characters (treated as subwords) input_mask: list of bools with 0s in place of input_ids to be masked segment_ids: list of ints from 0 to 10 to denote the text segment type ( 0 - for tokens of ASR hypothesis, 1 - for tokens of the first candidate ... 10 - for tokens of the tenth candidate ) input_ids_for_subwords: indices of real subwords (as tokenized by bert tokenizer) input_mask_for_subwords: list of bools with 0s in place of input_ids_for_subwords to be masked segment_ids_for_subwords: same as segment_ids but for input_ids_for_subwords character_pos_to_subword_pos: list of size=len(input_ids), value=(position of corresponding subword in input_ids_for_subwords) fragment_indices: list of tuples (start_position, end_position, candidate_id), end is exclusive, candidate_id can be -1 if not set labels_mask: bool tensor with 0s in place of label tokens to be masked labels: indices of semiotic classes which should be predicted from each of the corresponding input tokens spans: list of tuples (class_id, start_position, end_position), end is exclusive, class is always 1(CUSTOM) default_label: The default label """ input_len = len(input_ids) if not ( input_len == len(input_mask) and input_len == len(segment_ids) and input_len == len(labels_mask) and input_len == len(labels) and input_len == len(character_pos_to_subword_pos) ): raise ValueError("All feature lists should have the same length ({})".format(input_len)) input_len_for_subwords = len(input_ids_for_subwords) if not ( input_len_for_subwords == len(input_mask_for_subwords) and input_len_for_subwords == len(segment_ids_for_subwords) ): raise ValueError( "All feature lists for subwords should have the same length ({})".format(input_len_for_subwords) ) self.features = OrderedDict( [ ("input_ids", input_ids), ("input_mask", input_mask), ("segment_ids", segment_ids), ("input_ids_for_subwords", input_ids_for_subwords), ("input_mask_for_subwords", input_mask_for_subwords), ("segment_ids_for_subwords", segment_ids_for_subwords), ("character_pos_to_subword_pos", character_pos_to_subword_pos), ("fragment_indices", fragment_indices), ("labels_mask", labels_mask), ("labels", labels), ("spans", spans), ] ) self._default_label = default_label class BertExampleBuilder(object): """Builder class for BertExample objects.""" def __init__( self, label_map: Dict[str, int], semiotic_classes: Dict[str, int], tokenizer: PreTrainedTokenizerBase, max_seq_length: int, ) -> None: """Initializes an instance of BertExampleBuilder. Args: label_map: Mapping from tags to tag IDs. semiotic_classes: Mapping from semiotic classes to their ids. tokenizer: Tokenizer object. max_seq_length: Maximum sequence length. """ self._label_map = label_map self._semiotic_classes = semiotic_classes self._tokenizer = tokenizer self._max_seq_length = max_seq_length # one span usually covers one or more words and it only exists for custom phrases, so there are much less spans than characters. self._max_spans_length = max(4, int(max_seq_length / 20)) self._pad_id = self._tokenizer.pad_token_id self._default_label = 0 def build_bert_example( self, hyp: str, ref: str, target: Optional[str] = None, span_info: Optional[str] = None, infer: bool = False ) -> Optional[BertExample]: """Constructs a BERT Example. Args: hyp: Hypothesis text. ref: Candidate customization variants divided by ';' target: if infer==False, string of labels (each label is 1-based index of correct candidate) or 0. if infer==True, it can be None or string of labels (each label is 1-based index of some candidate). In inference this can be used to get corresponding fragments to fragment_indices. span_info: string of format "CUSTOM 6 20;CUSTOM 40 51", number of parts corresponds to number of targets. Can be empty if target is 0. If infer==False, numbers are correct start and end(exclusive) positions of the corresponding target candidate in the text. If infer==True, numbers are EXPECTED positions in the text. In inference this can be used to get corresponding fragments to fragment_indices. infer: inference mode Returns: BertExample, or None if the conversion from text to tags was infeasible Example (infer=False): hyp: "a s t r o n o m e r s _ d i d i e _ s o m o n _ a n d _ t r i s t i a n _ g l l o" ref: "d i d i e r _ s a u m o n;a s t r o n o m i e;t r i s t a n _ g u i l l o t;t r i s t e s s e;m o n a d e;c h r i s t i a n;a s t r o n o m e r;s o l o m o n;d i d i d i d i d i;m e r c y" target: "1 3" span_info: "CUSTOM 12 23;CUSTOM 28 41" """ if not ref.count(";") == 9: raise ValueError("Expect 10 candidates: " + ref) span_info_parts = [] targets = [] if len(target) > 0 and target != "0": span_info_parts = span_info.split(";") targets = list(map(int, target.split(" "))) if len(span_info_parts) != len(targets): raise ValueError( "len(span_info_parts)=" + str(len(span_info_parts)) + " is different from len(target_parts)=" + str(len(targets)) ) tags = [0 for _ in hyp.split()] if not infer: for p, t in zip(span_info_parts, targets): c, start, end = p.split(" ") start = int(start) end = int(end) tags[start:end] = [t for i in range(end - start)] # get input features for characters (input_ids, input_mask, segment_ids, labels_mask, labels, _, _,) = self._get_input_features( hyp=hyp, ref=ref, tags=tags ) # get input features for words hyp_with_words = hyp.replace(" ", "").replace("_", " ") ref_with_words = ref.replace(" ", "").replace("_", " ") ( input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, _, _, _, _, ) = self._get_input_features(hyp=hyp_with_words, ref=ref_with_words, tags=None) # used in forward to concatenate subword embeddings to character embeddings character_pos_to_subword_pos = self._map_characters_to_subwords(input_ids, input_ids_for_subwords) fragment_indices = [] if infer: # used in inference to take argmax over whole fragments instead of separate characters to get more consistent predictions fragment_indices = self._get_fragment_indices(hyp, targets, span_info_parts) spans = [] if not infer: # during training spans are used in validation step to calculate accuracy on whole custom phrases instead of separate characters spans = self._get_spans(span_info_parts) if len(input_ids) > self._max_seq_length or len(spans) > self._max_spans_length: print( "Max len exceeded: len(input_ids)=", len(input_ids), "; _max_seq_length=", self._max_seq_length, "; len(spans)=", len(spans), "; _max_spans_length=", self._max_spans_length, ) return None example = BertExample( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, input_ids_for_subwords=input_ids_for_subwords, input_mask_for_subwords=input_mask_for_subwords, segment_ids_for_subwords=segment_ids_for_subwords, character_pos_to_subword_pos=character_pos_to_subword_pos, fragment_indices=fragment_indices, labels_mask=labels_mask, labels=labels, spans=spans, default_label=self._default_label, ) return example def _get_spans(self, span_info_parts: List[str]) -> List[Tuple[int, int, int]]: """ Converts span_info string into a list of (class_id, start, end) where start, end are coordinates of starting and ending(exclusive) tokens in input_ids of BertExample Example: span_info_parts: ["CUSTOM 37 41", "CUSTOM 47 52", "CUSTOM 42 46", "CUSTOM 0 7"] result: [(1, 38, 42), (1, 48, 53), (1, 43, 47), (1, 1, 8)] """ result_spans = [] for p in span_info_parts: if p == "": break c, start, end = p.split(" ") if c not in self._semiotic_classes: raise KeyError("class=" + c + " not found in self._semiotic_classes") cid = self._semiotic_classes[c] # +1 because this should be indexing on input_ids which has [CLS] token at beginning start = int(start) + 1 end = int(end) + 1 result_spans.append((cid, start, end)) return result_spans def _get_fragment_indices( self, hyp: str, targets: List[int], span_info_parts: List[str] ) -> Tuple[List[Tuple[int, int, int]]]: """ Build fragment indices for real candidates. This is used only at inference. After external candidate retrieval we know approximately, where the candidate is located in the text (from the positions of matched n-grams). In this function we 1) adjust start/end positions to match word borders (possibly in multiple ways). 2) generate content for fragment_indices tensor (it will be used during inference to average all predictions inside each fragment). Args: hyp: ASR-hypothesis where space separates single characters (real space is replaced to underscore). targets: list of candidate ids (only for real candidates, not dummy) span_info_parts: list of strings of format like "CUSTOM 12 25", corresponding to each of targets, with start/end coordinates in text. Returns: List of tuples (start, end, target) where start and end are positions in ASR-hypothesis, target is candidate_id. Note that returned fragments can be unsorted and can overlap, it's ok. Example: hyp: "a s t r o n o m e r s _ d i d i e _ s o m o n _ a n d _ t r i s t i a n _ g l l o" targets: [1 2 3 4 6 7 9] span_info_parts: ["CUSTOM 12 25", "CUSTOM 0 10", "CUSTOM 27 42", ...], where numbers are EXPECTED start/end positions of corresponding target candidates in the text. These positions will be adjusted in this functuion. fragment_indices: [(1, 12, 2), (13, 24, 1), (13, 28, 1), ..., (29, 42, 3)] """ fragment_indices = [] letters = hyp.split() for target, p in zip(targets, span_info_parts): _, start, end = p.split(" ") start = int(start) end = min(int(end), len(hyp)) # guarantee that end is not outside length # Adjusting strategy 1: expand both sides to the nearest space. # Adjust start by finding the nearest left space or beginning of text. If start is already some word beginning, it won't change. k = start while k > 0 and letters[k] != '_': k -= 1 adjusted_start = k if k == 0 else k + 1 # Adjust end by finding the nearest right space. If end is already space or sentence end, it won't change. k = end while k < len(letters) and letters[k] != '_': k += 1 adjusted_end = k # +1 because this should be indexing on input_ids which has [CLS] token at beginning fragment_indices.append((adjusted_start + 1, adjusted_end + 1, target)) # Adjusting strategy 2: try to shrink to the closest space (from left or right or both sides). # For example, here the candidate "shippers" has a matching n-gram covering part of previous word # a b o u t _ o u r _ s h i p e r s _ b u t _ y o u _ k n o w # 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 expanded_fragment = "".join(letters[adjusted_start:adjusted_end]) left_space_position = expanded_fragment.find("_") right_space_position = expanded_fragment.rfind("_") is_left_shrink = False is_right_shrink = False if left_space_position > -1 and left_space_position < len(expanded_fragment) / 2: # +1 because of CLS token, another +1 to put start position after found space fragment_indices.append((adjusted_start + 1 + left_space_position + 1, adjusted_end + 1, target)) is_left_shrink = True if right_space_position > -1 and right_space_position > len(expanded_fragment) / 2: fragment_indices.append((adjusted_start + 1, adjusted_start + 1 + right_space_position, target)) is_right_shrink = True if is_left_shrink and is_right_shrink: fragment_indices.append( (adjusted_start + 1 + left_space_position + 1, adjusted_start + 1 + right_space_position, target) ) return fragment_indices def _map_characters_to_subwords(self, input_ids: List[int], input_ids_for_subwords: List[int]) -> List[int]: """ Maps each single character to the position of its corresponding subword. Args: input_ids: List of character token ids. input_ids_for_subwords: List of subword token ids. Returns: List of subword positions in input_ids_for_subwords. Its length is equal to len(input_ids) Example: input_ids: [101, 1037, 1055, 1056, 1054, 1051, 1050, ..., 1051, 102, 1040, ..., 1050, 102, 1037, ..., 1041, 102, ..., 102] input_ids_for_subwords: [101, 26357, 2106, 2666, 2061, 8202, 1998, 13012, 16643, 2319, 1043, 7174, 102, 2106, 3771, 7842, 2819, 2239, 102, ..., 102] result: [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, ... , 45, 46, 46, 46, 46, 46, 47] """ character_pos_to_subword_pos = [0 for _ in input_ids] ## '[CLS]', 'a', 's', 't', 'r', 'o', 'n', 'o', 'm', 'e', 'r', 's', '_', 'd', 'i', ..., 'l', 'o', '[SEP]', 'd', 'i', 'd', 'i', 'e', 'r', '_', 's', 'a', 'u', 'm', 'o', 'n', ..., '[SEP]' tokens = self._tokenizer.convert_ids_to_tokens(input_ids) ## '[CLS]', 'astronomers', 'did', '##ie', 'so', '##mon', 'and', 'tri', '##sti', '##an', 'g', '##llo', '[SEP]', 'did', '##ier', 'sa', '##um', '##on', '[SEP]', 'astro', '##no', '##mie', '[SEP]', 'tristan', 'gui', '##llo', '##t', '[SEP]', ..., '[SEP]', 'mercy', '[SEP]'] tokens_for_subwords = self._tokenizer.convert_ids_to_tokens(input_ids_for_subwords) j = 0 # index for tokens_for_subwords j_offset = 0 # current letter index within subword for i in range(len(tokens)): character = tokens[i] subword = tokens_for_subwords[j] if character == "[CLS]" and subword == "[CLS]": character_pos_to_subword_pos[i] = j j += 1 continue if character == "[SEP]" and subword == "[SEP]": character_pos_to_subword_pos[i] = j j += 1 continue if character == "[CLS]" or character == "[SEP]" or subword == "[CLS]" or subword == "[SEP]": raise IndexError( "character[" + str(i) + "]=" + character + "; subword[" + str(j) + ";=" + subword + "subwords=" + str(tokens_for_subwords) ) # At this point we expect that # subword either 1) is a normal first token of a word or 2) starts with "##" (not first word token) # character either 1) is a normal character or 2) is a space character "_" if character == "_": character_pos_to_subword_pos[i] = j - 1 # space is assigned to previous subtoken continue if j_offset < len(subword): if character == subword[j_offset]: character_pos_to_subword_pos[i] = j j_offset += 1 else: raise IndexError( "character mismatch:" + "i=" + str(i) + "j=" + str(j) + "j_offset=" + str(j_offset) + "; len(tokens)=" + str(len(tokens)) + "; len(subwords)=" + str(len(tokens_for_subwords)) ) # if subword is finished, increase j if j_offset >= len(subword): j += 1 j_offset = 0 if j >= len(tokens_for_subwords): break if tokens_for_subwords[j].startswith("##"): j_offset = 2 # check that all subword tokens are processed if j < len(tokens_for_subwords): raise IndexError( "j=" + str(j) + "; len(tokens)=" + str(len(tokens)) + "; len(subwords)=" + str(len(tokens_for_subwords)) ) return character_pos_to_subword_pos def _get_input_features( self, hyp: str, ref: str, tags: List[int] ) -> Tuple[List[int], List[int], List[int], List[int], List[int], List[str], List[int]]: """Converts given ASR-hypothesis(hyp) and candidate string(ref) to features(token ids, mask, segment ids, etc). Args: hyp: Hypothesis text. ref: Candidate customization variants divided by ';' tags: List of labels corresponding to each token of ASR-hypothesis or None when building an example during inference. Returns: Features (input_ids, input_mask, segment_ids, labels_mask, labels, hyp_tokens, token_start_indices) Note that this method is called both for character-based example and for word-based example (to split to subwords). Character-based example: hyp: "a s t r o n o m e r s _ d i d i e _ s o m o n _ a n d _ t r i s t i a n _ g l l o" ref: "d i d i e r _ s a u m o n;a s t r o n o m i e;t r i s t a n _ g u i l l o t;t r i s t e s s e;m o n a d e;c h r i s t i a n;a s t r o n o m e r;s o l o m o n;d i d i d i d i d i;m e r c y" tags: "0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3" resulting token sequence: '[CLS]', 'a', 's', 't', 'r', 'o', 'n', 'o', 'm', 'e', 'r', 's', '_', 'd', 'i', ..., 'l', 'o', '[SEP]', 'd', 'i', 'd', 'i', 'e', 'r', '_', 's', 'a', 'u', 'm', 'o', 'n', ..., '[SEP]' Word-based example: hyp: "astronomers didie somon and tristian gllo" ref: "didier saumon;astronomie;tristan guillot;tristesse;monade;christian;astronomer;solomon;dididididi;mercy" tags: None (not used for word-based case) resulting token sequence: '[CLS]', 'astronomers', 'did', '##ie', 'so', '##mon', 'and', 'tri', '##sti', '##an', 'g', '##llo', '[SEP]', 'did', '##ier', 'sa', '##um', '##on', '[SEP]', 'astro', '##no', '##mie', '[SEP]', 'tristan', 'gui', '##llo', '##t', '[SEP]', ..., '[SEP]', 'mercy', '[SEP]'] """ labels_mask = [] labels = [] if tags is None: hyp_tokens, token_start_indices = self._split_to_wordpieces(hyp.split()) else: hyp_tokens, labels, token_start_indices = self._split_to_wordpieces_with_labels(hyp.split(), tags) references = ref.split(";") all_ref_tokens = [] all_ref_segment_ids = [] for i in range(len(references)): ref_tokens, _ = self._split_to_wordpieces(references[i].split()) all_ref_tokens.extend(ref_tokens + ["[SEP]"]) all_ref_segment_ids.extend([i + 1] * (len(ref_tokens) + 1)) input_tokens = ["[CLS]"] + hyp_tokens + ["[SEP]"] + all_ref_tokens # ends with [SEP] input_ids = self._tokenizer.convert_tokens_to_ids(input_tokens) input_mask = [1] * len(input_ids) segment_ids = [0] + [0] * len(hyp_tokens) + [0] + all_ref_segment_ids if len(input_ids) != len(segment_ids): raise ValueError( "len(input_ids)=" + str(len(input_ids)) + " is different from len(segment_ids)=" + str(len(segment_ids)) ) if tags: labels_mask = [0] + [1] * len(labels) + [0] + [0] * len(all_ref_tokens) labels = [0] + labels + [0] + [0] * len(all_ref_tokens) return (input_ids, input_mask, segment_ids, labels_mask, labels, hyp_tokens, token_start_indices) def _split_to_wordpieces_with_labels( self, tokens: List[str], labels: List[int] ) -> Tuple[List[str], List[int], List[int]]: """Splits tokens (and the labels accordingly) to WordPieces. Args: tokens: Tokens to be split. labels: Labels (one per token) to be split. Returns: 3-tuple with the split tokens, split labels, and the indices of starting tokens of words """ bert_tokens = [] # Original tokens split into wordpieces. bert_labels = [] # Label for each wordpiece. # Index of each wordpiece that starts a new token. token_start_indices = [] for i, token in enumerate(tokens): # '+ 1' is because bert_tokens will be prepended by [CLS] token later. token_start_indices.append(len(bert_tokens) + 1) pieces = self._tokenizer.tokenize(token) bert_tokens.extend(pieces) bert_labels.extend([labels[i]] * len(pieces)) return bert_tokens, bert_labels, token_start_indices def _split_to_wordpieces(self, tokens: List[str]) -> Tuple[List[str], List[int]]: """Splits tokens to WordPieces. Args: tokens: Tokens to be split. Returns: tuple with the split tokens, and the indices of the WordPieces that start a token. """ bert_tokens = [] # Original tokens split into wordpieces. # Index of each wordpiece that starts a new token. token_start_indices = [] for i, token in enumerate(tokens): # '+ 1' is because bert_tokens will be prepended by [CLS] token later. token_start_indices.append(len(bert_tokens) + 1) pieces = self._tokenizer.tokenize(token) bert_tokens.extend(pieces) return bert_tokens, token_start_indices def read_input_file( self, input_filename: str, infer: bool = False ) -> Union[List['BertExample'], Tuple[List['BertExample'], Tuple[str, str]]]: """Reads in Tab Separated Value file and converts to training/inference-ready examples. Args: example_builder: Instance of BertExampleBuilder input_filename: Path to the TSV input file. infer: If true, input examples do not contain target info. Returns: examples: List of converted examples (BertExample). or (examples, hyps_refs): If infer==true, returns h """ if not path.exists(input_filename): raise ValueError("Cannot find file: " + input_filename) examples = [] # output list of BertExample hyps_refs = [] # output list of tuples (ASR-hypothesis, candidate_str) with open(input_filename, 'r') as f: for line in f: if len(examples) % 1000 == 0: logging.info("{} examples processed.".format(len(examples))) if infer: parts = line.rstrip('\n').split('\t') hyp, ref, target, span_info = parts[0], parts[1], None, None if len(parts) == 4: target, span_info = parts[2], parts[3] try: example = self.build_bert_example(hyp, ref, target=target, span_info=span_info, infer=infer) except Exception as e: logging.warning(str(e)) logging.warning(line) continue if example is None: logging.info("cannot create example: ") logging.info(line) continue hyps_refs.append((hyp, ref)) examples.append(example) else: hyp, ref, target, semiotic_info = line.rstrip('\n').split('\t') try: example = self.build_bert_example( hyp, ref, target=target, span_info=semiotic_info, infer=infer ) except Exception as e: logging.warning(str(e)) logging.warning(line) continue if example is None: logging.info("cannot create example: ") logging.info(line) continue examples.append(example) logging.info(f"Done. {len(examples)} examples converted.") if infer: return examples, hyps_refs return examples
NeMo-main
nemo/collections/nlp/data/spellchecking_asr_customization/bert_example.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.spellchecking_asr_customization.dataset import ( SpellcheckingAsrCustomizationDataset, SpellcheckingAsrCustomizationTestDataset, TarredSpellcheckingAsrCustomizationDataset, )
NeMo-main
nemo/collections/nlp/data/spellchecking_asr_customization/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from io import BytesIO from typing import Dict, List, Optional, Tuple import braceexpand import numpy as np import torch import webdataset as wd from nemo.collections.nlp.data.spellchecking_asr_customization.bert_example import BertExampleBuilder from nemo.core.classes.dataset import Dataset, IterableDataset from nemo.core.neural_types import ChannelType, IntType, LabelsType, MaskType, NeuralType from nemo.utils import logging __all__ = [ "SpellcheckingAsrCustomizationDataset", "SpellcheckingAsrCustomizationTestDataset", "TarredSpellcheckingAsrCustomizationDataset", ] def collate_train_dataset( batch: List[ Tuple[ np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, ] ], pad_token_id: int, ) -> Tuple[ torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, ]: """collate batch of training items Args: batch: A list of tuples of (input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans). pad_token_id: integer id of padding token (to use in padded_input_ids, padded_input_ids_for_subwords) """ max_length = 0 max_length_for_subwords = 0 max_length_for_spans = 1 # to avoid empty tensor for ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans, ) in batch: if len(input_ids) > max_length: max_length = len(input_ids) if len(input_ids_for_subwords) > max_length_for_subwords: max_length_for_subwords = len(input_ids_for_subwords) if len(spans) > max_length_for_spans: max_length_for_spans = len(spans) padded_input_ids = [] padded_input_mask = [] padded_segment_ids = [] padded_input_ids_for_subwords = [] padded_input_mask_for_subwords = [] padded_segment_ids_for_subwords = [] padded_character_pos_to_subword_pos = [] padded_labels_mask = [] padded_labels = [] padded_spans = [] for ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans, ) in batch: if len(input_ids) < max_length: pad_length = max_length - len(input_ids) padded_input_ids.append(np.pad(input_ids, pad_width=[0, pad_length], constant_values=pad_token_id)) padded_input_mask.append(np.pad(input_mask, pad_width=[0, pad_length], constant_values=0)) padded_segment_ids.append(np.pad(segment_ids, pad_width=[0, pad_length], constant_values=0)) padded_labels_mask.append(np.pad(labels_mask, pad_width=[0, pad_length], constant_values=0)) padded_labels.append(np.pad(labels, pad_width=[0, pad_length], constant_values=0)) padded_character_pos_to_subword_pos.append( np.pad(character_pos_to_subword_pos, pad_width=[0, pad_length], constant_values=0) ) else: padded_input_ids.append(input_ids) padded_input_mask.append(input_mask) padded_segment_ids.append(segment_ids) padded_labels_mask.append(labels_mask) padded_labels.append(labels) padded_character_pos_to_subword_pos.append(character_pos_to_subword_pos) if len(input_ids_for_subwords) < max_length_for_subwords: pad_length = max_length_for_subwords - len(input_ids_for_subwords) padded_input_ids_for_subwords.append( np.pad(input_ids_for_subwords, pad_width=[0, pad_length], constant_values=pad_token_id) ) padded_input_mask_for_subwords.append( np.pad(input_mask_for_subwords, pad_width=[0, pad_length], constant_values=0) ) padded_segment_ids_for_subwords.append( np.pad(segment_ids_for_subwords, pad_width=[0, pad_length], constant_values=0) ) else: padded_input_ids_for_subwords.append(input_ids_for_subwords) padded_input_mask_for_subwords.append(input_mask_for_subwords) padded_segment_ids_for_subwords.append(segment_ids_for_subwords) if len(spans) < max_length_for_spans: padded_spans.append(np.ones((max_length_for_spans, 3), dtype=int) * -1) # pad value is [-1, -1, -1] if len(spans) > 0: padded_spans[-1][: spans.shape[0], : spans.shape[1]] = spans # copy actual spans to the beginning else: padded_spans.append(spans) return ( torch.LongTensor(np.array(padded_input_ids)), torch.LongTensor(np.array(padded_input_mask)), torch.LongTensor(np.array(padded_segment_ids)), torch.LongTensor(np.array(padded_input_ids_for_subwords)), torch.LongTensor(np.array(padded_input_mask_for_subwords)), torch.LongTensor(np.array(padded_segment_ids_for_subwords)), torch.LongTensor(np.array(padded_character_pos_to_subword_pos)), torch.LongTensor(np.array(padded_labels_mask)), torch.LongTensor(np.array(padded_labels)), torch.LongTensor(np.array(padded_spans)), ) def collate_test_dataset( batch: List[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]], pad_token_id: int, ) -> Tuple[ torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor, ]: """collate batch of test items Args: batch: A list of tuples of (input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, fragment_indices). pad_token_id: integer id of padding token (to use in padded_input_ids, padded_input_ids_for_subwords) """ max_length = 0 max_length_for_subwords = 0 max_length_for_fragment_indices = 1 # to avoid empty tensor for ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, fragment_indices, ) in batch: if len(input_ids) > max_length: max_length = len(input_ids) if len(input_ids_for_subwords) > max_length_for_subwords: max_length_for_subwords = len(input_ids_for_subwords) if len(fragment_indices) > max_length_for_fragment_indices: max_length_for_fragment_indices = len(fragment_indices) padded_input_ids = [] padded_input_mask = [] padded_segment_ids = [] padded_input_ids_for_subwords = [] padded_input_mask_for_subwords = [] padded_segment_ids_for_subwords = [] padded_character_pos_to_subword_pos = [] padded_fragment_indices = [] for ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, fragment_indices, ) in batch: if len(input_ids) < max_length: pad_length = max_length - len(input_ids) padded_input_ids.append(np.pad(input_ids, pad_width=[0, pad_length], constant_values=pad_token_id)) padded_input_mask.append(np.pad(input_mask, pad_width=[0, pad_length], constant_values=0)) padded_segment_ids.append(np.pad(segment_ids, pad_width=[0, pad_length], constant_values=0)) padded_character_pos_to_subword_pos.append( np.pad(character_pos_to_subword_pos, pad_width=[0, pad_length], constant_values=0) ) else: padded_input_ids.append(input_ids) padded_input_mask.append(input_mask) padded_segment_ids.append(segment_ids) padded_character_pos_to_subword_pos.append(character_pos_to_subword_pos) if len(input_ids_for_subwords) < max_length_for_subwords: pad_length = max_length_for_subwords - len(input_ids_for_subwords) padded_input_ids_for_subwords.append( np.pad(input_ids_for_subwords, pad_width=[0, pad_length], constant_values=pad_token_id) ) padded_input_mask_for_subwords.append( np.pad(input_mask_for_subwords, pad_width=[0, pad_length], constant_values=0) ) padded_segment_ids_for_subwords.append( np.pad(segment_ids_for_subwords, pad_width=[0, pad_length], constant_values=0) ) else: padded_input_ids_for_subwords.append(input_ids_for_subwords) padded_input_mask_for_subwords.append(input_mask_for_subwords) padded_segment_ids_for_subwords.append(segment_ids_for_subwords) if len(fragment_indices) < max_length_for_fragment_indices: # we use [0, 1, 0] as padding value for fragment_indices, it corresponds to [CLS] token, which is ignored and won't affect anything p = np.zeros((max_length_for_fragment_indices, 3), dtype=int) p[:, 1] = 1 p[:, 2] = 0 padded_fragment_indices.append(p) if len(fragment_indices) > 0: padded_fragment_indices[-1][ : fragment_indices.shape[0], : fragment_indices.shape[1] ] = fragment_indices # copy actual fragment_indices to the beginning else: padded_fragment_indices.append(fragment_indices) return ( torch.LongTensor(np.array(padded_input_ids)), torch.LongTensor(np.array(padded_input_mask)), torch.LongTensor(np.array(padded_segment_ids)), torch.LongTensor(np.array(padded_input_ids_for_subwords)), torch.LongTensor(np.array(padded_input_mask_for_subwords)), torch.LongTensor(np.array(padded_segment_ids_for_subwords)), torch.LongTensor(np.array(padded_character_pos_to_subword_pos)), torch.LongTensor(np.array(padded_fragment_indices)), ) class SpellcheckingAsrCustomizationDataset(Dataset): """ Dataset as used by the SpellcheckingAsrCustomizationModel for training and validation pipelines. Args: input_file (str): path to tsv-file with data example_builder: instance of BertExampleBuilder """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "input_mask": NeuralType(('B', 'T'), MaskType()), "segment_ids": NeuralType(('B', 'T'), ChannelType()), "input_ids_for_subwords": NeuralType(('B', 'T'), ChannelType()), "input_mask_for_subwords": NeuralType(('B', 'T'), MaskType()), "segment_ids_for_subwords": NeuralType(('B', 'T'), ChannelType()), "character_pos_to_subword_pos": NeuralType(('B', 'T'), ChannelType()), "labels_mask": NeuralType(('B', 'T'), MaskType()), "labels": NeuralType(('B', 'T'), LabelsType()), "spans": NeuralType(('B', 'T', 'C'), IntType()), } def __init__(self, input_file: str, example_builder: BertExampleBuilder) -> None: self.example_builder = example_builder self.examples = self.example_builder.read_input_file(input_file, infer=False) self.pad_token_id = self.example_builder._pad_id def __len__(self): return len(self.examples) def __getitem__(self, idx: int): example = self.examples[idx] input_ids = np.array(example.features["input_ids"], dtype=np.int16) input_mask = np.array(example.features["input_mask"], dtype=np.int8) segment_ids = np.array(example.features["segment_ids"], dtype=np.int8) input_ids_for_subwords = np.array(example.features["input_ids_for_subwords"], dtype=np.int16) input_mask_for_subwords = np.array(example.features["input_mask_for_subwords"], dtype=np.int8) segment_ids_for_subwords = np.array(example.features["segment_ids_for_subwords"], dtype=np.int8) character_pos_to_subword_pos = np.array(example.features["character_pos_to_subword_pos"], dtype=np.int16) labels_mask = np.array(example.features["labels_mask"], dtype=np.int8) labels = np.array(example.features["labels"], dtype=np.int8) spans = np.array(example.features["spans"], dtype=np.int16) return ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans, ) def _collate_fn(self, batch): """collate batch of items Args: batch: A list of tuples of (input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans). """ return collate_train_dataset(batch, pad_token_id=self.pad_token_id) class TarredSpellcheckingAsrCustomizationDataset(IterableDataset): """ This Dataset loads training examples from tarred tokenized pickle files. If using multiple processes the number of shards should be divisible by the number of workers to ensure an even split among workers. If it is not divisible, logging will give a warning but training will proceed. Additionally, please note that the len() of this DataLayer is assumed to be the number of tokens of the text data. Shard strategy is scatter - each node gets a unique set of shards, which are permanently pre-allocated and never changed at runtime. Args: text_tar_filepaths: a string (can be brace-expandable). shuffle_n (int): How many samples to look ahead and load to be shuffled. See WebDataset documentation for more details. Defaults to 0. global_rank (int): Worker rank, used for partitioning shards. Defaults to 0. world_size (int): Total number of processes, used for partitioning shards. Defaults to 1. pad_token_id: id of pad token (used in collate_fn) """ def __init__( self, text_tar_filepaths: str, shuffle_n: int = 1, global_rank: int = 0, world_size: int = 1, pad_token_id: int = -1, # use real value or get error ): super(TarredSpellcheckingAsrCustomizationDataset, self).__init__() if pad_token_id < 0: raise ValueError("use non-negative pad_token_id: " + str(pad_token_id)) self.pad_token_id = pad_token_id # Replace '(', '[', '<' and '_OP_' with '{' brace_keys_open = ['(', '[', '<', '_OP_'] for bkey in brace_keys_open: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "{") # Replace ')', ']', '>' and '_CL_' with '}' brace_keys_close = [')', ']', '>', '_CL_'] for bkey in brace_keys_close: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "}") # Brace expand text_tar_filepaths = list(braceexpand.braceexpand(text_tar_filepaths)) logging.info("Tarred dataset shards will be scattered evenly across all nodes.") if len(text_tar_filepaths) % world_size != 0: logging.warning( f"Number of shards in tarred dataset ({len(text_tar_filepaths)}) is not divisible " f"by number of distributed workers ({world_size}). " f"Some shards will not be used ({len(text_tar_filepaths) % world_size})." ) begin_idx = (len(text_tar_filepaths) // world_size) * global_rank end_idx = begin_idx + (len(text_tar_filepaths) // world_size) logging.info('Begin Index : %d' % (begin_idx)) logging.info('End Index : %d' % (end_idx)) text_tar_filepaths = text_tar_filepaths[begin_idx:end_idx] logging.info( "Partitioning tarred dataset: process (%d) taking shards [%d, %d)", global_rank, begin_idx, end_idx ) self.tarpath = text_tar_filepaths # Put together WebDataset self._dataset = wd.WebDataset(urls=text_tar_filepaths, nodesplitter=None) if shuffle_n > 0: self._dataset = self._dataset.shuffle(shuffle_n, initial=shuffle_n) else: logging.info("WebDataset will not shuffle files within the tar files.") self._dataset = self._dataset.rename(pkl='pkl', key='__key__').to_tuple('pkl', 'key').map(f=self._build_sample) def _build_sample(self, fname): # Load file pkl_file, _ = fname pkl_file = BytesIO(pkl_file) data = pickle.load(pkl_file) pkl_file.close() input_ids = data["input_ids"] input_mask = data["input_mask"] segment_ids = data["segment_ids"] input_ids_for_subwords = data["input_ids_for_subwords"] input_mask_for_subwords = data["input_mask_for_subwords"] segment_ids_for_subwords = data["segment_ids_for_subwords"] character_pos_to_subword_pos = data["character_pos_to_subword_pos"] labels_mask = data["labels_mask"] labels = data["labels"] spans = data["spans"] return ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans, ) def __iter__(self): return self._dataset.__iter__() def _collate_fn(self, batch): """collate batch of items Args: batch: A list of tuples of (input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans). """ return collate_train_dataset(batch, pad_token_id=self.pad_token_id) class SpellcheckingAsrCustomizationTestDataset(Dataset): """ Dataset for inference pipeline. Args: sents: list of strings example_builder: instance of BertExampleBuilder """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "input_mask": NeuralType(('B', 'T'), MaskType()), "segment_ids": NeuralType(('B', 'T'), ChannelType()), "input_ids_for_subwords": NeuralType(('B', 'T'), ChannelType()), "input_mask_for_subwords": NeuralType(('B', 'T'), MaskType()), "segment_ids_for_subwords": NeuralType(('B', 'T'), ChannelType()), "character_pos_to_subword_pos": NeuralType(('B', 'T'), ChannelType()), "fragment_indices": NeuralType(('B', 'T', 'C'), IntType()), } def __init__(self, input_file: str, example_builder: BertExampleBuilder) -> None: self.example_builder = example_builder self.examples, self.hyps_refs = self.example_builder.read_input_file(input_file, infer=True) self.pad_token_id = self.example_builder._pad_id def __len__(self): return len(self.examples) def __getitem__(self, idx: int): example = self.examples[idx] input_ids = np.array(example.features["input_ids"]) input_mask = np.array(example.features["input_mask"]) segment_ids = np.array(example.features["segment_ids"]) input_ids_for_subwords = np.array(example.features["input_ids_for_subwords"]) input_mask_for_subwords = np.array(example.features["input_mask_for_subwords"]) segment_ids_for_subwords = np.array(example.features["segment_ids_for_subwords"]) character_pos_to_subword_pos = np.array(example.features["character_pos_to_subword_pos"], dtype=np.int64) fragment_indices = np.array(example.features["fragment_indices"], dtype=np.int16) return ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, fragment_indices, ) def _collate_fn(self, batch): """collate batch of items Args: batch: A list of tuples of (input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos). """ return collate_test_dataset(batch, pad_token_id=self.pad_token_id)
NeMo-main
nemo/collections/nlp/data/spellchecking_asr_customization/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math import random import re from collections import defaultdict, namedtuple from typing import Dict, List, Set, Tuple, Union import numpy as np from numba import jit """Utility functions for Spellchecking ASR Customization.""" def replace_diacritics(text): text = re.sub(r"[éèëēêęěė]", "e", text) # latin text = re.sub(r"[ё]", "е", text) # cyrillic text = re.sub(r"[ãâāáäăàąåạảǎ]", "a", text) text = re.sub(r"[úūüùưûů]", "u", text) text = re.sub(r"[ôōóöõòőø]", "o", text) text = re.sub(r"[ćçč]", "c", text) text = re.sub(r"[ïīíîıì]", "i", text) text = re.sub(r"[ñńňņ]", "n", text) text = re.sub(r"[țťţ]", "t", text) text = re.sub(r"[łľļ]", "l", text) text = re.sub(r"[żžź]", "z", text) text = re.sub(r"[ğ]", "g", text) text = re.sub(r"[ďđ]", "d", text) text = re.sub(r"[ķ]", "k", text) text = re.sub(r"[ř]", "r", text) text = re.sub(r"[ý]", "y", text) text = re.sub(r"[æ]", "ae", text) text = re.sub(r"[œ]", "oe", text) text = re.sub(r"[șşšś]", "s", text) return text def load_ngram_mappings(input_name: str, max_misspelled_freq: int = 1000000000) -> Tuple[defaultdict, Set]: """Loads n-gram mapping vocabularies in form required by dynamic programming Args: input_name: file with n-gram mappings max_misspelled_freq: threshold on misspelled n-gram frequency Returns: vocab: dict {key=original_ngram, value=dict{key=misspelled_ngram, value=frequency}} ban_ngram: set of banned misspelled n-grams Input format: u t o u+i t o 49 8145 114 u t o <DELETE> t e 63 8145 16970 u t o o+_ t o 42 8145 1807 """ vocab = defaultdict(dict) ban_ngram = set() with open(input_name, "r", encoding="utf-8") as f: for line in f: orig, misspelled, joint_freq, orig_freq, misspelled_freq = line.strip().split("\t") if orig == "" or misspelled == "": raise ValueError("Empty n-gram: orig=" + orig + "; misspelled=" + misspelled) misspelled = misspelled.replace("<DELETE>", "=") if misspelled.replace("=", "").strip() == "": # skip if resulting ngram doesn't contain any real character continue if int(misspelled_freq) > max_misspelled_freq: ban_ngram.add(misspelled + " ") # space at the end is required within get_index function vocab[orig][misspelled] = int(joint_freq) / int(orig_freq) return vocab, ban_ngram def load_ngram_mappings_for_dp(input_name: str) -> Tuple[defaultdict, defaultdict, defaultdict, int]: """Loads n-gram mapping vocabularies in form required by dynamic programming Args: input_name: file with n-gram mappings Returns: joint_vocab: dict where key=(original_ngram, misspelled_ngram), value=frequency orig_vocab: dict where key=original_ngram, value=frequency misspelled_vocab: dict where key=misspelled_ngram, value=frequency max_len: maximum n-gram length seen in vocabulary Input format: original \t misspelled \t joint_freq \t original_freq \t misspelled_freq u t o u+i t o 49 8145 114 u t o <DELETE> t e 63 8145 16970 u t o o+_ t o 42 8145 1807 """ joint_vocab = defaultdict(int) orig_vocab = defaultdict(int) misspelled_vocab = defaultdict(int) max_len = 0 with open(input_name, "r", encoding="utf-8") as f: for line in f: orig, misspelled, joint_freq, _, _ = line.strip().split("\t") if orig == "" or misspelled == "": raise ValueError("Emty n-gram: orig=" + orig + "; misspelled=" + misspelled) misspelled = misspelled.replace("<DELETE>", " ").replace("+", " ") misspelled = " ".join(misspelled.split()) if misspelled == "": # skip if resulting ngram doesn't contain any real character continue max_len = max(max_len, orig.count(" ") + 1, misspelled.count(" ") + 1) joint_vocab[(orig, misspelled)] += int(joint_freq) orig_vocab[orig] += int(joint_freq) misspelled_vocab[misspelled] += int(joint_freq) return joint_vocab, orig_vocab, misspelled_vocab, max_len def get_alignment_by_dp( ref_phrase: str, hyp_phrase: str, dp_data: Tuple[defaultdict, defaultdict, defaultdict, int] ) -> List[Tuple[str, str, float, float, int, int, int]]: """Get best alignment path between a reference and (possibly) misspelled phrase using n-gram mappings vocabulary. Args: ref_phrase: candidate reference phrase (letters separated by space, real space replaced by underscore) hyp_phrase: (possibly) misspelled phrase (letters separated by space, real space replaced by underscore) dp_data: n-gram mapping vocabularies used by dynamic programming Returns: list of tuples (hyp_ngram, ref_ngram, logprob, sum_logprob, joint_freq, orig_freq, misspelled_freq) This is best alignment path. Example: ref_phrase: "a n h y d r i d e" hyp_phrase: "a n d _ h y d r o d" Result: [("*", "*", 0.0, 0.0, 0, 0, 0) ("a n d _ h", "a n h", -2.34, -2.34, 226, 2338, 2203) ("y d r o", "y d r i", -2.95, -5.29, 11, 211, 1584) ("d", "d e", -1.99, -7.28, 60610, 444714, 2450334) ] Final path score is in path[-1][3]: -7.28 Note that the order of ref_phrase and hyp_phrase matters, because n-gram mappings vocabulary is not symmetrical. """ joint_vocab, orig_vocab, misspelled_vocab, max_len = dp_data hyp_letters = ["*"] + hyp_phrase.split() ref_letters = ["*"] + ref_phrase.split() DpInfo = namedtuple( "DpInfo", ["hyp_pos", "ref_pos", "best_hyp_ngram_len", "best_ref_ngram_len", "score", "sum_score"] ) history = defaultdict(DpInfo) history[(0, 0)] = DpInfo( hyp_pos=0, ref_pos=0, best_hyp_ngram_len=1, best_ref_ngram_len=1, score=0.0, sum_score=0.0 ) for hyp_pos in range(len(hyp_letters)): for ref_pos in range(len(ref_letters)): if hyp_pos == 0 and ref_pos == 0: # cell (0, 0) is already defined continue # consider cell (hyp_pos, ref_pos) and find best path to get there best_hyp_ngram_len = 0 best_ref_ngram_len = 0 best_ngram_score = float("-inf") best_sum_score = float("-inf") # loop over paths ending on non-empty ngram mapping for hyp_ngram_len in range(1, 1 + min(max_len, hyp_pos + 1)): hyp_ngram = " ".join(hyp_letters[(hyp_pos - hyp_ngram_len + 1) : (hyp_pos + 1)]) for ref_ngram_len in range(1, 1 + min(max_len, ref_pos + 1)): ref_ngram = " ".join(ref_letters[(ref_pos - ref_ngram_len + 1) : (ref_pos + 1)]) if (ref_ngram, hyp_ngram) not in joint_vocab: continue joint_freq = joint_vocab[(ref_ngram, hyp_ngram)] orig_freq = orig_vocab.get(ref_ngram, 1) ngram_score = math.log(joint_freq / orig_freq) previous_cell = (hyp_pos - hyp_ngram_len, ref_pos - ref_ngram_len) if previous_cell not in history: print("cell ", previous_cell, "does not exist") continue previous_score = history[previous_cell].sum_score sum_score = ngram_score + previous_score if sum_score > best_sum_score: best_sum_score = sum_score best_ngram_score = ngram_score best_hyp_ngram_len = hyp_ngram_len best_ref_ngram_len = ref_ngram_len # loop over two variants with deletion of one character deletion_score = -6.0 insertion_score = -6.0 if hyp_pos > 0: previous_cell = (hyp_pos - 1, ref_pos) previous_score = history[previous_cell].sum_score sum_score = deletion_score + previous_score if sum_score > best_sum_score: best_sum_score = sum_score best_ngram_score = deletion_score best_hyp_ngram_len = 1 best_ref_ngram_len = 0 if ref_pos > 0: previous_cell = (hyp_pos, ref_pos - 1) previous_score = history[previous_cell].sum_score sum_score = insertion_score + previous_score if sum_score > best_sum_score: best_sum_score = sum_score best_ngram_score = insertion_score best_hyp_ngram_len = 0 best_ref_ngram_len = 1 if best_hyp_ngram_len == 0 and best_ref_ngram_len == 0: raise ValueError("best_hyp_ngram_len = 0 and best_ref_ngram_len = 0") # save cell to history history[(hyp_pos, ref_pos)] = DpInfo( hyp_pos=hyp_pos, ref_pos=ref_pos, best_hyp_ngram_len=best_hyp_ngram_len, best_ref_ngram_len=best_ref_ngram_len, score=best_ngram_score, sum_score=best_sum_score, ) # now trace back on best path starting from last positions path = [] hyp_pos = len(hyp_letters) - 1 ref_pos = len(ref_letters) - 1 cell_info = history[(hyp_pos, ref_pos)] path.append(cell_info) while hyp_pos > 0 or ref_pos > 0: hyp_pos -= cell_info.best_hyp_ngram_len ref_pos -= cell_info.best_ref_ngram_len cell_info = history[(hyp_pos, ref_pos)] path.append(cell_info) result = [] for info in reversed(path): hyp_ngram = " ".join(hyp_letters[(info.hyp_pos - info.best_hyp_ngram_len + 1) : (info.hyp_pos + 1)]) ref_ngram = " ".join(ref_letters[(info.ref_pos - info.best_ref_ngram_len + 1) : (info.ref_pos + 1)]) joint_freq = joint_vocab.get((ref_ngram, hyp_ngram), 0) orig_freq = orig_vocab.get(ref_ngram, 0) misspelled_freq = misspelled_vocab.get(hyp_ngram, 0) result.append((hyp_ngram, ref_ngram, info.score, info.sum_score, joint_freq, orig_freq, misspelled_freq)) return result def get_index( custom_phrases: List[str], vocab: defaultdict, ban_ngram_global: Set[str], min_log_prob: float = -4.0, max_phrases_per_ngram: int = 100, ) -> Tuple[List[str], Dict[str, List[Tuple[int, int, int, float]]]]: """Given a restricted vocabulary of replacements, loops through custom phrases, generates all possible conversions and creates index. Args: custom_phrases: list of all custom phrases, characters should be split by space, real space replaced to underscore. vocab: n-gram mappings vocabulary - dict {key=original_ngram, value=dict{key=misspelled_ngram, value=frequency}} ban_ngram_global: set of banned misspelled n-grams min_log_prob: minimum log probability, after which we stop growing this n-gram. max_phrases_per_ngram: maximum phrases that we allow to store per one n-gram. N-grams exceeding that quantity get banned. Returns: phrases - list of phrases. Position in this list is used as phrase_id. ngram2phrases - resulting index, i.e. dict where key=ngram, value=list of tuples (phrase_id, begin_pos, size, logprob) """ ban_ngram_local = set() # these ngrams are banned only for given custom_phrases ngram_to_phrase_and_position = defaultdict(list) for custom_phrase in custom_phrases: inputs = custom_phrase.split(" ") begin = 0 index_keys = [{} for _ in inputs] # key - letter ngram, index - beginning positions in phrase for begin in range(len(inputs)): for end in range(begin + 1, min(len(inputs) + 1, begin + 5)): inp = " ".join(inputs[begin:end]) if inp not in vocab: continue for rep in vocab[inp]: lp = math.log(vocab[inp][rep]) for b in range(max(0, end - 5), end): # try to grow previous ngrams with new replacement new_ngrams = {} for ngram in index_keys[b]: lp_prev = index_keys[b][ngram] if len(ngram) + len(rep) <= 10 and b + ngram.count(" ") == begin: if lp_prev + lp > min_log_prob: new_ngrams[ngram + rep + " "] = lp_prev + lp index_keys[b].update(new_ngrams) # join two dictionaries # add current replacement as ngram if lp > min_log_prob: index_keys[begin][rep + " "] = lp for b in range(len(index_keys)): for ngram, lp in sorted(index_keys[b].items(), key=lambda item: item[1], reverse=True): if ngram in ban_ngram_global: # here ngram ends with a space continue real_length = ngram.count(" ") ngram = ngram.replace("+", " ").replace("=", " ") ngram = " ".join(ngram.split()) # here ngram doesn't end with a space anymore if ngram + " " in ban_ngram_global: # this can happen after deletion of + and = continue if ngram in ban_ngram_local: continue ngram_to_phrase_and_position[ngram].append((custom_phrase, b, real_length, lp)) if len(ngram_to_phrase_and_position[ngram]) > max_phrases_per_ngram: ban_ngram_local.add(ngram) del ngram_to_phrase_and_position[ngram] continue phrases = [] # id to phrase phrase2id = {} # phrase to id ngram2phrases = defaultdict(list) # ngram to list of tuples (phrase_id, begin, length, logprob) for ngram in ngram_to_phrase_and_position: for phrase, b, length, lp in ngram_to_phrase_and_position[ngram]: if phrase not in phrase2id: phrases.append(phrase) phrase2id[phrase] = len(phrases) - 1 ngram2phrases[ngram].append((phrase2id[phrase], b, length, lp)) return phrases, ngram2phrases def load_index(input_name: str) -> Tuple[List[str], Dict[str, List[Tuple[int, int, int, float]]]]: """ Load index from file Args: input_name: file with index Returns: phrases: List of all phrases in custom vocabulary. Position corresponds to phrase_id. ngram2phrases: dict where key=ngram, value=list of tuples (phrase_id, begin_pos, size, logprob) """ phrases = [] # id to phrase phrase2id = {} # phrase to id ngram2phrases = defaultdict(list) # ngram to list of tuples (phrase_id, begin_pos, size, logprob) with open(input_name, "r", encoding="utf-8") as f: for line in f: ngram, phrase, b, size, lp = line.split("\t") b = int(b) size = int(size) lp = float(lp) if phrase not in phrase2id: phrases.append(phrase) phrase2id[phrase] = len(phrases) - 1 ngram2phrases[ngram].append((phrase2id[phrase], b, size, lp)) return phrases, ngram2phrases def search_in_index( ngram2phrases: Dict[str, List[Tuple[int, int, int, float]]], phrases: List[str], letters: Union[str, List[str]] ) -> Tuple[np.ndarray, List[Set[str]]]: """ Function used to search in index Args: ngram2phrases: dict where key=ngram, value=list of tuples (phrase_id, begin_pos, size, logprob) phrases: List of all phrases in custom vocabulary. Position corresponds to phrase_id. letters: list of letters of ASR-hypothesis. Should not contain spaces - real spaces should be replaced with underscores. Returns: phrases2positions: a matrix of size (len(phrases), len(letters)). It is filled with 1.0 (hits) on intersection of letter n-grams and phrases that are indexed by these n-grams, 0.0 - elsewhere. It is used later to find phrases with many hits within a contiguous window - potential matching candidates. position2ngrams: positions in ASR-hypothesis mapped to sets of ngrams starting from that position. It is used later to check how well each found candidate is covered by n-grams (to avoid cases where some repeating n-gram gives many hits to a phrase, but the phrase itself is not well covered). """ if " " in letters: raise ValueError("letters should not contain space: " + str(letters)) phrases2positions = np.zeros((len(phrases), len(letters)), dtype=float) # positions mapped to sets of ngrams starting from that position position2ngrams = [set() for _ in range(len(letters))] begin = 0 for begin in range(len(letters)): for end in range(begin + 1, min(len(letters) + 1, begin + 7)): ngram = " ".join(letters[begin:end]) if ngram not in ngram2phrases: continue for phrase_id, b, size, lp in ngram2phrases[ngram]: phrases2positions[phrase_id, begin:end] = 1.0 position2ngrams[begin].add(ngram) return phrases2positions, position2ngrams @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def get_all_candidates_coverage(phrases, phrases2positions): """Get maximum hit coverage for each phrase - within a moving window of length of the phrase. Args: phrases: List of all phrases in custom vocabulary. Position corresponds to phrase_id. phrases2positions: a matrix of size (len(phrases), len(ASR-hypothesis)). It is filled with 1.0 (hits) on intersection of letter n-grams and phrases that are indexed by these n-grams, 0.0 - elsewhere. Returns: candidate2coverage: list of size len(phrases) containing coverage (0.0 to 1.0) in best window. candidate2position: list of size len(phrases) containing starting position of best window. """ candidate2coverage = [0.0] * len(phrases) candidate2position = [-1] * len(phrases) for i in range(len(phrases)): phrase_length = phrases[i].count(" ") + 1 all_coverage = np.sum(phrases2positions[i]) / phrase_length # if total coverage on whole ASR-hypothesis is too small, there is no sense in using moving window if all_coverage < 0.4: continue moving_sum = np.sum(phrases2positions[i, 0:phrase_length]) max_sum = moving_sum best_pos = 0 for pos in range(1, phrases2positions.shape[1] - phrase_length + 1): moving_sum -= phrases2positions[i, pos - 1] moving_sum += phrases2positions[i, pos + phrase_length - 1] if moving_sum > max_sum: max_sum = moving_sum best_pos = pos coverage = max_sum / (phrase_length + 2) # smoothing candidate2coverage[i] = coverage candidate2position[i] = best_pos return candidate2coverage, candidate2position def get_candidates( ngram2phrases: Dict[str, List[Tuple[int, int, int, float]]], phrases: List[str], letters: Union[str, List[str]], pool_for_random_candidates: List[str], min_phrase_coverage: float = 0.8, ) -> List[Tuple[str, int, int, float, float]]: """Given an index of custom vocabulary and an ASR-hypothesis retrieve 10 candidates. Args: ngram2phrases: dict where key=ngram, value=list of tuples (phrase_id, begin_pos, size, logprob) phrases: List of all phrases in custom vocabulary. Position corresponds to phrase_id. letters: list of letters of ASR-hypothesis. Should not contain spaces - real spaces should be replaced with underscores. pool_for_random_candidates: large list of strings, from which to sample random candidates in case when there are less than 10 real candidates min_phrase_coverage: We discard candidates which are not covered by n-grams to at least to this extent (to avoid cases where some repeating n-gram gives many hits to a phrase, but the phrase itself is not well covered). Returns: candidates: list of tuples (candidate_text, approximate_begin_position, length, coverage of window in ASR-hypothesis, coverage of phrase itself). """ phrases2positions, position2ngrams = search_in_index(ngram2phrases, phrases, letters) candidate2coverage, candidate2position = get_all_candidates_coverage(phrases, phrases2positions) # mask for each custom phrase, how many which symbols are covered by input ngrams phrases2coveredsymbols = [[0 for x in phrases[i].split(" ")] for i in range(len(phrases))] candidates = [] k = 0 for idx, coverage in sorted(enumerate(candidate2coverage), key=lambda item: item[1], reverse=True): begin = candidate2position[idx] # this is most likely beginning of this candidate phrase_length = phrases[idx].count(" ") + 1 for pos in range(begin, begin + phrase_length): # we do not know exact end of custom phrase in text, it can be different from phrase length if pos >= len(position2ngrams): break for ngram in position2ngrams[pos]: for phrase_id, b, size, lp in ngram2phrases[ngram]: if phrase_id != idx: continue for ppos in range(b, b + size): if ppos >= phrase_length: break phrases2coveredsymbols[phrase_id][ppos] = 1 k += 1 if k > 100: break real_coverage = sum(phrases2coveredsymbols[idx]) / len(phrases2coveredsymbols[idx]) if real_coverage < min_phrase_coverage: continue candidates.append((phrases[idx], begin, phrase_length, coverage, real_coverage)) # no need to process this sentence further if it does not contain any real candidates if len(candidates) == 0: print("WARNING: no real candidates", candidates) return [] while len(candidates) < 10: dummy = random.choice(pool_for_random_candidates) dummy = " ".join(list(dummy.replace(" ", "_"))) candidates.append((dummy, -1, dummy.count(" ") + 1, 0.0, 0.0)) candidates = candidates[:10] random.shuffle(candidates) if len(candidates) != 10: print("WARNING: cannot get 10 candidates", candidates) return [] return candidates def read_spellmapper_predictions(filename: str) -> List[Tuple[str, List[Tuple[int, int, str, float]], List[int]]]: """Read results of SpellMapper inference from file. Args: filename: file with SpellMapper results Returns: list of tuples (sent, list of fragment predictions, list of letter predictions) One fragment prediction is a tuple (begin, end, replacement_text, prob) """ results = [] with open(filename, "r", encoding="utf-8") as f: for line in f: text, candidate_str, fragment_predictions_str, letter_predictions_str = line.strip().split("\t") text = text.replace(" ", "").replace("_", " ") candidate_str = candidate_str.replace(" ", "").replace("_", " ") candidates = candidate_str.split(";") letter_predictions = list(map(int, letter_predictions_str.split())) if len(candidates) != 10: raise IndexError("expect 10 candidates, got: ", len(candidates)) if len(text) != len(letter_predictions): raise IndexError("len(text)=", len(text), "; len(letter_predictions)=", len(letter_predictions)) replacements = [] if fragment_predictions_str != "": for prediction in fragment_predictions_str.split(";"): begin, end, candidate_id, prob = prediction.split(" ") begin = int(begin) end = int(end) candidate_id = int(candidate_id) prob = float(prob) replacements.append((begin, end, candidates[candidate_id - 1], prob)) replacements.sort() # it will sort by begin, then by end results.append((text, replacements, letter_predictions)) return results def substitute_replacements_in_text( text: str, replacements: List[Tuple[int, int, str, float]], replace_hyphen_to_space: bool ) -> str: """Substitute replacements to the input text, iterating from end to beginning, so that indexing does not change. Note that we expect intersecting replacements to be already filtered. Args: text: sentence; replacements: list of replacements, each is a tuple (begin, end, text, probability); replace_hyphen_to_space: if True, hyphens in replacements will be converted to spaces; Returns: corrected sentence """ replacements.sort() last_begin = len(text) + 1 corrected_text = text for begin, end, candidate, prob in reversed(replacements): if end > last_begin: print("WARNING: skip intersecting replacement [", candidate, "] in text: ", text) continue if replace_hyphen_to_space: candidate = candidate.replace("-", " ") corrected_text = corrected_text[:begin] + candidate + corrected_text[end:] last_begin = begin return corrected_text def apply_replacements_to_text( text: str, replacements: List[Tuple[int, int, str, float]], min_prob: float = 0.5, replace_hyphen_to_space: bool = False, dp_data: Tuple[defaultdict, defaultdict, defaultdict, int] = None, min_dp_score_per_symbol: float = -99.9, ) -> str: """Filter and apply replacements to the input sentence. Args: text: input sentence; replacements: list of proposed replacements (probably intersecting), each is a tuple (begin, end, text, probability); min_prob: threshold on replacement probability; replace_hyphen_to_space: if True, hyphens in replacements will be converted to spaces; dp_data: n-gram mapping vocabularies used by dynamic programming, if None - dynamic programming is not used; min_dp_score_per_symbol: threshold on dynamic programming sum score averaged by hypothesis length Returns: corrected sentence """ # sort replacements by positions replacements.sort() # filter replacements # Note that we do not skip replacements with same text, otherwise intersecting candidates with lower probability can win filtered_replacements = [] for j in range(len(replacements)): replacement = replacements[j] begin, end, candidate, prob = replacement fragment = text[begin:end] candidate_spaced = " ".join(list(candidate.replace(" ", "_"))) fragment_spaced = " ".join(list(fragment.replace(" ", "_"))) # apply penalty if candidate length is bigger than fragment length # to avoid cases like "forward-looking" replacing "looking" in "forward looking" resulting in "forward forward looking" if len(candidate) > len(fragment): penalty = len(fragment) / len(candidate) prob *= penalty # skip replacement with low probability if prob < min_prob: continue # skip replacements with some predefined templates, e.g. "*'s" => "*s" if check_banned_replacements(fragment, candidate): continue if dp_data is not None: path = get_alignment_by_dp(candidate_spaced, fragment_spaced, dp_data) # path[-1][3] is the sum of logprobs for best path of dynamic programming: divide sum_score by length if path[-1][3] / (len(fragment)) < min_dp_score_per_symbol: continue # skip replacement if it intersects with previous replacement and has lower probability, otherwise remove previous replacement if len(filtered_replacements) > 0 and filtered_replacements[-1][1] > begin: if filtered_replacements[-1][3] > prob: continue else: filtered_replacements.pop() filtered_replacements.append((begin, end, candidate, prob)) return substitute_replacements_in_text(text, filtered_replacements, replace_hyphen_to_space) def update_manifest_with_spellmapper_corrections( input_manifest_name: str, short2full_name: str, output_manifest_name: str, spellmapper_results_name: str, min_prob: float = 0.5, replace_hyphen_to_space: bool = True, field_name: str = "pred_text", use_dp: bool = True, ngram_mappings: Union[str, None] = None, min_dp_score_per_symbol: float = -1.5, ) -> None: """Post-process SpellMapper predictions and write corrected sentence to the specified field of nemo manifest. The previous content of this field will be copied to "*_before_correction" field. If the sentence was split into fragments before running SpellMapper, all replacements will be first gathered together and then applied to the original long sentence. Args: input_manifest_name: input nemo manifest; short2full_name: text file with two columns: short_sent \t full_sent; output_manifest_name: output nemo manifest; spellmapper_results_name: text file with SpellMapper inference results; min_prob: threshold on replacement probability; replace_hyphen_to_space: if True, hyphens in replacements will be converted to spaces; field_name: name of json field whose text we want to correct; use_dp: bool = If True, additional replacement filtering will be applied using dynamic programming (works slow); ngram_mappings: file with n-gram mappings, only needed if use_dp=True min_dp_score_per_symbol: threshold on dynamic programming sum score averaged by hypothesis length """ short2full_sent = defaultdict(list) sent2corrections = defaultdict(dict) with open(short2full_name, "r", encoding="utf-8") as f: for line in f: s = line.strip() short_sent, full_sent = s.split("\t") short2full_sent[short_sent].append(full_sent) sent2corrections[full_sent] = [] spellmapper_results = read_spellmapper_predictions(spellmapper_results_name) dp_data = None if use_dp: dp_data = load_ngram_mappings_for_dp(ngram_mappings) for text, replacements, _ in spellmapper_results: short_sent = text if short_sent not in short2full_sent: continue # it can happen that one short sentence occurred in multiple full sentences for full_sent in short2full_sent[short_sent]: offset = full_sent.find(short_sent) for begin, end, candidate, prob in replacements: sent2corrections[full_sent].append((begin + offset, end + offset, candidate, prob)) out = open(output_manifest_name, "w", encoding="utf-8") with open(input_manifest_name, "r", encoding="utf-8") as f: for line in f: record = json.loads(line.strip()) sent = record[field_name] record[field_name + "_before_correction"] = record[field_name] if sent in sent2corrections: record[field_name] = apply_replacements_to_text( sent, sent2corrections[sent], min_prob=min_prob, replace_hyphen_to_space=replace_hyphen_to_space, dp_data=dp_data, min_dp_score_per_symbol=min_dp_score_per_symbol, ) out.write(json.dumps(record) + "\n") out.close() def extract_and_split_text_from_manifest( input_name: str, output_name: str, field_name: str = "pred_text", len_in_words: int = 16, step_in_words: int = 8 ) -> None: """Extract text of the specified field in nemo manifest and split it into fragments (possibly with intersection). The result is saved to a text file with two columns: short_sent \t full_sent. This is useful if we want to process shorter sentences and then apply the results to the original long sentence. Args: input_name: input nemo manifest, output_name: output text file, field_name: name of json field from which we extract the sentence text, len_in_words: maximum number of words in a fragment, step_in_words: on how many words we move at each step. For example, if the len_in_words=16 and step_in_words=8 the fragments will be intersected by half. """ short2full_sent = set() with open(input_name, "r", encoding="utf-8") as f: for line in f: record = json.loads(line.strip()) sent = record[field_name] if " " in sent: raise ValueError("found multiple space in: " + sent) words = sent.split() for i in range(0, len(words), step_in_words): short_sent = " ".join(words[i : i + len_in_words]) short2full_sent.add((short_sent, sent)) with open(output_name, "w", encoding="utf-8") as out: for short_sent, full_sent in short2full_sent: out.write(short_sent + "\t" + full_sent + "\n") def check_banned_replacements(src: str, dst: str) -> bool: """This function is used to check is a pair of words/phrases is matching some common template that we don't want to replace with one another. Args: src: first phrase dst: second phrase Returns True if this replacement should be banned. """ # customers' => customer's if src.endswith("s'") and dst.endswith("'s") and src[0:-2] == dst[0:-2]: return True # customer's => customers' if src.endswith("'s") and dst.endswith("s'") and src[0:-2] == dst[0:-2]: return True # customers => customer's if src.endswith("s") and dst.endswith("'s") and src[0:-1] == dst[0:-2]: return True # customer's => customers if src.endswith("'s") and dst.endswith("s") and src[0:-2] == dst[0:-1]: return True # customers => customers' if src.endswith("s") and dst.endswith("s'") and src[0:-1] == dst[0:-2]: return True # customers' => customers if src.endswith("s'") and dst.endswith("s") and src[0:-2] == dst[0:-1]: return True # utilities => utility's if src.endswith("ies") and dst.endswith("y's") and src[0:-3] == dst[0:-3]: return True # utility's => utilities if src.endswith("y's") and dst.endswith("ies") and src[0:-3] == dst[0:-3]: return True # utilities => utility if src.endswith("ies") and dst.endswith("y") and src[0:-3] == dst[0:-1]: return True # utility => utilities if src.endswith("y") and dst.endswith("ies") and src[0:-1] == dst[0:-3]: return True # group is => group's if src.endswith(" is") and dst.endswith("'s") and src[0:-3] == dst[0:-2]: return True # group's => group is if src.endswith("'s") and dst.endswith(" is") and src[0:-2] == dst[0:-3]: return True # trex's => trex if src.endswith("'s") and src[0:-2] == dst: return True # trex => trex's if dst.endswith("'s") and dst[0:-2] == src: return True # increases => increase (but trimass => trimas is ok) if src.endswith("s") and (not src.endswith("ss")) and src[0:-1] == dst: return True # increase => increases ((but trimas => trimass is ok)) if dst.endswith("s") and (not dst.endswith("ss")) and dst[0:-1] == src: return True # anticipate => anticipated if src.endswith("e") and dst.endswith("ed") and src[0:-1] == dst[0:-2]: return True # anticipated => anticipate if src.endswith("ed") and dst.endswith("e") and src[0:-2] == dst[0:-1]: return True # blocks => blocked if src.endswith("s") and dst.endswith("ed") and src[0:-1] == dst[0:-2]: return True # blocked => blocks if src.endswith("ed") and dst.endswith("s") and src[0:-2] == dst[0:-1]: return True # lives => lived if src.endswith("es") and dst.endswith("ed") and src[0:-2] == dst[0:-2]: return True # lived => lives if src.endswith("ed") and dst.endswith("es") and src[0:-2] == dst[0:-2]: return True # regarded => regard if src.endswith("ed") and src[0:-2] == dst: return True # regard => regarded if dst.endswith("ed") and dst[0:-2] == src: return True # regardeding => regard if src.endswith("ing") and src[0:-3] == dst: return True # regard => regarding if dst.endswith("ing") and dst[0:-3] == src: return True # longer => long if src.endswith("er") and src[0:-2] == dst: return True # long => longer if dst.endswith("er") and dst[0:-2] == src: return True # discussed => discussing if src.endswith("ed") and dst.endswith("ing") and src[0:-2] == dst[0:-3]: return True # discussing => discussed if src.endswith("ing") and dst.endswith("ed") and src[0:-3] == dst[0:-2]: return True # live => living if src.endswith("e") and dst.endswith("ing") and src[0:-1] == dst[0:-3]: return True # living => live if src.endswith("ing") and dst.endswith("e") and src[0:-3] == dst[0:-1]: return True # discussion => discussing if src.endswith("ion") and dst.endswith("ing") and src[0:-3] == dst[0:-3]: return True # discussing => discussion if src.endswith("ing") and dst.endswith("ion") and src[0:-3] == dst[0:-3]: return True # alignment => aligning if src.endswith("ment") and dst.endswith("ing") and src[0:-4] == dst[0:-3]: return True # aligning => alignment if src.endswith("ing") and dst.endswith("ment") and src[0:-3] == dst[0:-4]: return True # dispensers => dispensing if src.endswith("ers") and dst.endswith("ing") and src[0:-3] == dst[0:-3]: return True # dispensing => dispensers if src.endswith("ing") and dst.endswith("ers") and src[0:-3] == dst[0:-3]: return True # integrate => integrity if src.endswith("ate") and dst.endswith("ity") and src[0:-3] == dst[0:-3]: return True # integrity => integrate if src.endswith("ity") and dst.endswith("ate") and src[0:-3] == dst[0:-3]: return True # discussion => discussed if src.endswith("ion") and dst.endswith("ed") and src[0:-3] == dst[0:-2]: return True # discussed => discussion if src.endswith("ed") and dst.endswith("ion") and src[0:-2] == dst[0:-3]: return True # anticipation => anticipate if src.endswith("ion") and dst.endswith("e") and src[0:-3] == dst[0:-1]: return True # anticipate => anticipation if src.endswith("e") and dst.endswith("ion") and src[0:-1] == dst[0:-3]: return True # incremental => increment if src.endswith("ntal") and dst.endswith("nt") and src[0:-4] == dst[0:-2]: return True # increment => incremental if src.endswith("nt") and dst.endswith("ntal") and src[0:-2] == dst[0:-4]: return True # national => nation if src.endswith("nal") and dst.endswith("n") and src[0:-3] == dst[0:-1]: return True # nation => national if src.endswith("n") and dst.endswith("nal") and src[0:-1] == dst[0:-3]: return True # significantly => significant if src.endswith("ntly") and dst.endswith("nt") and src[0:-4] == dst[0:-2]: return True # significant => significantly if src.endswith("nt") and dst.endswith("ntly") and src[0:-2] == dst[0:-4]: return True # delivery => deliverer if src.endswith("ery") and dst.endswith("erer") and src[0:-3] == dst[0:-4]: return True # deliverer => delivery if src.endswith("erer") and dst.endswith("ery") and src[0:-4] == dst[0:-3]: return True # deliver => deliverer if src.endswith("er") and dst.endswith("erer") and src[0:-2] == dst[0:-4]: return True # deliverer => deliver if src.endswith("erer") and dst.endswith("er") and src[0:-4] == dst[0:-2]: return True # comparably => comparable if src.endswith("bly") and dst.endswith("ble") and src[0:-3] == dst[0:-3]: return True # comparable => comparably if src.endswith("ble") and dst.endswith("bly") and src[0:-3] == dst[0:-3]: return True # comparably => comparability if src.endswith("bly") and dst.endswith("bility") and src[0:-3] == dst[0:-6]: return True # comparability => comparably if src.endswith("bility") and dst.endswith("bly") and src[0:-6] == dst[0:-3]: return True # beautiful => beautifully if src.endswith("l") and dst.endswith("lly") and src[0:-1] == dst[0:-3]: return True # beautifully => beautiful if src.endswith("lly") and dst.endswith("l") and src[0:-3] == dst[0:-1]: return True # active => actively if src.endswith("e") and dst.endswith("ely") and src[0:-1] == dst[0:-3]: return True # actively => active if src.endswith("ely") and dst.endswith("e") and src[0:-3] == dst[0:-1]: return True # america => american if src.endswith("a") and dst.endswith("an") and src[0:-1] == dst[0:-2]: return True # american => america if src.endswith("an") and dst.endswith("a") and src[0:-2] == dst[0:-1]: return True # reinvesting => investing if src.startswith("re") and src[2:] == dst: return True # investing => reinvesting if dst.startswith("re") and dst[2:] == src: return True # unchanged => changed if src.startswith("un") and src[2:] == dst: return True # changed => unchanged if dst.startswith("un") and dst[2:] == src: return True # disrespected => respected if src.startswith("dis") and src[3:] == dst: return True # respected => disrespected if dst.startswith("dis") and dst[3:] == src: return True # outperformance => performance if src.startswith("out") and src[3:] == dst: return True # performance => outperformance if dst.startswith("out") and dst[3:] == src: return True return False
NeMo-main
nemo/collections/nlp/data/spellchecking_asr_customization/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import os import pickle import random import re import string from collections import Counter import numpy as np import torch from tqdm.auto import tqdm from nemo.utils import logging from nemo.utils.env_var_parsing import get_envint __all__ = [ "DataProcessor", "get_label_stats", "get_multi_label_stats", "partition_data", "write_files", "write_data", "create_dataset", "read_csv", "get_dataset", "partition", "map_entities", "get_entities", "get_data", "reverse_dict", "get_intent_labels", "get_stats", "DATABASE_EXISTS_TMP", "MODE_EXISTS_TMP", "is_whitespace", "write_vocab", "if_exist", "remove_punctuation_from_sentence", "dataset_to_ids", "get_freq_weights", "get_freq_weights_bce_with_logits_loss", "fill_class_weights", "normalize_answer", "get_labels_to_labels_id_mapping", "get_vocab", "find_newlines", "load_data_indices", "chinese_punctuation", "check_chinese_char", "normalize_chinese_answer", ] DATABASE_EXISTS_TMP = "{} dataset has already been processed and stored at {}" MODE_EXISTS_TMP = "{} mode of {} dataset has already been processed and stored at {}" class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8-sig") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: # if sys.version_info[0] == 2: # line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines chinese_punctuation = { "——", "‘", "’", "“", "”", "…", "、", "。", "〈", "〉", "《", "》", "「", "」", "『", "』", "【", "】", "〔", "〕", "!", "(", ")", ",", ".", ":", ";", "?", } def check_chinese_char(ch): """Check if a character is in Chinese.""" if "\u4e00" <= ch <= "\u9fff" or ch in chinese_punctuation: return True else: return False def normalize_chinese_answer(text): """Remove the Chinese punctuation and separate Chinese answers to char-level""" def remove_punc(text): exclude = chinese_punctuation return "".join(ch for ch in text if ch not in exclude) def separate_char(text): ch_list = [] for ch in text: ch_list.append(ch) return ch_list return separate_char(remove_punc(text)) def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_label_stats(labels, outfile="stats.tsv", verbose=True): """ Args: labels: list of all labels outfile: path to the file where to save label stats Returns: total (int): total number of labels label_frequencies (list of tuples): each tuple represent (label, label frequency) max id of the labels """ labels = Counter(labels) total = sum(labels.values()) out = open(outfile, "w") i = 0 freq_dict = {} label_frequencies = labels.most_common() for k, v in label_frequencies: out.write(f"{k}\t\t{round(v/total,5)}\t\t{v}\n") if verbose and i < 3: logging.info(f"label: {k}, {v} out of {total} ({(v / total)*100.0:.2f}%).") i += 1 freq_dict[k] = v return total, freq_dict, max(labels.keys()) def get_multi_label_stats(labels, outfile="stats.tsv", verbose=True): """ Args: labels: list of tuples containing labels for each utterance Example: If there are 5 intents in total, then (0,1,1,1,0) represents the labels for an individual utterance. (0,1,1,1,0) indicates that the utterance has labels at index/line 1,2, and 3 in dict.intents. The list of tuples contain labels for all utterances. outfile: path to the file where to save label stats Returns: total (int): total number of labels freq_dict (list of tuples): each tuple represents class counts in the form of (negative, positive) """ total = len(labels) positive_class_total = 0 class_count_dict = {} # Get the count of each label in the label dictionary, both the positive and negative classes for label in labels: for label_index, val in enumerate(label): if label_index not in class_count_dict: class_count_dict[label_index] = [0, 0] if val == 1: positive_class_total += 1 class_count_dict[label_index][1] += 1 else: class_count_dict[label_index][0] += 1 if verbose: three_most_frequent_classes = sorted(class_count_dict, key=lambda idx: class_count_dict[idx][1], reverse=True) for cnt, idx in enumerate(three_most_frequent_classes): if cnt > 2: break positives = class_count_dict[idx][1] logging.info( f"label: {idx}, {positives} out of {positive_class_total} ({(positives / positive_class_total)*100.0:.2f}%)." ) return total, class_count_dict, len(labels[0]) - 1 def partition_data(intent_queries, slot_tags, split=0.1): n = len(intent_queries) n_dev = int(n * split) dev_idx = set(random.sample(range(n), n_dev)) dev_intents, dev_slots, train_intents, train_slots = [], [], [], [] dev_intents.append("sentence\tlabel\n") train_intents.append("sentence\tlabel\n") for i, item in enumerate(intent_queries): if i in dev_idx: dev_intents.append(item) dev_slots.append(slot_tags[i]) else: train_intents.append(item) train_slots.append(slot_tags[i]) return train_intents, train_slots, dev_intents, dev_slots def write_files(data, outfile): with open(outfile, "w") as f: for item in data: item = f"{item.strip()}\n" f.write(item) def write_data(data, slot_dict, intent_dict, outfold, mode, uncased): intent_file = open(f"{outfold}/{mode}.tsv", "w") intent_file.write("sentence\tlabel\n") slot_file = open(f"{outfold}/{mode}_slots.tsv", "w") for tokens, slots, intent in data: text = " ".join(tokens) if uncased: text = text.lower() intent_file.write(f"{text}\t{intent_dict[intent]}\n") slots = [str(slot_dict[slot]) for slot in slots] slot_file.write(" ".join(slots) + "\n") intent_file.close() slot_file.close() def create_dataset(train, dev, slots, intents, uncased, outfold): os.makedirs(outfold, exist_ok=True) if "O" in slots: slots.remove("O") slots = sorted(list(slots)) + ["O"] intents = sorted(list(intents)) slots = write_vocab(slots, f"{outfold}/dict.slots.csv") intents = write_vocab(intents, f"{outfold}/dict.intents.csv") write_data(train, slots, intents, outfold, "train", uncased) write_data(dev, slots, intents, outfold, "test", uncased) def read_csv(file_path): rows = [] with open(file_path, "r") as csvfile: read_csv = csv.reader(csvfile, delimiter=",") for row in read_csv: rows.append(row) return rows def get_dataset(files, dev_split=0.1): # entity2value, value2entity = get_entities(files) data, slots, intents = get_data(files) if len(data) == 1: train, dev = partition(data[0], split=dev_split) else: train, dev = data[0], data[1] return train, dev, slots, intents def partition(data, split=0.1): n = len(data) n_dev = int(n * split) dev_idx = set(random.sample(range(n), n_dev)) dev, train = [], [] for i, item in enumerate(data): if i in dev_idx: dev.append(item) else: train.append(item) return train, dev def map_entities(entity2value, entities): for key in entities: if "data" in entities[key]: if key not in entity2value: entity2value[key] = set([]) values = [] for value in entities[key]["data"]: values.append(value["value"]) values.extend(value["synonyms"]) entity2value[key] = entity2value[key] | set(values) return entity2value def get_entities(files): entity2value = {} for file in files: with open(file, "r") as json_file: data = json.load(json_file) entity2value = map_entities(entity2value, data["entities"]) value2entity = reverse_dict(entity2value) return entity2value, value2entity def get_data(files): all_data, all_slots, all_intents = [], set(["O"]), set() for file in files: file_data = [] with open(file, "r") as json_file: data = json.load(json_file) for intent in data["intents"]: all_intents.add(intent) utterances = data["intents"][intent]["utterances"] for utterance in utterances: tokens, slots = [], [] for frag in utterance["data"]: frag_tokens = frag["text"].strip().split() tokens.extend(frag_tokens) if "slot_name" not in frag: slot = "O" else: slot = frag["slot_name"] all_slots.add(slot) slots.extend([slot] * len(frag_tokens)) file_data.append((tokens, slots, intent)) all_data.append(file_data) return all_data, all_slots, all_intents def reverse_dict(entity2value): value2entity = {} for entity in entity2value: for value in entity2value[entity]: value2entity[value] = entity return value2entity def get_intent_labels(intent_file): labels = {} label = 0 with open(intent_file, "r") as f: for line in f: intent = line.strip() labels[intent] = label label += 1 return labels def get_stats(lengths): logging.info("Some stats of the lengths of the sequences:") lengths = np.asarray(lengths) logging.info( f"Min: {np.min(lengths)} | \ Max: {np.max(lengths)} | \ Mean: {np.mean(lengths)} | \ Median: {np.median(lengths)}" ) logging.info(f"75 percentile: {np.percentile(lengths, 75):.2f}") logging.info(f"99 percentile: {np.percentile(lengths, 99):.2f}") def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False def write_vocab(items, outfile): vocab = {} idx = 0 with open(outfile, "w") as f: for item in items: f.write(item + "\n") vocab[item] = idx idx += 1 return vocab def get_labels_to_labels_id_mapping(file): """ Reads labels from the file and returns labels to id mapping dictionary Args: file: path to file Returns: labels to id mapping dictionary """ lines = open(file, "r").readlines() lines = [line.strip() for line in lines if line.strip()] label_ids = {lines[i]: i for i in range(len(lines))} return label_ids def if_exist(outfold, files): if not os.path.exists(outfold): return False for file in files: if not os.path.exists(f"{outfold}/{file}"): return False return True def remove_punctuation_from_sentence(sentence): sentence = re.sub("[" + string.punctuation + "]", "", sentence) sentence = sentence.lower() return sentence def dataset_to_ids( dataset, tokenizer, cache_ids=False, add_bos_eos=True, cache_data_per_node=False, use_cache=False, remove_trailing_newline=False, ): """ Reads dataset from file line by line, tokenizes each line with tokenizer, and returns list of lists which corresponds to ids of tokenized strings. Args: dataset (str): path to dataset tokenizer: tokenizer to convert text into ids cache_ids (bool): if True, ids are saved to disk as pickle file with similar name (e.g., data.txt --> data.txt.pkl) add_bos_eos (bool): whether to add <s> and </s> symbols (e.g., for NMT) cache_data_per_node (bool): Cache data on local_rank 0. Use when there is not a shared-filesystem. use_cache (bool): Use cached ids if they exist. remove_trailing_newline (bool): Remove trailing newline character. Returns: ids: list of ids which correspond to tokenized strings of the dataset """ cached_ids_dataset = dataset + str(".pkl") if use_cache and os.path.isfile(cached_ids_dataset): logging.info("Loading cached tokenized dataset ...") ids = pickle.load(open(cached_ids_dataset, "rb")) else: logging.info(f"Tokenizing dataset {dataset}...") data = open(dataset, "rb").readlines() ids = [] for sentence in tqdm(data, desc="Tokenizing sentence"): text = sentence.decode("utf-8") if remove_trailing_newline: text = text.rstrip("\n") sent_ids = tokenizer.text_to_ids(text) if add_bos_eos: sent_ids = [tokenizer.bos_id] + sent_ids + [tokenizer.eos_id] ids.append(sent_ids) if cache_ids and ( not torch.distributed.is_initialized() or (cache_data_per_node and get_envint("LOCAL_RANK", 0) == 0) ): logging.info("Caching tokenized dataset ...") pickle.dump(ids, open(cached_ids_dataset, "wb")) return ids def get_freq_weights(label_freq): """ Goal is to give more weight to the classes with less samples so as to match the ones with the higher frequencies. We achieve this by dividing the total frequency by the freq of each label to calculate its weight. """ total_size = 0 for lf in label_freq.values(): total_size += lf weighted_slots = {label: (total_size / (len(label_freq) * freq)) for label, freq in label_freq.items()} return weighted_slots def get_freq_weights_bce_with_logits_loss(label_freq): """ Calculate positive class weights to be passed to BCEWithLogitsLoss https://pytorch.org/docs/1.9.1/generated/torch.nn.BCEWithLogitsLoss.html Args: label_freq: dictionary of tuples where keys represents class id, and tuple represents counts of positive and negative classes, positive classes are at index 1 and negative at index 0 Returns: weights: dictionary of labels with their weights """ weights = {} for label_id, class_values in label_freq.items(): positive_class = class_values[1] negative_class = class_values[0] if positive_class == 0: weights[label_id] = 0 else: weights[label_id] = float(negative_class) / float(positive_class) return weights def fill_class_weights(weights, max_id=-1): """ Gets a dictionary of labels with their weights and creates a list with size of the labels filled with those weights. Missing labels in the dictionary would get value 1. Args: weights: dictionary of weights for labels, labels as keys and weights are their values max_id: the largest label id in the dataset, default=-1 would consider the largest label in the weights dictionary as max_id Returns: weights_list: list of weights for labels """ if max_id < 0: max_id = 0 for l in weights.keys(): max_id = max(max_id, l) all_weights = [1.0] * (max_id + 1) for i in range(len(all_weights)): if i in weights: all_weights[i] = weights[i] return all_weights def get_vocab(file): lines = open(file, "r").readlines() lines = [line.strip() for line in lines if line.strip()] labels = {i: lines[i] for i in range(len(lines))} return labels def find_newlines(contents): """ Finds all of the newline positions in a text file. """ start = 0 while True: try: # index and split are much faster than Python for loops new_start = contents.index(b"\n", start) line = ( contents[start:new_start] .replace(b"\xc2\x99", b" ") .replace(b"\xc2\xa0", b" ") .decode("utf-8", errors="ignore") ) if len(line.split()) > 0: yield start start = new_start + 1 except ValueError: break def load_data_indices(idx_file: str, data_file: str, savename: str): """ Loads dataset index file if it exsits """ data_dir = data_file[: data_file.rfind("/")] mode = data_file[data_file.rfind("/") + 1 : data_file.rfind(".")] idx_file = f"{data_dir}/{mode}_{savename}.pkl" if os.path.isfile(idx_file): # If the sentence indices file already exists, load from it with open(idx_file, "rb") as f: indices = pickle.load(f) return indices, idx_file, data_dir return None, idx_file, data_dir
NeMo-main
nemo/collections/nlp/data/data_utils/data_preprocessing.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.data_utils.data_preprocessing import *
NeMo-main
nemo/collections/nlp/data/data_utils/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import ( TarredTranslationDataset, TranslationDataset, )
NeMo-main
nemo/collections/nlp/data/machine_translation/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pytorch Dataset for training Neural Machine Translation.""" import io import json import pickle from collections import OrderedDict from dataclasses import dataclass from typing import Any, List, Optional import braceexpand import numpy as np import webdataset as wd from torch.utils.data import IterableDataset from nemo.collections.nlp.data.data_utils.data_preprocessing import dataset_to_ids from nemo.core import Dataset from nemo.utils import logging __all__ = ['TranslationDataset', 'TarredTranslationDataset'] @dataclass class TranslationDataConfig: src_file_name: Optional[Any] = None # Any = str or List[str] tgt_file_name: Optional[Any] = None # Any = str or List[str] use_tarred_dataset: bool = False tar_files: Optional[Any] = None # Any = str or List[str] metadata_file: Optional[Any] = None # Any = str or List[str] lines_per_dataset_fragment: Optional[int] = 1000000 num_batches_per_tarfile: Optional[int] = 1000 shard_strategy: Optional[str] = 'scatter' tokens_in_batch: int = 512 clean: bool = False max_seq_length: int = 512 min_seq_length: int = 1 cache_ids: bool = False cache_data_per_node: bool = False use_cache: bool = False shuffle: bool = False num_samples: int = -1 drop_last: bool = False pin_memory: bool = False num_workers: int = 8 reverse_lang_direction: bool = False load_from_tarred_dataset: bool = False metadata_path: Optional[str] = None tar_shuffle_n: int = 100 n_preproc_jobs: int = -2 tar_file_prefix: str = 'parallel' concat_sampling_technique: Optional[str] = 'temperature' concat_sampling_temperature: Optional[int] = 5 concat_sampling_probabilities: Optional[List[float]] = None class TranslationDataset(Dataset): def __init__( self, dataset_src: str, dataset_tgt: str, tokens_in_batch: int = 1024, clean: bool = False, max_seq_length: int = 512, min_seq_length: int = 1, max_seq_length_diff: int = 512, max_seq_length_ratio: int = 512, cache_ids: bool = False, cache_data_per_node: bool = False, use_cache: bool = False, reverse_lang_direction: bool = False, prepend_id: int = None, add_bos_eos_to_encoder: bool = True, ): self.dataset_src = dataset_src self.dataset_tgt = dataset_tgt self.tokens_in_batch = tokens_in_batch self.cache_ids = cache_ids self.use_cache = use_cache self.clean = clean self.cache_data_per_node = cache_data_per_node self.max_seq_length = max_seq_length self.min_seq_length = min_seq_length self.max_seq_length_diff = max_seq_length_diff self.max_seq_length_ratio = max_seq_length_ratio self.reverse_lang_direction = reverse_lang_direction self.prepend_id = prepend_id self.add_bos_eos_to_encoder = add_bos_eos_to_encoder # deprecation warnings for cache_ids, use_cache, and cache_data_per_node if self.cache_ids is True or self.use_cache is True or self.cache_data_per_node is True: logging.warning( 'Deprecation warning. self.cache_ids, self.use_cache, and self.cache_data_per_node will be removed. Data caching to be done with tarred datasets moving forward.' ) def batchify(self, tokenizer_src, tokenizer_tgt): src_ids = dataset_to_ids( self.dataset_src, tokenizer_src, cache_ids=self.cache_ids, cache_data_per_node=self.cache_data_per_node, use_cache=self.use_cache, add_bos_eos=self.add_bos_eos_to_encoder, remove_trailing_newline=True, ) tgt_ids = dataset_to_ids( self.dataset_tgt, tokenizer_tgt, cache_ids=self.cache_ids, cache_data_per_node=self.cache_data_per_node, use_cache=self.use_cache, remove_trailing_newline=True, ) if self.clean: src_ids, tgt_ids = self.clean_src_and_target( src_ids, tgt_ids, max_tokens=self.max_seq_length, min_tokens=self.min_seq_length, max_tokens_diff=self.max_seq_length_diff, max_tokens_ratio=self.max_seq_length_ratio, ) self.src_pad_id = tokenizer_src.pad_id self.tgt_pad_id = tokenizer_tgt.pad_id self.batch_indices = self.pack_data_into_batches(src_ids, tgt_ids) self.batches = self.pad_batches(src_ids, tgt_ids, self.batch_indices) def __len__(self): return len(self.batches) def __getitem__(self, idx): src_ids = self.batches[idx]["src"] tgt = self.batches[idx]["tgt"] if self.reverse_lang_direction: src_ids, tgt = tgt, src_ids labels = tgt[:, 1:] tgt_ids = tgt[:, :-1] if self.prepend_id: src_ids = np.insert(src_ids, 0, self.prepend_id, axis=-1) src_mask = (src_ids != self.src_pad_id).astype(np.int32) tgt_mask = (tgt_ids != self.tgt_pad_id).astype(np.int32) return src_ids, src_mask, tgt_ids, tgt_mask, labels def pad_batches(self, src_ids, tgt_ids, batch_indices): """ Augments source and target ids in the batches with padding symbol to make the lengths of all sentences in the batches equal. """ batches = {} for batch_idx, b in enumerate(batch_indices): src_len = max([len(src_ids[i]) for i in b]) tgt_len = max([len(tgt_ids[i]) for i in b]) src_ids_ = self.src_pad_id * np.ones((len(b), src_len), dtype=np.int) tgt_ids_ = self.tgt_pad_id * np.ones((len(b), tgt_len), dtype=np.int) for i, sentence_idx in enumerate(b): src_ids_[i][: len(src_ids[sentence_idx])] = src_ids[sentence_idx] tgt_ids_[i][: len(tgt_ids[sentence_idx])] = tgt_ids[sentence_idx] batches[batch_idx] = {"src": src_ids_, "tgt": tgt_ids_} return batches def pack_data_into_batches(self, src_ids, tgt_ids): """ Takes two lists of source and target sentences, sorts them, and packs into batches to minimize the use of padding tokens. Returns a list of batches where each batch contains indices of sentences included into it """ # create buckets sorted by the number of src tokens # each bucket is also sorted by the number of tgt tokens buckets = {} for i, src_id in enumerate(src_ids): src_len, tgt_len = len(src_id), len(tgt_ids[i]) if src_len not in buckets: buckets[src_len] = [(tgt_len, i)] else: buckets[src_len].append((tgt_len, i)) for b_idx in buckets: buckets[b_idx] = sorted(buckets[b_idx]) buckets = OrderedDict(sorted(buckets.items())) indices = list(buckets.keys()) batches = [[]] num_batches = 0 batch_size = 0 i = 0 src_len = 0 tgt_len = 0 while i < len(buckets): while buckets[indices[i]]: i_src = max(src_len, indices[i]) i_tgt = max(tgt_len, buckets[indices[i]][0][0]) try: ip1_src = max(src_len, indices[i + 1]) ip1_tgt = max(tgt_len, buckets[indices[i + 1]][0][0]) except IndexError: ip1_src = i_src + 1 ip1_tgt = i_tgt + 1 if i_src + i_tgt <= ip1_src + ip1_tgt: src_len = i_src tgt_len = i_tgt _, idx = buckets[indices[i]].pop(0) else: src_len = ip1_src tgt_len = ip1_tgt _, idx = buckets[indices[i + 1]].pop(0) batches[num_batches].append(idx) batch_size += 1 if batch_size * (src_len + tgt_len) > self.tokens_in_batch: num_examples_to_split = len(batches[num_batches]) batches_to_evict = 8 * ((num_examples_to_split - 1) // 8) if batches_to_evict == 0: batches_to_evict = num_examples_to_split batches.append(batches[num_batches][batches_to_evict:]) batches[num_batches] = batches[num_batches][:batches_to_evict] batch_size = num_examples_to_split - batches_to_evict num_batches += 1 if batch_size > 0: src_len = max([len(src_ids[j]) for j in batches[num_batches]]) tgt_len = max([len(tgt_ids[j]) for j in batches[num_batches]]) else: src_len = 0 tgt_len = 0 break if not buckets[indices[i]]: i = i + 1 if not batches[-1]: batches.pop(-1) return batches def clean_src_and_target( self, src_ids, tgt_ids, max_tokens=None, min_tokens=None, max_tokens_diff=None, max_tokens_ratio=None, filter_equal_src_and_dest=False, ): """ Cleans source and target sentences to get rid of noisy data. Specifically, a pair of sentences is removed if -- either source or target is longer than *max_tokens* -- either source or target is shorter than *min_tokens* -- absolute difference between source and target is larger than *max_tokens_diff* -- one sentence is *max_tokens_ratio* times longer than the other """ if len(src_ids) != len(tgt_ids): raise ValueError("Source and target corpora have different lengths!") src_ids_, tgt_ids_ = [], [] for i in range(len(src_ids)): src_len, tgt_len = len(src_ids[i]), len(tgt_ids[i]) if ( (max_tokens is not None and (src_len > max_tokens or tgt_len > max_tokens)) or (min_tokens is not None and (src_len < min_tokens or tgt_len < min_tokens)) or (filter_equal_src_and_dest and src_ids[i] == tgt_ids[i]) or (max_tokens_diff is not None and np.abs(src_len - tgt_len) > max_tokens_diff) ): continue if max_tokens_ratio is not None: ratio = max(src_len - 2, 1) / max(tgt_len - 2, 1) if ratio > max_tokens_ratio or ratio < (1 / max_tokens_ratio): continue src_ids_.append(src_ids[i]) tgt_ids_.append(tgt_ids[i]) return src_ids_, tgt_ids_ class TarredTranslationDataset(IterableDataset): """ A similar Dataset to the TranslationDataset, but which loads tarred tokenized pickle files. Accepts a single JSON metadata file containing the total number of batches as well as the path(s) to the tarball(s) containing the pickled parallel dataset batch files. Valid formats for the text_tar_filepaths argument include: (1) a single string that can be brace-expanded, e.g. 'path/to/text.tar' or 'path/to/text_{1..100}.tar', or (2) a list of file paths that will not be brace-expanded, e.g. ['text_1.tar', 'text_2.tar', ...]. Note: For brace expansion in (1), there may be cases where `{x..y}` syntax cannot be used due to shell interference. This occurs most commonly inside SLURM scripts. Therefore we provide a few equivalent replacements. Supported opening braces - { <=> (, [, < and the special tag _OP_. Supported closing braces - } <=> ), ], > and the special tag _CL_. For SLURM based tasks, we suggest the use of the special tags for ease of use. See the WebDataset documentation for more information about accepted data and input formats. If using multiple processes the number of shards should be divisible by the number of workers to ensure an even split among workers. If it is not divisible, logging will give a warning but training will proceed. Additionally, please note that the len() of this DataLayer is assumed to be the number of tokens of the text data. An incorrect manifest length may lead to some DataLoader issues down the line. Args: text_tar_filepaths: Either a list of tokenized text tarball filepaths, or a string (can be brace-expandable). metadata_path (str): Path to the metadata manifest. encoder_tokenizer: Autokenizer wrapped BPE tokenizer model, such as YTTM decoder_tokenizer: Autokenizer wrapped BPE tokenizer model, such as YTTM shuffle_n (int): How many samples to look ahead and load to be shuffled. See WebDataset documentation for more details. Defaults to 0. shard_strategy (str): Tarred dataset shard distribution strategy chosen as a str value during ddp. - `scatter`: The default shard strategy applied by WebDataset, where each node gets a unique set of shards, which are permanently pre-allocated and never changed at runtime. - `replicate`: Optional shard strategy, where each node gets all of the set of shards available in the tarred dataset, which are permanently pre-allocated and never changed at runtime. The benefit of replication is that it allows each node to sample data points from the entire dataset independently of other nodes, and reduces dependence on value of `shuffle_n`. .. warning:: Replicated strategy allows every node to sample the entire set of available tarfiles, and therefore more than one node may sample the same tarfile, and even sample the same data points! As such, there is no assured guarantee that all samples in the dataset will be sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific occasions (when the number of shards is not divisible with ``world_size``), will not sample the entire dataset. For these reasons it is not advisable to use tarred datasets as validation or test datasets. global_rank (int): Worker rank, used for partitioning shards. Defaults to 0. world_size (int): Total number of processes, used for partitioning shards. Defaults to 1. reverse_lang_direction (bool): When True, swaps the source and target directions when returning minibatches. prepend_id (int): Prepends the specificed token id to the start of every source sentence. Defaults to None. """ def __init__( self, text_tar_filepaths: str, metadata_path: str, encoder_tokenizer: str, decoder_tokenizer: str, shuffle_n: int = 1, shard_strategy: str = "scatter", global_rank: int = 0, world_size: int = 1, reverse_lang_direction: bool = False, prepend_id: int = None, ): super(TarredTranslationDataset, self).__init__() self.encoder_tokenizer = encoder_tokenizer self.decoder_tokenizer = decoder_tokenizer self.reverse_lang_direction = reverse_lang_direction self.src_pad_id = encoder_tokenizer.pad_id self.tgt_pad_id = decoder_tokenizer.pad_id self.prepend_id = prepend_id valid_shard_strategies = ['scatter', 'replicate'] if shard_strategy not in valid_shard_strategies: raise ValueError( f"Invalid shard strategy of type {type(shard_strategy)} " f"{repr(shard_strategy) if len(repr(shard_strategy)) < 100 else repr(shard_strategy)[:100] + '...'}! " f"Allowed values are: {valid_shard_strategies}." ) with open(metadata_path, 'r') as f: metadata = json.load(f) self.metadata = metadata if isinstance(text_tar_filepaths, str): # Replace '(', '[', '<' and '_OP_' with '{' brace_keys_open = ['(', '[', '<', '_OP_'] for bkey in brace_keys_open: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "{") # Replace ')', ']', '>' and '_CL_' with '}' brace_keys_close = [')', ']', '>', '_CL_'] for bkey in brace_keys_close: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "}") if isinstance(text_tar_filepaths, str): # Brace expand text_tar_filepaths = list(braceexpand.braceexpand(text_tar_filepaths)) if shard_strategy == 'scatter': logging.info("Tarred dataset shards will be scattered evenly across all nodes.") if len(text_tar_filepaths) % world_size != 0: logging.warning( f"Number of shards in tarred dataset ({len(text_tar_filepaths)}) is not divisible " f"by number of distributed workers ({world_size}). " f"Some shards will not be used ({len(text_tar_filepaths) % world_size})." ) batches_per_tar = self.metadata['num_batches'] // len(text_tar_filepaths) begin_idx = (len(text_tar_filepaths) // world_size) * global_rank end_idx = begin_idx + (len(text_tar_filepaths) // world_size) logging.info('Begin Index : %d' % (begin_idx)) logging.info('End Index : %d' % (end_idx)) text_tar_filepaths = text_tar_filepaths[begin_idx:end_idx] logging.info( "Partitioning tarred dataset: process (%d) taking shards [%d, %d)", global_rank, begin_idx, end_idx ) self.length = batches_per_tar * len(text_tar_filepaths) * world_size elif shard_strategy == 'replicate': logging.info("All tarred dataset shards will be replicated across all nodes.") self.length = self.metadata['num_batches'] else: raise ValueError(f"Invalid shard strategy ! Allowed values are : {valid_shard_strategies}") self.tarpath = text_tar_filepaths # Put together WebDataset self._dataset = wd.WebDataset(urls=text_tar_filepaths, nodesplitter=None) if shuffle_n > 0: self._dataset = self._dataset.shuffle(shuffle_n, initial=shuffle_n) else: logging.info("WebDataset will not shuffle files within the tar files.") self._dataset = self._dataset.rename(pkl='pkl', key='__key__').to_tuple('pkl', 'key').map(f=self._build_sample) def _build_sample(self, fname): # Load file pkl_file, _ = fname pkl_file = io.BytesIO(pkl_file) data = pickle.load(pkl_file) # loads np.int64 vector pkl_file.close() src_ids = data["src"] tgt = data["tgt"] if self.reverse_lang_direction: src_ids, tgt = tgt, src_ids labels = tgt[:, 1:] tgt_ids = tgt[:, :-1] if self.prepend_id: src_ids = np.insert(src_ids, 0, self.prepend_id, axis=-1) src_mask = (src_ids != self.src_pad_id).astype(np.int32) tgt_mask = (tgt_ids != self.tgt_pad_id).astype(np.int32) return src_ids, src_mask, tgt_ids, tgt_mask, labels def __iter__(self): return self._dataset.__iter__() def __len__(self): return self.length
NeMo-main
nemo/collections/nlp/data/machine_translation/machine_translation_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import json import os import pickle import tarfile import tempfile import youtokentome as yttm from joblib import Parallel, delayed from omegaconf import ListConfig, OmegaConf from pytorch_lightning import Trainer from nemo.collections.common.tokenizers.sentencepiece_tokenizer import SentencePieceTokenizer, create_spt_model from nemo.collections.nlp.data.language_modeling.sentence_dataset import SentenceDataset from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import TranslationDataset from nemo.collections.nlp.models.machine_translation.mt_enc_dec_config import MTEncDecModelConfig from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer, get_tokenizer from nemo.utils import logging class MTDataPreproc: """ Automatically trains tokenizers and preprocesses machine translation data based on the MTEncDecModelConfig. For training NMT models with datasets larger than 5M sentence pairs, it can be inefficient to train them without first creating a tarred dataset. If the user wants to change the tokenizer, vocab size, or batch size, for example, they must reprocess the data with the correct configuration. With MTDataPreproc users can sweep through data configurations and the tarred dataset will be automatically created according to the model configuration. To train tokenizer model and create tarred dataset specify in configuration: model.preproc_out_dir=/path/to/preproc_out model.encoder_tokenizer.vocab_size=32000 model.decoder_tokenizer.vocab_size=32000 model.train_ds.use_tarred_dataset=True model.train_ds.src_file_name=/path/to/src.txt model.train_ds.tgt_file_name=/path/to/tgt.txt model.train_ds.tokens_in_batch=16000 Once a dataset has been constructed based on this configuration, MTDataPreproc will not process it again. If a previously trained tokenizer model or tarred dataset is found, MTDataPreproc will not preprocess the data. Note: the only tokenizer currently supported is YouTokenToMe. """ def __init__(self, cfg: MTEncDecModelConfig, trainer: Trainer = None) -> None: self._cfg = cfg self.global_rank = 0 self.world_size = 1 if trainer is not None: self.global_rank = (trainer.node_rank * trainer.num_devices) + trainer.local_rank self.world_size = trainer.num_nodes * trainer.num_devices if hasattr(cfg, 'train_ds'): supported_tokenizers = ['yttm', 'huggingface', 'sentencepiece', 'megatron', 'byte-level'] supported_multilingual_tokenizers = ['sentencepiece', 'byte-level'] supported_train_tokenizers = ['yttm', 'sentencepiece'] if ( cfg.encoder_tokenizer.get('library') not in supported_tokenizers or cfg.decoder_tokenizer.get('library') not in supported_tokenizers ): raise NotImplementedError(f"Currently we only support {supported_tokenizers}.") if cfg.get('multilingual') and ( cfg.encoder_tokenizer.get('library') not in supported_multilingual_tokenizers or cfg.decoder_tokenizer.get('library') not in supported_multilingual_tokenizers ): raise NotImplementedError( f"Currently we only support {supported_multilingual_tokenizers} for multilingual models." ) if cfg.get('shared_tokenizer') and cfg.encoder_tokenizer.get('library') != cfg.decoder_tokenizer.get( 'library' ): raise ValueError("Shared tokenizers cannot be from different libraries.") # Prepare tokenizers if ( cfg.encoder_tokenizer.get('library') in supported_train_tokenizers or cfg.decoder_tokenizer.get('library') in supported_train_tokenizers ): # Train tokenizer models if using yttm or sentencepiece and they don't exist if ( cfg.encoder_tokenizer.get('library') in supported_train_tokenizers and cfg.encoder_tokenizer.get('tokenizer_model') is None ) or ( cfg.decoder_tokenizer.get('library') in supported_train_tokenizers and cfg.decoder_tokenizer.get('tokenizer_model') is None ): if cfg.get('preproc_out_dir') is None: raise ValueError('Tokenizer model training required but cfg.preproc_out_dir is None.') if cfg.train_ds.get('src_file_name') is None or cfg.train_ds.get('tgt_file_name') is None: raise ValueError( 'src_file_name and tgt_file_name needed to train tokenizers but could not be found.' ) src_fname = cfg.train_ds.get('src_file_name') tgt_fname = cfg.train_ds.get('tgt_file_name') src_language = cfg.get('src_language') tgt_language = cfg.get('tgt_language') spt_symbols = None tempdir = tempfile.TemporaryDirectory() if cfg.get('multilingual'): spt_symbols = [] if isinstance(src_fname, ListConfig): fnames = (" ").join(src_fname) src_fname = os.path.join(tempdir.name, 'src.txt') os.system('cat %s > %s' % (fnames, src_fname)) if isinstance(tgt_fname, ListConfig): fnames = (" ").join(tgt_fname) tgt_fname = os.path.join(tempdir.name, 'tgt.txt') os.system('cat %s > %s' % (fnames, tgt_fname)) if isinstance(src_language, ListConfig): for lng in src_language: spt_symbols.append("<" + lng + ">") if isinstance(tgt_language, ListConfig): for lng in tgt_language: spt_symbols.append("<" + lng + ">") # train tokenizer model on training data self.encoder_tokenizer_model, self.decoder_tokenizer_model = MTDataPreproc.train_tokenizers( out_dir=cfg.get('preproc_out_dir'), src_fname=src_fname, tgt_fname=tgt_fname, shared_tokenizer=cfg.get('shared_tokenizer'), encoder_tokenizer_vocab_size=cfg.encoder_tokenizer.get('vocab_size'), decoder_tokenizer_vocab_size=cfg.decoder_tokenizer.get('vocab_size'), encoder_tokenizer_name=cfg.encoder_tokenizer.get('library'), decoder_tokenizer_name=cfg.decoder_tokenizer.get('library'), encoder_tokenizer_coverage=cfg.encoder_tokenizer.get('coverage', 0.999), decoder_tokenizer_coverage=cfg.decoder_tokenizer.get('coverage', 0.999), global_rank=self.global_rank, encoder_training_sample_size=cfg.encoder_tokenizer.get('training_sample_size', -1), decoder_training_sample_size=cfg.decoder_tokenizer.get('training_sample_size', -1), encoder_special_tokens=OmegaConf.to_container(cfg.encoder_tokenizer.special_tokens) if cfg.encoder_tokenizer.special_tokens else None, decoder_special_tokens=OmegaConf.to_container(cfg.decoder_tokenizer.special_tokens) if cfg.decoder_tokenizer.special_tokens else None, spt_symbols=spt_symbols, ) # update config self._cfg.encoder_tokenizer.tokenizer_model = self.encoder_tokenizer_model self._cfg.decoder_tokenizer.tokenizer_model = self.decoder_tokenizer_model tempdir.cleanup() else: self.encoder_tokenizer_model = cfg.encoder_tokenizer.get('tokenizer_model') self.decoder_tokenizer_model = cfg.decoder_tokenizer.get('tokenizer_model') self.encoder_tokenizer, self.decoder_tokenizer = self.get_enc_dec_tokenizers( encoder_tokenizer_name=cfg.encoder_tokenizer.get('library'), encoder_model_name=cfg.encoder.get('model_name'), encoder_tokenizer_model=getattr(self, "encoder_tokenizer_model", None), encoder_bpe_dropout=cfg.encoder_tokenizer.get('bpe_dropout', 0.0), encoder_r2l=cfg.encoder_tokenizer.get('r2l', False), decoder_tokenizer_name=cfg.decoder_tokenizer.get('library'), decoder_model_name=cfg.decoder.get('model_name'), decoder_tokenizer_model=getattr(self, "decoder_tokenizer_model", None), decoder_bpe_dropout=cfg.decoder_tokenizer.get('bpe_dropout', 0.0), decoder_r2l=cfg.decoder_tokenizer.get('r2l', False), encoder_tokenizer_legacy=cfg.encoder_tokenizer.get('sentencepiece_legacy', False), decoder_tokenizer_legacy=cfg.decoder_tokenizer.get('sentencepiece_legacy', False), ) # If using tarred dataset for training, automatically create it if needed if cfg.train_ds.get('use_tarred_dataset'): if cfg.train_ds.get('tar_files') is None and cfg.train_ds.get('metadata_file') is None: if cfg.get('preproc_out_dir') is None: raise ValueError('Data preprocessing required but cfg.preproc_out_dir is None.') if cfg.train_ds.get('src_file_name') is None or cfg.train_ds.get('tgt_file_name') is None: raise ValueError( 'src_file_name and tgt_file_name needed to create tarred dataset but could not be found.' ) # Preprocess data and cache for use during training if self.global_rank == 0: logging.info( f"Creating tarred dataset for src: {cfg.train_ds.get('src_file_name')} and tgt: {cfg.train_ds.get('tgt_file_name')}" ) if isinstance(cfg.train_ds.get('src_file_name'), str): src_file_list = [cfg.train_ds.get('src_file_name')] tgt_file_list = [cfg.train_ds.get('tgt_file_name')] outdir_list = [cfg.get('preproc_out_dir')] else: src_file_list = cfg.train_ds.get('src_file_name') tgt_file_list = cfg.train_ds.get('tgt_file_name') if isinstance(cfg.get('src_language'), ListConfig): langs = cfg.get('src_language') elif isinstance(cfg.get('tgt_language'), ListConfig): langs = cfg.get('tgt_language') outdir_list = [] for lang in langs: outdir_list.append(os.path.join(cfg.get('preproc_out_dir'), lang)) if len(src_file_list) != len(tgt_file_list) or len(src_file_list) != len(outdir_list): raise ValueError( "Number of source files, target files, and multilingual language pairs must be the same." ) # TODO: have to get tokenizers instide .preprocess_parallel because they can't be pickled metadata_file_list = [] for idx, src_file in enumerate(src_file_list): self.train_tar_files, self.train_metadata_file = MTDataPreproc.preprocess_parallel_dataset( clean=cfg.train_ds.clean, src_fname=src_file, tgt_fname=tgt_file_list[idx], out_dir=outdir_list[idx], encoder_tokenizer_name=cfg.encoder_tokenizer.get('library'), encoder_model_name=cfg.encoder.get('model_name'), encoder_tokenizer_model=getattr(self, "encoder_tokenizer_model", None), encoder_bpe_dropout=cfg.encoder_tokenizer.get('bpe_dropout', 0.0), encoder_tokenizer_r2l=cfg.encoder_tokenizer.get('r2l', False), encoder_tokenizer_legacy=cfg.encoder_tokenizer.get('sentencepiece_legacy', False), decoder_tokenizer_name=cfg.decoder_tokenizer.get('library'), decoder_model_name=cfg.decoder.get('model_name'), decoder_tokenizer_model=getattr(self, "decoder_tokenizer_model", None), decoder_bpe_dropout=cfg.decoder_tokenizer.get('bpe_dropout', 0.0), decoder_tokenizer_r2l=cfg.decoder_tokenizer.get('r2l', False), decoder_tokenizer_legacy=cfg.decoder_tokenizer.get('sentencepiece_legacy', False), max_seq_length=cfg.train_ds.get('max_seq_length', 512), tokens_in_batch=cfg.train_ds.get('tokens_in_batch', 8192), lines_per_dataset_fragment=cfg.train_ds.get('lines_per_dataset_fragment', 1000000), num_batches_per_tarfile=cfg.train_ds.get('num_batches_per_tarfile', 1000), min_seq_length=1, global_rank=self.global_rank, world_size=self.world_size, n_jobs=cfg.train_ds.get('n_preproc_jobs', -2), tar_file_prefix=cfg.train_ds.get('tar_file_prefix', 'parallel'), ) metadata_file_list.append(self.train_metadata_file) # update config # self._cfg.train_ds.tar_files = self.tar_files_to_string(self.train_tar_files) # self._cfg.train_ds.tar_files = self.train_tar_files if isinstance(cfg.train_ds.get('metadata_file'), str): self._cfg.train_ds.metadata_file = metadata_file_list[0] else: self._cfg.train_ds.metadata_file = metadata_file_list logging.info( f"Using tarred dataset created in folder(s) {outdir_list} and metadata created at {self._cfg.train_ds.metadata_file}" ) elif cfg.train_ds.get('tar_files') is not None and cfg.train_ds.get('metadata_file') is None: raise ValueError('A metadata file is required for tarred dataset but cfg.metadata_file is None.') elif cfg.train_ds.get('tar_files') is None and cfg.train_ds.get('metadata_file') is not None: if isinstance(cfg.train_ds.get('metadata_file'), str): metadata_file_list = [cfg.train_ds.get('metadata_file')] else: metadata_file_list = cfg.train_ds.get('metadata_file') for metadata_file in metadata_file_list: with open(metadata_file) as metadata_reader: metadata = json.load(metadata_reader) if metadata['tar_files']: logging.info(f"Using tarred dataset: {metadata['tar_files']}") else: raise ValueError(f'tar_files not provided and metadata does not have tar files') else: self.train_tar_files = cfg.train_ds.get('tar_files') self.train_metadata_file = cfg.train_ds.get('metadata_file') logging.info( f"Using tarred dataset from config at {self.train_tar_files} and metadata from {self.train_metadata_file}" ) def tar_files_to_string(self, tar_files): """ Tar files are generated in the following format: basename.number.tar Where number is an integer from 1 to the number of tar files. We convert this list to a string that can be used in the model config to specify tarred datasets: basename_OP_1..num_tar_files_CL_.tar Args: tar_files (List[str]): List of tar files generated by preprocess_parallel_dataset """ num_tar_files = len(tar_files) split_on_dot = tar_files[0].split('.') basename = '.'.join(split_on_dot[0:-2]) tar_file_string = f'{basename}._OP_1..{num_tar_files}_CL_.tar' return tar_file_string @staticmethod def get_enc_dec_tokenizers( encoder_tokenizer_name=None, encoder_tokenizer_model=None, encoder_bpe_dropout=0.0, encoder_model_name=None, encoder_r2l=False, decoder_tokenizer_name=None, decoder_tokenizer_model=None, decoder_bpe_dropout=0.0, decoder_model_name=None, decoder_r2l=False, encoder_tokenizer_legacy=False, decoder_tokenizer_legacy=False, ): # if encoder_tokenizer_name != 'yttm' or decoder_tokenizer_name != 'yttm': # raise NotImplementedError(f"Currently we only support yttm tokenizer.") if encoder_bpe_dropout is None: encoder_bpe_dropout = 0.0 if decoder_bpe_dropout is None: decoder_bpe_dropout = 0.0 encoder_tokenizer = get_nmt_tokenizer( library=encoder_tokenizer_name, model_name=encoder_model_name, tokenizer_model=encoder_tokenizer_model, bpe_dropout=encoder_bpe_dropout, r2l=encoder_r2l, legacy=encoder_tokenizer_legacy, ) decoder_tokenizer = get_nmt_tokenizer( library=decoder_tokenizer_name, model_name=decoder_model_name, tokenizer_model=decoder_tokenizer_model, bpe_dropout=decoder_bpe_dropout, r2l=decoder_r2l, legacy=decoder_tokenizer_legacy, ) return encoder_tokenizer, decoder_tokenizer @staticmethod def get_monolingual_tokenizer( tokenizer_name=None, tokenizer_model=None, bpe_dropout=0.0, ): if tokenizer_name == 'yttm': if bpe_dropout is None: bpe_dropout = 0.0 tokenizer = get_tokenizer( tokenizer_name=tokenizer_name, tokenizer_model=tokenizer_model, bpe_dropout=bpe_dropout, ) elif tokenizer_name == 'sentencepiece': tokenizer = SentencePieceTokenizer(model_path=tokenizer_model) else: try: tokenizer = get_tokenizer(tokenizer_name, special_tokens={"pad_token": "[PAD]"}) except Exception as e: raise ValueError(f'{tokenizer_name} is not supported by either NeMo or HuggingFace. {e}') return tokenizer # TODO: add local or global rank 0 decorator @staticmethod def preprocess_parallel_dataset( clean, src_fname, tgt_fname, out_dir, encoder_tokenizer_name, encoder_tokenizer_model, encoder_tokenizer_r2l, encoder_bpe_dropout, encoder_model_name, decoder_tokenizer_name, decoder_tokenizer_model, decoder_bpe_dropout, decoder_model_name, decoder_tokenizer_r2l, max_seq_length, min_seq_length, tokens_in_batch, lines_per_dataset_fragment, num_batches_per_tarfile, global_rank, world_size, n_jobs=-2, tar_file_prefix='parallel', encoder_tokenizer_legacy=False, decoder_tokenizer_legacy=False, ): """Create tarred dataset from large paired translation data. Args: clean (str): Cleans source and target sentences to get rid of noisy data. src_fname (str): path to source text data tgt_fname (str): path to target text data out_dir (str): path to write tarred dataset encoder_tokenizer (Any): tokenizer for encoder decoder_tokenizer (Any): tokenizer for decoder max_seq_length (int): maximum sequence length min_seq_length (int): minimum sequence length tokens_in_batch (int): tokens per batch per GPU, effectively batch size lines_per_dataset_fragment (int): number of lines to consider for bucketing and padding num_batches_per_tarfile (int): number of batches (pickle files) within each tarfile tar_file_prefix (str) : add string prefix to tar files n_jobs (int): number of processes to use for data processing (-2 to use all but 2) """ os.makedirs(out_dir, exist_ok=True) metadata_path = os.path.join(out_dir, f'metadata.tokens.{tokens_in_batch}.json') if global_rank == 0: tar_files_in_out_dir = glob.glob(f'{out_dir}/*.tar') if tar_files_in_out_dir: logging.info( f'Tarred dataset detected: {tar_files_in_out_dir} and will be used. Remove if reprocessing.' ) else: filenames = [src_fname, tgt_fname] # get number of lines so that we can create a partition of the lines of the text file num_src_lines, num_tgt_lines = Parallel(n_jobs=2)( delayed(MTDataPreproc._get_num_lines)(filename) for filename in filenames ) logging.info(f'Found {num_src_lines} source lines and {num_tgt_lines} target lines.') assert num_src_lines == num_tgt_lines, 'Number of source lines should equal number of target lines.' # create a partition of lines that we can parallelize over lines_partition = MTDataPreproc._get_lines_partition(num_src_lines, lines_per_dataset_fragment) logging.info(f"Found {len(lines_partition)} fragments to parallelize over.") # create tarfiles for each fragment in parallel results_list = Parallel(n_jobs=n_jobs)( delayed(MTDataPreproc._process_fragment)( src_filename=src_fname, tgt_filename=tgt_fname, lines_indices=lines_indices, out_dir=out_dir, num_batches_per_tarfile=num_batches_per_tarfile, clean=clean, max_seq_length=max_seq_length, min_seq_length=min_seq_length, tokens_in_batch=tokens_in_batch, encoder_tokenizer_name=encoder_tokenizer_name, encoder_tokenizer_model=encoder_tokenizer_model, encoder_bpe_dropout=encoder_bpe_dropout, encoder_model_name=encoder_model_name, decoder_tokenizer_name=decoder_tokenizer_name, decoder_tokenizer_model=decoder_tokenizer_model, decoder_bpe_dropout=decoder_bpe_dropout, decoder_model_name=decoder_model_name, fragment_index=fragment_index, encoder_tokenizer_r2l=encoder_tokenizer_r2l, decoder_tokenizer_r2l=decoder_tokenizer_r2l, encoder_tokenizer_legacy=encoder_tokenizer_legacy, decoder_tokenizer_legacy=decoder_tokenizer_legacy, ) for fragment_index, lines_indices in enumerate(lines_partition) ) # compute total batches so far total_batches = sum([batch_count for batch_count, _ in results_list]) # save batches from tar files containing the left over batches (if there's enough batches) remainder_tar_file_ctr = 0 remainder_tar_file_path = os.path.join( out_dir, f'remainder-batches.tokens.{tokens_in_batch}.tar_file_{remainder_tar_file_ctr}.tar' ) remainder_tar_file_ptr = tarfile.open(remainder_tar_file_path, 'w') batch_in_tar_ctr = 0 for _, tar_file_path in results_list: tar_file_ptr = tarfile.open(tar_file_path, 'r') for member in tar_file_ptr.getmembers(): remainder_tar_file_ptr.addfile(member, tar_file_ptr.extractfile(member.name)) batch_in_tar_ctr += 1 if batch_in_tar_ctr == num_batches_per_tarfile: remainder_tar_file_ctr += 1 remainder_tar_file_ptr.close() remainder_tar_file_path = os.path.join( out_dir, f'remainder-batches.tokens.{tokens_in_batch}.tar_file_{remainder_tar_file_ctr}.tar', ) remainder_tar_file_ptr = tarfile.open(remainder_tar_file_path, 'w',) batch_in_tar_ctr = 0 tar_file_ptr.close() os.remove(tar_file_path) # log the number of batches remaining as they will be discarded num_batches_discarded = len(remainder_tar_file_ptr.getmembers()) total_batches -= num_batches_discarded logging.info( f'Number of batches discarded: {num_batches_discarded}, total batches kept: {total_batches}' ) remainder_tar_file_ptr.close() os.remove(remainder_tar_file_path) # dump metadata to json metadata = {} metadata['num_batches'] = total_batches # rename tar files so they can be more easily used with CLI and YAML tar_file_paths = glob.glob(f'{out_dir}/*.tar') for index, path in enumerate(tar_file_paths): os.rename( path, os.path.join(out_dir, f'{tar_file_prefix}.batches.tokens.{tokens_in_batch}.{index}.tar') ) # add tar files to manifest tar_file_paths = glob.glob(f'{out_dir}/*.tar') metadata['tar_files'] = tar_file_paths json.dump(metadata, open(metadata_path, 'w')) tar_file_paths = glob.glob(f'{out_dir}/*.tar') num_tar_files = len(tar_file_paths) if num_tar_files < world_size: raise ValueError( ( f'Number of tar files found: {num_tar_files} is less than world size: {world_size}. ' f'There should be at least one tar file per GPU (ideally many tar files per GPU). ' f'This may be due to dataset size, it is advisable to use at least 5M sentence pairs for tarred datasets. ' f'Decrease num_batches_per_tarfile or num_tokens_per_batch to increase the number of tarfiles. ' f'Also using shard_strategy=replicate will use all available tarfiles for every GPU. ' ) ) return tar_file_paths, metadata_path @staticmethod def _get_num_lines(filename): with open(filename) as f: for i, l in enumerate(f): pass return i + 1 @staticmethod def _get_lines_partition(num_lines, lines_per_dataset_fragment): # create partition based on fragment size fragment_indices = [] for i in range(0, num_lines, lines_per_dataset_fragment): fragment_indices.append([i, i + lines_per_dataset_fragment]) # modify last indices last_indices = fragment_indices.pop() last_indices[1] = -1 fragment_indices.append(last_indices) # if fragment_indices[-1][1] >= num_lines: # fragment_indices.pop() return fragment_indices @staticmethod def _process_fragment( src_filename, tgt_filename, lines_indices, out_dir, num_batches_per_tarfile, clean, max_seq_length, min_seq_length, tokens_in_batch, encoder_tokenizer_name, encoder_tokenizer_model, encoder_bpe_dropout, encoder_model_name, encoder_tokenizer_r2l, decoder_tokenizer_name, decoder_tokenizer_model, decoder_bpe_dropout, decoder_model_name, decoder_tokenizer_r2l, fragment_index, encoder_tokenizer_legacy, decoder_tokenizer_legacy, ): start = lines_indices[0] stop = lines_indices[1] # write lines in partition to temporary files to be consumed by write_parallel_batches_to_tarfiles tmp_f_src = tempfile.NamedTemporaryFile(delete=False, mode='w') tmp_f_tgt = tempfile.NamedTemporaryFile(delete=False, mode='w') with open(src_filename, 'r') as src_in, open(tgt_filename) as tgt_in: for line_number, (src_line, tgt_line) in enumerate(zip(src_in, tgt_in)): if start <= line_number and line_number < stop: if src_line and tgt_line: tmp_f_src.write(src_line) tmp_f_tgt.write(tgt_line) tmp_f_src.close() tmp_f_tgt.close() num_batches_from_fragment, remainder_tar_file_path = MTDataPreproc.write_parallel_batches_to_tarfiles( out_dir=out_dir, num_batches_per_tarfile=num_batches_per_tarfile, clean=clean, max_seq_length=max_seq_length, min_seq_length=min_seq_length, src_fname=tmp_f_src.name, tgt_fname=tmp_f_tgt.name, num_tokens=tokens_in_batch, encoder_tokenizer_name=encoder_tokenizer_name, encoder_tokenizer_model=encoder_tokenizer_model, encoder_bpe_dropout=encoder_bpe_dropout, encoder_model_name=encoder_model_name, encoder_tokenizer_r2l=encoder_tokenizer_r2l, decoder_tokenizer_name=decoder_tokenizer_name, decoder_tokenizer_model=decoder_tokenizer_model, decoder_bpe_dropout=decoder_bpe_dropout, decoder_model_name=decoder_model_name, decoder_tokenizer_r2l=decoder_tokenizer_r2l, fragment_index=fragment_index, encoder_tokenizer_legacy=encoder_tokenizer_legacy, decoder_tokenizer_legacy=decoder_tokenizer_legacy, ) os.remove(tmp_f_src.name) os.remove(tmp_f_tgt.name) return num_batches_from_fragment, remainder_tar_file_path @staticmethod def preprocess_monolingual_dataset( clean, fname, out_dir, tokenizer, max_seq_length, min_seq_length, tokens_in_batch, lines_per_dataset_fragment, num_batches_per_tarfile, pkl_file_prefix, global_rank, world_size, ): """Create tarred dataset from a large monolingual corpus. Args: clean (str): Cleans sentences to get rid of very long or short sentences. fname (str): Path to source text data out_dir (str): Path to write tarred dataset tokenizer (Any): Path to tokenizer model max_seq_length (int): maximum sequence length min_seq_length (int): minimum sequence length tokens_in_batch (int): tokens per batch per GPU, effectively batch size lines_per_dataset_fragment (int): number of lines to consider for bucketing and padding num_batches_per_tarfile (int): number of batches (pickle files) within each tarfile global_rank (int): if set to zero, data will be processed on this node world_size (int): total number of processes being run (for training only, set to 1 when preproc only) """ os.makedirs(out_dir, exist_ok=True) tar_file_ctr = 1 num_files_in_tar = 0 num_lines = 0 shard_num = 0 global_batch_ctr = 0 tmp_f = tempfile.NamedTemporaryFile(delete=False, mode='w') tar_file_ptr = tarfile.open( os.path.join(out_dir, '%s-batches.tokens.%d.%d.tar' % (pkl_file_prefix, tokens_in_batch, 1)), 'w' ) metadata_path = os.path.join(out_dir, f'metadata.tokens.{tokens_in_batch}.json') with open(fname, 'r') as f: for line in f: tmp_f.write(line) num_lines += 1 if num_lines == lines_per_dataset_fragment: tmp_f.close() ( tar_file_ptr, global_batch_ctr, num_files_in_tar, tar_file_ctr, ) = MTDataPreproc.write_monolingual_batches_to_tarfiles( out_dir, num_batches_per_tarfile, clean, max_seq_length, min_seq_length, tmp_f.name, tokens_in_batch, tokenizer, num_files_in_tar=num_files_in_tar, tar_file_ptr=tar_file_ptr, tar_file_ctr=tar_file_ctr, global_batch_ctr=global_batch_ctr, pkl_file_prefix=pkl_file_prefix, ) num_lines = 0 shard_num += 1 os.remove(tmp_f.name) tmp_f = tempfile.NamedTemporaryFile(delete=False, mode='w') tmp_f.close() ( tar_file_ptr, global_batch_ctr, num_files_in_tar, tar_file_ctr, ) = MTDataPreproc.write_monolingual_batches_to_tarfiles( out_dir, num_batches_per_tarfile, clean, max_seq_length, min_seq_length, tmp_f.name, tokens_in_batch, tokenizer, num_files_in_tar=num_files_in_tar, tar_file_ptr=tar_file_ptr, tar_file_ctr=tar_file_ctr, global_batch_ctr=global_batch_ctr, pkl_file_prefix=pkl_file_prefix, ) tar_file_ptr.close() os.remove(tmp_f.name) if num_files_in_tar != num_batches_per_tarfile: os.remove( os.path.join(out_dir, '%s-batches.tokens.%d.%d.tar' % (pkl_file_prefix, tokens_in_batch, tar_file_ctr)) ) global_batch_ctr -= num_files_in_tar print('Dropping %d batches because of overflow' % (num_files_in_tar)) json.dump({'num_batches': global_batch_ctr}, open(os.path.join(out_dir, 'metadata.json'), 'w')) tar_file_paths = glob.glob(f'{out_dir}/{pkl_file_prefix}-batches.tokens.{tokens_in_batch}.*.tar') num_tar_files = len(tar_file_paths) if num_tar_files < world_size: raise ValueError( ( f'Number of tar files found: {num_tar_files} is less than world size: {world_size}. ' f'There should be at least one tar file per GPU (ideally many tar files per GPU). ' f'This may be due to dataset size, it is advisable to use at least 5M sentence pairs for tarred datasets. ' f'Decrease num_batches_per_tarfile or num_tokens_per_batch to increase the number of tarfiles. ' f'Also using shard_strategy=replicate will use all available tarfiles for every GPU. ' ) ) return tar_file_paths, metadata_path @staticmethod def train_tokenizers( out_dir, src_fname, tgt_fname, shared_tokenizer, encoder_tokenizer_name, encoder_tokenizer_vocab_size, encoder_tokenizer_coverage, decoder_tokenizer_name, decoder_tokenizer_vocab_size, decoder_tokenizer_coverage, global_rank, encoder_training_sample_size=-1, decoder_training_sample_size=-1, encoder_special_tokens=None, decoder_special_tokens=None, spt_symbols=None, byte_fallback=False, split_digits=False, split_by_whitespace=True, ): """Trains a tokenizer with requested parameters, returns None if the tokenizer is not trainable""" encoder_tokenizer_model = None decoder_tokenizer_model = None os.makedirs(out_dir, exist_ok=True) supported_train_tokenizers = ['yttm', 'sentencepiece'] if encoder_special_tokens: if isinstance(encoder_special_tokens, dict): encoder_special_tokens = list(encoder_special_tokens.values()) print(encoder_special_tokens) if decoder_special_tokens: if isinstance(decoder_special_tokens, dict): decoder_special_tokens = list(decoder_special_tokens.values()) if shared_tokenizer: if encoder_tokenizer_name in supported_train_tokenizers: encoder_tokenizer_model = os.path.join( out_dir, 'shared_tokenizer.%d.BPE.model' % (encoder_tokenizer_vocab_size) ) decoder_tokenizer_model = encoder_tokenizer_model if global_rank == 0: if os.path.isfile(encoder_tokenizer_model): logging.info( f'Shared tokenizer model {encoder_tokenizer_model} already exists. Remove file if training a new tokenizer model.' ) else: logging.info( f'Shared tokenizer model {encoder_tokenizer_model} not found. Training tokenizer model.' ) with tempfile.TemporaryDirectory() as tmp: concat_data_path = os.path.join(tmp, 'concat_dataset.txt') os.system('cat %s %s > %s' % (src_fname, tgt_fname, concat_data_path)) if encoder_tokenizer_name == "yttm": yttm.BPE.train( data=concat_data_path, vocab_size=encoder_tokenizer_vocab_size, model=encoder_tokenizer_model, coverage=encoder_tokenizer_coverage, n_threads=-1, ) else: create_spt_model( data_file=concat_data_path, vocab_size=encoder_tokenizer_vocab_size, sample_size=encoder_training_sample_size, do_lower_case=False, tokenizer_type='bpe', character_coverage=encoder_tokenizer_coverage, output_dir=out_dir, bos=True, eos=True, pad=True, control_symbols=spt_symbols, user_defined_symbols=encoder_special_tokens, byte_fallback=byte_fallback, split_digits=split_digits, split_by_whitespace=split_by_whitespace, ) os.rename( os.path.join(out_dir, 'tokenizer.model'), encoder_tokenizer_model, ) else: if encoder_tokenizer_name in supported_train_tokenizers: encoder_tokenizer_model = os.path.join( out_dir, 'tokenizer.encoder.%d.BPE.model' % (encoder_tokenizer_vocab_size) ) if global_rank == 0: if os.path.isfile(encoder_tokenizer_model): logging.info( f'Encoder tokenizer model {encoder_tokenizer_model} already exists. Remove file if training a new tokenizer model.' ) else: logging.info( f'Encoder tokenizer model {encoder_tokenizer_model} not found. Training tokenizer model.' ) if encoder_tokenizer_name == "yttm": yttm.BPE.train( data=src_fname, vocab_size=encoder_tokenizer_vocab_size, model=encoder_tokenizer_model, coverage=encoder_tokenizer_coverage, n_threads=-1, ) else: dir_name = os.path.dirname(encoder_tokenizer_model) create_spt_model( data_file=src_fname, vocab_size=encoder_tokenizer_vocab_size, sample_size=encoder_training_sample_size, do_lower_case=False, tokenizer_type='bpe', character_coverage=encoder_tokenizer_coverage, output_dir=dir_name, bos=True, eos=True, pad=True, control_symbols=spt_symbols, user_defined_symbols=encoder_special_tokens, byte_fallback=byte_fallback, split_digits=split_digits, split_by_whitespace=split_by_whitespace, ) os.rename(os.path.join(dir_name, 'tokenizer.model'), encoder_tokenizer_model) if decoder_tokenizer_name in supported_train_tokenizers: decoder_tokenizer_model = os.path.join( out_dir, 'tokenizer.decoder.%d.BPE.model' % (decoder_tokenizer_vocab_size) ) if global_rank == 0: if os.path.isfile(decoder_tokenizer_model): logging.info( f'Decoder tokenizer model {decoder_tokenizer_model} already exists. Remove file if training a new tokenizer model.' ) else: logging.info( f'Decoder tokenizer model {decoder_tokenizer_model} not found. Training tokenizer model.' ) if decoder_tokenizer_name == "yttm": yttm.BPE.train( data=tgt_fname, vocab_size=decoder_tokenizer_vocab_size, model=decoder_tokenizer_model, coverage=decoder_tokenizer_coverage, n_threads=-1, ) else: dir_name = os.path.dirname(decoder_tokenizer_model) create_spt_model( data_file=tgt_fname, vocab_size=decoder_tokenizer_vocab_size, sample_size=decoder_training_sample_size, do_lower_case=False, tokenizer_type='bpe', character_coverage=decoder_tokenizer_coverage, output_dir=dir_name, bos=True, eos=True, pad=True, control_symbols=spt_symbols, user_defined_symbols=decoder_special_tokens, byte_fallback=byte_fallback, split_digits=split_digits, split_by_whitespace=split_by_whitespace, ) os.rename(os.path.join(dir_name, 'tokenizer.model'), decoder_tokenizer_model) return encoder_tokenizer_model, decoder_tokenizer_model @staticmethod def write_parallel_batches_to_tarfiles( out_dir, num_batches_per_tarfile, clean, max_seq_length, min_seq_length, src_fname, tgt_fname, num_tokens, encoder_tokenizer_name, encoder_tokenizer_model, encoder_tokenizer_r2l, encoder_bpe_dropout, encoder_model_name, decoder_tokenizer_name, decoder_tokenizer_model, decoder_bpe_dropout, decoder_model_name, decoder_tokenizer_r2l, fragment_index, encoder_tokenizer_legacy=False, decoder_tokenizer_legacy=False, ): """ Writes current fragment of the overall parallel corpus to tarfiles by: (1) Creating a minibatches using a TranslationDataset object. (2) Writing each minibatch to a pickle file. (3) Adding pickle files to a tarfile until it reaches num_batches_per_tarfile. """ dataset = TranslationDataset( dataset_src=src_fname, dataset_tgt=tgt_fname, tokens_in_batch=num_tokens, clean=clean, max_seq_length=max_seq_length, min_seq_length=min_seq_length, max_seq_length_diff=max_seq_length, max_seq_length_ratio=max_seq_length, cache_ids=False, cache_data_per_node=False, use_cache=False, ) encoder_tokenizer, decoder_tokenizer = MTDataPreproc.get_enc_dec_tokenizers( encoder_tokenizer_name=encoder_tokenizer_name, encoder_tokenizer_model=encoder_tokenizer_model, encoder_bpe_dropout=encoder_bpe_dropout, encoder_model_name=encoder_model_name, encoder_r2l=encoder_tokenizer_r2l, decoder_tokenizer_name=decoder_tokenizer_name, decoder_tokenizer_model=decoder_tokenizer_model, decoder_bpe_dropout=decoder_bpe_dropout, decoder_model_name=decoder_model_name, decoder_r2l=decoder_tokenizer_r2l, encoder_tokenizer_legacy=encoder_tokenizer_legacy, decoder_tokenizer_legacy=decoder_tokenizer_legacy, ) # validate no token is negative for sentencepiece tokenizers and add missing special tokens. for tok_name, tok_library, tok_model, legacy in [ ("encoder_tokenizer", encoder_tokenizer_name, encoder_tokenizer, encoder_tokenizer_legacy), ("decoder_tokenizer", decoder_tokenizer_name, decoder_tokenizer, decoder_tokenizer_legacy), ]: if tok_library == 'sentencepiece': negative_tokens = [] for n in ["eos_id", "bos_id", "unk_id", "pad_id"]: v = getattr(tok_model.tokenizer, n)() if v < 0: negative_tokens.append(f"{n}={v}") if negative_tokens and not legacy: raise ValueError( f"{tok_name}=sentencepiece has invalid negative special tokens = {negative_tokens}" ) # If using the legacy sentencepiece tokenizer, we can add the missing tokens as "special" tokens. else: # If using sentencepiece legacy, eos, bos and pad need to be set/added differently. if legacy: # bos, eos, pad and unk may be present in the provided spm .model file, if they are, use it. if not hasattr(tok_model, 'pad_token'): if hasattr(tok_model.tokenizer, 'pad_id') and tok_model.tokenizer.pad_id() > 0: tok_model.pad_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.pad_id()) else: tok_model.add_special_tokens({'pad_token': '<pad>'}) else: tok_model.add_special_tokens({'pad_token': '<pad>'}) if not hasattr(tok_model, 'bos_token'): if hasattr(tok_model.tokenizer, 'bos_id') and tok_model.tokenizer.bos_id() > 0: tok_model.bos_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.bos_id()) else: tok_model.add_special_tokens({'bos_token': '<bos>'}) else: tok_model.add_special_tokens({'bos_token': '<s>'}) if not hasattr(tok_model, 'eos_token'): if hasattr(tok_model.tokenizer, 'eos_id') and tok_model.tokenizer.eos_id() > 0: tok_model.eos_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.eos_id()) else: tok_model.add_special_tokens({'eos_token': '<eos>'}) else: tok_model.add_special_tokens({'eos_token': '</s>'}) dataset.batchify(encoder_tokenizer, decoder_tokenizer) tar_file_ctr = 0 tar_file_path = os.path.join( out_dir, 'fragment-%s-batches.tokens.%d.%d.tar' % (fragment_index, num_tokens, tar_file_ctr) ) tar_file_ptr = tarfile.open(tar_file_path, 'w') total_batch_ctr = 0 batch_ctr = 0 for _, batch in dataset.batches.items(): total_batch_ctr += 1 batch_ctr += 1 pickle.dump( batch, open(os.path.join(out_dir, 'fragment-%s-batch-%d.pkl' % (fragment_index, total_batch_ctr)), 'wb'), ) tar_file_ptr.add(os.path.join(out_dir, 'fragment-%s-batch-%d.pkl' % (fragment_index, total_batch_ctr))) os.remove(os.path.join(out_dir, 'fragment-%s-batch-%d.pkl' % (fragment_index, total_batch_ctr))) if batch_ctr == num_batches_per_tarfile: tar_file_ctr += 1 tar_file_ptr.close() tar_file_path = os.path.join( out_dir, 'fragment-%s-batches.tokens.%d.%d.tar' % (fragment_index, num_tokens, tar_file_ctr) ) tar_file_ptr = tarfile.open(tar_file_path, 'w',) batch_ctr = 0 # return tar files paths that have batches remaining remainder_tar_file_path = tar_file_ptr.name tar_file_ptr.close() return total_batch_ctr, remainder_tar_file_path @staticmethod def write_monolingual_batches_to_tarfiles( out_dir, num_batches_per_tarfile, clean, max_seq_length, min_seq_length, fname, num_tokens, tokenizer, num_files_in_tar, tar_file_ptr, tar_file_ctr, global_batch_ctr, pkl_file_prefix, ): """ Writes current fragment of the overall parallel corpus to tarfiles by: (1) Creating a minibatches using a SentenceDataset object. (2) Writing each minibatch to a pickle file. (3) Adding pickle files to a tarfile until it reaches num_batches_per_tarfile. """ dataset = SentenceDataset( tokenizer=tokenizer, dataset=fname, tokens_in_batch=num_tokens, clean=clean, max_seq_length=max_seq_length, min_seq_length=min_seq_length, cache_ids=False, ) for batch in dataset.batches: global_batch_ctr += 1 batch = {'src': batch} pickle.dump( batch, open(os.path.join(out_dir, '%s-batch-%d.pkl' % (pkl_file_prefix, global_batch_ctr)), 'wb') ) if num_files_in_tar == num_batches_per_tarfile: tar_file_ctr += 1 tar_file_ptr.close() tar_file_ptr = tarfile.open( os.path.join(out_dir, '%s-batches.tokens.%d.%d.tar' % (pkl_file_prefix, num_tokens, tar_file_ctr)), 'w', ) num_files_in_tar = 0 tar_file_ptr.add(os.path.join(out_dir, '%s-batch-%d.pkl' % (pkl_file_prefix, global_batch_ctr))) num_files_in_tar += 1 os.remove(os.path.join(out_dir, '%s-batch-%d.pkl' % (pkl_file_prefix, global_batch_ctr))) return tar_file_ptr, global_batch_ctr, num_files_in_tar, tar_file_ctr @property def cfg(self): return self._cfg
NeMo-main
nemo/collections/nlp/data/machine_translation/preproc_mt_data.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.information_retrieval.information_retrieval_dataset import ( BertInformationRetrievalDataset, )
NeMo-main
nemo/collections/nlp/data/information_retrieval/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing as mp import os import pickle import random from typing import Optional import numpy as np from torch.utils.data import Dataset from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec __all__ = ["BertInformationRetrievalDataset"] class BaseInformationRetrievalDataset(Dataset): """ Base information retrieval dataset on which other datasets are built. Args: tokenizer: tokenizer max_query_length: maximum length of query in tokens max_passage_length: maximum length of passage in tokens """ def __init__( self, tokenizer: TokenizerSpec, max_query_length: Optional[int] = 31, max_passage_length: Optional[int] = 190, ): self.tokenizer = tokenizer self.max_query_length = max_query_length self.max_passage_length = max_passage_length def parse_npz(self, file, max_seq_length): """ Function which parses passages (documents) in npz format. After pre-processing and tokenization, the dataset will be saved as numpy matrix, i_th entry of which corresponds to i_th passage (document) and has the following form: [n, token_1, ..., token_n, 0, ..., 0] where n is the passage length (in tokens) and 0s correspond to pad tokens. Args: file: str, path to file with passages (documents) max_seq_length: maximum length of sequence in tokens """ cached_collection = file + ".npz" if os.path.isfile(cached_collection): dataset_npz = np.load(cached_collection)["data"] else: dataset_dict = self.tokenize_dataset(file, max_seq_length) dataset_npz = np.zeros((len(dataset_dict), max_seq_length + 1)) for key in dataset_dict: dataset_npz[key][0] = len(dataset_dict[key]) dataset_npz[key][1 : len(dataset_dict[key]) + 1] = dataset_dict[key] np.savez(cached_collection, data=dataset_npz) return dataset_npz def parse_pkl(self, file, max_seq_length): """ Function which parses passages (documents, queries) in pkl format. After pre-processing and tokenization, the dataset will be saved as pkl dict, i_th entry of which corresponds to i_th passage (document, query) and has the following form: {passage_id: [token_1, ..., token_n]} where n is the passage length (in tokens). Args: file: str, path to file with passages (documents) max_seq_length: maximum length of sequence in tokens """ cached_collection = file + ".pkl" if os.path.isfile(cached_collection): dataset_dict = pickle.load(open(cached_collection, "rb")) else: dataset_dict = self.tokenize_dataset(file, max_seq_length) pickle.dump(dataset_dict, open(cached_collection, "wb")) return dataset_dict def tokenize_dataset(self, file, max_seq_length): """ Function which pre-tokenizes the dataset. """ lines = open(file, "r").readlines() with mp.Pool() as pool: dataset_dict = pool.map(self.preprocess_line, lines) dataset_dict = {id_: tokens[:max_seq_length] for (id_, tokens) in dataset_dict} return dataset_dict def preprocess_line(self, line): """ Parse a single entry (line) of tsv file. """ if "\t" not in line: raise ValueError(f"Provided dataset does not have a form of tsv file") id_, text = line.split("\t") token_ids = self.tokenizer.text_to_ids(text.strip()) return int(id_), token_ids def construct_input(self, token_ids1, max_seq_length, token_ids2=None): """ Function which constructs a valid input to BERT from tokens. If only one list of tokens (token_ids1) is passed, the input will be [CLS] token_ids1 [SEP] if two lists of tokens are passed, the input will be [CLS] token_ids1 [SEP] token_ids2 [SEP] """ input_ids = [self.tokenizer.pad_id] * max_seq_length bert_input = [self.tokenizer.cls_id] + token_ids1 + [self.tokenizer.sep_id] sentence1_length = len(bert_input) if token_ids2 is not None: bert_input = bert_input + token_ids2 + [self.tokenizer.sep_id] bert_input = bert_input[:max_seq_length] num_nonpad_tokens = len(bert_input) input_ids[:num_nonpad_tokens] = bert_input input_ids = np.array(input_ids, dtype=np.long) input_mask = input_ids != self.tokenizer.pad_id input_type_ids = np.ones_like(input_ids) input_type_ids[:sentence1_length] = 0 return input_ids, input_mask, input_type_ids def preprocess_bert(self, query_id, psg_ids): """ Transforms query id (Q) and a list of passages ids (P1, ..., Pk) into a tensor of size [k, max_length] with the following rows: [CLS] Q_text [SEP] Pi_text [SEP], i = 1, ..., k """ max_seq_length = self.max_query_length + self.max_passage_length + 3 input_ids, input_mask, input_type_ids = [], [], [] for psg_id in psg_ids: inputs = self.construct_input(self.queries[query_id], max_seq_length, self._psgid2tokens(psg_id)) input_ids.append(inputs[0]) input_mask.append(inputs[1]) input_type_ids.append(inputs[2]) input_ids = np.stack(input_ids) input_mask = np.stack(input_mask) input_type_ids = np.stack(input_type_ids) return input_ids, input_mask, input_type_ids def preprocess_dpr(self, query_id, psg_ids): """ Transforms query id (Q) and a list of passages ids (P1, ..., Pk) into two tensors of sizes [1, max_q_length] and [k, max_p_length] with the following rows: 1) [CLS] Q_text [SEP] 2) [CLS] Pi_text [SEP], i = 1, ..., k """ q_input_ids, q_input_mask, q_type_ids = self.construct_input(self.queries[query_id], self.max_query_length + 2) input_ids, input_mask, input_type_ids = [], [], [] for psg_id in psg_ids: inputs = self.construct_input(self._psgid2tokens(psg_id), self.max_passage_length + 2) input_ids.append(inputs[0]) input_mask.append(inputs[1]) input_type_ids.append(inputs[2]) input_ids = np.stack(input_ids) input_mask = np.stack(input_mask) input_type_ids = np.stack(input_type_ids) return ( q_input_ids[None, ...], q_input_mask[None, ...], q_type_ids[None, ...], input_ids, input_mask, input_type_ids, ) def _psgid2tokens(self, psg_id): """ Internal function which maps passage id to its tokens. """ pass def psgid2tokens_npz(self, psg_id): """ Mapping from passage id to its tokens in case of npz cache format. """ seq_len = self.passages[psg_id][0] return self.passages[psg_id][1 : seq_len + 1].tolist() def psgid2tokens_pkl(self, psg_id): """ Mapping from passage id to its tokens in case of pkl cache format. """ return self.passages[psg_id] class BertInformationRetrievalDataset(BaseInformationRetrievalDataset): def __init__( self, tokenizer: TokenizerSpec, passages: str, queries: str, query_to_passages: str, max_query_length: Optional[int] = 31, max_passage_length: Optional[int] = 190, num_negatives: Optional[int] = 10, preprocess_fn: Optional[str] = "preprocess_bert", psg_cache_format: Optional[str] = "npz", ): """ Dataset for training information retrieval models. Args: tokenizer: tokenizer passages: path to tsv with [psg_id, psg_text] entries queries: path to tsv with [query_id, query_text] entries query_to_passages: path to tsv with [query_id, pos_psg_id, neg_psg_id_1, ..., neg_psg_id_k] entries max_query_length: maximum length of query in tokens max_passage_length: maximum length of passage in tokens num_negatives: number of negative passages per positive to use for training preprocess_fn: either preprocess_bert or preprocess_dpr preprocess_bert: joint input: [CLS] query [SEP] passage [SEP] preprocess_dpr: separate inputs: [CLS] query [SEP], [CLS] passage [SEP] psg_cache_format: either pkl or npz """ super().__init__(tokenizer, max_query_length, max_passage_length) self.num_negatives = num_negatives self.passages = getattr(self, f"parse_{psg_cache_format}")(passages, max_passage_length) self._psgid2tokens = getattr(self, f"psgid2tokens_{psg_cache_format}") self.queries = self.parse_pkl(queries, max_query_length) self.idx2psgs = self.parse_query_to_passages(query_to_passages) self._preprocess_fn = getattr(self, preprocess_fn) def __getitem__(self, idx): query_and_psgs = self.idx2psgs[idx] query_id, psg_ids = query_and_psgs[0], query_and_psgs[1:] inputs = self._preprocess_fn(query_id, psg_ids) return [*inputs, query_id, np.array(psg_ids)] def __len__(self): return len(self.idx2psgs) def parse_query_to_passages(self, file): """ Function which parses query to passages correspondence file. """ idx2psgs = {} idx = 0 for line in open(file, "r").readlines(): if "\t" not in line: raise ValueError(f"Provided dataset does not have a form of tsv file") query_and_psgs = line.split("\t") query_and_psgs_ids = [int(id_) for id_ in query_and_psgs] query_and_rel_psg_ids, irrel_psgs_ids = query_and_psgs_ids[:2], query_and_psgs_ids[2:] random.shuffle(irrel_psgs_ids) num_samples = len(irrel_psgs_ids) // self.num_negatives for j in range(num_samples): left = self.num_negatives * j right = self.num_negatives * (j + 1) idx2psgs[idx] = query_and_rel_psg_ids + irrel_psgs_ids[left:right] idx += 1 return idx2psgs
NeMo-main
nemo/collections/nlp/data/information_retrieval/information_retrieval_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.dialogue.data_processor.sgd_data_processor import DialogueSGDDataProcessor from nemo.collections.nlp.data.dialogue.dataset import ( DialogueBERTDataset, DialogueGPTClassificationDataset, DialogueSGDBERTDataset, DialogueZeroShotIntentDataset, ) from nemo.collections.nlp.data.dialogue.sgd.schema import Schema
NeMo-main
nemo/collections/nlp/data/dialogue/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.data.dialogue.dataset.dialogue_dataset import DialogueDataset __all__ = ['DialogueNearestNeighbourDataset'] class DialogueNearestNeighbourDataset(DialogueDataset): """ Dataset for training a Nearest Neighbour model for zero shot intent recognition. """ def __init__(self, dataset_split: str, dialogues_processor: object, tokenizer, cfg): """ Args: dataset_split: dataset split dialogues_processor: Data generator for dialogues tokenizer: tokenizer to split text into sub-word tokens """ self.cfg = cfg self.tokenizer = tokenizer self.raw_features = dialogues_processor.get_dialog_examples(dataset_split) self.max_n = self.find_max_n_candidates() self.examples = self._create_examples(self.raw_features) def find_max_n_candidates(self): max_n = 0 for idx in range(len(self.raw_features)): ex = self.raw_features[idx].data n = len(ex["possible_labels"]["intent"]) max_n = max(max_n, n) return max_n def _create_examples(self, raw_features): """Creates examples for the training and dev sets.""" examples = [] seen_utterances = set() for idx in range(len(raw_features)): ex = self.raw_features[idx].data user_utterance = ex["utterance"] if user_utterance in seen_utterances: continue seen_utterances.add(user_utterance) intent = ex["labels"]["intent"] sentences = [user_utterance] labels = [-1] for candidate_intent in ex["possible_labels"]["intent"]: text_b = "{} {}".format(self.cfg.prompt_template, candidate_intent) label = 1 if candidate_intent == intent else 0 labels.append(label) sentences.append(text_b) while self.max_n > len(labels) - 1: labels.append(label) sentences.append(text_b) encoded_input = self.tokenizer.tokenizer( sentences, padding='max_length', truncation=True, return_tensors='pt', max_length=self.cfg.max_seq_length, ) examples.append((encoded_input['input_ids'], encoded_input['attention_mask'], torch.tensor(labels))) return examples def __len__(self): return len(self.examples) def __getitem__(self, idx: int): return self.examples[idx]
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/dialogue_nearest_neighbour_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import random from collections import defaultdict import torch from nemo.collections.nlp.data.dialogue.dataset.dialogue_dataset import DialogueDataset from nemo.utils import logging class DialogueGPTClassificationDataset(DialogueDataset): ''' Designed for classification tasks such as intent/domain classification as well as slot tagging Dataset Class 1. Performs Model-dependent (but Data-independent) operations (tokenization etc) 2. This can allow the same model preprocessing for multiple datasources 3. Users can configurate which labels to use for modelling (e.g. intent classification, slot filling or both together etc) ''' def __init__(self, dataset_split: str, dialogues_processor: object, tokenizer, cfg): """ Constructor Args: dataset_split: dataset split dialogues_processor: Data generator for SGD dialogues tokenizer: tokenizer cfg: cfg container for dataset """ self.cfg = cfg if self.cfg.target_template == "with_slots" and self.cfg.eval_mode != "generation": raise ValueError( "slot-filling is not supported by eval_mode {}, please set model.dataset.eval_mode=generation instead".format( self.cfg.eval_mode ) ) if self.cfg.target_template != "with_slots" and self.cfg.field == "slots": raise ValueError("please set model.dataset.target_template='with_slots' if model.dataset.field='slots'") self.label_type = self.cfg.field if self.cfg.target_template == "with_description": self.label_to_description = defaultdict(str) self.all_possible_labels = set() self.tokenizer = tokenizer self.tokenizer.tokenizer.padding_side = "right" self.max_candidates = 2 if not isinstance(dataset_split, str): dataset_split = dataset_split[0] self.features = dialogues_processor.get_dialog_examples(dataset_split) for idx in range(len(self.features)): self.preprocess_feature(idx) if self.cfg.debug_mode: self.features = self.features[:16] # for few shot learning to append in the prompt self.lm_features = self.get_lm_samples() def transform(self, label): """ Normalize labels by replacing underscore with space Args: label: str Returns: normalized_label: str """ if self.cfg.task == "assistant" and self.cfg.prompt_template != "prompt_tuning": label = label.replace('_', ' ') return label def __len__(self): return len(self.features) def get_n_tokens_in_sentence(self, sentence): encodings_dict = self.tokenizer.tokenizer( sentence, truncation=True, max_length=self.cfg.max_seq_length, padding=False, return_tensors="pt" ) output = torch.squeeze(encodings_dict['input_ids']) return len(output) if len(output.size()) > 0 else 0 def preprocess_feature(self, idx): ex = self.features[idx].data label = ex["labels"][self.label_type] candidates = ex["possible_labels"][self.label_type] if self.label_type in ["service", "intent"]: label = self.transform(label) candidates = [self.transform(candidate) for candidate in candidates] self.features[idx].data["labels"][self.label_type] = label self.features[idx].data["possible_labels"][self.label_type] = candidates if self.cfg.target_template == "with_description": description = ex["description"][self.label_type] self.label_to_description[label] = description for candidate in candidates: self.all_possible_labels.add(candidate) self.max_candidates = max(self.max_candidates, len(candidates)) def default_encode(self, sentence): encodings_dict = self.tokenizer.tokenizer( sentence, truncation=True, max_length=self.cfg.max_seq_length, padding="max_length", return_tensors="pt" ) input_ids = torch.squeeze(encodings_dict['input_ids']) attn_masks = torch.squeeze(encodings_dict['attention_mask']) return encodings_dict, input_ids, attn_masks @staticmethod def linearize_slots(slots): """ Serialize slots into a linear text Args: slots: dict with each slot_name as key and possible slot values as value Returns: linear_slots: text based representation of slot names and values """ if not slots: return "None" return ", ".join( ["{}({})".format(slot, value if isinstance(value, str) else value[0]) for slot, value in slots.items()] ) def format_target(self, target, slots=None): """ Formats the back part of the training example, after the base_template for instance, "restaurant" in "<utterance> service: restaurant" or "set alarm\nslots: <slot_name1>(<slot_value1>), <slot_name1>(<slot_value1>)" in \ "<utterance>\nintent: set alarm\nslots: <slot_name1>(<slot_value1>), <slot_name1>(<slot_value1>)" """ if self.cfg.target_template == "with_description": return target + ' (' + self.label_to_description[target] + ')' elif self.cfg.target_template == "default": return target elif self.cfg.target_template == "with_slots" and slots is not None and self.cfg.field == "intent": return target + '\nslots: ' + DialogueGPTClassificationDataset.linearize_slots(slots) elif self.cfg.target_template == "with_slots" and slots is not None and self.cfg.field == "slots": return DialogueGPTClassificationDataset.linearize_slots(slots) else: raise ValueError("Please choose a target format from {default, with_description, with_slots}") def get_lm_samples(self): max_sample_length = 0 lm_features = [] for idx in range(len(self.features)): ex = self.features[idx].data utterance = ex["utterance"] label = ex["labels"][self.label_type] slots = ex["labels"]["slots"] if self.cfg.target_template == "with_slots" else None lm_feature = self.format_prompt(utterance) + ' ' + self.format_target(label, slots=slots) feature_len = self.get_n_tokens_in_sentence(lm_feature) max_sample_length = max(max_sample_length, feature_len) lm_features.append(lm_feature) logging.info("max feature length per sample with label: ".format(max_sample_length)) logging.info( "please adjust max seq len to at least {} * ({} + 1) = {} but not too much more for efficiency".format( max_sample_length, self.cfg.few_shot, max_sample_length * (1 + self.cfg.few_shot) ) ) return lm_features def format_prompt(self, utterance, few_shot=0, idx=None): if self.cfg.prompt_template == "default": base_template = utterance + ' ' + self.label_type + ':' elif self.cfg.prompt_template == "i_want_to": base_template = utterance + ' ' + 'I want to' elif self.cfg.prompt_template == "prompt_tuning": base_template = utterance + '\n' + self.label_type + ':' elif self.cfg.prompt_template == "prompt_tuning_with_options": base_template = ( 'possible intents: ' + ', '.join(sorted(list(self.all_possible_labels))) + '\n\n' + utterance + '\n' + self.label_type + ':' ) if few_shot > 0: few_shot_indices = random.sample(range(len(self.features)), few_shot + 1) few_shot_indices = [i for i in few_shot_indices if i != idx][:few_shot] few_shot_samples = [self.lm_features[i] for i in few_shot_indices] base_template = ( self.tokenizer.tokenizer.pad_token.join(few_shot_samples) + self.tokenizer.tokenizer.pad_token + base_template ) return base_template def collate_fn(self, batch): """ Truncates elements to max length in batch """ _, _, _, _, candidate_attn_masks, _, _, _ = zip(*batch) # determine max length in batch batch_max_length = 0 for candidate_attn_mask in candidate_attn_masks: for one_attn_mask in candidate_attn_mask: batch_max_length = max(batch_max_length, torch.sum(one_attn_mask).item()) # padding for tp=2 situation if batch_max_length % 2: batch_max_length += 1 all_items = [] for item in zip(*batch): if isinstance(item[0], int): item = [torch.tensor(i) for i in item] item_stack = torch.stack(item) # if item_stack is 1d, elements refers to indexes and there is no need to truncate if len(item_stack.size()) == 1: all_items.append(item_stack) # otherwise, truncate last dimension to max length in batch else: all_items.append(item_stack[..., :batch_max_length]) return all_items def __getitem__(self, idx: int): ''' State how the input and output samples look like This template can be changed Training example: e.g. <utterance> service: restaurant e.g. <task description> <utterance> service: restaurant e.g. <utterance>\nintent: set alarm\nslots: <slot_name1>(<slot_value1>), <slot_name1>(<slot_value1>) Generation example: e.g. <utterance> service: ''' ex = self.features[idx].data utterance = ex["utterance"] utterance_length = self.get_n_tokens_in_sentence(utterance) label = ex["labels"][self.label_type] candidates = ex["possible_labels"][self.label_type] slots = ex["labels"]["slots"] if self.cfg.target_template == "with_slots" else None base_template = self.format_prompt(utterance, few_shot=self.cfg.few_shot, idx=idx) sentence_without_answer = base_template sentence = base_template + ' ' + self.format_target(label, slots=slots) if self.cfg.eval_mode == "binary_score": candidate_sentences = [] for candidate in candidates: positive_answer = base_template + ' ' + candidate + ' Answer: ' + 'yes' negative_answer = base_template + ' ' + candidate + ' Answer: ' + 'no' if candidate == label: correct_candidate = len(candidate_sentences) // 2 candidate_sentences.append(positive_answer) candidate_sentences.append(negative_answer) else: candidate_sentences.append(negative_answer) candidate_sentences.append(positive_answer) else: correct_candidate = 0 candidate_sentences = [ base_template + ' ' + self.format_target(candidate, slots=slots) for candidate in candidates ] encodings_dict, input_ids, attn_masks = self.default_encode(sentence) candidate_tokenized_sentences = [ self.default_encode(candidate_sentence) for candidate_sentence in candidate_sentences ] # ensure all samples have the same number of candidates for collating into tensor while len(candidate_tokenized_sentences) < self.max_candidates: candidate_tokenized_sentences.append(candidate_tokenized_sentences[0]) candidate_input_ids = torch.stack([i[1] for i in candidate_tokenized_sentences]) candidate_attn_masks = torch.stack([i[2] for i in candidate_tokenized_sentences]) labels = copy.copy(torch.squeeze(encodings_dict['input_ids'])) training_mask_end = self.get_n_tokens_in_sentence(sentence_without_answer) labels.data = torch.tensor( [-100 if i < training_mask_end else labels.data[i] for i in range(len(labels.data))] ) return ( input_ids, attn_masks, labels, candidate_input_ids, candidate_attn_masks, training_mask_end, utterance_length, correct_candidate, )
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/dialogue_gpt_classification_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import torch from nemo.collections.nlp.data.dialogue.dataset.dialogue_dataset import DialogueDataset class DialogueGPTGenerationDataset(DialogueDataset): def __init__(self, dataset_split: str, dialogues_processor: object, tokenizer, cfg): """ Constructor Designed for free form generation tasks such as Dialogue Response Generation Args: dataset_split: dataset split dialogues_processor: dialogues processor tokenizer: tokenizer cfg: cfg container for dataset """ self.cfg = cfg self.input_label_type = self.cfg.input_field self.output_label_type = self.cfg.output_field self.tokenizer = tokenizer self.tokenizer.tokenizer.padding_side = "right" if not isinstance(dataset_split, str): dataset_split = dataset_split[0] self.features = dialogues_processor.get_dialog_examples(dataset_split) self.features = self.remove_invalid_samples(self.features) if self.cfg.debug_mode: self.features = self.features[:16] def remove_invalid_samples(self, features): valid_idxs = [] all_fields = self.input_label_type.split('+') + self.output_label_type.split('+') for i in range(len(features)): features[i].data["labels"]["utterance"] = features[i].data["utterance"] all_fields_non_empty = True for field in all_fields: if not features[i].data["labels"][field] or not features[i].data["labels"][field].strip(): all_fields_non_empty = False if all_fields_non_empty: valid_idxs.append(i) return [features[i] for i in valid_idxs] def __len__(self): return len(self.features) def get_n_tokens_in_sentence(self, sentence): encodings_dict = self.tokenizer.tokenizer( sentence, truncation=True, max_length=self.cfg.max_seq_length, padding=False, return_tensors="pt" ) output = torch.squeeze(encodings_dict['input_ids']) return len(output) if len(output.size()) > 0 else 0 def default_encode(self, sentence): encodings_dict = self.tokenizer.tokenizer( sentence, truncation=True, max_length=self.cfg.max_seq_length, padding="max_length", return_tensors="pt" ) input_ids = torch.squeeze(encodings_dict['input_ids']) attn_masks = torch.squeeze(encodings_dict['attention_mask']) return encodings_dict, input_ids, attn_masks def format_prompt(self, ex): ''' Formats training prompt based on self.input_field_type Training example: e.g. response: <response> # input_label_type = response e.g. utterance: <utterance> # input_label_type = utterance e.g. passage: <passage> utterance: <utterance> # input_label_type = passage+utterance ''' ex["labels"]["utterance"] = ex["utterance"] parts = self.input_label_type.split('+') input_sentence = ' '.join([part + ': ' + ex["labels"][part] for part in parts]) return input_sentence def __getitem__(self, idx: int): ''' For each example, this function determines the format of input and output sequences based on user-specified conguration. This is controlled by model.dataset.input_field and model.dataset.output_field For instance: If model.dataset.input_field == response and model.dataset.output_field == fluent_response: Input = "response: <response>" and output = "response: <response> fluent_response: <fluent_response>" (with loss calculated from <fluent_response> only) If model.dataset.input_field == utterance and model.dataset.output_field == response: Input = "utterance: <utterance>" and output = "utterance: <utterance> response: <response>" (with loss calculated from <response> only) If model.dataset.input_field == passage+utterance and model.dataset.output_field == response: Input = "passage: <passage> utterance: <utterance>" and output="passage: <passage> utterance: <utterance> response: <response>" (with loss calculated from <response> only) ''' ex = self.features[idx].data input_sentence = self.format_prompt(ex) utterance_length = self.get_n_tokens_in_sentence(input_sentence) output_sentence = ex["labels"][self.output_label_type] base_template = input_sentence sentence_without_answer = base_template + ' ' + self.output_label_type + ':' sentence = sentence_without_answer + ' ' + output_sentence encodings_dict, input_ids, attn_masks = self.default_encode(sentence) labels = copy.copy(torch.squeeze(encodings_dict['input_ids'])) training_mask_end = self.get_n_tokens_in_sentence(sentence_without_answer) labels.data = torch.tensor( [-100 if i < training_mask_end else labels.data[i] for i in range(len(labels.data))] ) return (input_ids, attn_masks, labels, training_mask_end, utterance_length)
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/dialogue_gpt_generation_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.dialogue.dataset.dialogue_bert_dataset import DialogueBERTDataset from nemo.collections.nlp.data.dialogue.dataset.dialogue_gpt_classification_dataset import ( DialogueGPTClassificationDataset, ) from nemo.collections.nlp.data.dialogue.dataset.dialogue_sgd_bert_dataset import DialogueSGDBERTDataset from nemo.collections.nlp.data.dialogue.dataset.dialogue_zero_shot_intent_dataset import DialogueZeroShotIntentDataset
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Union import numpy as np from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.glue_benchmark.data_processors import InputExample from nemo.collections.nlp.data.glue_benchmark.glue_benchmark_dataset import GLUEDataset from nemo.core.neural_types import CategoricalValuesType, ChannelType, MaskType, NeuralType from nemo.utils import logging __all__ = ['DialogueZeroShotIntentDataset'] class DialogueZeroShotIntentDataset(GLUEDataset): """ Dataset for training a NLI model for zero shot intent recognition. Similar to GLUE/MNLI dataset, but allows the user to specify which columns in the data files contain the premise, hypothesis, and gold label. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'labels': NeuralType(tuple('B'), CategoricalValuesType()), } def __init__(self, dataset_split: str, dialogues_processor: object, tokenizer, cfg): """ Args: dataset_split: dataset split dialogues_processor: Data generator for dialogues tokenizer: tokenizer to split text into sub-word tokens cfg: config dict for dataset num_classes: number of classes in the data (should be either 2 or 3, corresponding to labels ['entailment', 'not_entailment'] or ["contradiction", "entailment", "neutral"]) """ self.cfg = cfg self.tokenizer = tokenizer if self.cfg.num_classes not in [2, 3]: raise ValueError("num_classes must be either 2 or 3!") self.label_list = ( ["contradiction", "entailment", "neutral"] if self.cfg.num_classes == 3 else ['not_entailment', 'entailment'] ) token_params = { 'bos_token': None, 'eos_token': tokenizer.eos_token, 'pad_token': tokenizer.pad_token, 'cls_token': tokenizer.cls_token, 'sep_token_extra': tokenizer.eos_token if hasattr(tokenizer, 'name') and 'roberta' in tokenizer.name.lower() else None, } self.raw_features = dialogues_processor.get_dialog_examples(dataset_split) self.examples = self._create_examples(self.raw_features, dataset_split) self.features = self.convert_examples_to_features( self.examples, [0, 1, 2, 3], self.cfg.max_seq_length, tokenizer, output_mode="classification", **token_params, ) def _create_examples(self, raw_features, dataset_split: str): """Creates examples for the training and dev sets.""" examples = [] for idx in range(len(raw_features)): ex = self.raw_features[idx].data user_utterance = ex["utterance"] intent = ex["labels"]["intent"] for candidate_idx, candidate_intent in enumerate(ex["possible_labels"]["intent"]): guid = "{}-{}-{}".format(dataset_split, idx, candidate_idx) text_a = user_utterance text_b = "{} {}".format(self.cfg.prompt_template, candidate_intent) label = 1 if candidate_intent == intent else 0 examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def convert_examples_to_features( self, examples: List[str], label_list: List[int], max_seq_length: int, tokenizer: TokenizerSpec, output_mode: str, bos_token: str = None, eos_token: str = '[SEP]', pad_token: str = '[PAD]', cls_token: str = '[CLS]', sep_token_extra: str = None, cls_token_at_end: bool = False, cls_token_segment_id: int = 0, pad_token_segment_id: int = 0, pad_on_left: bool = False, mask_padding_with_zero: bool = True, sequence_a_segment_id: int = 0, sequence_b_segment_id: int = 1, ): """ Loads a data file into a list of `InputBatch`s. The `cls_token_at_end` defines the location of the CLS token: * False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] * True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] The `cls_token_segment_id` defines the segment id associated to the CLS token (0 for BERT, 2 for XLNet) The convention in BERT is: a. For sequence pairs: * tokens: [CLS] is this jack ##ville ? [SEP] no it is not . [SEP] * type_ids: 0 0 0 0 0 0 0 1 1 1 1 1 1 b. For single sequences: * tokens: [CLS] the dog is hairy . [SEP] * type_ids: 0 0 0 0 0 0 0 Where "type_ids" are used to indicate whether this is the first sequence or the second sequence. The embedding vectors for `type=0` and `type=1` were learned during pre-training and are added to the wordpiece embedding vector (and position vector). This is not *strictly* necessarysince the [SEP] token unambiguously separates the sequences, but it makes it easier for the model to learn the concept of sequences. For classification tasks, the first vector (corresponding to [CLS]) is used as as the "sentence vector". Note that this only makes sense because the entire model is fine-tuned. The convention for NMT is: a. For sequence pairs: * tokens:<BOS> is this jack ##ville ? <EOS> <BOS> no it is not . <EOS> * type_ids:0 0 0 0 0 0 0 1 1 1 1 1 1 1 b. For single sequences: * tokens: <BOS> the dog is hairy . <EOS> * type_ids: 0 0 0 0 0 0 0 """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in enumerate(examples): if example.label == "-": # skip examples without a consensus label (e.g. in SNLI data set) continue if ex_index % 10000 == 0: logging.info("Writing example %d of %d" % (ex_index, len(examples))) if hasattr(tokenizer, 'text_to_tokens'): tokens_a = tokenizer.text_to_tokens(example.text_a) else: tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: if hasattr(tokenizer, 'text_to_tokens'): tokens_b = tokenizer.text_to_tokens(example.text_b) else: tokens_b = tokenizer.tokenize(example.text_b) special_tokens_count = 2 if eos_token else 0 special_tokens_count += 1 if sep_token_extra else 0 special_tokens_count += 2 if bos_token else 0 special_tokens_count += 1 if cls_token else 0 self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count) else: special_tokens_count = 1 if eos_token else 0 special_tokens_count += 1 if sep_token_extra else 0 special_tokens_count += 1 if bos_token else 0 if len(tokens_a) > max_seq_length - special_tokens_count: tokens_a = tokens_a[: max_seq_length - special_tokens_count] # Add special tokens to sequence_a tokens = tokens_a if bos_token: tokens = [bos_token] + tokens if eos_token: tokens += [eos_token] segment_ids = [sequence_a_segment_id] * len(tokens) # Add sequence separator between sequences if tokens_b and sep_token_extra: tokens += [sep_token_extra] segment_ids += [sequence_a_segment_id] # Add special tokens to sequence_b if tokens_b: if bos_token: tokens += [bos_token] segment_ids += [sequence_b_segment_id] tokens += tokens_b segment_ids += [sequence_b_segment_id] * (len(tokens_b)) if eos_token: tokens += [eos_token] segment_ids += [sequence_b_segment_id] # Add classification token - for BERT models if cls_token: if cls_token_at_end: tokens += [cls_token] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens segment_ids = [cls_token_segment_id] + segment_ids if hasattr(tokenizer, 'tokens_to_ids'): input_ids = tokenizer.tokens_to_ids(tokens) else: input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if hasattr(tokenizer, 'tokens_to_ids'): pad_token_id = tokenizer.tokens_to_ids([pad_token])[0] else: pad_token_id = tokenizer.convert_tokens_to_ids([pad_token])[0] if pad_on_left: input_ids = ([pad_token_id] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids else: input_ids = input_ids + ([pad_token_id] * padding_length) input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) if len(input_ids) != max_seq_length: raise ValueError("input_ids must be of length max_seq_length") if len(input_mask) != max_seq_length: raise ValueError("input_mask must be of length max_seq_length") if len(segment_ids) != max_seq_length: raise ValueError("segment_ids must be of length max_seq_length") if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = np.float32(example.label) else: raise KeyError(output_mode) if ex_index < 5: logging.info("*** Example ***") logging.info("guid: %s" % (example.guid)) logging.info("tokens: %s" % " ".join(list(map(str, tokens)))) logging.info("input_ids: %s" % " ".join(list(map(str, input_ids)))) logging.info("input_mask: %s" % " ".join(list(map(str, input_mask)))) logging.info("segment_ids: %s" % " ".join(list(map(str, segment_ids)))) logging.info("label: %s (id = %d)" % (example.label, label_id)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id) ) return features class InputFeatures(object): """A single set of features of data. Args: input_ids: input/token ids input_mask: masks out subword tokens segment_ids: distinguish one sentence from the other one (if present) label_ids: label for the current example """ def __init__( self, input_ids: List[int], input_mask: List[int], segment_ids: List[int], label_id: Union[float, int] ): """Initialized InputFeatures.""" self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/dialogue_zero_shot_intent_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.core.classes import Dataset __all__ = ['DialogueDataset'] class DialogueDataset(Dataset): ''' Base class for Dialogue Datasets 1. Performs Model-dependent (but Data-independent) operations (tokenization etc) 2. This can allow the same model preprocessing for multiple datasources 3. Users can configurate which labels to use for modelling (e.g. intent classification, slot filling or sequence generation etc) ''' def __init__(self, dataset_split: str, dialogues_processor: object, **kwargs): raise NotImplementedError def __len__(self): raise NotImplementedError def __getitem__(self, idx: int): raise NotImplementedError
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/dialogue_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional import numpy as np from nemo.collections.nlp.data.data_utils import get_stats from nemo.collections.nlp.data.dialogue.dataset.dialogue_dataset import DialogueDataset from nemo.core.neural_types import ChannelType, LabelsType, MaskType, NeuralType from nemo.utils import logging __all__ = ['DialogueBERTDataset', 'DialogueIntentSlotInferenceDataset'] class DialogueBERTDataset(DialogueDataset): """ Creates a dataset to use for the task of joint intent and slot classification with pretrained model. For a dataset to use during inference without labels, see IntentSlotDataset. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'intent_labels': NeuralType(('B'), LabelsType()), 'slot_labels': NeuralType(('B', 'T'), LabelsType()), } def __init__(self, dataset_split: str, dialogues_processor: object, tokenizer, cfg): """ Args: dataset_split: dataset split dialogues_processor: Data generator for dialogues tokenizer: tokenizer cfg: config container for dataset """ self.cfg = cfg self.all_possible_labels = dialogues_processor.intents self.label_to_label_id = {self.all_possible_labels[i]: i for i in range(len(self.all_possible_labels))} self.all_possible_slots = dialogues_processor.slots self.slot_name_to_slot_id = {self.all_possible_slots[i]: i for i in range(len(self.all_possible_slots))} self.empty_slot_name = 'O' self.features = dialogues_processor.get_dialog_examples(dataset_split) self.features = self.features if self.cfg.num_samples == -1 else self.features[: self.cfg.num_samples] queries = [feature.data["utterance"] for feature in self.features] if self.cfg.do_lowercase: queries = [query.lower() for query in queries] intents = [self.label_to_label_id[feature.data["labels"]["intent"]] for feature in self.features] word_level_slots = [self.convert_slot_position_to_slot_ids(feature.data) for feature in self.features] features = DialogueBERTDataset.get_features( queries, self.cfg.max_seq_length, tokenizer, pad_label=self.cfg.pad_label, word_level_slots=word_level_slots, ignore_extra_tokens=self.cfg.ignore_extra_tokens, ignore_start_end=self.cfg.ignore_start_end, ) self.all_input_ids = features[0] self.all_segment_ids = features[1] self.all_input_mask = features[2] self.all_loss_mask = features[3] self.all_subtokens_mask = features[4] self.all_slots = features[5] self.all_intents = intents def convert_slot_position_to_slot_ids(self, feature): slot_ids = [self.slot_name_to_slot_id[self.empty_slot_name] for i in range(len(feature["utterance"].split()))] slot_name_to_positions = feature["label_positions"]["slots"] for slot_name in slot_name_to_positions: slot_id = self.slot_name_to_slot_id[slot_name] start = slot_name_to_positions[slot_name]["start"] exclusive_end = slot_name_to_positions[slot_name]["exclusive_end"] for to_replace_position in range(start, min(exclusive_end, len(slot_ids))): slot_ids[to_replace_position] = slot_id return slot_ids def __len__(self): return len(self.all_input_ids) def __getitem__(self, idx): return ( np.array(self.all_input_ids[idx]), np.array(self.all_segment_ids[idx]), np.array(self.all_input_mask[idx], dtype=np.long), np.array(self.all_loss_mask[idx]), np.array(self.all_subtokens_mask[idx]), self.all_intents[idx], np.array(self.all_slots[idx]), ) @staticmethod def truncate_and_pad( max_seq_length, ignore_start_end, with_label, pad_label, tokenizer, all_slots, all_subtokens, all_input_mask, all_loss_mask, all_subtokens_mask, all_input_ids, all_segment_ids, ): too_long_count = 0 for i, subtokens in enumerate(all_subtokens): if len(subtokens) > max_seq_length: subtokens = [tokenizer.cls_token] + subtokens[-max_seq_length + 1 :] all_input_mask[i] = [1] + all_input_mask[i][-max_seq_length + 1 :] all_loss_mask[i] = [1 - ignore_start_end] + all_loss_mask[i][-max_seq_length + 1 :] all_subtokens_mask[i] = [0] + all_subtokens_mask[i][-max_seq_length + 1 :] if with_label: all_slots[i] = [pad_label] + all_slots[i][-max_seq_length + 1 :] too_long_count += 1 all_input_ids.append([tokenizer.tokens_to_ids(t) for t in subtokens]) if len(subtokens) < max_seq_length: extra = max_seq_length - len(subtokens) all_input_ids[i] = all_input_ids[i] + [0] * extra all_loss_mask[i] = all_loss_mask[i] + [0] * extra all_subtokens_mask[i] = all_subtokens_mask[i] + [0] * extra all_input_mask[i] = all_input_mask[i] + [0] * extra if with_label: all_slots[i] = all_slots[i] + [pad_label] * extra all_segment_ids.append([0] * max_seq_length) logging.info(f'{too_long_count} are longer than {max_seq_length}') return ( all_slots, all_subtokens, all_input_mask, all_loss_mask, all_subtokens_mask, all_input_ids, all_segment_ids, ) @staticmethod def get_features( queries, max_seq_length, tokenizer, pad_label=128, word_level_slots=None, ignore_extra_tokens=False, ignore_start_end=False, ): """ Convert queries (utterance, intent label and slot labels) to BERT input format """ all_subtokens = [] all_loss_mask = [] all_subtokens_mask = [] all_segment_ids = [] all_input_ids = [] all_input_mask = [] sent_lengths = [] all_slots = [] with_label = word_level_slots is not None for i, query in enumerate(queries): words = query.strip().split() subtokens = [tokenizer.cls_token] loss_mask = [1 - ignore_start_end] subtokens_mask = [0] if with_label: slots = [pad_label] for j, word in enumerate(words): word_tokens = tokenizer.text_to_tokens(word) # to handle emojis that could be neglected during tokenization if len(word.strip()) > 0 and len(word_tokens) == 0: word_tokens = [tokenizer.ids_to_tokens(tokenizer.unk_id)] subtokens.extend(word_tokens) # mask all sub-word tokens except the first token in a word # use the label for the first sub-word token as the label for the entire word to eliminate need for disambiguation loss_mask.append(1) loss_mask.extend([int(not ignore_extra_tokens)] * (len(word_tokens) - 1)) subtokens_mask.append(1) subtokens_mask.extend([0] * (len(word_tokens) - 1)) if with_label: slots.extend([word_level_slots[i][j]] * len(word_tokens)) subtokens.append(tokenizer.sep_token) loss_mask.append(1 - ignore_start_end) subtokens_mask.append(0) sent_lengths.append(len(subtokens)) all_subtokens.append(subtokens) all_loss_mask.append(loss_mask) all_subtokens_mask.append(subtokens_mask) all_input_mask.append([1] * len(subtokens)) if with_label: slots.append(pad_label) all_slots.append(slots) max_seq_length_data = max(sent_lengths) max_seq_length = min(max_seq_length, max_seq_length_data) if max_seq_length > 0 else max_seq_length_data logging.info(f'Setting max length to: {max_seq_length}') get_stats(sent_lengths) # truncate and pad samples ( all_slots, all_subtokens, all_input_mask, all_loss_mask, all_subtokens_mask, all_input_ids, all_segment_ids, ) = DialogueBERTDataset.truncate_and_pad( max_seq_length, ignore_start_end, with_label, pad_label, tokenizer, all_slots, all_subtokens, all_input_mask, all_loss_mask, all_subtokens_mask, all_input_ids, all_segment_ids, ) # log examples for debugging logging.debug("*** Some Examples of Processed Data ***") for i in range(min(len(all_input_ids), 5)): logging.debug("i: %s" % (i)) logging.debug("subtokens: %s" % " ".join(list(map(str, all_subtokens[i])))) logging.debug("loss_mask: %s" % " ".join(list(map(str, all_loss_mask[i])))) logging.debug("input_mask: %s" % " ".join(list(map(str, all_input_mask[i])))) logging.debug("subtokens_mask: %s" % " ".join(list(map(str, all_subtokens_mask[i])))) if with_label: logging.debug("slots_label: %s" % " ".join(list(map(str, all_slots[i])))) return (all_input_ids, all_segment_ids, all_input_mask, all_loss_mask, all_subtokens_mask, all_slots) class DialogueIntentSlotInferenceDataset(DialogueBERTDataset): """ Creates dataset to use for the task of joint intent and slot classification with pretrained model. This is to be used during inference only. It uses list of queries as the input. Args: queries (list): list of queries to run inference on max_seq_length (int): max sequence length minus 2 for [CLS] and [SEP] tokenizer (Tokenizer): such as NemoBertTokenizer pad_label (int): pad value use for slot labels. by default, it's the neutral label. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """ Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), } def __init__(self, queries, max_seq_length, tokenizer, do_lower_case): if do_lower_case: queries = [query.lower() for query in queries] features = DialogueBERTDataset.get_features(queries, max_seq_length, tokenizer) self.all_input_ids = features[0] self.all_segment_ids = features[1] self.all_input_mask = features[2] self.all_loss_mask = features[3] self.all_subtokens_mask = features[4] def __len__(self): return len(self.all_input_ids) def __getitem__(self, idx): return ( np.array(self.all_input_ids[idx]), np.array(self.all_segment_ids[idx]), np.array(self.all_input_mask[idx], dtype=np.long), np.array(self.all_loss_mask[idx]), np.array(self.all_subtokens_mask[idx]), )
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/dialogue_bert_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.data.dialogue.dataset.dialogue_dataset import DialogueDataset class DialogueS2SGenerationDataset(DialogueDataset): def __init__(self, dataset_split: str, dialogues_processor: object, tokenizer, cfg): """ Constructor Designed for free form generation tasks such as Dialogue Response Generation Args: dataset_split: dataset split dialogues_processor: dialogues processor tokenizer: tokenizer cfg: cfg container for dataset """ self.cfg = cfg self.input_label_type = self.cfg.input_field self.output_label_type = self.cfg.output_field self.tokenizer = tokenizer if not isinstance(dataset_split, str): dataset_split = dataset_split[0] self.features = dialogues_processor.get_dialog_examples(dataset_split) self.features = self.remove_invalid_samples(self.features) if self.cfg.debug_mode: self.features = self.features[:16] @staticmethod def format_actions(prompt_template, actions): """ Formats actions based on prompt_template Args: prompt_template: determines whether acts, slot-names, slot-values are necessary in formatted actions actions: list of actions, each a dict containing keys 'act', 'slot' and 'values' with their corresponding values as their attribute-values Returns: formatted_actions: string representations of actions, formatted based on the fields needed. """ actions_str = [] for action in actions: act = action['act'].lower() slot = action['slot'] value = action['values'][0] if action['values'] else '' if prompt_template == 'values': action_str = value elif prompt_template == 'slots_values': if value: action_str = '{} ({})'.format(slot, value) else: action_str = slot elif prompt_template == 'acts_slots_values': if value: action_str = '{} {} ({})'.format(act, slot, value) elif slot: action_str = '{} {}'.format(act, slot) else: action_str = act else: raise ValueError( "Please set model.dataset.prompt_template to acts_slots_values, slots_values or values" ) actions_str.append(action_str) return ' '.join(actions_str) def remove_invalid_samples(self, features): valid_idxs = [] for i in range(len(features)): for field in ['utterance', 'system_utterance', 'system_actions']: if field in features[i].data: features[i].data["labels"][field] = features[i].data[field] all_fields = self.input_label_type.split('+') + self.output_label_type.split('+') all_fields_non_empty = True for field in all_fields: if not features[i].data["labels"][field]: all_fields_non_empty = False if all_fields_non_empty: valid_idxs.append(i) return [features[i] for i in valid_idxs] def __len__(self): return len(self.features) def get_n_tokens_in_sentence(self, sentence): encodings_dict = self.tokenizer.tokenizer( sentence, truncation=True, max_length=self.cfg.max_seq_length, padding=False, return_tensors="pt" ) output = torch.squeeze(encodings_dict['input_ids']) return len(output) if len(output.size()) > 0 else 0 def default_encode(self, sentence): encodings_dict = self.tokenizer.tokenizer( sentence, truncation=True, max_length=self.cfg.max_seq_length, padding="max_length", return_tensors="pt" ) input_ids = torch.squeeze(encodings_dict['input_ids']) attn_masks = torch.squeeze(encodings_dict['attention_mask']) return encodings_dict, input_ids, attn_masks def format_prompt(self, ex): ''' Formats training prompt based on self.input_field_type Training example: e.g. response: <response> # input_label_type = response e.g. utterance: <utterance> # input_label_type = utterance e.g. passage: <passage> utterance: <utterance> # input_label_type = passage+utterance ''' parts = self.input_label_type.split('+') input_sentence = ' '.join([part + ': ' + ex["labels"][part] for part in parts]) return input_sentence def __getitem__(self, idx: int): ''' State how the input and output samples look like This template can be changed Training example: e.g. INPUT - "response: <response>" OUTPUT - "<fluent_response>" # input_label_type = response, output_label_type = fluent_response e.g. INPUT - "utterance: <utterance>" OUTPUT - "<response>" # input_label_type = utterance, output_label_type = response e.g. INPUT - "passage: <passage> utterance: <utterance>" OUTPUT - "<response>" # input_label_type = passage+utterance, output_label_type = response ''' ex = self.features[idx].data for field in ['utterance', 'system_utterance']: if field in ex: ex["labels"][field] = ex[field] if 'system_actions' in ex: ex["labels"]['system_actions'] = DialogueS2SGenerationDataset.format_actions( self.cfg.prompt_template, ex['system_actions'] ) input_sentence = self.format_prompt(ex) output_sentence = ex["labels"][self.output_label_type] _, input_ids, attn_masks = self.default_encode(input_sentence) _, labels, _ = self.default_encode(output_sentence) labels[labels == self.tokenizer.tokenizer.pad_token_id] = -100 return input_ids, attn_masks, labels
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/dialogue_s2s_generation_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file contains code artifacts adapted from the original implementation: https://github.com/google-research/google-research/blob/master/schema_guided_dst """ import os import re from typing import List import numpy as np from nemo.collections.nlp.data.dialogue.dataset.dialogue_dataset import DialogueDataset from nemo.collections.nlp.data.dialogue.input_example.sgd_input_example import SGDInputExample __all__ = ['DialogueSGDBERTDataset'] class DialogueSGDBERTDataset(DialogueDataset): ''' Dataset Class 1. Performs Model-dependent (but Data-independent) operations (tokenization etc) 2. This can allow the same model preprocessing for multiple datasources 3. Users can configurate which labels to use for modelling (e.g. intent classification, slot filling or both together etc) ''' def __init__(self, dataset_split: str, dialogues_processor: object, tokenizer, schemas, schema_config, cfg): """ Constructor Args: dataset_split: dataset split dialogues_processor: Data generator for SGD dialogues tokenizer: tokenizer schemas: SGD schema for domain, intent and slots schema_config: config dict for schemas cfg: cfg container for dataset """ self.dataset_split = dataset_split self.tokenizer = tokenizer self.schemas = schemas self.schema_config = schema_config self.dialogues_processor = dialogues_processor self.cfg = cfg self.subsample = self.dialogues_processor._subsample dial_file = f"{dialogues_processor._task_name}_{dataset_split}_examples_bert.processed" self.dial_file = os.path.join(self.cfg.data_dir, dial_file) if self.cfg.use_cache and os.path.exists(self.dial_file): self.load_features() else: self.process_features() self.save_features() def load_features(self): with open(self.dial_file, "rb") as f: self.features = np.load(f, allow_pickle=True) def process_features(self): self.features = [] self.raw_features = self.dialogues_processor.get_dialog_examples(self.dataset_split) for idx in range(len(self.raw_features)): self.bert_process_one_sample(idx) def save_features(self): with open(self.dial_file, "wb") as f: np.save(f, self.features) def _tokenize(self, utterance: str): """ Tokenize the utterance Args: utterance: A string containing the utterance to be tokenized. Returns: bert_tokens: A list of tokens obtained by word-piece tokenization of the utterance. alignments: A dict mapping indices of characters corresponding to start and end positions of words (not subwords) to corresponding indices in bert_tokens list. inverse_alignments: A list of size equal to bert_tokens. Each element is a tuple containing the index of the starting and inclusive ending character of the word corresponding to the subword. This list is used during inference to map word-piece indices to spans in the original utterance. """ # utterance = tokenization.convert_to_unicode(utterance) # After _naive_tokenize, spaces and punctuation marks are all retained, i.e. # direct concatenation of all the tokens in the sequence will be the # original string. tokens = DialogueSGDBERTDataset._naive_tokenize(utterance) # ['I', ' ', 'am', ' ', 'feeling', ' ', 'hungry', ' ', 'so', ' ', 'I', ' ', 'would', ' ', 'like', ' ', 'to', ' ', 'find', ' ', 'a', ' ', 'place', ' ', 'to', ' ', 'eat', '.'] # Filter out empty tokens and obtain aligned character index for each token. alignments = {} char_index = 0 bert_tokens = ( [] ) # ['I', 'am', 'feeling', 'hungry', 'so', 'I', 'would', 'like', 'to', 'find', 'a', 'place', 'to', 'eat', '.'] # These lists store inverse alignments to be used during inference. bert_tokens_start_chars = [] bert_tokens_end_chars = [] for token in tokens: if token.strip(): subwords = self.tokenizer.text_to_tokens(token) # Store the alignment for the index of starting character and the # inclusive ending character of the token. alignments[char_index] = len(bert_tokens) bert_tokens_start_chars.extend([char_index] * len(subwords)) bert_tokens.extend(subwords) # The inclusive ending character index corresponding to the word. inclusive_char_end = char_index + len(token) - 1 alignments[inclusive_char_end] = len(bert_tokens) - 1 bert_tokens_end_chars.extend([inclusive_char_end] * len(subwords)) char_index += len(token) inverse_alignments = list(zip(bert_tokens_start_chars, bert_tokens_end_chars)) return bert_tokens, alignments, inverse_alignments @classmethod def _naive_tokenize(cls, s: str): """ Tokenizes a string, separating words, spaces and punctuations. Args: s: a string Returns: seq_tok: list of words, spaces and punctuations from the string """ # Spaces and punctuation marks are all retained, i.e. direct concatenation # of all the tokens in the sequence will be the original string. seq_tok = [tok for tok in re.split(r"([^a-zA-Z0-9])", s) if tok] return seq_tok def __len__(self): return len(self.features) def __getitem__(self, idx: int): ex = self.features[idx] return ( np.array(ex.example_id_num), np.array(ex.example_id_num[-1]), # service_id np.array(ex.utterance_ids), np.array(ex.utterance_segment), np.array(ex.utterance_mask, dtype=np.long), np.array(ex.intent_status, dtype=np.float32), np.array(ex.requested_slot_status, dtype=np.float32), np.array(ex.categorical_slot_status), np.array(ex.categorical_slot_value_status, dtype=np.float32), np.array(ex.noncategorical_slot_status), np.array(ex.noncategorical_slot_value_start), np.array(ex.noncategorical_slot_value_end), np.array(ex.start_char_idx), # noncat_alignment_start np.array(ex.end_char_idx), # noncat_alignment_end np.array(ex.task_mask), # noncat_alignment_end ) def bert_process_one_sample(self, idx): """ Creates an example for each frame in the user turn. Args: turn_id: turn number system_utterance: last system utterance user_utterance: lst user utterance system_frames: all system utterances and slot - slot value pairs user_frames: all user utterances and slot - slot value pairs prev_states: slot - slot value pairs from the previous turns schemas: schema for all services of all datasets subsample: whether to balance postive and negative samples in the dataset Returns: examples: a list of `InputExample`s. prev_states: updated dialogue state e.g. {'Restaurants_1': {'city': ['San Jose'], 'cuisine': ['American']}} """ ex = self.raw_features[idx].data example_id_num = ex["example_id_num"] example_id = ex["example_id"] user_utterance = ex["utterance"] system_utterance = ex["system_utterance"] service = ex["labels"]["service"] schemas = self.schemas state_update = ex["labels"]["slots"] system_slots = ex["system_slots"] user_tokens, user_alignments, user_inv_alignments = self._tokenize(user_utterance) system_tokens, system_alignments, system_inv_alignments = self._tokenize(system_utterance) system_user_utterance = system_utterance + ' ' + user_utterance system_user_tokens, system_user_alignments, system_user_inv_alignments = self._tokenize(system_user_utterance) examples = [] base_example = SGDInputExample(schema_config=self.schema_config, tokenizer=self.tokenizer) base_example.service_schema = self.schemas.get_service_schema(service) base_example.service_id = example_id_num[-1] base_example.example_id = example_id base_example.example_id_num = example_id_num for model_task in range(self.schema_config["NUM_TASKS"]): if model_task == 0: for intent_id, intent in enumerate(schemas.get_service_schema(service).intents): task_example = base_example.make_copy() task_example.task_mask[model_task] = 1 task_example.intent_id = intent_id task_example.example_id += f"-{model_task}-{intent_id}-0" task_example.example_id_num.extend([model_task, intent_id, 0]) intent_description = ( intent + " " + self.schemas.get_service_schema(service).intent_descriptions[intent] ) intent_tokens, intent_alignments, intent_inv_alignments = self._tokenize(intent_description) task_example.add_utterance_features( intent_tokens, intent_inv_alignments, system_user_tokens, system_user_inv_alignments, intent_description, system_user_utterance, ) task_example.add_intents(ex) examples.append(task_example) if model_task == 1: for slot_id, slot in enumerate(schemas.get_service_schema(service).slots): task_example = base_example.make_copy() task_example.task_mask[model_task] = 1 task_example.requested_slot_id = slot_id task_example.example_id += f"-{model_task}-{slot_id}-0" task_example.example_id_num.extend([model_task, slot_id, 0]) slot_description = slot + " " + self.schemas.get_service_schema(service).slot_descriptions[slot] slot_tokens, slot_alignments, slot_inv_alignments = self._tokenize(slot_description) task_example.add_utterance_features( slot_tokens, slot_inv_alignments, user_tokens, user_inv_alignments, slot_description, user_utterance, ) task_example.add_requested_slots(ex) examples.append(task_example) if model_task == 2: off_slots = [] on_slots = [] for slot_id, slot in enumerate(schemas.get_service_schema(service).categorical_slots): task_example = base_example.make_copy() task_example.task_mask[model_task] = 1 # assert task_example.task_mask == [0, 0, 1, 0, 0, 0] task_example.categorical_slot_id = slot_id task_example.example_id += f"-{model_task}-{slot_id}-0" task_example.example_id_num.extend([model_task, slot_id, 0]) slot_description = slot + " " + schemas.get_service_schema(service).slot_descriptions[slot] slot_tokens, slot_alignments, slot_inv_alignments = self._tokenize(slot_description) task_example.add_utterance_features( slot_tokens, slot_inv_alignments, system_user_tokens, system_user_inv_alignments, slot_description, system_user_utterance, ) task_example.add_categorical_slots(state_update) if task_example.categorical_slot_status == 0: off_slots.append(task_example) else: on_slots.append(task_example) examples.append(task_example) old_example = task_example for value_id, value in enumerate( schemas.get_service_schema(service).get_categorical_slot_values(slot) ): if self.dataset_split != 'train' or task_example.categorical_slot_status == 1: task_example = old_example.make_copy_of_categorical_features() task_example.task_mask[3] = 1 # assert task_example.task_mask == [0, 0, 0, 1, 0, 0] task_example.categorical_slot_id = slot_id task_example.categorical_slot_value_id = value_id task_example.example_id = base_example.example_id + f"-3-{slot_id}-{value_id}" task_example.example_id_num = base_example.example_id_num + [3, slot_id, value_id] slot_description = slot + " " + value # add slot description slot_tokens, slot_alignments, slot_inv_alignments = self._tokenize(slot_description) task_example.add_utterance_features( slot_tokens, slot_inv_alignments, system_user_tokens, system_user_inv_alignments, slot_description, system_user_utterance, ) task_example.add_categorical_slots(state_update) assert task_example.categorical_slot_status == old_example.categorical_slot_status examples.append(task_example) if self.dataset_split == 'train' and self.subsample: num_on_slots = len(on_slots) examples.extend( np.random.choice(off_slots, replace=False, size=min(max(num_on_slots, 1), len(off_slots))) ) else: examples.extend(off_slots) if model_task == 4: # noncat slot status off_slots = [] on_slots = [] for slot_id, slot in enumerate(schemas.get_service_schema(service).non_categorical_slots): task_example = base_example.make_copy() task_example.task_mask[model_task] = 1 # assert task_example.task_mask == [0, 0, 0, 0, 1, 0] task_example.noncategorical_slot_id = slot_id task_example.example_id += f"-{model_task}-{slot_id}-0" task_example.example_id_num.extend([model_task, slot_id, 0]) slot_description = slot + " " + schemas.get_service_schema(service).slot_descriptions[slot] slot_tokens, slot_alignments, slot_inv_alignments = self._tokenize(slot_description) task_example.add_utterance_features( slot_tokens, slot_inv_alignments, system_user_tokens, system_user_inv_alignments, slot_description, system_user_utterance, ) user_span_boundaries = self._find_subword_indices( state_update, user_utterance, ex["label_positions"]["slots"], user_alignments, user_tokens, 2 + len(slot_tokens) + len(system_tokens), ) if system_slots is not None: system_span_boundaries = self._find_subword_indices( state_update, system_utterance, system_slots, system_alignments, system_tokens, 2 + len(slot_tokens), ) else: system_span_boundaries = {} task_example.add_noncategorical_slots(state_update, user_span_boundaries, system_span_boundaries) if task_example.noncategorical_slot_status == 0: off_slots.append(task_example) else: on_slots.append(task_example) examples.append(task_example) if self.dataset_split != 'train' or task_example.noncategorical_slot_status == 1: task_example = task_example.make_copy_of_non_categorical_features() task_example.task_mask[5] = 1 # assert task_example.task_mask == [0, 0, 0, 0, 0, 1] task_example.example_id = base_example.example_id + f"-5-{slot_id}-0" task_example.example_id_num = base_example.example_id_num + [5, slot_id, 0] examples.append(task_example) if self.dataset_split == 'train' and self.subsample: num_on_slots = len(on_slots) examples.extend( np.random.choice(off_slots, replace=False, size=min(max(num_on_slots, 1), len(off_slots))) ) else: examples.extend(off_slots) for example in examples: self.features.append(example) def _find_subword_indices( self, slot_values: dict, utterance: str, char_slot_spans: dict, alignments: List[int], subwords: List[str], bias: int, ) -> dict: """ Find indices for subwords corresponding to slot values. Args: slot_values: slot - slot value pairs utterance: utterance char_slot_spans: char - slot spans alignments: alignments subwords: subtokens mapping bias: offset Returns: span_boundaries: span boundaries """ span_boundaries = {} for slot, values in slot_values.items(): # Get all values present in the utterance for the specified slot. value_char_spans = {} for key, slot_span in char_slot_spans.items(): # print(key, slot, slot_span, char_slot_spans) if slot_span["slot"] == slot: value = utterance[slot_span["start"] : slot_span["exclusive_end"]] start_tok_idx = alignments[slot_span["start"]] end_tok_idx = alignments[slot_span["exclusive_end"] - 1] if 0 <= start_tok_idx < len(subwords): end_tok_idx = min(end_tok_idx, len(subwords) - 1) value_char_spans[value] = (start_tok_idx + bias, end_tok_idx + bias) for v in values: if v in value_char_spans: span_boundaries[slot] = value_char_spans[v] break return span_boundaries
NeMo-main
nemo/collections/nlp/data/dialogue/dataset/dialogue_sgd_bert_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample class DialogueDesignInputExample(DialogueInputExample): """ Template for DialogueDesignInputExample Meant as a descriptor rather than to be instantiated Please instantiate using the base class 'DialogueInputExample' { "utterance": <utterance>, "system_utterance": <system_utterance>, "labels": { "service": <service>, "intent": <intent_description>, "slots": { <slot-name1>: '', <slot-name2>: '', }, # dataset does not contain ground truth slot values }, "possible_labels": { 'intent': [<intent1>, <intent2>, ...], "service": [<service1>, <service2>, ...], "slots": { "<slot-name1>": [<slot-value1>, <slot-value2>, ...], "<slot-name2>": [<slot-value1>, <slot-value2>, ...], } }, "description": { "service": <service>, "intent": <intent_description>, "slots": { "<slot-name1>": "<slot-question1>", "<slot-name2>": "<slot-question2>", } }, } """
NeMo-main
nemo/collections/nlp/data/dialogue/input_example/design_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample class DialogueAssistantInputExample(DialogueInputExample): """ Template for DialogueAssistantInputExample Meant as a descriptor rather than to be instantiated Please instantiate using the base class 'DialogueInputExample' { "utterance": <utterance>, "labels": { "service": <service>, "intent": <intent>, "slots": { "<slot-name1>": [<slot-value1>, <slot-value2>], "<slot-name2>": [<slot-value2>], } }, "label_positions":{ "slots": { "<slot-name1>": { # note for the Assistant dataset, start and end are word positions rather than char position # these are whitespace-delimited word positions rather than tokenization-specific sub-word tokens. "exclusive_end": 3, "slot": "restaurant_name", "start": 1 }, } }, "possible_labels": { "service": [<service1>, <service2>, ...], "intent": [<intent1>, <intent2>, ...], "slots": { # all slots for categorical variables # empty list for extractive slots # Assistant only support extractive slots "<slot-name1>": [], "<slot-name2>": [], } } } """
NeMo-main
nemo/collections/nlp/data/dialogue/input_example/assistant_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample class DialogueMSMarcoInputExample(DialogueInputExample): """ Template for DialogueMSMarcoInputExample Meant as a descriptor rather than to be instantiated Please instantiate using the base class 'DialogueInputExample' { "utterance": <utterance>, "labels": { "service": <service>, # this is the domain "example_id": <example_id>, "response": <response>, "fluent_response": <fluent_response>, # written version of the response that is more fluent "passage": <passage>, # passage which supports generating the response (answer) to the utterance (question) }, "possible_labels": { "service": [<service1>, <service2>, ...], "passage": [<passage1>, <passage2>, ...], } } """
NeMo-main
nemo/collections/nlp/data/dialogue/input_example/ms_marco_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.dialogue.input_example.assistant_input_example import DialogueAssistantInputExample from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample from nemo.collections.nlp.data.dialogue.input_example.sgd_input_example import DialogueSGDInputExample, SGDInputExample
NeMo-main
nemo/collections/nlp/data/dialogue/input_example/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['DialogueInputExample'] class DialogueInputExample(object): """ Generic Dialogue Input Example Uses data: dict as a flexible interface to support various input types. This ranges from classification labels, to complex nested labels such as those in SGD { "utterance": <utterance>, "labels": { "intent": <intent>, "slots": { ... }, } } """ def __init__(self, data: dict): self.data = data def __repr__(self): return self.data def __str__(self): return self.data
NeMo-main
nemo/collections/nlp/data/dialogue/input_example/input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample class MellonQAInputExample(DialogueInputExample): """ Template for MellonQAInputExample Meant as a descriptor rather than to be instantiated Please instantiate using the base class 'DialogueInputExample' { "utterance": <utterance>, "labels": { "example_id": <example_id>, "response": <response>, "fluent_response": <fluent_response>, # written version of the response that is more fluent "passage": <passage>, # passage which supports generating the response (answer) to the utterance (question) } } """
NeMo-main
nemo/collections/nlp/data/dialogue/input_example/mellon_qa_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file contains code artifacts adapted from the original implementation: https://github.com/google-research/google-research/blob/master/schema_guided_dst/baseline/data_utils.py """ from typing import List from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample from nemo.utils import logging __all__ = [ 'SGDInputExample', 'STR_DONTCARE', 'STATUS_OFF', 'STATUS_ACTIVE', 'STATUS_DONTCARE', ] class DialogueSGDInputExample(DialogueInputExample): """ Template for DialogueSGDInputExample Meant as a descriptor rather than to be instantiated Please instantiate using the base class 'DialogueInputExample' { "example_id": <example_id>, "example_id_num": <example_id_num>, "utterance": <utterance>, "system_utterance": <system_utterance>, "system_slots": None or { "<slot-name1>": { "exclusive_end": 46, "slot": "restaurant_name", "start": 34 }, "system_actions": None or [{ "act": "INFORM", "canonical_values": [ "2019-03-02" ], "slot": "date", "values": [ "March 2nd" ] }, ...] "labels": { "service": <service>, "intent": <intent>, "slots": { #only non-empty slots #most slot values are list of length 1 #but there are some of length 2 as both are accepted #e.g. 1930 and 7:30 pm "<slot-name1>": [<slot-value1>, <slot-value2>], "<slot-name2>": [<slot-value2>], } }, "label_positions":{ "slots": { "<slot-name1>": { "exclusive_end": 46, "slot": "restaurant_name", "start": 34 }, } }, "possible_labels": { "service": [<service1>, <service2>, ...], "intent": [<intent1>, <intent2>, ...], "slots": { #all slots including empty "<slot-name1>": [<slot-value1>, <slot-value2>, ...], "<slot-name2>": [<slot-value1>, <slot-value2>, ...], } }, "description": { "service": <service description>, "intent": <intent description>, "slots": { #only non-empty slots "<slot-name1>": <slot-name1 description>, "<slot-name2>": <slot-name2 description>, } } } """ STR_DONTCARE = "dontcare" # These are used to represent the status of slots (off, active, dontcare) and # intents (off, active) in dialogue state tracking. STATUS_OFF = 0 STATUS_ACTIVE = 1 STATUS_DONTCARE = 2 class SGDInputExample(object): """An example for training/inference.""" def __init__( self, schema_config: dict, tokenizer: object, service_schema: object = None, example_id: str = "NONE", example_id_num: List[int] = [], ): """ Constructs an InputExample. Args: schema_config: configuration tokenizer: tokenizer object service_schema: A ServiceSchema object wrapping the schema for the service corresponding to this example. example_id: Unique identifier for the example, like: 'train-1_00000-00-Restaurants_1' example_id_num: dialogue_id and turn_id combined and service id combined into a list of ints, like: [1, 0, 0, 18] """ self.schema_config = schema_config self.service_schema = service_schema self.service_id = None if service_schema: self.service_id = service_schema.service_id self.example_id = example_id self.example_id_num = example_id_num self._max_seq_length = schema_config["MAX_SEQ_LENGTH"] self._tokenizer = tokenizer if self._tokenizer is None: raise ValueError("Must specify tokenizer") self.user_utterance = '' self.system_utterance = '' # The id of each subword in the vocabulary for BERT. self.utterance_ids = [0] * self._max_seq_length # Denotes the identity of the sequence. Takes values 0 (schema description) and 1 (system and user utterance). self.utterance_segment = [0] * self._max_seq_length # Mask which takes the value 0 for padded tokens and 1 otherwise. self.utterance_mask = [0] * self._max_seq_length # Start and inclusive end character indices in the original utterance # corresponding to the tokens. This is used to obtain the character indices # from the predicted subword indices during inference. # NOTE: A positive value indicates the character indices in the schema description # whereas a negative value indicates the character indices in the # utterance. The indices are offset by 1 to prevent ambiguity in the # 0 index, which could be in either the schema description or utterance by the # above convention. Now the 0 index corresponds to padded tokens. self.start_char_idx = [0] * self._max_seq_length self.end_char_idx = [0] * self._max_seq_length # Id of categorical slot present in the example or 0 if not present. self.categorical_slot_id = 0 # Id of non categorical slot present in the example or 0 if not present. self.noncategorical_slot_id = 0 # The status of categorical slot in the example. self.categorical_slot_status = STATUS_OFF # The status of non categorical slot in the example. self.noncategorical_slot_status = STATUS_OFF # Masks out tasks not represented by example self.task_mask = [0] * schema_config["NUM_TASKS"] # The index of the starting subword corresponding to the slot span # for a non-categorical slot value. self.noncategorical_slot_value_start = 0 # The index of the ending (inclusive) subword corresponding to the slot span # for a non-categorical slot value. self.noncategorical_slot_value_end = 0 # Id of categorical slot value present in the example or 0 if not present. self.categorical_slot_value_id = 0 # The status of categorical slot value in the example. self.categorical_slot_value_status = STATUS_OFF # Id of requested slot present in the example or 0 if not present. self.requested_slot_id = 0 # Takes value 1 if the corresponding slot is requested, 0 otherwise. self.requested_slot_status = STATUS_OFF # ID of intent present in the example. self.intent_id = 0 # Takes value 1 if the intent is active, 0 otherwise. self.intent_status = STATUS_OFF @property def readable_summary(self): """Get a readable dict that summarizes the attributes of an InputExample.""" seq_length = sum(self.utterance_mask) utt_toks = self._tokenizer.ids_to_tokens(self.utterance_ids[:seq_length]) utt_tok_mask_pairs = list(zip(utt_toks, self.utterance_segment[:seq_length])) active_intent = ( self.service_schema.get_intent_from_id(self.intent_id) if self.intent_status == STATUS_ACTIVE else "" ) slot_values_in_state = {} if self.categorical_slot_status == STATUS_ACTIVE: slot_values_in_state[ self.service_schema.get_categorical_slot_from_id(self.categorical_slot_id) ] = self.service_schema.get_categorical_slot_value_from_id( self.categorical_slot_id, self.categorical_slot_value_id ) elif self.categorical_slot_status == STATUS_DONTCARE: slot_values_in_state[ self.service_schema.get_categorical_slot_from_id(self.categorical_slot_id) ] = STR_DONTCARE if self.noncategorical_slot_status == STATUS_ACTIVE: slot = self.service_schema.get_non_categorical_slot_from_id(self.noncategorical_slot_id) start_id = self.noncategorical_slot_value_start[slot] end_id = self.noncategorical_slot_value_end[slot] # Token list is consisted of the subwords that may start with "##". We # remove "##" to reconstruct the original value. Note that it's not a # strict restoration of the original string. It's primarily used for # debugging. # ex. ["san", "j", "##ose"] --> "san jose" readable_value = " ".join(utt_toks[start_id : end_id + 1]).replace(" ##", "") slot_values_in_state[slot] = readable_value elif self.noncategorical_slot_status == STATUS_DONTCARE: slot = self.service_schema.get_non_categorical_slot_from_id(self.noncategorical_slot_id) slot_values_in_state[slot] = STR_DONTCARE summary_dict = { "utt_tok_mask_pairs": utt_tok_mask_pairs, "utt_len": seq_length, "categorical_slot_id": self.categorical_slot_id, "noncategorical_slot_id": self.noncategorical_slot_id, "intent_id": self.intent_id, "service_name": self.service_schema.service_name, "active_intent": active_intent, "slot_values_in_state": slot_values_in_state, } return summary_dict def add_utterance_features( self, system_tokens, system_inv_alignments, user_tokens, user_inv_alignments, system_utterance, user_utterance ): """Add utterance related features input to InputExample. Note: this method modifies the system tokens and user_tokens in place to make their total length <= the maximum input length for BERT model. Args: system_tokens: a list of strings which represents schema description. system_inv_alignments: a list of tuples which denotes the start and end charater of the tpken that a bert token originates from in the original schema description. user_tokens: a list of strings which represents utterance. user_inv_alignments: a list of tuples which denotes the start and end charater of the token that a bert token originates from in the original system and user utterance. """ # Input sequence length for utterance BERT encoder max_utt_len = self._max_seq_length # Modify lengths of schema description & utterance so that length of total utt # (including cls_token, setp_token, sep_token) is no more than max_utt_len is_too_long = truncate_seq_pair(system_tokens, user_tokens, max_utt_len - 3) if is_too_long: logging.debug( f'Utterance sequence truncated in example id - {self.example_id} from {len(system_tokens) + len(user_tokens)}.' ) # Construct the tokens, segment mask and valid token mask which will be # input to BERT, using the tokens for schema description (sequence A) and # system and user utterance (sequence B). utt_subword = [] utt_seg = [] utt_mask = [] start_char_idx = [] end_char_idx = [] utt_subword.append(self._tokenizer.cls_token) utt_seg.append(0) utt_mask.append(1) start_char_idx.append(0) end_char_idx.append(0) for subword_idx, subword in enumerate(system_tokens): utt_subword.append(subword) utt_seg.append(0) utt_mask.append(1) st, en = system_inv_alignments[subword_idx] start_char_idx.append(-(st + 1)) end_char_idx.append(-(en + 1)) utt_subword.append(self._tokenizer.sep_token) utt_seg.append(0) utt_mask.append(1) start_char_idx.append(0) end_char_idx.append(0) for subword_idx, subword in enumerate(user_tokens): utt_subword.append(subword) utt_seg.append(1) utt_mask.append(1) st, en = user_inv_alignments[subword_idx] start_char_idx.append(st + 1) end_char_idx.append(en + 1) utt_subword.append(self._tokenizer.sep_token) utt_seg.append(1) utt_mask.append(1) start_char_idx.append(0) end_char_idx.append(0) utterance_ids = self._tokenizer.tokens_to_ids(utt_subword) # Zero-pad up to the BERT input sequence length. while len(utterance_ids) < max_utt_len: utterance_ids.append(0) utt_seg.append(0) utt_mask.append(0) start_char_idx.append(0) end_char_idx.append(0) self.utterance_ids = utterance_ids self.utterance_segment = utt_seg self.utterance_mask = utt_mask self.start_char_idx = start_char_idx self.end_char_idx = end_char_idx self.user_utterance = user_utterance self.system_utterance = system_utterance def make_copy(self): """Make a copy of the current example with utterance features.""" new_example = SGDInputExample( schema_config=self.schema_config, service_schema=self.service_schema, example_id=self.example_id, example_id_num=self.example_id_num.copy(), tokenizer=self._tokenizer, ) return new_example def make_copy_of_categorical_features(self): """Make a copy of the current example with utterance and categorical features.""" new_example = self.make_copy() new_example.categorical_slot_status = self.categorical_slot_status return new_example def make_copy_of_non_categorical_features(self): """Make a copy of the current example with utterance features and non categorical features.""" new_example = self.make_copy() new_example.noncategorical_slot_id = self.noncategorical_slot_id new_example.noncategorical_slot_status = self.noncategorical_slot_status new_example.utterance_ids = list(self.utterance_ids) new_example.utterance_segment = list(self.utterance_segment) new_example.utterance_mask = list(self.utterance_mask) new_example.start_char_idx = list(self.start_char_idx) new_example.end_char_idx = list(self.end_char_idx) new_example.user_utterance = self.user_utterance new_example.system_utterance = self.system_utterance new_example.noncategorical_slot_status = self.noncategorical_slot_status new_example.noncategorical_slot_value_start = self.noncategorical_slot_value_start new_example.noncategorical_slot_value_end = self.noncategorical_slot_value_end return new_example def add_categorical_slots(self, state_update: dict): """Add features for categorical slots. Args: state_update: slot value pairs of the state update """ categorical_slots = self.service_schema.categorical_slots if not categorical_slots: return slot = categorical_slots[self.categorical_slot_id] values = state_update.get(slot, []) if not values: self.categorical_slot_status = STATUS_OFF elif values[0] == STR_DONTCARE: self.categorical_slot_status = STATUS_DONTCARE else: self.categorical_slot_status = STATUS_ACTIVE self.categorical_slot_value_status = ( self.categorical_slot_value_id == self.service_schema.get_categorical_slot_value_id(slot, values[0]) ) def add_noncategorical_slots(self, state_update: dict, system_span_boundaries: dict, user_span_boundaries: dict): """Add features for non-categorical slots. Args: state_update: slot value pairs of state update system_span_boundaries: span boundaries of schema description user_span_boundaries: span boundaries of utterance """ noncategorical_slots = self.service_schema.non_categorical_slots slot = noncategorical_slots[self.noncategorical_slot_id] values = state_update.get(slot, []) if not values: self.noncategorical_slot_status = STATUS_OFF elif values[0] == STR_DONTCARE: self.noncategorical_slot_status = STATUS_DONTCARE else: self.noncategorical_slot_status = STATUS_ACTIVE # Add indices of the start and end tokens for the first encountered # value. Spans in user utterance are prioritized over the system # utterance. If a span is not found, the slot value is ignored. if slot in user_span_boundaries: start, end = user_span_boundaries[slot] elif slot in system_span_boundaries: start, end = system_span_boundaries[slot] else: # A span may not be found because the value was cropped out or because # the value was mentioned earlier in the dialogue. Since this model # only makes use of the last two utterances to predict state updates, # it will fail in such cases. logging.debug( f'"Slot values {str(values)} not found in user or system utterance in example with id - {self.example_id}.' ) start = 0 end = 0 self.noncategorical_slot_value_start = start self.noncategorical_slot_value_end = end def add_requested_slots(self, frame: dict): """Add requested slots to InputExample Args: frame: frame object from which requested slots are extracted """ all_slots = self.service_schema.slots slot = all_slots[self.requested_slot_id] if slot in frame["labels"]["slots"]: self.requested_slot_status = STATUS_ACTIVE def add_intents(self, frame): """Add intents to InputExample Args: frame: frame object from which intents are extracted """ all_intents = self.service_schema.intents intent = all_intents[self.intent_id] if intent == frame["labels"]["intent"]: self.intent_status = STATUS_ACTIVE # Modified from run_classifier._truncate_seq_pair in the public bert model repo. # https://github.com/google-research/bert/blob/master/run_classifier.py. def truncate_seq_pair(tokens_a: List[int], tokens_b: List[int], max_length: int) -> bool: """Truncate a seq pair in place so that their total length <= max_length. Args: tokens_a: first token sequence tokens_b: second token sequence max_length: truncated sequence length Returns: is_too_long: whether combined sequences exceed maximum sequence length """ is_too_long = False # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break is_too_long = True if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() return is_too_long
NeMo-main
nemo/collections/nlp/data/dialogue/input_example/sgd_input_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd from nemo.collections.nlp.data.dialogue.data_processor.data_processor import DialogueDataProcessor from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample __all__ = ['DialogueDesignDataProcessor'] class DialogueDesignDataProcessor(DialogueDataProcessor): """Data Processor for Design Dataset""" def __init__(self, data_dir: str, tokenizer: object, cfg=None): """ Constructs DialogueDesignDataProcessor Args: data_dir: path to data directory tokenizer: tokenizer object cfg: cfg container for dataset """ self.data_dir = data_dir self._tokenizer = tokenizer self.cfg = cfg def open_csv(self, filename): """ Reads file into a list """ filename = os.path.join(self.data_dir, filename) with open(filename, "r", encoding="UTF-8") as f: df = pd.read_csv(filename) return df.to_dict(orient='index') def get_dialog_examples(self, dataset_split: str): """ Process raw files into DialogueInputExample Args: dataset_split: {train, dev, test} Dev set contains self.cfg.dev_proportion % of samples with the rest going into the train set Test set contains the whole dataset (Dev + Train) as this dataset is small (~100) and primarily used in a zero shot setting """ examples = [] raw_examples = self.open_csv('mellon_design_OV.csv') # remove disabled examples raw_examples = [raw_examples[i] for i in range(len(raw_examples)) if raw_examples[i]['disabled'] != 'yes'] n_samples = len(raw_examples) idxs = DialogueDataProcessor.get_relevant_idxs(dataset_split, n_samples, self.cfg.dev_proportion) all_intents = sorted(list(set(raw_examples[i]['intent labels'] for i in range(len(raw_examples))))) all_services = sorted(list(set(raw_examples[i]['domain'] for i in range(len(raw_examples))))) for i in idxs: raw_example = raw_examples[i] utterances = [raw_example['example_{}'.format(i)] for i in range(1, 4)] service = raw_example['domain'] intent = raw_example['intent'] intent_description = raw_example['intent labels'] system_utterance = raw_example['response'] slot_names = [raw_example['slot{}'.format(i)] for i in range(1, 3)] # these are possible slot values not ground truth slot values slot_values = [raw_example['slot{}_values'.format(i)] for i in range(1, 3)] slot_questions = [raw_example['slot{}_values'.format(i)] for i in range(1, 3)] for j in range(1, 3): value = raw_example['slot{}'.format(j)] if isinstance(value, str): system_utterance = system_utterance.replace('slot{}'.format(j), value) valid_slots_ids = [i for i, slot in enumerate(slot_names) if isinstance(slot, str)] slot_names = [slot_names[i] for i in valid_slots_ids] slot_values = [slot_values[i] if isinstance(slot_values[i], str) else '' for i in valid_slots_ids] slot_questions = [slot_questions[i] if isinstance(slot_questions[i], str) else '' for i in valid_slots_ids] for utterance in utterances: if not isinstance(utterance, str): continue input_example = { "utterance": utterance, "system_utterance": system_utterance, "labels": { "service": service, "intent": intent_description, "slots": { slot: '' for slot in slot_names }, # dataset does not contain ground truth slot values }, "possible_labels": { 'intent': all_intents, "service": all_services, "slots": {slot: slot_values[i] for i, slot in enumerate(slot_names)}, }, "description": { "service": service, "intent": intent_description, "slots": {slot: slot_questions[i] for i, slot in enumerate(slot_names)}, }, } example = DialogueInputExample(input_example) examples.append(example) return examples def get_train_examples(self): """Gets a collection of `InputExample`s for the train set.""" return self.get_dialog_examples("train") def get_dev_examples(self): """Gets a collection of `InputExample`s for the dev set.""" return self.get_dialog_examples("dev") def get_test_examples(self): """Gets a collection of `InputExample`s for the test set.""" return self.get_dialog_examples("test")
NeMo-main
nemo/collections/nlp/data/dialogue/data_processor/design_data_processor.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file contains code artifacts adapted from the original implementation: https://github.com/google-research/google-research/blob/master/schema_guided_dst/baseline/data_utils.py """ import collections import json import os import pickle import re from typing import List from nemo.collections.nlp.data.dialogue.data_processor.data_processor import DialogueDataProcessor from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample from nemo.collections.nlp.data.dialogue.sgd.schema import Schema from nemo.utils import logging from nemo.utils.get_rank import is_global_rank_zero __all__ = ['DialogueSGDDataProcessor'] FILE_RANGES = { "sgd_single_domain": {"train": range(1, 44), "dev": range(1, 8), "test": range(1, 12)}, "sgd_multi_domain": {"train": range(44, 128), "dev": range(8, 21), "test": range(12, 35)}, "sgd_all": {"train": range(1, 128), "dev": range(1, 21), "test": range(1, 35)}, "sgd_all_single": {"train": range(1, 128), "dev": range(1, 8), "test": range(1, 12)}, "multiwoz": {"train": range(1, 18), "dev": range(1, 3), "test": range(1, 3)}, "debug_sample": {"train": range(1, 2), "dev": range(1, 2), "test": range(1, 2)}, } class DialogueSGDDataProcessor(DialogueDataProcessor): """Data Processor for SGD dialogues. More information at https://arxiv.org/abs/1909.05855 ***Downloading the dataset*** # git clone https://github.com/google-research-datasets/dstc8-schema-guided-dialogue.git ***Data format*** SGD data comes with a JSON schema file and dialogue files for each dataset split. In the following we will show an example for a service entry in the schema file. * service_name * description * slots * name * description * is_categorical * possible values * intents * name * description * required_slots (not used) * is_transactional (not used) * optional_slots (not used) * result_slots (not used) In the following we will show an example for a dialogue. * dialogue_id * services * turns * frames * actions * act * slot * values * service * slots * exclusive_end * slot * start * state * active_intent * requeste_slots * slot_values * speaker - [USER, SYSTEM] * utterance """ def __init__( self, data_dir: str, dialogues_example_dir: str, tokenizer: object, cfg=None, ): """ Constructs DialogueSGDDataProcessor Args: data_dir: path to data directory dialogues_example_dir: path to store processed dialogue examples tokenizer: tokenizer object cfg: cfg container for dataset """ self.data_dir = data_dir self.cfg = cfg self._task_name = self.cfg.task_name # e.g. "sgd_single_domain" self._subsample = self.cfg.subsample all_schema_json_paths = [] for dataset_split in ['train', 'test', 'dev']: all_schema_json_paths.append(os.path.join(self.cfg.data_dir, dataset_split, "schema.json")) self.schemas = Schema(all_schema_json_paths) self.schema_config = { "MAX_NUM_CAT_SLOT": self.cfg.max_num_cat_slot, "MAX_NUM_NONCAT_SLOT": self.cfg.max_num_noncat_slot, "MAX_NUM_VALUE_PER_CAT_SLOT": self.cfg.max_value_per_cat_slot, "MAX_NUM_INTENT": self.cfg.max_num_intent, "NUM_TASKS": self.cfg.num_tasks, "MAX_SEQ_LENGTH": self.cfg.max_seq_length, } train_file_range = FILE_RANGES[self._task_name]["train"] dev_file_range = FILE_RANGES[self._task_name]["dev"] test_file_range = FILE_RANGES[self._task_name]["test"] self._file_ranges = { "train": train_file_range, "dev": dev_file_range, "test": test_file_range, } self._seen_services = { "train": set(), "dev": set(), "test": set(), } self._tokenizer = tokenizer self._dialogues_example_dir = dialogues_example_dir self.dial_files = {} # slots_relation_list.np would contain the candidate list of slots for each (service, slot) which would be # looked into when a switch between two services happens in the dialogue and we can not find any value for a slot in the current user utterance. # This file would get generated from the dialogues in the training set. self.slots_relation_file = os.path.join( dialogues_example_dir, f"{self._task_name}_train_slots_relation_list.np" ) for dataset in ["train", "dev", "test"]: # Process dialogue files dial_file = f"{self._task_name}_{dataset}_examples.json" dial_file = os.path.join(dialogues_example_dir, dial_file) self.dial_files[(self._task_name, dataset)] = dial_file dialog_paths = DialogueSGDDataProcessor.get_dialogue_files(data_dir, dataset, self._task_name) dialogs = DialogueSGDDataProcessor.load_dialogues(dialog_paths) for dialog in dialogs: self._seen_services[dataset].update(set(dialog['services'])) if is_global_rank_zero(): overwrite_dial_files = not self.cfg.use_cache self.save_dialog_examples(overwrite_dial_files=overwrite_dial_files) def save_dialog_examples(self, overwrite_dial_files: bool): """ Preprocesses dialogues and saves to disk. Args: overwrite_dial_files: whether or not to overwrite saved file if already exists """ for dataset in ["train", "dev", "test"]: dial_file = self.dial_files[(self._task_name, dataset)] if not os.path.exists(dial_file) or overwrite_dial_files: logging.info(f"Start generating the dialogue examples for {dataset} dataset.") if not os.path.exists(self._dialogues_example_dir): os.makedirs(self._dialogues_example_dir) dial_examples, slots_relation_list = self._generate_dialog_examples( dataset, self.schemas, self._subsample ) with open(dial_file, "w", encoding="UTF-8") as f: json.dump([i.data for i in dial_examples], f) if dataset == "train": with open(self.slots_relation_file, "wb") as f: pickle.dump(slots_relation_list, f) logging.info(f"The slot carry-over list for train set is stored at {self.slots_relation_file}") logging.info(f"The dialogue examples for {dataset} dataset saved at {dial_file}") logging.info(f"Finish generating the dialogue examples for {dataset} dataset.") # common interface for Data Processor def get_train_examples(self): """Gets a collection of `InputExample`s for the train set.""" return self.get_dialog_examples("train") def get_dev_examples(self): """Gets a collection of `InputExample`s for the dev set.""" return self.get_dialog_examples("dev") def get_test_examples(self): """Gets a collection of `InputExample`s for the test set.""" return self.get_dialog_examples("test") def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() def get_dialog_examples(self, dataset_split: str) -> List[object]: """ Loads preprocessed dialogue examples from disk. Args: dataset_split: dataset split Returns: dial_examples: list of InputExample's. """ if (self._task_name, dataset_split) not in self.dial_files or not os.path.exists( self.dial_files[(self._task_name, dataset_split)] ): raise ValueError( f"{dataset_split} dialogue examples were not processed for {self._task_name} task. Re-initialize SGDDataProcessor and add {dataset_split} dataset split to datasets arg." ) dial_file = self.dial_files[(self._task_name, dataset_split)] logging.info(f"Loading dialogue examples from {dial_file}.") with open(dial_file, "rb") as f: dial_examples = json.load(f) dial_examples = [DialogueInputExample(i) for i in dial_examples] if not os.path.exists(self.slots_relation_file): raise ValueError( f"Slots relation file {self.slots_relation_file} does not exist. It is needed for the carry-over mechanism of state tracker for switches between services." ) if os.path.getsize(self.slots_relation_file) > 0: with open(self.slots_relation_file, "rb") as f: self.schemas._slots_relation_list = pickle.load(f) logging.info( f"Loaded the slot relation list for value carry-over between services from {self.slots_relation_file}." ) return dial_examples def get_seen_services(self, dataset_split: str): """ Returns list of seen services, i.e. both in given and training split Args: dataset_split: data split Returns: seen_services: list of seen services """ seen_services = self._seen_services[dataset_split] return seen_services def _generate_dialog_examples(self, dataset_split: str, schemas: object, subsample: bool): """ Returns a list of `InputExample`s of the data splits' dialogues. Args: dataset_split: data split, can be "train", "dev", or "test". schemas: schema for all services of all datasets subsample: whether to balance postive and negative samples in the dataset Returns: examples: a list of `InputExample`s. """ logging.info(f'Creating examples and slot relation list from the dialogues started...') dialog_paths = [ os.path.join(self.data_dir, dataset_split, "dialogues_{:03d}.json".format(i)) for i in self._file_ranges[dataset_split] ] dialogs = DialogueSGDDataProcessor.load_dialogues(dialog_paths) examples = [] slot_carryover_candlist = collections.defaultdict(int) for dialog_idx, dialog in enumerate(dialogs): if dialog_idx % 1000 == 0: logging.info(f'Processed {dialog_idx} dialogues.') examples.extend( self._create_examples_from_dialog(dialog, schemas, dataset_split, slot_carryover_candlist, subsample) ) slots_relation_list = collections.defaultdict(list) for slots_relation, relation_size in slot_carryover_candlist.items(): if relation_size > 0: slots_relation_list[(slots_relation[0], slots_relation[1])].append( (slots_relation[2], slots_relation[3], relation_size) ) slots_relation_list[(slots_relation[2], slots_relation[3])].append( (slots_relation[0], slots_relation[1], relation_size) ) return examples, slots_relation_list def _create_examples_from_dialog( self, dialog: dict, schemas: object, dataset_split: str, slot_carryover_candlist: dict, subsample: bool ): """ Create examples for every turn in the dialogue. Args: dialog: dialogue example schemas: schema for all services of all datasets dataset_split: data split slot_carryover_candlist: a dictionary to keep and count the number of carry-over cases between two slots from two different services subsample: whether to balance postive and negative samples in the dataset Returns: examples: a list of `InputExample`s. """ dialog_id = dialog["dialogue_id"] prev_states = {} examples = [] for turn_idx, turn in enumerate(dialog["turns"]): # Generate an example for every frame in every user turn. if turn["speaker"] == "USER": user_utterance = turn["utterance"] user_frames = {f["service"]: f for f in turn["frames"]} if self.cfg.system_utterance == 'prev_turn': if turn_idx > 0: system_turn = dialog["turns"][turn_idx - 1] system_utterance = system_turn["utterance"] system_frames = {f["service"]: f for f in system_turn["frames"]} else: system_utterance = "" system_frames = {} else: # takes the system utterance of the next turn system_turn = dialog["turns"][turn_idx + 1] system_utterance = system_turn["utterance"] system_frames = {f["service"]: f for f in system_turn["frames"]} turn_id = "{}-{}-{:02d}".format(dataset_split, dialog_id, turn_idx) turn_examples, prev_states, slot_carryover_values = self._create_examples_from_turn( turn_id, system_utterance, user_utterance, system_frames, user_frames, prev_states, schemas, subsample, ) examples.extend(turn_examples) for value, slots_list in slot_carryover_values.items(): if value in ["True", "False"]: continue if len(slots_list) > 1: for service1, slot1 in slots_list: for service2, slot2 in slots_list: if service1 == service2: continue if service1 > service2: service1, service2 = service2, service1 slot1, slot2 = slot2, slot1 slot_carryover_candlist[(service1, slot1, service2, slot2)] += 1 return examples def _get_state_update(self, current_state: dict, prev_state: dict) -> dict: """ Updates dialogue state Args: current_state: slot values pairs for the current dialogue turn prev_state: slot values pairs for the previous dialogue turns Returns: state_update: slot values pairs that are added/updated during the current dialogue turn """ state_update = dict(current_state) for slot, values in current_state.items(): if slot in prev_state and prev_state[slot][0] in values: # Remove the slot from state if its value didn't change. state_update.pop(slot) return state_update @staticmethod def convert_camelcase_to_lower(label): """Converts camelcase to lowercase with spaces e.g. 'HelloWorld' --> 'hello world'""" if label.lower() == "none": return "none" label = label.split("_")[0] tokens = re.findall('[A-Z][^A-Z]*', label) return ' '.join([token.lower() for token in tokens]) def preprocess_intent(self, intent, schemas, service): if self.cfg.preprocess_intent_function == 'default': return intent elif self.cfg.preprocess_intent_function == 'lowercase': return DialogueSGDDataProcessor.convert_camelcase_to_lower(intent) elif self.cfg.preprocess_intent_function == 'description': return schemas.get_service_schema(service).intent_descriptions[intent] else: raise ValueError( 'Only default, lowercase and description are allowed for model.dataset.preprocess_intent_function for SGD task' ) def _create_examples_from_turn( self, turn_id: int, system_utterance: str, user_utterance: str, system_frames: dict, user_frames: dict, prev_states: dict, schemas: object, subsample: bool, ): """ Creates an example for each frame in the user turn. Args: turn_id: turn number system_utterance: last system utterance user_utterance: lst user utterance system_frames: all system utterances and slot - slot value pairs user_frames: all user utterances and slot - slot value pairs prev_states: slot - slot value pairs from the previous turns schemas: schema for all services of all datasets subsample: whether to balance postive and negative samples in the dataset Returns: examples: a list of `InputExample`s. prev_states: updated dialogue state e.g. {'Restaurants_1': {'city': ['San Jose'], 'cuisine': ['American']}} """ system_user_utterance = system_utterance + ' ' + user_utterance states = {} examples = [] slot_carryover_values = collections.defaultdict(list) for service, user_frame in user_frames.items(): state = user_frame["state"]["slot_values"] state_update = self._get_state_update(state, prev_states.get(service, {})) states[service] = state system_frame = system_frames.get(service, None) dataset_split, dialog_id, turn_id_ = turn_id.split('-') dialog_id_1, dialog_id_2 = dialog_id.split('_') example_id = f"{turn_id}-{service}" example_id_num = [ int(dialog_id_1), int(dialog_id_2), int(turn_id_), schemas.get_service_id(service), ] intent = user_frames[service]["state"]['active_intent'] all_possible_slots = schemas.get_service_schema(service).slots categorical_slots = schemas.get_service_schema(service).categorical_slots one_example = { "example_id": example_id, "example_id_num": example_id_num, "utterance": user_utterance, "system_utterance": system_utterance, "system_slots": {slot["slot"]: slot for slot in system_frame["slots"]} if system_frame is not None else None, "system_actions": system_frame["actions"] if system_frame is not None else None, "labels": { "service": service, "intent": self.preprocess_intent(intent, schemas, service), "slots": {slot: state[slot] for slot in state_update}, }, "label_positions": {"slots": {slot["slot"]: slot for slot in user_frames[service]["slots"]}}, "possible_labels": { "service": schemas.services, "intent": [ self.preprocess_intent(intent, schemas, service) for intent in schemas.get_service_schema(service).intents ], "slots": { slot: schemas.get_service_schema(service).get_categorical_slot_values(slot) if slot in categorical_slots else [] for slot in all_possible_slots }, }, "description": { "service": schemas.get_service_schema(service).description, "intent": schemas.get_service_schema(service).intent_descriptions[intent], "slots": { slot: schemas.get_service_schema(service).slot_descriptions[slot] for slot in state_update }, }, } examples.append(DialogueInputExample(one_example)) if service not in prev_states and int(turn_id_) > 0: for slot_name, values in state_update.items(): for value in values: slot_carryover_values[value].append((service, slot_name)) for prev_service, prev_slot_value_list in prev_states.items(): if prev_service == service: continue if prev_service in state: prev_slot_value_list = state[prev_service] for prev_slot_name, prev_values in prev_slot_value_list.items(): for prev_value in prev_values: slot_carryover_values[prev_value].append((prev_service, prev_slot_name)) return examples, states, slot_carryover_values def _find_subword_indices( self, slot_values: dict, utterance: str, char_slot_spans: dict, alignments: List[int], subwords: List[str], bias: int, ) -> dict: """ Find indices for subwords corresponding to slot values. Args: slot_values: slot - slot value pairs utterance: utterance char_slot_spans: char - slot spans alignments: alignments subwords: subtokens mapping bias: offset Returns: span_boundaries: span boundaries """ span_boundaries = {} for slot, values in slot_values.items(): # Get all values present in the utterance for the specified slot. value_char_spans = {} for slot_span in char_slot_spans: if slot_span["slot"] == slot: value = utterance[slot_span["start"] : slot_span["exclusive_end"]] start_tok_idx = alignments[slot_span["start"]] end_tok_idx = alignments[slot_span["exclusive_end"] - 1] if 0 <= start_tok_idx < len(subwords): end_tok_idx = min(end_tok_idx, len(subwords) - 1) value_char_spans[value] = (start_tok_idx + bias, end_tok_idx + bias) for v in values: if v in value_char_spans: span_boundaries[slot] = value_char_spans[v] break return span_boundaries @classmethod def load_dialogues(cls, dialog_json_filepaths: List[str]) -> List[dict]: """ Obtain the list of all dialogues from specified json files. Args: dialog_json_filepaths: list of json files Returns: dialogs: the list of all dialogues """ dialogs = [] for dialog_json_filepath in sorted(dialog_json_filepaths): with open(dialog_json_filepath, 'r', encoding="UTF-8") as f: dialogs.extend(json.load(f)) f.close() return dialogs @classmethod def get_dialogue_files(cls, data_dir: str, dataset_split: str, task_name: str): """ Obtain the list of all dialogue json files Args: data_dir: path to the data folder dataset_split: data split task_name: SGD task name, see keys of the FILE_RANGES Returns: dialog: the list of all dialogue json files paths """ return [ os.path.join(data_dir, dataset_split, 'dialogues_{:03d}.json'.format(fid)) for fid in FILE_RANGES[task_name][dataset_split] ]
NeMo-main
nemo/collections/nlp/data/dialogue/data_processor/sgd_data_processor.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from nemo.collections.nlp.data.data_utils.data_preprocessing import DataProcessor __all__ = ['DialogueDataProcessor'] class DialogueDataProcessor(DataProcessor): """ Base class for Data Processing for all data sources Data Processor is designed to be Model-independent (but Data-dependent) so that - Encourages experimentation with a variety of models \ (BERT-style; GPT-style; T5-style), \ which have different tokenization/preprocessing requirements - Facilitates experiments with a variety of data sources, as data is processed into a common format Roles 1. Processes raw files into Dialogue Input Examples. 2. Keeps all possibly relevant information from the raw files, which the Dataset class can then determine which labels to use """ def __init__(self): raise NotImplementedError() def get_train_examples(self): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self): """Gets a collection of `InputExample`s for the test set.""" raise NotImplementedError() @staticmethod def get_relevant_idxs(dataset_split, n_samples, dev_proportion): """ Obtain indexes for each dataset_split, when train and dev sets are not in separate files Args: dataset_split: train, dev or test n_samples: total number of samples dev_proportion: value from 1 to 99 that represent proportion of data in dev set Returns: idxs: indices for relevant samples """ if dataset_split in ["train", "dev"]: n_dev = int(n_samples * (dev_proportion / 100)) dev_idxs = random.sample(list(range(n_samples)), n_dev) if dataset_split == "dev": idxs = dev_idxs else: dev_idxs_set = set(dev_idxs) train_idxs = [idx for idx in list(range(n_samples)) if idx not in dev_idxs_set] idxs = train_idxs elif dataset_split == "test": idxs = list(range(n_samples)) else: raise ValueError("please select dataset split from train, dev and test") return idxs
NeMo-main
nemo/collections/nlp/data/dialogue/data_processor/data_processor.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ast import literal_eval from nemo.collections.nlp.data.dialogue.data_processor.data_processor import DialogueDataProcessor from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample __all__ = ['DialogueMSMarcoDataProcessor'] class DialogueMSMarcoDataProcessor(DialogueDataProcessor): """Data Processor for MS Marco dialogues. (https://github.com/microsoft/MSMARCO-Question-Answering) Please agree to the Terms of Use before downloading data at https://msmarco.blob.core.windows.net/msmarco/train_v2.1.json.gz https://msmarco.blob.core.windows.net/msmarco/dev_v2.1.json.gz """ def __init__(self, data_dir: str, tokenizer: object, cfg=None): """ Constructs DialogueMSMarcoDataProcessor Args: data_dir: path to data directory tokenizer: tokenizer object debug_mode: reduce number of samples to load in order to increase speed of processing cfg: cfg container for dataset """ self.data_dir = data_dir self._tokenizer = tokenizer self.cfg = cfg def open_json(self, filename): """ Reads file into a list """ filename = os.path.join(self.data_dir, filename) with open(filename, "r", encoding="UTF-8") as f: data = json.load(f) return data def get_dialog_examples(self, dataset_split: str): """ Process raw files into DialogueInputExample Args: dataset_split: {train, dev, test} For the MS Marco dataset, there is no explicit dev set (instead uses the test set as the dev set) Therefore, this function creates a dev set and a new train set from the train set. Dev set contains self.cfg.dev_proportion % of samples with the rest going into the train set """ examples = [] dataset_split_print = {"train": "train", "dev": "train", "test": "dev"} raw_examples = self.open_json("{}_v2.1.json".format(dataset_split_print[dataset_split])) n_samples = len(raw_examples['answers']) idxs = DialogueDataProcessor.get_relevant_idxs(dataset_split, n_samples, self.cfg.dev_proportion) if self.cfg.debug_mode: idxs = idxs[:100] for i in idxs: utterance = raw_examples['query'][str(i)] # answer need not be extracted from passage # taking the first answer as the ground truth correct answer as only <1% has multiple answers answer = raw_examples['answers'][str(i)] answer = answer[0] if isinstance(answer, list) else answer well_formed_answer = raw_examples['wellFormedAnswers'][str(i)] well_formed_answer = ( well_formed_answer if isinstance(well_formed_answer, list) else literal_eval(well_formed_answer) ) well_formed_answer = well_formed_answer[0] if well_formed_answer else None query_type = raw_examples['query_type'][str(i)] candidate_passages = raw_examples['passages'][str(i)] passage = [ candidate_passage["passage_text"] for candidate_passage in candidate_passages if int(candidate_passage["is_selected"]) ] passage = passage[0] if passage else None possible_passages = [candidate_passage["passage_text"] for candidate_passage in candidate_passages] input_example = { "utterance": utterance, "example_id": i, "labels": { "service": query_type, "response": answer, "fluent_response": well_formed_answer, "passage": passage, }, "possible_labels": { "service": "LOCATION,NUMERIC,PERSON,DESCRIPTION,ENTITY".split(','), "passage": possible_passages, }, } example = DialogueInputExample(input_example) examples.append(example) return examples def get_train_examples(self): """Gets a collection of `InputExample`s for the train set.""" return self.get_dialog_examples("train") def get_dev_examples(self): """Gets a collection of `InputExample`s for the dev set.""" return self.get_dialog_examples("dev") def get_test_examples(self): """Gets a collection of `InputExample`s for the test set.""" return self.get_dialog_examples("test")
NeMo-main
nemo/collections/nlp/data/dialogue/data_processor/ms_marco_data_processor.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
nemo/collections/nlp/data/dialogue/data_processor/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from nemo.collections.nlp.data.dialogue.data_processor.data_processor import DialogueDataProcessor from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample __all__ = ['DialogueAssistantDataProcessor'] class DialogueAssistantDataProcessor(DialogueDataProcessor): """Data Processor for Assistant dialogues.""" def __init__(self, data_dir: str, tokenizer: object, cfg): """ Constructs DialogueAssistantDataProcessor Args: data_dir: path to data directory tokenizer: tokenizer object """ self.data_dir = data_dir self._tokenizer = tokenizer self.cfg = cfg self.intents = self.open_file("dict.intents.csv") if self.cfg.preprocess_intent_function == 'remove_domain': self.intents = [ DialogueAssistantDataProcessor.normalize_zero_shot_intent(intent) for intent in self.intents ] self.slots = self.open_file("dict.slots.csv") ( bio_slot_ids_to_unified_slot_ids, unified_slots, ) = DialogueAssistantDataProcessor.map_bio_format_slots_to_unified_slots(self.slots) self.slots = unified_slots self.bio_slot_ids_to_unified_slot_ids = bio_slot_ids_to_unified_slot_ids self.services = sorted(list(set([intent.split('_')[0] for intent in self.intents]))) self.empty_slot_id = [str(idx) for idx, slot_name in enumerate(self.slots) if slot_name == "O"][0] @staticmethod def normalize_zero_shot_intent(label): label = label.split('.')[1] if label == 'nomatch': return 'no match' else: return label.replace('_', ' ') def open_file(self, filename): """ Reads file into a list """ filename = os.path.join(self.data_dir, filename) with open(filename, "r", encoding="UTF-8") as f: lines = [i.strip() for i in f.readlines()] return lines @staticmethod def get_continuous_slots(slot_ids, empty_slot_id, bio_slot_ids_to_unified_slot_ids): """ Extract continuous spans of slot_ids To accomodate slots with distinct labels for B-label1 and I-label1, slot_id = self.bio_slot_ids_to_unified_slot_ids[slot_id] is called to map them both to label1 Args: Slot: list of int representing slot of each word token For instance, 54 54 54 54 54 54 54 54 18 54 44 44 54 46 46 54 12 Corresponds to "please set an alarm clock for my next meeting with the team at three pm next friday" Except for the empty_slot_id (54 in this case), we hope to extract the continuous spans of tokens, each containing a start position and an exclusive end position E.g {18: [9, 10], 44: [11, 13], 46: [14, 16], 12: [17, 18]} """ slot_id_stack = [] position_stack = [] for i in range(len(slot_ids)): slot_id = slot_ids[i] slot_id = bio_slot_ids_to_unified_slot_ids[slot_id] if not slot_id_stack or slot_id != slot_id_stack[-1]: slot_id_stack.append(slot_id) position_stack.append([]) position_stack[-1].append(i) slot_id_to_start_and_exclusive_end = { slot_id_stack[i]: [position_stack[i][0], position_stack[i][-1] + 1] for i in range(len(position_stack)) if slot_id_stack[i] != empty_slot_id } return slot_id_to_start_and_exclusive_end @staticmethod def map_bio_format_slots_to_unified_slots(slots): """ maps BIO format slots to unified slots (meaning that B-alarm_time and I-alarm_time both map to alarm_time) called even slots does not contain BIO, for unified interface in that case slots == unified_slots and bio_slot_ids_to_unified_slot_ids is an identity mapping i.e. {"0": "0", "1": "1"} """ bio_slot_ids_to_unified_slot_ids = {} unified_slots = [] unified_idx = -1 for idx, slot in enumerate(slots): if slot.replace('I-', '').replace('B-', '') not in unified_slots: unified_idx += 1 unified_slots.append(slot.replace('I-', '').replace('B-', '')) bio_slot_ids_to_unified_slot_ids[str(idx)] = str(unified_idx) return bio_slot_ids_to_unified_slot_ids, unified_slots def get_dialog_examples(self, dataset_split: str): """ Process raw files into DialogueInputExample Args: dataset_split: {train, dev, test} For the assistant dataset, there is no explicit dev set (instead uses the test set as the dev set) Therefore, this function creates a dev set and a new train set from the train set. This is done by taking every 10th example and putting it into the dev set, with all other examples going into the new train set. """ examples = [] dataset_split_print = {"train": "train", "dev": "train", "test": "test"} raw_examples_intent = self.open_file("{}.tsv".format(dataset_split_print[dataset_split])) # removes header of tsv file raw_examples_intent = raw_examples_intent[1:] raw_examples_slots = self.open_file("{}_slots.tsv".format(dataset_split_print[dataset_split])) if dataset_split in ["train", "dev"]: train_idx = [] dev_idx = [] for idx in range(len(raw_examples_intent)): if idx % 10 == 0: dev_idx.append(idx) else: train_idx.append(idx) if dataset_split == "train": raw_examples_intent = [raw_examples_intent[idx] for idx in train_idx] raw_examples_slots = [raw_examples_slots[idx] for idx in train_idx] elif dataset_split == "dev": raw_examples_intent = [raw_examples_intent[idx] for idx in dev_idx] raw_examples_slots = [raw_examples_slots[idx] for idx in dev_idx] for i in range(len(raw_examples_intent)): utterance, intent_id = raw_examples_intent[i].split('\t') slot_ids = raw_examples_slots[i].split() utterance_tokens = utterance.split() intent = self.intents[int(intent_id)] slot_id_to_start_and_exclusive_end = DialogueAssistantDataProcessor.get_continuous_slots( slot_ids, self.empty_slot_id, self.bio_slot_ids_to_unified_slot_ids ) slot_to_start_and_exclusive_end = { self.slots[int(slot_id)]: position for slot_id, position in slot_id_to_start_and_exclusive_end.items() } slot_to_words = { slot: ' '.join(utterance_tokens[position[0] : position[1]]) for slot, position in slot_to_start_and_exclusive_end.items() } input_example = { "utterance": utterance, "labels": {"service": intent.split('_')[0], "intent": intent, "slots": slot_to_words}, "label_positions": { "slots": { slot: {"start": position[0], "exclusive_end": position[1], "slot": slot,} for slot, position in slot_to_start_and_exclusive_end.items() } }, "possible_labels": { "service": self.services, "intent": self.intents, "slots": { # this dataset does not support categorical slots (i.e. only extractive slots) # therefore use empty list for all values slot: [] for slot in self.slots }, }, } example = DialogueInputExample(input_example) examples.append(example) return examples def get_train_examples(self): """Gets a collection of `InputExample`s for the train set.""" return self.get_dialog_examples("train") def get_dev_examples(self): """Gets a collection of `InputExample`s for the dev set.""" return self.get_dialog_examples("dev") def get_test_examples(self): """Gets a collection of `InputExample`s for the test set.""" return self.get_dialog_examples("test")
NeMo-main
nemo/collections/nlp/data/dialogue/data_processor/assistant_data_processor.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd from nemo.collections.nlp.data.dialogue.data_processor.data_processor import DialogueDataProcessor from nemo.collections.nlp.data.dialogue.input_example.input_example import DialogueInputExample __all__ = ['DialogueMellonQADataProcessor'] class DialogueMellonQADataProcessor(DialogueDataProcessor): """Data Processor for Mellon QA dialogues. """ def __init__(self, data_dir: str, tokenizer: object, cfg=None): """ Constructs DialogueMSMarcoDataProcessor Args: data_dir: path to data directory tokenizer: tokenizer object cfg: cfg container for dataset """ self.data_dir = data_dir self._tokenizer = tokenizer self.cfg = cfg def open_csv(self, filename): """ Reads file into a list """ filename = os.path.join(self.data_dir, filename) with open(filename, "r", encoding="UTF-8") as f: df = pd.read_csv(filename) return df.to_dict(orient='index') def get_dialog_examples(self, dataset_split: str): """ Process raw files into DialogueInputExample Args: dataset_split: {train, dev, test} For the Mellon QA dataset, there is no explicit dev set (instead uses the test set as the dev set) Therefore, this function creates a dev set and a new train set from the train set. Dev set contains self.cfg.dev_proportion % of samples with the rest going into the train set Test set contains the whole dataset (Dev + Train) as this dataset is small (~100) and primarily used in a zero shot setting """ examples = [] raw_examples = self.open_csv('mellon_qa_data.csv') raw_examples = list(raw_examples.values()) # filter out answers with no answer raw_examples = [ example for example in raw_examples if isinstance(example['Non Generative Question Answering '], str) and isinstance(example['Generative Question Answering '], str) ] n_samples = len(raw_examples) idxs = DialogueDataProcessor.get_relevant_idxs(dataset_split, n_samples, self.cfg.dev_proportion) for i in idxs: utterance = str(raw_examples[i]['Question']) answer = str(raw_examples[i]['Non Generative Question Answering ']) well_formed_answer = str(raw_examples[i]['Generative Question Answering ']) passage = raw_examples[i]['Passage'] input_example = { "utterance": utterance, "example_id": i, "labels": {"response": answer, "fluent_response": well_formed_answer, "passage": passage,}, } example = DialogueInputExample(input_example) examples.append(example) return examples def get_train_examples(self): """Gets a collection of `InputExample`s for the train set.""" return self.get_dialog_examples("train") def get_dev_examples(self): """Gets a collection of `InputExample`s for the dev set.""" return self.get_dialog_examples("dev") def get_test_examples(self): """Gets a collection of `InputExample`s for the test set.""" return self.get_dialog_examples("test")
NeMo-main
nemo/collections/nlp/data/dialogue/data_processor/mellon_qa_data_processor.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.dialogue.sgd.evaluate import evaluate, get_in_domain_services from nemo.collections.nlp.data.dialogue.sgd.schema import Schema
NeMo-main
nemo/collections/nlp/data/dialogue/sgd/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Prediction and evaluation-related utility functions. This file contains code artifacts adapted from the original implementation: https://github.com/google-research/google-research/blob/master/schema_guided_dst/baseline/pred_utils.py """ import json import os from collections import OrderedDict, defaultdict from typing import Dict, List, Optional from nemo.collections.nlp.data.dialogue.input_example.sgd_input_example import ( STATUS_ACTIVE, STATUS_DONTCARE, STR_DONTCARE, ) from nemo.utils import logging REQ_SLOT_THRESHOLD = 0.5 __all__ = ['write_predictions_to_file'] def set_cat_slot(predictions_status: dict, predictions_value: dict, cat_slot_values: Dict[str, List[str]]) -> dict: """ Extract predicted categorical slot information Args: predictions_status: predicted statuses predictions_value: predicted slot values cat_slot_values: possible categorical slots and their potential values for this service Returns: out_dict: predicted slot value pairs """ out_dict = {} for slot_idx, slot in enumerate(cat_slot_values): slot_status = predictions_status[slot_idx][0]["cat_slot_status"] if slot_status == STATUS_DONTCARE: out_dict[slot] = STR_DONTCARE elif slot_status == STATUS_ACTIVE: tmp = predictions_value[slot_idx] value_idx = max(tmp, key=lambda k: tmp[k]['cat_slot_value_status'][0].item()) out_dict[slot] = cat_slot_values[slot][value_idx] return out_dict def set_noncat_slot( predictions_status: dict, predictions_value: dict, non_cat_slots: List[str], user_utterance: str, sys_slots_agg: Optional[dict] = None, ) -> dict: """ Extract predicted non categorical slot information Args: predictions_status: predicted statuses predictions_value: predicted slot values non_cat_slots: list of possible non categorical slots for this service user_utterance: system and user utterance sys_slots_agg: system retrieval lookup table. Contains for each slot the most recent value seen in the history Returns: out_dict: predicted slot value pairs """ out_dict = {} for slot_idx, slot in enumerate(non_cat_slots): slot_status = predictions_status[slot_idx][0]["noncat_slot_status"] if slot_status == STATUS_DONTCARE: out_dict[slot] = STR_DONTCARE elif slot_status == STATUS_ACTIVE: tok_start_idx = predictions_value[slot_idx][0]["noncat_slot_start"] tok_end_idx = predictions_value[slot_idx][0]["noncat_slot_end"] ch_start_idx = predictions_value[slot_idx][0]["noncat_alignment_start"][tok_start_idx] ch_end_idx = predictions_value[slot_idx][0]["noncat_alignment_end"][tok_end_idx] if ch_start_idx > 0 and ch_end_idx > 0: # Add span from the utterance. out_dict[slot] = user_utterance[ch_start_idx - 1 : ch_end_idx] elif sys_slots_agg and slot in sys_slots_agg: # system retrieval out_dict[slot] = sys_slots_agg[slot] return out_dict def get_predicted_dialog(dialog: dict, all_predictions: dict, schemas: object, state_tracker: str) -> dict: """Overwrite the labels in the turn with the predictions from the model. For test set, these labels are missing from the data and hence they are added. Args: dialog: ground truth dialog all_predictions: predictions schemas: schema object of all services of all datasets state_tracker: state tracker option, e.g. nemotracker Returns: dialog: dialog overwritten with prediction information """ dialog_id = dialog["dialogue_id"] if state_tracker == "baseline": sys_slots_agg = {} else: sys_slots_agg = defaultdict(OrderedDict) all_slot_values = defaultdict(dict) for turn_idx, turn in enumerate(dialog["turns"]): if turn["speaker"] == "SYSTEM" and state_tracker == 'nemotracker': for frame in turn["frames"]: if frame["service"] not in sys_slots_agg: sys_slots_agg[frame["service"]] = OrderedDict() for action in frame["actions"]: if action["slot"] and len(action["values"]) > 0: sys_slots_agg[frame["service"]][action["slot"]] = action["values"][0] if turn["speaker"] == "USER": user_utterance = turn["utterance"] system_utterance = dialog["turns"][turn_idx - 1]["utterance"] if turn_idx else "" system_user_utterance = system_utterance + ' ' + user_utterance turn_id = "{:02d}".format(turn_idx) for frame in turn["frames"]: predictions = all_predictions[(dialog_id, turn_id, frame["service"])] slot_values = all_slot_values[frame["service"]] service_schema = schemas.get_service_schema(frame["service"]) # Remove the slot spans and state if present. frame.pop("slots", None) frame.pop("state", None) # The baseline model doesn't predict slot spans. Only state predictions # are added. state = {} # Add prediction for active intent. No Offset is subtracted since schema has now NONE intent at index 0 state["active_intent"] = get_predicted_intent( predictions=predictions[0], intents=service_schema.intents ) # Add prediction for requested slots. state["requested_slots"] = get_requested_slot(predictions=predictions[1], slots=service_schema.slots) # Add prediction for user goal (slot values). # Categorical slots. cat_out_dict = set_cat_slot( predictions_status=predictions[2], predictions_value=predictions[3], cat_slot_values=service_schema.categorical_slot_values, ) for k, v in cat_out_dict.items(): slot_values[k] = v # Non-categorical slots. noncat_out_dict = set_noncat_slot( predictions_status=predictions[4], predictions_value=predictions[5], non_cat_slots=service_schema.non_categorical_slots, user_utterance=system_user_utterance, sys_slots_agg=sys_slots_agg.get(frame["service"], None), ) for k, v in noncat_out_dict.items(): slot_values[k] = v # Create a new dict to avoid overwriting the state in previous turns # because of use of same objects. state["slot_values"] = {s: [v] for s, v in slot_values.items()} frame["state"] = state return dialog def get_predicted_intent(predictions: dict, intents: List[str]) -> str: """ Returns intent name with maximum score Args: predictions: predictions intents: list of possible intents for this service Returns: intent: predicted intent """ assert len(predictions) == len(intents) active_intent_id = max(predictions, key=lambda k: predictions[k][0]['intent_status']) intent = intents[active_intent_id] return intent def get_requested_slot(predictions: dict, slots: List[str]) -> List[str]: """ Returns list of slots which are predicted to be requested Args: predictions: predictions slots: list of possible slots Returns: requested_slots: list of requested slots """ active_indices = [k for k in predictions if predictions[k][0]["req_slot_status"] > REQ_SLOT_THRESHOLD] requested_slots = list(map(lambda k: slots[k], active_indices)) return requested_slots def write_predictions_to_file( predictions: List[dict], input_json_files: List[str], output_dir: str, schemas: object, state_tracker: str, eval_debug: bool, in_domain_services: set, ): """Save predicted dialogues as json files. Args: predictions: An iterator containing model predictions. This is the output of the predict method in the estimator. input_json_files: A list of json paths containing the dialogues to run inference on. output_dir: The directory where output json files will be created. schemas: Schemas to all services in the dst dataset state_tracker: state tracker option eval_debug: output evaluation debugging information in_domain_services: in domain services """ logging.info(f"Writing predictions to {output_dir} started.") # Index all predictions. all_predictions = defaultdict(lambda: defaultdict(lambda: defaultdict(dict))) for idx, prediction in enumerate(predictions): eval_dataset, dialog_id, turn_id, service_name, model_task, slot_intent_id, value_id = prediction[ 'example_id' ].split('-') all_predictions[(dialog_id, turn_id, service_name)][int(model_task)][int(slot_intent_id)][ int(value_id) ] = prediction logging.info(f'Predictions for {idx} examples in {eval_dataset} dataset are getting processed.') # Read each input file and write its predictions. for input_file_path in input_json_files: with open(input_file_path, encoding="UTF-8") as f: dialogs = json.load(f) logging.debug(f'{input_file_path} file is loaded') pred_dialogs = [] for d in dialogs: pred_dialog = get_predicted_dialog(d, all_predictions, schemas, state_tracker) pred_dialogs.append(pred_dialog) input_file_name = os.path.basename(input_file_path) output_file_path = os.path.join(output_dir, input_file_name) with open(output_file_path, "w", encoding="UTF-8") as f: json.dump(pred_dialogs, f, indent=2, separators=(",", ": "), sort_keys=True)
NeMo-main
nemo/collections/nlp/data/dialogue/sgd/prediction_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Evaluate predictions JSON file, w.r.t. ground truth file. This file contains code artifacts adapted from the original implementation: https://github.com/google-research/google-research/blob/master/schema_guided_dst/evaluate.py """ import collections import glob import json import os import numpy as np from nemo.collections.nlp.metrics.sgd_metrics import ( ACTIVE_INTENT_ACCURACY, JOINT_CAT_ACCURACY, JOINT_GOAL_ACCURACY, JOINT_NONCAT_ACCURACY, NAN_VAL, REQUESTED_SLOTS_F1, REQUESTED_SLOTS_PRECISION, REQUESTED_SLOTS_RECALL, SLOT_TAGGING_F1, SLOT_TAGGING_PRECISION, SLOT_TAGGING_RECALL, get_active_intent_accuracy, get_average_and_joint_goal_accuracy, get_requested_slots_f1, get_slot_tagging_f1, ) from nemo.utils import logging __all__ = ['get_in_domain_services'] ALL_SERVICES = "#ALL_SERVICES" SEEN_SERVICES = "#SEEN_SERVICES" UNSEEN_SERVICES = "#UNSEEN_SERVICES" # Name of the file containing all predictions and their corresponding frame metrics. PER_FRAME_OUTPUT_FILENAME = "dialogues_and_metrics.json" def get_service_set(schema_path: str) -> set: """ Get the set of all services present in a schema. Args: schema_path: schema file path Returns: service_set: set of services in file """ service_set = set() with open(schema_path, encoding="UTF-8") as f: schema = json.load(f) for service in schema: service_set.add(service["service_name"]) f.close() return service_set def get_in_domain_services(schema_path: str, service_set: set) -> set: """Get the set of common services between a schema and set of services. Args: schema_path: path to schema file service_set: set of services Returns: joint_services: joint services between schema path file and service set """ joint_services = get_service_set(schema_path) & service_set return joint_services def get_dataset_as_dict(file_path_patterns) -> dict: """Read the DSTC8/SGD json dialogue data as dictionary with dialog ID as keys. Args: file_path_patterns: list or directory of files Returns: dataset_dict: dataset dictionary with dialog ID as keys """ dataset_dict = {} if isinstance(file_path_patterns, list): list_fp = file_path_patterns else: list_fp = sorted(glob.glob(file_path_patterns)) for fp in list_fp: if PER_FRAME_OUTPUT_FILENAME in fp: continue logging.debug("Loading file: %s", fp) with open(fp, encoding="UTF-8") as f: data = json.load(f) if isinstance(data, list): for dial in data: dataset_dict[dial["dialogue_id"]] = dial elif isinstance(data, dict): dataset_dict.update(data) f.close() return dataset_dict def get_metrics( dataset_ref: dict, dataset_hyp: dict, service_schemas: dict, in_domain_services: set, joint_acc_across_turn: bool, use_fuzzy_match: bool, ): """Calculate the DSTC8/SGD metrics. Args: dataset_ref: The ground truth dataset represented as a dict mapping dialogue id to the corresponding dialogue. dataset_hyp: The predictions in the same format as `dataset_ref`. service_schemas: A dict mapping service name to the schema for the service. in_domain_services: The set of services which are present in the training set. joint_acc_across_turn: Whether to compute joint accuracy across turn instead of across service. Should be set to True when conducting multiwoz style evaluation. use_fuzzy_match: Whether to use fuzzy string matching when comparing non-categorical slot values. Should be set to False when conducting multiwoz style evaluation. Returns: all_metric_aggregate: A dict mapping a metric collection name to a dict containing the values for various metrics. Each metric collection aggregates the metrics across a specific set of frames in the dialogues. per_frame_metric: metrics aggregated for each frame """ # Metrics can be aggregated in various ways, eg over all dialogues, only for # dialogues containing unseen services or for dialogues corresponding to a # single service. This aggregation is done through metric_collections, which # is a dict mapping a collection name to a dict, which maps a metric to a list # of values for that metric. Each value in this list is the value taken by # the metric on a frame. metric_collections = collections.defaultdict(lambda: collections.defaultdict(list)) # Ensure the dialogs in dataset_hyp also occur in dataset_ref. assert set(dataset_hyp.keys()).issubset(set(dataset_ref.keys())) logging.debug("len(dataset_hyp)=%d, len(dataset_ref)=%d", len(dataset_hyp), len(dataset_ref)) # Store metrics for every frame for debugging. per_frame_metric = {} for dial_id, dial_hyp in dataset_hyp.items(): dial_ref = dataset_ref[dial_id] if set(dial_ref["services"]) != set(dial_hyp["services"]): raise ValueError( "Set of services present in ground truth and predictions don't match " "for dialogue with id {}".format(dial_id) ) joint_metrics = [JOINT_GOAL_ACCURACY, JOINT_CAT_ACCURACY, JOINT_NONCAT_ACCURACY] for turn_id, (turn_ref, turn_hyp) in enumerate(zip(dial_ref["turns"], dial_hyp["turns"])): metric_collections_per_turn = collections.defaultdict(lambda: collections.defaultdict(lambda: 1.0)) if turn_ref["speaker"] != turn_hyp["speaker"]: raise ValueError("Speakers don't match in dialogue with id {}".format(dial_id)) # Skip system turns because metrics are only computed for user turns. if turn_ref["speaker"] != "USER": continue if turn_ref["utterance"] != turn_hyp["utterance"]: logging.error("Ref utt: %s", turn_ref["utterance"]) logging.error("Hyp utt: %s", turn_hyp["utterance"]) raise ValueError("Utterances don't match for dialogue with id {}".format(dial_id)) hyp_frames_by_service = {frame["service"]: frame for frame in turn_hyp["frames"]} # Calculate metrics for each frame in each user turn. for frame_ref in turn_ref["frames"]: service_name = frame_ref["service"] if service_name not in hyp_frames_by_service: raise ValueError( "Frame for service {} not found in dialogue with id {}".format(service_name, dial_id) ) service = service_schemas[service_name] frame_hyp = hyp_frames_by_service[service_name] active_intent_acc = get_active_intent_accuracy(frame_ref, frame_hyp) slot_tagging_f1_scores = get_slot_tagging_f1(frame_ref, frame_hyp, turn_ref["utterance"], service) requested_slots_f1_scores = get_requested_slots_f1(frame_ref, frame_hyp) goal_accuracy_dict = get_average_and_joint_goal_accuracy( frame_ref, frame_hyp, service, use_fuzzy_match ) frame_metric = { ACTIVE_INTENT_ACCURACY: active_intent_acc, REQUESTED_SLOTS_F1: requested_slots_f1_scores.f1, REQUESTED_SLOTS_PRECISION: requested_slots_f1_scores.precision, REQUESTED_SLOTS_RECALL: requested_slots_f1_scores.recall, } if slot_tagging_f1_scores is not None: frame_metric[SLOT_TAGGING_F1] = slot_tagging_f1_scores.f1 frame_metric[SLOT_TAGGING_PRECISION] = slot_tagging_f1_scores.precision frame_metric[SLOT_TAGGING_RECALL] = slot_tagging_f1_scores.recall frame_metric.update(goal_accuracy_dict) frame_id = "{:s}-{:03d}-{:s}".format(dial_id, turn_id, frame_hyp["service"]) per_frame_metric[frame_id] = frame_metric # Add the frame-level metric result back to dialogues. frame_hyp["metrics"] = frame_metric # Get the domain name of the service. domain_name = frame_hyp["service"].split("_")[0] domain_keys = [ALL_SERVICES, frame_hyp["service"], domain_name] if frame_hyp["service"] in in_domain_services: domain_keys.append(SEEN_SERVICES) else: domain_keys.append(UNSEEN_SERVICES) for domain_key in domain_keys: for metric_key, metric_value in frame_metric.items(): if metric_value != NAN_VAL: if joint_acc_across_turn and metric_key in joint_metrics: metric_collections_per_turn[domain_key][metric_key] *= metric_value else: metric_collections[domain_key][metric_key].append(metric_value) if joint_acc_across_turn: # Conduct multiwoz style evaluation that computes joint goal accuracy # across all the slot values of all the domains for each turn. for domain_key in metric_collections_per_turn: for metric_key, metric_value in metric_collections_per_turn[domain_key].items(): metric_collections[domain_key][metric_key].append(metric_value) all_metric_aggregate = {} for domain_key, domain_metric_vals in metric_collections.items(): domain_metric_aggregate = {} for metric_key, value_list in domain_metric_vals.items(): if value_list: # Metrics are macro-averaged across all frames. domain_metric_aggregate[metric_key] = round(float(np.mean(value_list)) * 100.0, 2) else: domain_metric_aggregate[metric_key] = NAN_VAL all_metric_aggregate[domain_key] = domain_metric_aggregate return all_metric_aggregate, per_frame_metric def evaluate( prediction_dir: str, data_dir: str, eval_dataset: str, in_domain_services: set, joint_acc_across_turn: bool, use_fuzzy_match: bool, ) -> dict: """Calculate the DSTC8/SGD metrics for given data. Args: prediction_dir: prediction location data_dir: ground truth data location. eval_dataset: evaluation data split in_domain_services: The set of services which are present in the training set. joint_acc_across_turn: Whether to compute joint goal accuracy across turn instead of across service. Should be set to True when conducting multiwoz style evaluation. use_fuzzy_match: Whether to use fuzzy string matching when comparing non-categorical slot values. Should be set to False when conducting multiwoz style evaluation. Returns: A dict mapping a metric collection name to a dict containing the values for various metrics for all dialogues and all services """ with open(os.path.join(data_dir, eval_dataset, "schema.json"), encoding="UTF-8") as f: eval_services = {} list_services = json.load(f) for service in list_services: eval_services[service["service_name"]] = service f.close() dataset_ref = get_dataset_as_dict(os.path.join(data_dir, eval_dataset, "dialogues_*.json")) dataset_hyp = get_dataset_as_dict(os.path.join(prediction_dir, "*.json")) # has ALLSERVICE, SEEN_SERVICES, UNSEEN_SERVICES, SERVICE, DOMAIN all_metric_aggregate, _ = get_metrics( dataset_ref, dataset_hyp, eval_services, in_domain_services, joint_acc_across_turn, use_fuzzy_match ) if SEEN_SERVICES in all_metric_aggregate: logging.info(f'Dialog metrics for {SEEN_SERVICES} : {sorted(all_metric_aggregate[SEEN_SERVICES].items())}') if UNSEEN_SERVICES in all_metric_aggregate: logging.info(f'Dialog metrics for {UNSEEN_SERVICES}: {sorted(all_metric_aggregate[UNSEEN_SERVICES].items())}') if ALL_SERVICES in all_metric_aggregate: logging.info(f'Dialog metrics for {ALL_SERVICES} : {sorted(all_metric_aggregate[ALL_SERVICES].items())}') # Write the per-frame metrics values with the corrresponding dialogue frames. with open(os.path.join(prediction_dir, PER_FRAME_OUTPUT_FILENAME), "w", encoding="UTF-8") as f: json.dump(dataset_hyp, f, indent=2, separators=(",", ": ")) f.close() return all_metric_aggregate[ALL_SERVICES]
NeMo-main
nemo/collections/nlp/data/dialogue/sgd/evaluate.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Wrappers for schemas of different services. This file contains code artifacts adapted from the original implementation: https://github.com/google-research/google-research/blob/master/schema_guided_dst/schema.py """ import json from typing import List, Optional, Union from nemo.utils import logging __all__ = ['Schema'] class ServiceSchema(object): """A wrapper for schema for a service.""" def __init__(self, schema_json: dict, service_id: Optional[int] = None): """ Constructor for ServiceSchema. Args: schema_json: schema json dict service_id: service ID """ self._service_name = schema_json["service_name"] self._description = schema_json["description"] self._schema_json = schema_json self._service_id = service_id # Construct the vocabulary for intents, slots, categorical slots, # non-categorical slots and categorical slot values. self._intents = ["NONE"] + sorted(i["name"] for i in schema_json["intents"]) self._intent_descriptions = {i["name"]: i["description"] for i in schema_json["intents"]} self._intent_descriptions["NONE"] = "none" self._slots = sorted(s["name"] for s in schema_json["slots"]) self._slots_descriptions = {s["name"]: s["description"] for s in schema_json["slots"]} self._categorical_slots = sorted( s["name"] for s in schema_json["slots"] if s["is_categorical"] and s["name"] in self.state_slots ) self._non_categorical_slots = sorted( s["name"] for s in schema_json["slots"] if not s["is_categorical"] and s["name"] in self.state_slots ) slot_schemas = {s["name"]: s for s in schema_json["slots"]} categorical_slot_values = {} categorical_slot_value_ids = {} categorical_slot_ids = {} non_categorical_slot_ids = {} for slot_id, slot in enumerate(self._categorical_slots): slot_schema = slot_schemas[slot] values = sorted(slot_schema["possible_values"]) categorical_slot_values[slot] = values value_ids = {value: idx for idx, value in enumerate(values)} categorical_slot_value_ids[slot] = value_ids categorical_slot_ids[slot] = slot_id for slot_id, slot in enumerate(self._non_categorical_slots): non_categorical_slot_ids[slot] = slot_id self._categorical_slot_values = categorical_slot_values self._categorical_slot_value_ids = categorical_slot_value_ids self._categorical_slot_ids = categorical_slot_ids self._non_categorical_slot_ids = non_categorical_slot_ids @property def schema_json(self) -> dict: """Returns schema json dictionary""" return self._schema_json @property def state_slots(self) -> set: """Set of slots which are permitted to be in the dialogue state.""" state_slots = set() for intent in self._schema_json["intents"]: state_slots.update(intent["required_slots"]) state_slots.update(intent["optional_slots"]) return state_slots @property def service_name(self): return self._service_name @property def service_id(self): return self._service_id @property def description(self): return self._description @property def slots(self): return self._slots @property def intents(self): return self._intents @property def intent_descriptions(self): return self._intent_descriptions @property def slot_descriptions(self): return self._slots_descriptions @property def categorical_slots(self): return self._categorical_slots @property def non_categorical_slots(self): return self._non_categorical_slots @property def categorical_slot_values(self): return self._categorical_slot_values def get_categorical_slot_values(self, slot): return self._categorical_slot_values[slot] def get_slot_from_id(self, slot_id): return self._slots[slot_id] def get_intent_from_id(self, intent_id): return self._intents[intent_id] def get_categorical_slot_from_id(self, slot_id): return self._categorical_slots[slot_id] def get_non_categorical_slot_from_id(self, slot_id): return self._non_categorical_slots[slot_id] def get_categorical_slot_value_from_id(self, slot_id, value_id): slot = self._categorical_slots[slot_id] return self._categorical_slot_values[slot][value_id] def get_categorical_slot_value_id(self, slot, value): return self._categorical_slot_value_ids[slot][value] def get_categorical_slot_id(self, slot): return self._categorical_slot_ids[slot] def get_non_categorical_slot_id(self, slot): return self._non_categorical_slot_ids[slot] class Schema(object): """Wrapper for schemas for all services in a dataset.""" def __init__(self, schema_json_paths: Union[str, List[str]]): """ schema_json_paths: list of .json path to schema files of a single str with path to the json file. """ # Load the schema from the json file. if isinstance(schema_json_paths, str): with open(schema_json_paths, "r") as f: all_schemas = json.load(f) f.close() else: # load multiple schemas from the list of the json files all_schemas = [] completed_services = [] for schema_json_path in schema_json_paths: with open(schema_json_path, "r") as f: schemas = json.load(f) f.close() logging.debug("Num of services in %s: %s", schema_json_path, len(schemas)) for service in schemas: if service['service_name'] not in completed_services: completed_services.append(service['service_name']) all_schemas.append(service) self._services = sorted(schema["service_name"] for schema in all_schemas) self._services_vocab = {v: k for k, v in enumerate(self._services)} self._services_id_to_vocab = {v: k for k, v in self._services_vocab.items()} service_schemas = {} for schema in all_schemas: service = schema["service_name"] service_schemas[service] = ServiceSchema(schema, service_id=self.get_service_id(service)) self._service_schemas = service_schemas self._schemas = all_schemas self._slots_relation_list = {} def get_service_id(self, service: str): return self._services_vocab[service] def get_service_from_id(self, service_id: int): return self._services[service_id] def get_service_schema(self, service: str): return self._service_schemas[service] @property def services(self): return self._services def save_to_file(self, file_path): """ Saves schema object to file Args: file_path: path to store schema object at """ with open(file_path, "w") as f: json.dump(self._schemas, f, indent=2)
NeMo-main
nemo/collections/nlp/data/dialogue/sgd/schema.py
# Copyright 2019 The Google Research Authors. # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file contains code artifacts adapted from the original implementation: https://github.com/google-research/lasertagger/blob/master/bert_example.py """ import logging from collections import OrderedDict from os import path from typing import Dict, List, Optional, Tuple, Union from transformers import PreTrainedTokenizerBase from nemo.collections.nlp.data.text_normalization_as_tagging.tagging import EditingTask, Tag from nemo.collections.nlp.data.text_normalization_as_tagging.utils import yield_sources_and_targets """Build BERT Examples from source, target pairs. The difference from the original Lasertagger approach is that our target already consists of tags, so the preprocesssing is trivial. """ class BertExample(object): """Class for training and inference examples for BERT. Attributes: editing_task: The EditingTask from which this example was created. Needed when realizing labels predicted for this example. features: Feature dictionary. """ def __init__( self, input_ids: List[int], input_mask: List[int], segment_ids: List[int], labels_mask: List[int], tag_labels: List[int], semiotic_labels: List[int], semiotic_spans: List[Tuple[int, int, int]], token_start_indices: List[int], task: EditingTask, default_label: int, ) -> None: """Inputs to the example wrapper Args: input_ids: indices of tokens which constitute batches of masked text segments input_mask: bool tensor with 0s in place of source tokens to be masked segment_ids: bool tensor with 0's and 1's to denote the text segment type tag_labels: indices of tokens which should be predicted from each of the corresponding input tokens labels_mask: bool tensor with 0s in place of label tokens to be masked token_start_indices: the indices of the WordPieces that start a token. semiotic_labels: indices of semiotic classes which should be predicted from each of the corresponding input tokens semiotic_spans: list of tuples (class_id, start_wordpiece_idx, end_wordpiece_idx), end is exclusive task: Example Text-Editing Task used by the LaserTagger model during inference. default_label: The default label for the KEEP tag-ID """ input_len = len(input_ids) if not ( input_len == len(input_mask) and input_len == len(segment_ids) and input_len == len(labels_mask) and input_len == len(tag_labels) and input_len == len(semiotic_labels) ): raise ValueError('All feature lists should have the same length ({})'.format(input_len)) self.features = OrderedDict( [ ("input_ids", input_ids), ("input_mask", input_mask), ("segment_ids", segment_ids), ("labels_mask", labels_mask), ("tag_labels", tag_labels), ("semiotic_labels", semiotic_labels), ("semiotic_spans", semiotic_spans), ] ) self._token_start_indices = token_start_indices self.editing_task = task self._default_label = default_label def pad_to_max_length(self, max_seq_length: int, max_semiotic_length: int, pad_token_id: int) -> None: """Pad the feature vectors so that they all have max_seq_length. Args: max_seq_length: The length that all features, except semiotic_classes, will have after padding. max_semiotic_length: The length that semiotic_classes will have after padding. pad_token_id: input_ids feature is padded with this ID, other features with ID 0. """ pad_len = max_seq_length - len(self.features['input_ids']) self.features["semiotic_spans"].extend( [(-1, -1, -1)] * (max_semiotic_length - len(self.features["semiotic_spans"])) ) for key in self.features: if key == "semiotic_spans": continue pad_id = pad_token_id if (key == "input_ids") else 0 self.features[key].extend([pad_id] * pad_len) if len(self.features[key]) != max_seq_length: raise ValueError( "{} has length {} (should be {}).".format(key, len(self.features[key]), max_seq_length) ) def get_token_labels(self, features_key: str) -> List[int]: """Returns labels/tags for the original tokens, not for wordpieces.""" labels = [] for idx in self._token_start_indices: # For unmasked and untruncated tokens, use the label in the features, and # for the truncated tokens, use the default label. if idx < len(self.features[features_key]) and self.features["labels_mask"][idx]: labels.append(self.features[features_key][idx]) else: labels.append(self._default_label) return labels class BertExampleBuilder(object): """Builder class for BertExample objects.""" def __init__( self, label_map: Dict[str, int], semiotic_classes: Dict[str, int], tokenizer: PreTrainedTokenizerBase, max_seq_length: int, ) -> None: """Initializes an instance of BertExampleBuilder. Args: label_map: Mapping from tags to tag IDs. semiotic_classes: Mapping from semiotic classes to their ids. tokenizer: Tokenizer object. max_seq_length: Maximum sequence length. """ self._label_map = label_map self._semiotic_classes = semiotic_classes self._tokenizer = tokenizer self._max_seq_length = max_seq_length self._max_semiotic_length = max(4, int(max_seq_length / 2)) self._pad_id = self._tokenizer.pad_token_id self._keep_tag_id = self._label_map["KEEP"] def build_bert_example( self, source: str, target: Optional[str] = None, semiotic_info: Optional[str] = None, infer: bool = False ) -> Optional[BertExample]: """Constructs a BERT Example. Args: source: Source text. target: Target text or None when building an example during inference. semiotic_info: String or None infer: inference mode Returns: BertExample, or None if the conversion from text to tags was infeasible """ # Compute target labels. task = EditingTask(source) if (target is not None) and (not infer): tags = BertExampleBuilder._compute_tags(task, target) if not tags: return None else: # If target is not provided, we set all target labels to KEEP. tags = [Tag("KEEP") for _ in task.source_tokens] source_tags = [self._label_map[str(tag)] for tag in tags] tokens, tag_labels, token_start_indices = self._split_to_wordpieces(task.source_tokens, source_tags) tokens = self._truncate_list(tokens) tag_labels = self._truncate_list(tag_labels) input_tokens = ["[CLS]"] + tokens + ["[SEP]"] labels_mask = [0] + [1] * len(tag_labels) + [0] tag_labels = [0] + tag_labels + [0] if "PLAIN" not in self._semiotic_classes: raise KeyError("PLAIN should be in self._semiotic_classes") plain_cid = self._semiotic_classes["PLAIN"] semiotic_labels = [plain_cid] * len(tag_labels) # we use the same mask for semiotic labels as for tag labels input_ids = self._tokenizer.convert_tokens_to_ids(input_tokens) input_mask = [1] * len(input_ids) segment_ids = [0] * len(input_ids) semiotic_spans = [] if semiotic_info is not None: # e.g. semiotic_info="CARDINAL 7 8;DATE 9 12" # translate class name to its id, translate coords from tokens to wordpieces semiotic_info_parts = semiotic_info.split(";") previous_end = 0 for p in semiotic_info_parts: if p == "": break c, start, end = p.split(" ") if c not in self._semiotic_classes: raise KeyError("c=" + c + " not found in self._semiotic_classes") cid = self._semiotic_classes[c] start = int(start) end = int(end) if start >= len(token_start_indices): raise IndexError( "start=" + str(start) + " is outside len(token_start_indices)=" + str(len(token_start_indices)) ) while previous_end < start: subtoken_start = token_start_indices[previous_end] subtoken_end = ( token_start_indices[previous_end + 1] if previous_end + 1 < len(token_start_indices) else len(input_ids) - 1 ) semiotic_spans.append((plain_cid, subtoken_start, subtoken_end)) previous_end += 1 subtoken_start = token_start_indices[start] subtoken_end = token_start_indices[end] if end < len(token_start_indices) else len(input_ids) - 1 if subtoken_end >= self._max_seq_length: # possible if input_ids gets truncated to the max_seq_length break semiotic_spans.append((cid, subtoken_start, subtoken_end)) semiotic_labels[subtoken_start:subtoken_end] = [cid] * (subtoken_end - subtoken_start) previous_end = end while previous_end < len(token_start_indices): subtoken_start = token_start_indices[previous_end] subtoken_end = ( token_start_indices[previous_end + 1] if previous_end + 1 < len(token_start_indices) else len(input_ids) - 1 ) semiotic_spans.append((plain_cid, subtoken_start, subtoken_end)) previous_end += 1 if len(input_ids) > self._max_seq_length or len(semiotic_spans) > self._max_semiotic_length: return None example = BertExample( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, labels_mask=labels_mask, tag_labels=tag_labels, semiotic_labels=semiotic_labels, semiotic_spans=semiotic_spans, token_start_indices=token_start_indices, task=task, default_label=self._keep_tag_id, ) example.pad_to_max_length(self._max_seq_length, self._max_semiotic_length, self._pad_id) return example def _split_to_wordpieces(self, tokens: List[str], labels: List[int]) -> Tuple[List[str], List[int], List[int]]: """Splits tokens (and the labels accordingly) to WordPieces. Args: tokens: Tokens to be split. labels: Labels (one per token) to be split. Returns: 3-tuple with the split tokens, split labels, and the indices of the WordPieces that start a token. """ bert_tokens = [] # Original tokens split into wordpieces. bert_labels = [] # Label for each wordpiece. # Index of each wordpiece that starts a new token. token_start_indices = [] for i, token in enumerate(tokens): # '+ 1' is because bert_tokens will be prepended by [CLS] token later. token_start_indices.append(len(bert_tokens) + 1) pieces = self._tokenizer.tokenize(token) bert_tokens.extend(pieces) bert_labels.extend([labels[i]] * len(pieces)) return bert_tokens, bert_labels, token_start_indices def _truncate_list(self, x: Union[List[str], List[int]]) -> Union[List[str], List[int]]: """Returns truncated version of x according to the self._max_seq_length.""" # Save two slots for the first [CLS] token and the last [SEP] token. return x[: self._max_seq_length - 2] def _get_pad_id(self) -> int: """Returns the ID of the [PAD] token (or 0 if it's not in the vocab).""" try: return self._tokenizer.pad_token_id except KeyError: return 0 @staticmethod def _compute_tags(task: EditingTask, target: str) -> List[Tag]: """Computes tags needed for converting the source into the target. Args: task: tagging.EditingTask that specifies the input. target: Target text. Returns: List of tagging.Tag objects. """ target_tokens = target.split(" ") if len(target_tokens) != len(task.source_tokens): raise ValueError("Length mismatch: " + str(task.source_tokens) + "\n" + target) tags = [] for t in target_tokens: if t == "<SELF>": tags.append(Tag("KEEP")) elif t == "<DELETE>": tags.append(Tag("DELETE")) else: tags.append(Tag("DELETE|" + t)) return tags def read_input_file( example_builder: 'BertExampleBuilder', input_filename: str, infer: bool = False ) -> List['BertExample']: """Reads in Tab Separated Value file and converts to training/inference-ready examples. Args: example_builder: Instance of BertExampleBuilder input_filename: Path to the TSV input file. infer: Whether test files or not. Returns: examples: List of converted examples(features and Editing Tasks) """ if not path.exists(input_filename): raise ValueError("Cannot find file: " + input_filename) examples = [] for i, (source, target, semiotic_info) in enumerate(yield_sources_and_targets(input_filename)): if len(examples) % 1000 == 0: logging.info("{} examples processed.".format(len(examples))) example = example_builder.build_bert_example(source, target, semiotic_info, infer) if example is None: continue examples.append(example) logging.info(f"Done. {len(examples)} examples converted.") return examples
NeMo-main
nemo/collections/nlp/data/text_normalization_as_tagging/bert_example.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional import numpy as np from nemo.collections.nlp.data.text_normalization_as_tagging.bert_example import BertExampleBuilder, read_input_file from nemo.core.classes.dataset import Dataset from nemo.core.neural_types import ChannelType, IntType, LabelsType, MaskType, NeuralType __all__ = ["ThutmoseTaggerDataset", "ThutmoseTaggerTestDataset"] class ThutmoseTaggerDataset(Dataset): """ Dataset as used by the ThutmoseTaggerModel for training, validation, and inference pipelines. Args: input_file (str): path to tsv-file with data example_builder: instance of BertExampleBuilder """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "input_mask": NeuralType(('B', 'T'), MaskType()), "segment_ids": NeuralType(('B', 'T'), ChannelType()), "labels_mask": NeuralType(('B', 'T'), MaskType()), "tag_labels": NeuralType(('B', 'T'), LabelsType()), "semiotic_labels": NeuralType(('B', 'T'), LabelsType()), "semiotic_spans": NeuralType(('B', 'T', 'C'), IntType()), } def __init__(self, input_file: str, example_builder: BertExampleBuilder) -> None: self.examples = read_input_file(example_builder, input_file, infer=False) def __len__(self): return len(self.examples) def __getitem__(self, idx: int): input_ids = np.array(self.examples[idx].features["input_ids"]) input_mask = np.array(self.examples[idx].features["input_mask"]) segment_ids = np.array(self.examples[idx].features["segment_ids"]) labels_mask = np.array(self.examples[idx].features["labels_mask"]) tag_labels = np.array(self.examples[idx].features["tag_labels"]) semiotic_labels = np.array(self.examples[idx].features["semiotic_labels"]) semiotic_spans = np.array(self.examples[idx].features["semiotic_spans"]) return input_ids, input_mask, segment_ids, labels_mask, tag_labels, semiotic_labels, semiotic_spans class ThutmoseTaggerTestDataset(Dataset): """ Dataset for inference pipeline. Args: sents: list of strings example_builder: instance of BertExampleBuilder """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { "input_ids": NeuralType(('B', 'T'), ChannelType()), "input_mask": NeuralType(('B', 'T'), MaskType()), "segment_ids": NeuralType(('B', 'T'), ChannelType()), } def __init__(self, sents: List[str], example_builder: BertExampleBuilder) -> None: self.examples = [] for source in sents: example = example_builder.build_bert_example(source, infer=True) if example is None: raise ValueError("Cannot build example from: " + source) self.examples.append(example) def __len__(self): return len(self.examples) def __getitem__(self, idx: int): input_ids = np.array(self.examples[idx].features["input_ids"]) input_mask = np.array(self.examples[idx].features["input_mask"]) segment_ids = np.array(self.examples[idx].features["segment_ids"]) return input_ids, input_mask, segment_ids
NeMo-main
nemo/collections/nlp/data/text_normalization_as_tagging/thutmose_tagger_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.text_normalization_as_tagging.thutmose_tagger_dataset import ( ThutmoseTaggerDataset, ThutmoseTaggerTestDataset, )
NeMo-main
nemo/collections/nlp/data/text_normalization_as_tagging/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from itertools import groupby from typing import Dict, List, Tuple import numpy as np """Utility functions for Thutmose Tagger.""" def get_token_list(text: str) -> List[str]: """Returns a list of tokens. This function expects that the tokens in the text are separated by space character(s). Example: "ca n't , touch". This is the case at least for the public DiscoFuse and WikiSplit datasets. Args: text: String to be split into tokens. """ return text.split() def yield_sources_and_targets(input_filename: str): """Reads and yields source lists and targets from the input file. Args: input_filename: Path to the input file. Yields: Tuple with (list of source texts, target text). """ # The format expects a TSV file with the source on the first and the # target on the second column. with open(input_filename, 'r') as f: for line in f: source, target, semiotic_info = line.rstrip('\n').split('\t') yield source, target, semiotic_info def read_label_map(path: str) -> Dict[str, int]: """Return label map read from the given path.""" with open(path, 'r') as f: label_map = {} empty_line_encountered = False for tag in f: tag = tag.strip() if tag: label_map[tag] = len(label_map) else: if empty_line_encountered: raise ValueError('There should be no empty lines in the middle of the label map ' 'file.') empty_line_encountered = True return label_map def read_semiotic_classes(path: str) -> Dict[str, int]: """Return semiotic classes map read from the given path.""" with open(path, 'r') as f: semiotic_classes = {} empty_line_encountered = False for tag in f: tag = tag.strip() if tag: semiotic_classes[tag] = len(semiotic_classes) else: if empty_line_encountered: raise ValueError('There should be no empty lines in the middle of the label map ' 'file.') empty_line_encountered = True return semiotic_classes def split_text_by_isalpha(s: str): """Split string into segments, so that alphabetic sequence is one segment""" for k, g in groupby(s, str.isalpha): yield ''.join(g) def spoken_preprocessing(spoken: str) -> str: """Preprocess spoken input for Thuthmose tagger model. Attention! This function is used both during data preparation and during inference. If you change it, you should rerun data preparation and retrain the model. """ spoken = spoken.casefold() spoken = spoken.replace('_trans', '').replace('_letter_latin', '').replace('_letter', '') # "долларов сэ ш а" => "долларов-сэ-ш-а" #join into one token to simplify alignment spoken = re.sub(r" долларов сэ ш а", r" долларов-сэ-ш-а", spoken) spoken = re.sub(r" доллара сэ ш а", r" доллара-сэ-ш-а", spoken) spoken = re.sub(r" доллар сэ ш а", r" доллар-сэ-ш-а", spoken) spoken = re.sub(r" фунтов стерлингов", r" фунтов-стерлингов", spoken) spoken = re.sub(r" фунта стерлингов", r" фунта-стерлингов", spoken) spoken = re.sub(r" фунт стерлингов", r" фунт-стерлингов", spoken) spoken = re.sub(r" долларами сэ ш а", r" долларами-сэ-ш-а", spoken) spoken = re.sub(r" долларам сэ ш а", r" долларам-сэ-ш-а", spoken) spoken = re.sub(r" долларах сэ ш а", r" долларах-сэ-ш-а", spoken) spoken = re.sub(r" долларе сэ ш а", r" долларе-сэ-ш-а", spoken) spoken = re.sub(r" доллару сэ ш а", r" доллару-сэ-ш-а", spoken) spoken = re.sub(r" долларом сэ ш а", r" долларом-сэ-ш-а", spoken) spoken = re.sub(r" фунтами стерлингов", r" фунтами-стерлингов", spoken) spoken = re.sub(r" фунтам стерлингов", r" фунтам-стерлингов", spoken) spoken = re.sub(r" фунтах стерлингов", r" фунтах-стерлингов", spoken) spoken = re.sub(r" фунте стерлингов", r" фунте-стерлингов", spoken) spoken = re.sub(r" фунту стерлингов", r" фунту-стерлингов", spoken) spoken = re.sub(r" фунтом стерлингов", r" фунтом-стерлингов", spoken) return spoken ## This function is used only in data preparation (examples/nlp/normalisation_as_tagging/dataset_preparation) def get_src_and_dst_for_alignment( semiotic_class: str, written: str, spoken: str, lang: str ) -> Tuple[str, str, str, str]: """Tokenize written and spoken span. Args: semiotic_class: str - lowercase semiotic class, ex. "cardinal" written: str - written form, ex. "2015 году" spoken: str - spoken form, ex. "две тысячи пятнадцатом году" lang: str - language Return: src: str - written part, where digits and foreign letters are tokenized by characters, ex. "2 0 1 5" dst: str - spoken part tokenized by space, ex. "две тысячи пятнадцатом" same_begin: str same_end: str """ written = written.casefold() # ATTENTION!!! This is INPUT transformation! Need to do the same at inference time! spoken = spoken_preprocessing(spoken) # remove same fragments at the beginning or at the end of spoken and written form written_parts = written.split() spoken_parts = spoken.split() same_from_begin = 0 same_from_end = 0 for i in range(min(len(written_parts), len(spoken_parts))): if written_parts[i] == spoken_parts[i]: same_from_begin += 1 else: break for i in range(min(len(written_parts), len(spoken_parts))): if written_parts[-i - 1] == spoken_parts[-i - 1]: same_from_end += 1 else: break same_begin = written_parts[0:same_from_begin] same_end = [] if same_from_end == 0: written = " ".join(written_parts[same_from_begin:]) spoken = " ".join(spoken_parts[same_from_begin:]) else: written = " ".join(written_parts[same_from_begin:-same_from_end]) spoken = " ".join(spoken_parts[same_from_begin:-same_from_end]) same_end = written_parts[-same_from_end:] fragments = list(split_text_by_isalpha(written)) written_tokens = [] for frag in fragments: if frag.isalpha(): if semiotic_class == "plain" or semiotic_class == "letters" or semiotic_class == "electronic": chars = list(frag.strip()) chars[0] = "_" + chars[0] # prepend first symbol of a word with underscore chars[-1] = chars[-1] + "_" # append underscore to the last symbol written_tokens += chars else: written_tokens.append("_" + frag + "_") else: chars = list(frag.strip().replace(" ", "")) if len(chars) > 0: chars[0] = "_" + chars[0] # prepend first symbol of a non-alpha fragment with underscore chars[-1] = chars[-1] + "_" # append underscore to the last symbol of a non-alpha fragment written_tokens += chars written_str = " ".join(written_tokens) # _н_ _._ _г_ _._ => _н._ _г._ written_str = re.sub( r"([abcdefghijklmnopqrstuvwxyzабвгдеёжзийклмнопрстуфхцчшщъыьэюя])_ _\._", r"\g<1>._", written_str ) # _тыс_ _. $ => _тыс._ _$ written_str = re.sub( r"([abcdefghijklmnopqrstuvwxyzабвгдеёжзийклмнопрстуфхцчшщъыьэюя])_ _\. ([^_])]", r"\g<1>._ _\g<2>", written_str ) if semiotic_class == "ordinal": # _8 2 -_ _ом_ => _8 2-ом_ written_str = re.sub( r"([\d]) -_ _([abcdefghijklmnopqrstuvwxyzабвгдеёжзийклмнопрстуфхцчшщъыьэюя]+)_", r"\g<1>-\g<2>_", written_str, ) # _8 8_ _й_ _8 8й_ written_str = re.sub( r"([\d])_ _([abcdefghijklmnopqrstuvwxyzабвгдеёжзийклмнопрстуфхцчшщъыьэюя]+)_", r"\g<1>\g<2>_", written_str ) if semiotic_class == "cardinal": # _2 5 -_ _ти_ => _2 5-ти_ written_str = re.sub(r"([\d]) -_ _(ти)_", r"\g<1>-\g<2>_", written_str) written_str = re.sub(r"([\d]) -_ _(и)_", r"\g<1>-\g<2>_", written_str) written_str = re.sub(r"([\d]) -_ _(мя)_", r"\g<1>-\g<2>_", written_str) written_str = re.sub(r"([\d]) -_ _(ех)_", r"\g<1>-\g<2>_", written_str) # _i b m_ _'_ _s_ => _i b m's_ if lang == "en": written_str = re.sub(r"_ _'_ _s_", r"'s_", written_str) if semiotic_class == "date" and lang == "en": # _1 9 8 0_ _s_ => _1 9 8 0s_ written_str = re.sub(r"([\d])_ _s_", r"\g<1>s_", written_str) # _1 9 5 0 '_ _s_ => _1 9 5 0's_ written_str = re.sub(r"([\d]) '_ _s_", r"\g<1>'s_", written_str) # _wednesday_ _2 6_ _th_ _september_ _2 0 1 2_ => _wednesday_ _2 6th_ _september_ _2 0 1 2_ written_str = re.sub(r"([\d])_ _th_", r"\g<1>th_", written_str) # _wednesday_ _may_ _2 1_ _st_ _, 2 0 1 4_ => _wednesday_ _may_ _2 1st_ _, 2 0 1 4_ written_str = re.sub(r"([\d])_ _st_", r"\g<1>st_", written_str) # _wednesday_ _2 3_ _rd_ _july_ _2 0 1 4_ => _wednesday_ _2 3rd_ _july_ _2 0 1 4_ written_str = re.sub(r"([\d])_ _rd_", r"\g<1>rd_", written_str) # _wednesday_ _2 2_ _nd_ _july_ _2 0 1 4_ => _wednesday_ _2 2nd_ _july_ _2 0 1 4_ written_str = re.sub(r"([\d])_ _nd_", r"\g<1>nd_", written_str) written_str = re.sub(r"_mon_ _\. ", r"_mon._ ", written_str) written_str = re.sub(r"_tue_ _\. ", r"_tue._ ", written_str) written_str = re.sub(r"_wen_ _\. ", r"_wen._ ", written_str) written_str = re.sub(r"_thu_ _\. ", r"_thu._ ", written_str) written_str = re.sub(r"_fri_ _\. ", r"_fri._ ", written_str) written_str = re.sub(r"_sat_ _\. ", r"_sat._ ", written_str) written_str = re.sub(r"_sun_ _\. ", r"_sun._ ", written_str) written_str = re.sub(r"_jan_ _\. ", r"_jan._ ", written_str) written_str = re.sub(r"_feb_ _\. ", r"_feb._ ", written_str) written_str = re.sub(r"_mar_ _\. ", r"_mar._ ", written_str) written_str = re.sub(r"_apr_ _\. ", r"_apr._ ", written_str) written_str = re.sub(r"_may_ _\. ", r"_may._ ", written_str) written_str = re.sub(r"_jun_ _\. ", r"_jun._ ", written_str) written_str = re.sub(r"_jul_ _\. ", r"_jul._ ", written_str) written_str = re.sub(r"_aug_ _\. ", r"_aug._ ", written_str) written_str = re.sub(r"_sep_ _\. ", r"_sep._ ", written_str) written_str = re.sub(r"_oct_ _\. ", r"_oct._ ", written_str) written_str = re.sub(r"_nov_ _\. ", r"_nov._ ", written_str) written_str = re.sub(r"_dec_ _\. ", r"_dec._ ", written_str) if semiotic_class == "date" and lang == "ru": # _1 8 . 0 8 . 2 0 0 1_ => _1 8_ .08. _2 0 0 1_ # _1 8 / 0 8 / 2 0 0 1_ => _1 8_ /08/ _2 0 0 1_ # _1 8 - 0 8 - 2 0 0 1_ => _1 8_ -08- _2 0 0 1_ written_str = re.sub(r"([\d]) \. ([01]) ([0123456789]) \. ([\d])", r"\g<1>_ .\g<2>\g<3>. _\g<4>", written_str) written_str = re.sub(r"([\d]) / ([01]) ([0123456789]) / ([\d])", r"\g<1>_ /\g<2>\g<3>/ _\g<4>", written_str) written_str = re.sub(r"([\d]) - ([01]) ([0123456789]) - ([\d])", r"\g<1>_ -\g<2>\g<3>- _\g<4>", written_str) # _1 8 . 8 . 2 0 0 1_ => _1 8_ .8. _2 0 0 1_ # _1 8 / 8 / 2 0 0 1_ => _1 8_ /8/ _2 0 0 1_ # _1 8 - 8 - 2 0 0 1_ => _1 8_ -8- _2 0 0 1_ written_str = re.sub(r"([\d]) \. ([123456789]) \. ([\d])", r"\g<1>_ .\g<2>. _\g<3>", written_str) written_str = re.sub(r"([\d]) / ([123456789]) / ([\d])", r"\g<1>_ /\g<2>/ _\g<3>", written_str) written_str = re.sub(r"([\d]) - ([123456789]) - ([\d])", r"\g<1>_ -\g<2>- _\g<3>", written_str) if semiotic_class == "money": # if a span start with currency, move it to the end # "_$ 2 5_" => "_2 5_ _$<<" #<< means "at post-processing move to the beginning of th semiotic span" written_str = re.sub( r"^(_[^0123456789abcdefghijklmnopqrstuvwxyzабвгдеёжзийклмнопрстуфхцчшщъыьэюя]) ([\d].*)$", r"_\g<2> \g<1><<", written_str, ) # "_us_ _$ 7 0 0_" => "_us__$ 7 0 0_" written_str = re.sub(r"^_us_ _\$ ([\d].*)$", r"_\g<1> _us__$<<", written_str) # "_2 5 $_" => "_2 5_ _$_" #insert space between last digit and dollar sign written_str = re.sub( r"([\d]) ([^0123456789abcdefghijklmnopqrstuvwxyzабвгдеёжзийклмнопрстуфхцчшщъыьэюя_]_)", r"\g<1>_ _\g<2>", written_str, ) if semiotic_class == "time": # "_pm_ _1 0_" => "_1 0_ _pm_<<" written_str = re.sub(r"^(_[ap]m_) (_[\d].*)$", r"\g<2> \g<1><<", written_str) # "_8 : 0 0_ _a._ _m._ => _8:00_ _a._ _m._" # "_1 2 : 0 0_ _a._ _m._ => _1 2:00_ _a._ _m._" written_str = re.sub(r"(\d) [:.] 0 0_", r"\g<1>:00_", written_str) # "_2 : 4 2 : 4 4_" => "_2: 4 2: 4 4_" written_str = re.sub(r"(\d) [:.] ", r"\g<1>: ", written_str) if semiotic_class == "measure": # "_6 5 8_ _см_ _³ ._" => " _6 5 8_ _³> _см._" # > means "at post-processing swap with the next token to the right" written_str = re.sub( r"(_[abcdefghijklmnopqrstuvwxyzабвгдеёжзийклмнопрстуфхцчшщъыьэюя.]+_) (_[³²]_?)", r"\g<2>> \g<1>", written_str, ) return written_str, spoken, " ".join(same_begin), " ".join(same_end) def fill_alignment_matrix( fline2: str, fline3: str, gline2: str, gline3: str ) -> Tuple[np.ndarray, List[str], List[str]]: """Parse Giza++ direct and reverse alignment results and represent them as an alignment matrix Args: fline2: e.g. "_2 0 1 4_" fline3: e.g. "NULL ({ }) twenty ({ 1 }) fourteen ({ 2 3 4 })" gline2: e.g. "twenty fourteen" gline3: e.g. "NULL ({ }) _2 ({ 1 }) 0 ({ }) 1 ({ }) 4_ ({ 2 })" Returns: matrix: a numpy array of shape (src_len, dst_len) filled with [0, 1, 2, 3], where 3 means a reliable alignment the corresponding words were aligned to one another in direct and reverse alignment runs, 1 and 2 mean that the words were aligned only in one direction, 0 - no alignment. srctokens: e.g. ["twenty", "fourteen"] dsttokens: e.g. ["_2", "0", "1", "4_"] For example, the alignment matrix for the above example may look like: [[3, 0, 0, 0] [0, 2, 2, 3]] """ if fline2 is None or gline2 is None or fline3 is None or gline3 is None: raise ValueError(f"empty params") srctokens = gline2.split() dsttokens = fline2.split() pattern = r"([^ ]+) \(\{ ([^\(\{\}\)]*) \}\)" src2dst = re.findall(pattern, fline3.replace("({ })", "({ })")) dst2src = re.findall(pattern, gline3.replace("({ })", "({ })")) if len(src2dst) != len(srctokens) + 1: raise ValueError( "length mismatch: len(src2dst)=" + str(len(src2dst)) + "; len(srctokens)" + str(len(srctokens)) + "\n" + gline2 + "\n" + fline3 ) if len(dst2src) != len(dsttokens) + 1: raise ValueError( "length mismatch: len(dst2src)=" + str(len(dst2src)) + "; len(dsttokens)" + str(len(dsttokens)) + "\n" + fline2 + "\n" + gline3 ) matrix = np.zeros((len(srctokens), len(dsttokens))) for i in range(1, len(src2dst)): token, to_str = src2dst[i] if to_str == "": continue to = list(map(int, to_str.split())) for t in to: matrix[i - 1][t - 1] = 2 for i in range(1, len(dst2src)): token, to_str = dst2src[i] if to_str == "": continue to = list(map(int, to_str.split())) for t in to: matrix[t - 1][i - 1] += 1 return matrix, srctokens, dsttokens def check_monotonicity(matrix: np.ndarray) -> bool: """Check if alignment is monotonous - i.e. the relative order is preserved (no swaps). Args: matrix: a numpy array of shape (src_len, dst_len) filled with [0, 1, 2, 3], where 3 means a reliable alignment the corresponding words were aligned to one another in direct and reverse alignment runs, 1 and 2 mean that the words were aligned only in one direction, 0 - no alignment. """ is_sorted = lambda k: np.all(k[:-1] <= k[1:]) a = np.argwhere(matrix == 3) b = np.argwhere(matrix == 2) c = np.vstack((a, b)) d = c[c[:, 1].argsort()] # sort by second column (less important) d = d[d[:, 0].argsort(kind="mergesort")] return is_sorted(d[:, 1]) def get_targets(matrix: np.ndarray, dsttokens: List[str], delimiter: str) -> List[str]: """Join some of the destination tokens, so that their number becomes the same as the number of input words. Unaligned tokens tend to join to the left aligned token. Args: matrix: a numpy array of shape (src_len, dst_len) filled with [0, 1, 2, 3], where 3 means a reliable alignment the corresponding words were aligned to one another in direct and reverse alignment runs, 1 and 2 mean that the words were aligned only in one direction, 0 - no alignment. dsttokens: e.g. ["_2", "0", "1", "4_"] Returns: targets: list of string tokens, with one-to-one correspondence to matrix.shape[0] Example: If we get matrix=[[3, 0, 0, 0] [0, 2, 2, 3]] dsttokens=["_2", "0", "1", "4_"] it gives targets = ["_201", "4_"] Actually, this is a mistake instead of ["_20", "14_"]. That will be further corrected by regular expressions. """ targets = [] last_covered_dst_id = -1 for i in range(len(matrix)): dstlist = [] for j in range(last_covered_dst_id + 1, len(dsttokens)): # matrix[i][j] == 3: safe alignment point if matrix[i][j] == 3 or ( j == last_covered_dst_id + 1 and np.all(matrix[i, :] == 0) # if the whole line does not have safe points and np.all(matrix[:, j] == 0) # and the whole column does not have safe points, match them ): if len(targets) == 0: # if this is first safe point, attach left unaligned columns to it, if any for k in range(0, j): if np.all(matrix[:, k] == 0): # if column k does not have safe points dstlist.append(dsttokens[k]) else: break dstlist.append(dsttokens[j]) last_covered_dst_id = j for k in range(j + 1, len(dsttokens)): if np.all(matrix[:, k] == 0): # if column k does not have safe points dstlist.append(dsttokens[k]) last_covered_dst_id = k else: break if len(dstlist) > 0: targets.append(delimiter.join(dstlist)) else: targets.append("<DELETE>") return targets def get_targets_from_back(matrix: np.ndarray, dsttokens: List[str], delimiter: str) -> List[str]: """Join some of the destination tokens, so that their number becomes the same as the number of input words. Unaligned tokens tend to join to the right aligned token. Args: matrix: a numpy array of shape (src_len, dst_len) filled with [0, 1, 2, 3], where 3 means a reliable alignment the corresponding words were aligned to one another in direct and reverse alignment runs, 1 and 2 mean that the words were aligned only in one direction, 0 - no alignment. dsttokens: e.g. ["_2", "0", "1", "4_"] Returns: targets: list of string tokens, with one-to-one correspondence to matrix.shape[0] Example: If we get matrix=[[3, 0, 0, 0] [0, 2, 2, 3]] dsttokens=["_2", "0", "1", "4_"] it gives targets = ["_2", "014_"] Actually, this is a mistake instead of ["_20", "14_"]. That will be further corrected by regular expressions. """ targets = [] last_covered_dst_id = len(dsttokens) for i in range(len(matrix) - 1, -1, -1): dstlist = [] for j in range(last_covered_dst_id - 1, -1, -1): if matrix[i][j] == 3 or ( j == last_covered_dst_id - 1 and np.all(matrix[i, :] == 0) and np.all(matrix[:, j] == 0) ): if len(targets) == 0: for k in range(len(dsttokens) - 1, j, -1): if np.all(matrix[:, k] == 0): dstlist.append(dsttokens[k]) else: break dstlist.append(dsttokens[j]) last_covered_dst_id = j for k in range(j - 1, -1, -1): if np.all(matrix[:, k] == 0): dstlist.append(dsttokens[k]) last_covered_dst_id = k else: break if len(dstlist) > 0: targets.append(delimiter.join(list(reversed(dstlist)))) else: targets.append("<DELETE>") return list(reversed(targets))
NeMo-main
nemo/collections/nlp/data/text_normalization_as_tagging/utils.py
# Copyright 2019 The Google Research Authors. # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file contains code artifacts adapted from the original implementation: https://github.com/google-research/lasertagger/blob/master/tagging.py """ import re from enum import Enum from typing import List, Tuple import nemo.collections.nlp.data.text_normalization_as_tagging.utils as utils """Classes representing a tag and a text editing task. Tag corresponds to an edit operation, while EditingTask is a container for the input that LaserTagger takes. EditingTask also has a method for realizing the output text given the predicted tags. """ class SwapType(Enum): """Type of swap""" LONG_LEFT = 1 # token should be moved to the leftmost position of the whole semiotic span LONG_RIGHT = 2 # token should be moved to the rightmost position of the whole semiotic span SHORT_LEFT = 3 # token should be swapped with the left adjacent token SHORT_RIGHT = 4 # token should be swapped with the right adjacent token class Token: """Class for the output token""" def __init__(self, inp: str, tag: str, out: str) -> None: self.inp = inp self.tag = tag self.out = out self.swap = None if self.out.endswith(">>"): self.swap = SwapType.LONG_RIGHT elif self.out.endswith("<<"): self.swap = SwapType.LONG_LEFT elif self.out.endswith(">"): self.swap = SwapType.SHORT_RIGHT elif self.out.endswith("<"): self.swap = SwapType.SHORT_LEFT @property def is_begin(self) -> bool: return self.out.startswith("_") @property def is_end(self) -> bool: return self.out.endswith("_") class TagType(Enum): """Base tag which indicates the type of an edit operation.""" # Keep the tagged token. KEEP = 1 # Delete the tagged token. DELETE = 2 class Tag(object): """Tag that corresponds to a token edit operation. Attributes: tag_type: TagType of the tag. added_phrase: A phrase that's inserted before the tagged token (can be empty). """ def __init__(self, tag: str) -> None: """Constructs a Tag object by parsing tag to tag_type and added_phrase. Args: tag: String representation for the tag which should have the following format "<TagType>|<added_phrase>" or simply "<TagType>" if no phrase is added before the tagged token. Examples of valid tags include "KEEP", "DELETE|and". Raises: ValueError: If <TagType> is invalid. """ if '|' in tag: pos_pipe = tag.index('|') tag_type, added_phrase = tag[:pos_pipe], tag[pos_pipe + 1 :] else: tag_type, added_phrase = tag, '' try: self.tag_type = TagType[tag_type] except KeyError: raise ValueError('TagType should be KEEP or DELETE, not {}'.format(tag_type)) self.added_phrase = added_phrase def __str__(self) -> str: if not self.added_phrase: return self.tag_type.name else: return '{}|{}'.format(self.tag_type.name, self.added_phrase) class EditingTask(object): """Text-editing task. Attributes: source_tokens: Tokens of the source texts concatenated into a single list. first_tokens: The indices of the first tokens of each source text. """ def __init__(self, source: str) -> None: """Initializes an instance of EditingTask. Args: source: string. """ token_list = utils.get_token_list(source) # Tokens of the source texts concatenated into a single list. self.source_tokens = [] # The indices of the first tokens of each source text. self.first_tokens = [] self.first_tokens.append(len(self.source_tokens)) self.source_tokens.extend(token_list) def realize_output(self, tags: List[Tag], semiotic_labels: List[str]) -> Tuple[str, str, str, str]: """Realize output text based on the source tokens and predicted tags. Args: tags: Predicted tags (one for each token in `self.source_tokens`). semiotic_labels: Predicted semiotic labels (one for each token in `self.source_tokens`). Returns: The realizer output text. Raises: ValueError: If the number of tags doesn't match the number of source tokens. """ if len(tags) != len(self.source_tokens) or len(tags) != len(semiotic_labels): raise ValueError( 'The number of tags ({}) should match the number of ' 'source tokens ({}) and semiotic labels({})'.format( len(tags), len(self.source_tokens), len(semiotic_labels) ) ) sequence = [] for inp_token, tag in zip(self.source_tokens, tags): if tag.added_phrase: sequence.append(Token(inp_token, tag.added_phrase, tag.added_phrase)) elif tag.tag_type == TagType.KEEP: sequence.append(Token(inp_token, "<SELF>", inp_token)) else: sequence.append(Token(inp_token, "<DELETE>", "")) if len(sequence) != len(semiotic_labels): raise ValueError( "Length mismatch: len(sequence)=" + str(len(sequence)) + "; len(semiotic_labels)=" + str(len(semiotic_labels)) ) out_tokens_with_swap = [t.out for t in sequence] out_tags_with_swap = [t.tag for t in sequence] out_tags_without_swap = [t.tag for t in sequence] previous_semiotic_label_end = -1 current_semiotic_label = "" for i in range(len(sequence)): if sequence[i].swap == SwapType.SHORT_LEFT or sequence[i - 1].swap == SwapType.SHORT_RIGHT: out_tokens_with_swap[i - 1], out_tokens_with_swap[i] = ( out_tokens_with_swap[i], out_tokens_with_swap[i - 1], ) out_tags_with_swap[i - 1], out_tags_with_swap[i] = out_tags_with_swap[i], out_tags_with_swap[i - 1] if semiotic_labels[i] != current_semiotic_label: previous_semiotic_label_end = i - 1 current_semiotic_label = semiotic_labels[i] if sequence[i].swap == SwapType.LONG_LEFT: token = out_tokens_with_swap.pop(i) tag = out_tags_with_swap.pop(i) out_tokens_with_swap.insert(previous_semiotic_label_end + 1, token) out_tags_with_swap.insert(previous_semiotic_label_end + 1, tag) # detokenize output_tokens_str = " ".join(out_tokens_with_swap).replace("<", "").replace(">", "") output_tags_with_swap_str = " ".join(out_tags_with_swap) frags = re.split(r"(_[^ ][^_]+[^ ]_)", output_tokens_str) output_tokens = [] for frag in frags: if frag.startswith("_") and frag.endswith("_"): output_tokens.append(frag.replace(" ", "").replace("_", "")) else: output_tokens.append(frag.strip().replace("_", "")) output_str = " ".join(output_tokens) output_str = re.sub(r" +", " ", output_str) return ( output_str, " ".join(self.source_tokens), " ".join(out_tags_without_swap), output_tags_with_swap_str, )
NeMo-main
nemo/collections/nlp/data/text_normalization_as_tagging/tagging.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.common.sequence_to_sequence_dataset import SequenceToSequenceDataset
NeMo-main
nemo/collections/nlp/data/common/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import ( get_indexed_dataset_, get_samples_mapping, ) from nemo.collections.nlp.data.language_modeling.text_memmap_dataset import TextMemMapDataset from nemo.core.classes import Dataset from nemo.utils import logging __all__ = ['SequenceToSequenceDataset', 'TextMemmapSequenceToSequenceDataset'] class SequenceToSequenceDataset(Dataset): """Sequence to Sequence Dataset in memory.""" def __init__( self, src_file_name: str, tgt_file_name: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, max_src_seq_length: int, max_tgt_seq_length: int, add_bos_to_input: bool = True, add_eos_to_input: bool = True, replace_bos_with_pad: bool = False, ): super().__init__() self.src_file_name = src_file_name self.tgt_file_name = tgt_file_name self.src_tokenizer = src_tokenizer self.tgt_tokenizer = tgt_tokenizer self.max_src_seq_length = max_src_seq_length self.max_tgt_seq_length = max_tgt_seq_length self.add_bos_to_input = add_bos_to_input self.add_eos_to_input = add_eos_to_input self.replace_bos_with_pad = replace_bos_with_pad assert self.max_src_seq_length > 0 assert self.max_tgt_seq_length > 0 self._check_files_exist() self._get_examples() def _check_files_exist(self): if not os.path.exists(self.src_file_name): raise FileNotFoundError(f"Source file {self.src_file_name} not found") if not os.path.exists(self.tgt_file_name): raise FileNotFoundError(f"Source file {self.src_file_name} not found") def __len__(self): return len(self.examples) def __getitem__(self, idx): example = self.examples[idx] text_enc = example['src'] text_dec = example['tgt'][:-1] labels = example['tgt'][1:] return {'text_enc': text_enc, 'text_dec': text_dec, 'labels': labels} def _get_examples(self): self.examples = [] with open(self.src_file_name, encoding='utf8') as f_src, open(self.tgt_file_name, encoding='utf8') as f_tgt: for i, (src, tgt) in enumerate(zip(f_src, f_tgt)): if i % 10000 == 0 and i != 0: logging.info(f"Read {i} lines from {self.src_file_name} & {self.tgt_file_name}") src = self.src_tokenizer.text_to_ids(src.strip()) if self.add_bos_to_input: src = [self.src_tokenizer.pad_id if self.replace_bos_with_pad else self.src_tokenizer.bos_id] + src if self.add_eos_to_input: src = src + [self.src_tokenizer.eos_id] tgt = ( [self.tgt_tokenizer.pad_id if self.replace_bos_with_pad else self.tgt_tokenizer.bos_id] + self.tgt_tokenizer.text_to_ids(tgt.strip()) + [self.tgt_tokenizer.eos_id] ) # Truncate to max sequence length. if len(src) > self.max_src_seq_length: src = src[-self.max_src_seq_length + 1 :] if len(tgt) > self.max_tgt_seq_length: tgt = tgt[-self.max_tgt_seq_length + 1 :] self.examples.append({'src': src, 'tgt': tgt}) logging.info(f'Dataset Length : {len(self.examples)}') def collate_fn(self, batch): text_enc = [item['text_enc'] for item in batch] text_dec = [item['text_dec'] for item in batch] labels = [item['labels'] for item in batch] if isinstance(text_enc[0], np.ndarray): text_enc = [x.tolist() for x in text_enc] if isinstance(text_dec[0], np.ndarray): text_dec = [x.tolist() for x in text_dec] if isinstance(labels[0], np.ndarray): labels = [x.tolist() for x in labels] max_dec_input_length = max([len(item) for item in text_dec]) if text_dec else 0 max_enc_input_length = max([len(item) for item in text_enc]) if text_enc else 0 max_label_length = max([len(item) for item in labels]) if labels else 0 loss_mask = [([1] * (len(item))) + ([0] * (max_label_length - len(item))) for item in labels] text_enc = [item + [self.src_tokenizer.pad_id] * (max_enc_input_length - len(item)) for item in text_enc] text_dec = [item + [self.tgt_tokenizer.pad_id] * (max_dec_input_length - len(item)) for item in text_dec] labels = [item + [self.tgt_tokenizer.pad_id] * (max_label_length - len(item)) for item in labels] text_enc = torch.LongTensor(text_enc) text_dec = torch.LongTensor(text_dec) labels = torch.LongTensor(labels) loss_mask = torch.LongTensor(loss_mask) enc_mask = (text_enc != self.src_tokenizer.pad_id).long() dec_mask = (text_dec != self.tgt_tokenizer.pad_id).long() return { 'text_enc': text_enc, 'text_dec': text_dec, 'labels': labels, 'loss_mask': loss_mask, 'enc_mask': enc_mask, 'dec_mask': dec_mask, } class IndexedSequenceToSequenceDataset(SequenceToSequenceDataset): """Abstract class for TextMemmapSequenceToSequenceDataset and BinarizedMemmapSequenceToSequenceDataset. This class is not meant to be used standalone and just as an abstract class for the two subclasses. """ def __init__( self, src_file_name: str, tgt_file_name: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, max_src_seq_length: int, max_tgt_seq_length: int, seed: int = 1234, add_bos_to_enc: bool = True, add_eos_to_enc: bool = True, max_num_samples: int = None, prepend_id: int = None, ): """ src_file_name: Path to a single source file on disk. This is either the path to a raw text file or the prefix to the processed src_file_name.bin/idx files. src_file_name: Path to a single target file on disk. This is either the path to a raw text file or the prefix to the processed tgt_file_name.bin/idx files. src_tokenizer: Tokenizer for the source dataset. Instance of a class that inherits TokenizerSpec (ex: YTTM, SentencePiece). tgt_tokenizer: Tokenizer for the target dataset. Instance of a class that inherits TokenizerSpec (ex: YTTM, SentencePiece). max_src_seq_length: Maximum length of the source sequences. Lines above this length will be truncated. max_tgt_seq_length: Maximum length of the target sequences. Lines above this length will be truncated. seed: Random seed for data shuffling. max_num_samples: Maximum number of samples to load. This can be > dataset length if you want to oversample data. If None, all samples will be loaded. prepend_id: If not None, prepend this id to the encoder input. """ super().__init__( src_file_name=src_file_name, tgt_file_name=tgt_file_name, src_tokenizer=src_tokenizer, tgt_tokenizer=tgt_tokenizer, max_src_seq_length=max_src_seq_length, max_tgt_seq_length=max_tgt_seq_length, ) self.seed = seed self.max_num_samples = max_num_samples self.add_bos_to_enc = add_bos_to_enc self.add_eos_to_enc = add_eos_to_enc self.prepend_id = prepend_id logging.info(f'Desired number of samples : {self.max_num_samples}') logging.info(f'Source Dataset Length : {len(self.src_indexed_dataset)}') logging.info(f'Target Dataset Length : {len(self.tgt_indexed_dataset)}') def __len__(self): if self.max_num_samples is None: return len(self.src_indexed_dataset) else: return self.max_num_samples def _get_sample(self, idx): if isinstance(idx, np.int64): idx = idx.item() if self.samples_mapping is not None: assert idx < len(self.samples_mapping) idx, _, _ = self.samples_mapping[idx] if isinstance(idx, np.uint32): idx = idx.item() assert idx < len(self.src_indexed_dataset) src = self.src_indexed_dataset[idx] tgt = self.tgt_indexed_dataset[idx] return src, tgt def __getitem__(self, idx): src, tgt = self._get_sample(idx) offset = 0 if self.add_bos_to_enc: offset += 1 if self.add_eos_to_enc: offset += 1 if self.prepend_id is not None: offset += 1 if len(src) > self.max_src_seq_length - offset: src = src[: self.max_src_seq_length - offset] if self.add_bos_to_enc: src = np.concatenate([[self.src_tokenizer.bos_id], src]) if self.prepend_id is not None: src = np.concatenate([[self.prepend_id], src]) if self.add_eos_to_enc: src = np.concatenate([src, [self.src_tokenizer.eos_id]]) if len(tgt) > self.max_tgt_seq_length - 2: tgt = tgt[: self.max_tgt_seq_length - 2] text_dec = np.concatenate([[self.tgt_tokenizer.bos_id], tgt]) labels = np.concatenate([tgt, [self.tgt_tokenizer.eos_id]]) return {'text_enc': src, 'text_dec': text_dec, 'labels': labels} def _build_samples_mapping(self): if self.max_num_samples is not None: # This means max src and max tgt sequence length need to be the same if self.max_src_seq_length != self.max_tgt_seq_length: raise ValueError( f"max_src_seq_length ({self.max_src_seq_length}) != max_tgt_seq_length ({self.max_tgt_seq_length}). This is needed for max_samples based training for now." ) self.samples_mapping = get_samples_mapping( indexed_dataset=self.src_indexed_dataset, data_prefix=self.src_file_name, num_epochs=None, max_num_samples=self.max_num_samples, max_seq_length=self.max_src_seq_length - 2, short_seq_prob=0, seed=self.seed, name=self.src_file_name.split('/')[-1], binary_head=False, ) else: self.samples_mapping = None class TextMemmapSequenceToSequenceDataset(IndexedSequenceToSequenceDataset): """Memory-mapped text sequence to sequence dataset. Operates on raw text files and tokenizes the text on-the-fly.""" def __init__( self, src_file_name: str, tgt_file_name: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, max_src_seq_length: int, max_tgt_seq_length: int, seed: int = 1234, max_num_samples: int = None, add_bos_to_enc: bool = True, add_eos_to_enc: bool = True, prepend_id: int = None, ): """ src_file_name: Path to a single source file on disk. The file should contain one sentence per line and be raw text. tgt_file_name: Path to a single target file on disk. The file should contain one sentence per line aligned with src_file_name and be raw text. src_tokenizer: Tokenizer for the source dataset. Instance of a class that inherits TokenizerSpec (ex: YTTM, SentencePiece). tgt_tokenizer: Tokenizer for the target dataset. Instance of a class that inherits TokenizerSpec (ex: YTTM, SentencePiece). max_src_seq_length: Maximum length of the source sequences. Lines above this length will be truncated. max_tgt_seq_length: Maximum length of the target sequences. Lines above this length will be truncated. seed: Random seed for data shuffling. max_num_samples: Maximum number of samples to load. This can be > dataset length if you want to oversample data. If None, all samples will be loaded. add_bos_to_enc: Add BOS token to the encoder input. add_eos_to_enc: Add EOS token to the encoder input. prepend_id: If not None, prepend this id to the encoder input. """ self.seed = seed self.max_num_samples = max_num_samples super().__init__( src_file_name=src_file_name, tgt_file_name=tgt_file_name, src_tokenizer=src_tokenizer, tgt_tokenizer=tgt_tokenizer, max_src_seq_length=max_src_seq_length, max_tgt_seq_length=max_tgt_seq_length, seed=seed, max_num_samples=max_num_samples, add_bos_to_enc=add_bos_to_enc, add_eos_to_enc=add_eos_to_enc, prepend_id=prepend_id, ) def _get_examples(self): self.src_indexed_dataset = TextMemMapDataset( dataset_paths=[self.src_file_name], tokenizer=self.src_tokenizer, header_lines=0 ) self.tgt_indexed_dataset = TextMemMapDataset( dataset_paths=[self.tgt_file_name], tokenizer=self.tgt_tokenizer, header_lines=0 ) assert len(self.src_indexed_dataset) == len( self.tgt_indexed_dataset ), "src and tgt has different number of lines" self._build_samples_mapping() class BinarizedMemmapSequenceToSequenceDataset(IndexedSequenceToSequenceDataset): """Memory-mapped text sequence to sequence dataset. Operates pre-tokenized binarized data files.""" def __init__( self, src_dataset_prefix: str, tgt_dataset_prefix: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, max_src_seq_length: int, max_tgt_seq_length: int, seed: int = 1234, max_num_samples: int = None, add_bos_to_enc: bool = True, add_eos_to_enc: bool = True, prepend_id: int = None, ): """ src_dataset_prefix: Path to the *prefix* of a single source bin/idx file on disk. This necessitates the existance src_file_prefix.bin and src_file_prefix.idx. tgt_dataset_prefix: Path to the *prefix* of a single target aligned with source bin/idx file on disk. This necessitates the existance tgt_file_prefix.bin and tgt_file_prefix.idx. src_tokenizer: Tokenizer for the source dataset. Instance of a class that inherits TokenizerSpec (ex: YTTM, SentencePiece). tgt_tokenizer: Tokenizer for the target dataset. Instance of a class that inherits TokenizerSpec (ex: YTTM, SentencePiece). max_src_seq_length: Maximum length of the source sequences. Lines above this length will be truncated. max_tgt_seq_length: Maximum length of the target sequences. Lines above this length will be truncated. seed: Random seed for data shuffling. max_num_samples: Maximum number of samples to load. This can be > dataset length if you want to oversample data. If None, all samples will be loaded. add_bos_to_enc: Add BOS token to the encoder input. add_eos_to_enc: Add EOS token to the encoder input. prepend_id: If not None, prepend this id to the encoder input. """ self.src_dataset_prefix = src_dataset_prefix self.tgt_dataset_prefix = tgt_dataset_prefix self.seed = seed self.max_num_samples = max_num_samples super().__init__( src_file_name=src_dataset_prefix, tgt_file_name=tgt_dataset_prefix, src_tokenizer=src_tokenizer, tgt_tokenizer=tgt_tokenizer, max_src_seq_length=max_src_seq_length, max_tgt_seq_length=max_tgt_seq_length, seed=seed, max_num_samples=max_num_samples, add_bos_to_enc=add_bos_to_enc, add_eos_to_enc=add_eos_to_enc, prepend_id=prepend_id, ) def _check_files_exist(self): if not os.path.exists(self.src_dataset_prefix + ".bin") or not os.path.exists( self.src_dataset_prefix + ".idx" ): raise FileNotFoundError(f"{self.src_dataset_prefix}.bin or {self.src_dataset_prefix}.idx not found") if not os.path.exists(self.tgt_dataset_prefix + ".bin") or not os.path.exists( self.tgt_dataset_prefix + ".idx" ): raise FileNotFoundError(f"{self.tgt_dataset_prefix}.bin or {self.tgt_dataset_prefix}.idx not found") def _get_examples(self): self.src_indexed_dataset = self._get_indexed_dataset( self.src_dataset_prefix, data_impl='mmap', skip_warmup=True ) self.tgt_indexed_dataset = self._get_indexed_dataset( self.tgt_dataset_prefix, data_impl='mmap', skip_warmup=True ) assert len(self.src_indexed_dataset) == len(self.tgt_indexed_dataset) self._build_samples_mapping() def _get_indexed_dataset(self, data_prefix, data_impl, skip_warmup): indexed_dataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup) return indexed_dataset
NeMo-main
nemo/collections/nlp/data/common/sequence_to_sequence_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.text2sparql.text2sparql_dataset import Text2SparqlDataset
NeMo-main
nemo/collections/nlp/data/text2sparql/__init__.py
# Copyright (c) 2020, MeetKai Inc. All rights reserved. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, List, Optional, Tuple import numpy as np from nemo.collections.common.tokenizers import AutoTokenizer from nemo.core.classes import Dataset from nemo.core.neural_types import ChannelType, MaskType, NeuralType __all__ = ["Text2SparqlDataset"] class Text2SparqlDataset(Dataset): """A dataset class that converts raw data to a dataset that can be used by NeuralMachineTranslationModel. Args: filepath: .tsv file to sequence + label. the first line is header (sentence [tab] label) each line should be [sentence][tab][label] encoder_tokenizer: encoder tokenizer object such as AutoTokenizer decoder_tokenizer: decoder tokenizer object. If using BART or end to end model, set this to encoder_tokenizer max_seq_length: max sequence length including bos and eos tokens num_samples: number of samples you want to use for the dataset. If -1, use all dataset. Useful for testing. convert_labels: if true, converts labels for masked lm and updates pad_id to -100 for hf masked loss """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { "input_ids": NeuralType(("B", "T"), ChannelType()), "attention_mask": NeuralType(("B", "T"), MaskType()), "decoder_input_ids": NeuralType(("B", "T"), ChannelType()), "lm_labels": NeuralType(("B", "T"), ChannelType()), } def __init__( self, filepath: str, encoder_tokenizer: AutoTokenizer, decoder_tokenizer: AutoTokenizer, encoder_add_special_tokens: bool, decoder_add_special_tokens: bool, max_seq_length: int, num_samples: int = -1, convert_labels: bool = False, ): self.filepath = filepath self.encoder_tokenizer = encoder_tokenizer self.decoder_tokenizer = decoder_tokenizer self.encoder_add_special_tokens = encoder_add_special_tokens self.decoder_add_special_tokens = decoder_add_special_tokens self.max_seq_length = max_seq_length self.num_samples = num_samples self.convert_labels = convert_labels if num_samples == 0: raise ValueError("num_samples has to be positive.", num_samples) if self.max_seq_length and self.max_seq_length <= 2: self.max_seq_length = None if not os.path.exists(filepath): raise FileNotFoundError( f"{filepath} not found. The filepath must be set in train_ds.filepath and validation_ds.filepath." ) with open(filepath) as f: lines = f.readlines()[1:] if num_samples > 0: lines = lines[:num_samples] input_ids, input_masks, label_ids = [], [], [] for line in lines: try: sentence, label = line.split("\t") except ValueError: raise ValueError("Each line of input file should contain the format [sentence][tab][label].") ids, mask = self.text_to_ids( sentence, tokenizer=encoder_tokenizer, add_special_tokens=encoder_add_special_tokens ) input_ids.append(ids) input_masks.append(mask) label_ids.append( self.text_to_ids(label, tokenizer=decoder_tokenizer, add_special_tokens=decoder_add_special_tokens)[0] ) self.input_ids = np.asarray(input_ids) self.input_masks = np.asarray(input_masks) self.label_ids = np.asarray(label_ids) def text_to_ids( self, text: str, tokenizer: AutoTokenizer, add_special_tokens=False ) -> Tuple[List[int], List[int]]: """Converts text to ids. Truncates and adds padding.""" text_tokens = tokenizer.text_to_ids(text.strip()) num_special_tokens = 2 if add_special_tokens else 0 if self.max_seq_length and self.max_seq_length > num_special_tokens: text_tokens = text_tokens[: self.max_seq_length - num_special_tokens] if add_special_tokens: text_tokens = [tokenizer.bos_id] + text_tokens + [tokenizer.eos_id] mask = [1] * len(text_tokens) if self.max_seq_length and self.max_seq_length > num_special_tokens: pad_length = self.max_seq_length - len(text_tokens) text_tokens += [tokenizer.pad_id] * pad_length mask += [0] * pad_length return text_tokens, mask def __len__(self): return len(self.input_ids) def convert_label_ids(self, label_ids: List[int]) -> Tuple[List[int], List[int]]: decoder_input_ids = label_ids[:-1] lm_labels = label_ids[1:].copy() lm_labels[label_ids[1:] == self.decoder_tokenizer.pad_id] = -100 # for huggingface masked lm loss return decoder_input_ids, lm_labels def __getitem__(self, idx): if self.convert_labels: decoder_input_ids, lm_labels = self.convert_label_ids(self.label_ids[idx]) else: decoder_input_ids = self.label_ids[idx] lm_labels = self.label_ids[idx] return self.input_ids[idx], self.input_masks[idx], decoder_input_ids, lm_labels
NeMo-main
nemo/collections/nlp/data/text2sparql/text2sparql_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle from tqdm import tqdm from transformers import PreTrainedTokenizerBase from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor from nemo.collections.nlp.data.text_normalization import constants from nemo.collections.nlp.data.text_normalization.utils import read_data_file from nemo.core.classes import Dataset from nemo.utils import logging __all__ = ['TextNormalizationTaggerDataset'] class TextNormalizationTaggerDataset(Dataset): """ Creates dataset to use to train a DuplexTaggerModel. Converts from raw data to an instance that can be used by Dataloader. For dataset to use to do end-to-end inference, see TextNormalizationTestDataset. Args: input_file: path to the raw data file (e.g., train.tsv). For more info about the data format, refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization.rst>`. tokenizer: tokenizer of the model that will be trained on the dataset tokenizer_name: name of the tokenizer, mode: should be one of the values ['tn', 'itn', 'joint']. `tn` mode is for TN only. `itn` mode is for ITN only. `joint` is for training a system that can do both TN and ITN at the same time. tagger_data_augmentation (bool): a flag indicates whether to augment the dataset with additional data instances lang: language of the dataset use_cache: Enables caching to use pickle format to store and read data from, max_insts: Maximum number of instances (-1 means no limit) """ def __init__( self, input_file: str, tokenizer: PreTrainedTokenizerBase, tokenizer_name: str, mode: str, tagger_data_augmentation: bool, lang: str, max_seq_length: int, use_cache: bool = False, max_insts: int = -1, ): assert mode in constants.MODES assert lang in constants.SUPPORTED_LANGS self.mode = mode self.lang = lang self.use_cache = use_cache self.max_insts = max_insts # Get cache path data_dir, filename = os.path.split(input_file) tokenizer_name_normalized = tokenizer_name.replace('/', '_') cached_data_file = os.path.join( data_dir, f'cached_tagger_{filename}_{tokenizer_name_normalized}_{lang}_{max_insts}_{max_seq_length}.pkl', ) if use_cache and os.path.exists(cached_data_file): logging.warning( f"Processing of {input_file} is skipped as caching is enabled and a cache file " f"{cached_data_file} already exists." ) with open(cached_data_file, 'rb') as f: data = pickle.load(f) self.insts, self.tag2id, self.encodings, self.labels = data else: # Read the input raw data file, returns list of sentences parsed as list of class, w_words, s_words raw_insts = read_data_file(input_file, lang=lang) if max_insts >= 0: raw_insts = raw_insts[:max_insts] # Convert raw instances to TaggerDataInstance insts = [] for (_, w_words, s_words) in tqdm(raw_insts): for inst_dir in constants.INST_DIRECTIONS: if inst_dir == constants.INST_BACKWARD and mode == constants.TN_MODE: continue if inst_dir == constants.INST_FORWARD and mode == constants.ITN_MODE: continue # filter out examples that are longer than the maximum sequence length value if ( len(tokenizer(w_words, is_split_into_words=True, padding=False, truncation=True)['input_ids']) >= max_seq_length or len( tokenizer(s_words, is_split_into_words=True, padding=False, truncation=True)['input_ids'] ) >= max_seq_length ): continue # Create a new TaggerDataInstance inst = TaggerDataInstance(w_words, s_words, inst_dir, lang=self.lang) insts.append(inst) # Data Augmentation (if enabled) if tagger_data_augmentation: filtered_w_words, filtered_s_words = [], [] for ix, (w, s) in enumerate(zip(w_words, s_words)): if not s in constants.SPECIAL_WORDS: filtered_w_words.append(w) filtered_s_words.append(s) if len(filtered_s_words) > 1: inst = TaggerDataInstance(filtered_w_words, filtered_s_words, inst_dir, lang) insts.append(inst) self.insts = insts texts = [inst.input_words for inst in insts] tags = [inst.labels for inst in insts] # Tags Mapping self.tag2id = {tag: id for id, tag in enumerate(constants.ALL_TAG_LABELS)} # Finalize self.encodings = tokenizer(texts, is_split_into_words=True, padding=False, truncation=True) self.labels = self.encode_tags(tags, self.encodings) # Write to cache (if use_cache) if use_cache: with open(cached_data_file, 'wb') as out_file: data = self.insts, self.tag2id, self.encodings, self.labels pickle.dump(data, out_file, protocol=pickle.HIGHEST_PROTOCOL) def __getitem__(self, idx: int): """ Args: idx: item index Returns: item: dictionary with input_ids and attention_mask as dictionary keys and the tensors at given idx as values """ item = {key: val[idx] for key, val in self.encodings.items()} item['labels'] = self.labels[idx] return item def __len__(self): return len(self.labels) def encode_tags(self, tags, encodings): encoded_labels = [] for i, label in enumerate(tags): word_ids = encodings.word_ids(batch_index=i) previous_word_idx = None label_ids = [] for word_idx in word_ids: # Special tokens have a word id that is None. We set the label # to -100 (LABEL_PAD_TOKEN_ID) so they are automatically # ignored in the loss function. if word_idx is None: label_ids.append(constants.LABEL_PAD_TOKEN_ID) # We set the label for the first token of each word. elif word_idx != previous_word_idx: label_id = self.tag2id[constants.B_PREFIX + label[word_idx]] label_ids.append(label_id) # We set the label for the other tokens in a word else: if 'SAME' in label[word_idx]: label_id = self.tag2id[constants.B_PREFIX + label[word_idx]] else: label_id = self.tag2id[constants.I_PREFIX + label[word_idx]] label_ids.append(label_id) previous_word_idx = word_idx encoded_labels.append(label_ids) return encoded_labels class TaggerDataInstance: """ This class represents a data instance in a TextNormalizationTaggerDataset. Args: w_words: List of words in a sentence in the written form s_words: List of words in a sentence in the spoken form direction: Indicates the direction of the instance (i.e., INST_BACKWARD for ITN or INST_FORWARD for TN). lang: Language """ def __init__(self, w_words, s_words, direction, lang): # moses tokenization before LM tokenization # e.g., don't -> don 't, 12/3 -> 12 / 3 processor = MosesProcessor(lang_id=lang) # Build input_words and labels input_words, labels = [], [] # Task Prefix if direction == constants.INST_BACKWARD: input_words.append(constants.ITN_PREFIX) if direction == constants.INST_FORWARD: input_words.append(constants.TN_PREFIX) labels.append(constants.TASK_TAG) # Main Content for w_word, s_word in zip(w_words, s_words): w_word = processor.tokenize(w_word) if not s_word in constants.SPECIAL_WORDS: s_word = processor.tokenize(s_word) # Update input_words and labels if s_word == constants.SIL_WORD and direction == constants.INST_BACKWARD: continue if s_word in constants.SPECIAL_WORDS: input_words.append(w_word) labels.append(constants.SAME_TAG) else: if direction == constants.INST_BACKWARD: input_words.append(s_word) if direction == constants.INST_FORWARD: input_words.append(w_word) labels.append(constants.TRANSFORM_TAG) self.input_words = input_words self.labels = labels
NeMo-main
nemo/collections/nlp/data/text_normalization/tagger_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. DECODE_CTX_SIZE = 3 # the size of the input context to be provided to the DuplexDecoderModel LABEL_PAD_TOKEN_ID = -100 # Split names TRAIN, DEV, TEST = 'train', 'dev', 'test' SPLIT_NAMES = [TRAIN, DEV, TEST] # Languages ENGLISH = 'en' RUSSIAN = 'ru' GERMAN = 'de' MULTILINGUAL = 'multilingual' SUPPORTED_LANGS = [ENGLISH, RUSSIAN, GERMAN, MULTILINGUAL] # Task Prefixes ITN_TASK = 0 TN_TASK = 1 ITN_PREFIX = str(ITN_TASK) TN_PREFIX = str(TN_TASK) # Tagger Labels Prefixes B_PREFIX = 'B-' # Denote beginning I_PREFIX = 'I-' # Denote middle TAGGER_LABELS_PREFIXES = [B_PREFIX, I_PREFIX] # Modes TN_MODE = 'tn' ITN_MODE = 'itn' JOINT_MODE = 'joint' MODES = [TN_MODE, ITN_MODE, JOINT_MODE] TASK_ID_TO_MODE = {ITN_TASK: ITN_MODE, TN_TASK: TN_MODE} MODE_TO_TASK_ID = {v: k for k, v in TASK_ID_TO_MODE.items()} # Instance Directions INST_BACKWARD = 'BACKWARD' INST_FORWARD = 'FORWARD' INST_DIRECTIONS = [INST_BACKWARD, INST_FORWARD] DIRECTIONS_TO_ID = {INST_BACKWARD: ITN_TASK, INST_FORWARD: TN_TASK} DIRECTIONS_ID_TO_NAME = {ITN_TASK: INST_BACKWARD, TN_TASK: INST_FORWARD} DIRECTIONS_TO_MODE = {ITN_MODE: INST_BACKWARD, TN_MODE: INST_FORWARD} # TAGS SAME_TAG = 'SAME' # Tag indicates that a token can be kept the same without any further transformation TASK_TAG = 'TASK' # Tag indicates that a token belongs to a task prefix (the prefix indicates whether the current task is TN or ITN) PUNCT_TAG = 'PUNCT' # Tag indicates that a token is a punctuation TRANSFORM_TAG = 'TRANSFORM' # Tag indicates that a token needs to be transformed by the decoder ALL_TAGS = [TASK_TAG, SAME_TAG, TRANSFORM_TAG] # ALL_TAG_LABELS ALL_TAG_LABELS = [] for prefix in TAGGER_LABELS_PREFIXES: for tag in ALL_TAGS: ALL_TAG_LABELS.append(prefix + tag) ALL_TAG_LABELS.sort() LABEL_IDS = {l: idx for idx, l in enumerate(ALL_TAG_LABELS)} # Special Words SIL_WORD = 'sil' SELF_WORD = '<self>' SPECIAL_WORDS = [SIL_WORD, SELF_WORD] # IDs for special tokens for encoding inputs of the decoder models EXTRA_ID_0 = '<extra_id_0>' EXTRA_ID_1 = '<extra_id_1>' EN_GREEK_TO_SPOKEN = { 'Τ': 'tau', 'Ο': 'omicron', 'Δ': 'delta', 'Η': 'eta', 'Κ': 'kappa', 'Ι': 'iota', 'Θ': 'theta', 'Α': 'alpha', 'Σ': 'sigma', 'Υ': 'upsilon', 'Μ': 'mu', 'Χ': 'chi', 'Π': 'pi', 'Ν': 'nu', 'Λ': 'lambda', 'Γ': 'gamma', 'Β': 'beta', 'Ρ': 'rho', 'τ': 'tau', 'υ': 'upsilon', 'φ': 'phi', 'α': 'alpha', 'λ': 'lambda', 'ι': 'iota', 'ς': 'sigma', 'ο': 'omicron', 'σ': 'sigma', 'η': 'eta', 'π': 'pi', 'ν': 'nu', 'γ': 'gamma', 'κ': 'kappa', 'ε': 'epsilon', 'β': 'beta', 'ρ': 'rho', 'ω': 'omega', 'χ': 'chi', }
NeMo-main
nemo/collections/nlp/data/text_normalization/constants.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.text_normalization.decoder_dataset import TextNormalizationDecoderDataset from nemo.collections.nlp.data.text_normalization.tagger_dataset import TextNormalizationTaggerDataset from nemo.collections.nlp.data.text_normalization.test_dataset import TextNormalizationTestDataset
NeMo-main
nemo/collections/nlp/data/text_normalization/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import pickle import random from collections import OrderedDict from typing import List, Optional, Tuple import braceexpand import numpy as np import torch import webdataset as wd from torch.utils.data import IterableDataset from tqdm import tqdm from transformers import PreTrainedTokenizerBase from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor from nemo.collections.nlp.data.text_normalization import constants from nemo.collections.nlp.data.text_normalization.utils import read_data_file from nemo.core.classes import Dataset from nemo.utils import logging __all__ = ['TextNormalizationDecoderDataset', 'TarredTextNormalizationDecoderDataset'] class TextNormalizationDecoderDataset(Dataset): """ Creates dataset to use to train a DuplexDecoderModel. Converts from raw data to an instance that can be used by Dataloader. For dataset to use to do end-to-end inference, see TextNormalizationTestDataset. Args: input_file: path to the raw data file (e.g., train.tsv). For more info about the data format, refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization/nn_text_normalization.rst>`. raw_instances: processed raw instances in the Google TN dataset format (used for tarred dataset) tokenizer: tokenizer of the model that will be trained on the dataset tokenizer_name: name of the tokenizer, mode: should be one of the values ['tn', 'itn', 'joint']. `tn` mode is for TN only. `itn` mode is for ITN only. `joint` is for training a system that can do both TN and ITN at the same time. max_len: maximum length of sequence in tokens. The code will discard any training instance whose input or output is longer than the specified max_len. decoder_data_augmentation (bool): a flag indicates whether to augment the dataset with additional data instances that may help the decoder become more robust against the tagger's errors. Refer to the doc for more info. lang: language of the dataset use_cache: Enables caching to use pickle format to store and read data from max_insts: Maximum number of instances (-1 means no limit) do_tokenize: Tokenize each instance (set to False for Tarred dataset) initial_shuffle: Set to True to shuffle the data """ def __init__( self, input_file: str, tokenizer: PreTrainedTokenizerBase, tokenizer_name: str, raw_instances: Optional[List[List[str]]] = None, mode: str = "joint", max_len: int = 512, decoder_data_augmentation: bool = False, lang: str = "en", use_cache: bool = False, max_insts: int = -1, do_tokenize: bool = True, initial_shuffle: bool = False, ): assert mode in constants.MODES assert lang in constants.SUPPORTED_LANGS self.mode = mode self.lang = lang self.use_cache = use_cache self.max_insts = max_insts self.tokenizer = tokenizer self.max_seq_len = max_len self.mode = mode # Get cache path data_dir, filename = os.path.split(input_file) tokenizer_name_normalized = tokenizer_name.replace('/', '_') cached_data_file = os.path.join( data_dir, f'cached_decoder_{filename}_{tokenizer_name_normalized}_{lang}_{max_insts}_{mode}_{max_len}.pkl', ) if use_cache and os.path.exists(cached_data_file): logging.warning( f"Processing of {input_file} is skipped as caching is enabled and a cache file " f"{cached_data_file} already exists." ) with open(cached_data_file, 'rb') as f: data = pickle.load(f) self.insts, self.inputs, self.examples, self.tn_count, self.itn_count, self.label_ids_semiotic = data else: if raw_instances is None: raw_instances = read_data_file(fp=input_file, lang=self.lang, max_insts=max_insts) else: raw_instances = raw_instances[:max_insts] if initial_shuffle: random.shuffle(raw_instances) logging.debug(f"Converting raw instances to DecoderDataInstance for {input_file}...") self.insts, all_semiotic_classes = self.__process_raw_entries( raw_instances, decoder_data_augmentation=decoder_data_augmentation ) logging.debug( f"Extracted {len(self.insts)} DecoderDateInstances out of {len(raw_instances)} raw instances." ) self.label_ids_semiotic = OrderedDict({l: idx for idx, l in enumerate(all_semiotic_classes)}) logging.debug(f'Label_ids: {self.label_ids_semiotic}') # save labels list from the training file to the input_file to the file dir_name, file_name = os.path.split(input_file) if 'train' in file_name: with open(os.path.join(dir_name, f"label_ids_{file_name}"), 'w') as f: f.write('\n'.join(self.label_ids_semiotic.keys())) if do_tokenize: logging.debug(f'Processing samples, total number: {len(self.insts)}') self.__tokenize_samples(use_cache=use_cache, cached_data_file=cached_data_file) def __process_raw_entries(self, raw_instances: List[Tuple[str]], decoder_data_augmentation): """ Converts raw instances to DecoderDataInstance raw_instances: raw entries: (semiotic class, written words, spoken words) decoder_data_augmentation (bool): a flag indicates whether to augment the dataset with additional data instances that may help the decoder become more robust against the tagger's errors. Refer to the doc for more info. Returns: converted instances and all semiotic classes present in the data """ all_semiotic_classes = set([]) insts = [] for (classes, w_words, s_words) in tqdm(raw_instances): for ix, (_class, w_word, s_word) in enumerate(zip(classes, w_words, s_words)): all_semiotic_classes.update([_class]) if s_word in constants.SPECIAL_WORDS: continue for inst_dir in constants.INST_DIRECTIONS: if inst_dir == constants.INST_BACKWARD and self.mode == constants.TN_MODE: continue if inst_dir == constants.INST_FORWARD and self.mode == constants.ITN_MODE: continue # Create a DecoderDataInstance inst = DecoderDataInstance( w_words, s_words, inst_dir, start_idx=ix, end_idx=ix + 1, lang=self.lang, semiotic_class=_class ) insts.append(inst) if decoder_data_augmentation: noise_left = random.randint(1, 2) noise_right = random.randint(1, 2) inst = DecoderDataInstance( w_words, s_words, inst_dir, start_idx=ix - noise_left, end_idx=ix + 1 + noise_right, semiotic_class=_class, lang=self.lang, ) insts.append(inst) all_semiotic_classes = list(all_semiotic_classes) all_semiotic_classes.sort() return insts, all_semiotic_classes def __tokenize_samples(self, use_cache: bool = False, cached_data_file: str = None): """ Tokenizes the entries, samples longer than max_seq_len are discarded Args: use_cache: Enables caching to use pickle format to store and read data from cached_data_file: path the cache file """ inputs = [inst.input_str.strip() for inst in self.insts] inputs_center = [inst.input_center_str.strip() for inst in self.insts] targets = [inst.output_str.strip() for inst in self.insts] classes = [self.label_ids_semiotic[inst.semiotic_class] for inst in self.insts] directions = [constants.DIRECTIONS_TO_ID[inst.direction] for inst in self.insts] # Tokenization self.inputs, self.examples, _inputs_center = [], [], [] self.tn_count, self.itn_count, long_examples_filtered = 0, 0, 0 input_max_len, target_max_len = 0, 0 for idx in tqdm(range(len(inputs))): # Input _input = self.tokenizer([inputs[idx]]) input_len = len(_input['input_ids'][0]) if input_len > self.max_seq_len: long_examples_filtered += 1 continue # Target _target = self.tokenizer([targets[idx]]) target_len = len(_target['input_ids'][0]) if target_len > self.max_seq_len: long_examples_filtered += 1 continue # Update self.inputs.append(inputs[idx]) _input['labels'] = _target['input_ids'] _input['semiotic_class_id'] = [[classes[idx]]] _input['direction'] = [[directions[idx]]] _inputs_center.append(inputs_center[idx]) self.examples.append(_input) if inputs[idx].startswith(constants.TN_PREFIX): self.tn_count += 1 if inputs[idx].startswith(constants.ITN_PREFIX): self.itn_count += 1 input_max_len = max(input_max_len, input_len) target_max_len = max(target_max_len, target_len) logging.info(f'long_examples_filtered: {long_examples_filtered}') logging.info(f'input_max_len: {input_max_len} | target_max_len: {target_max_len}') # we need to pad input_center, so we first collect all values, and then batch_tokenize with padding _input_centers = self.tokenizer(_inputs_center, padding=True) for idx in range(len(self.examples)): self.examples[idx]['input_center'] = [_input_centers['input_ids'][idx]] # Write to cache (if use_cache) if use_cache: with open(cached_data_file, 'wb') as out_file: data = ( self.insts, self.inputs, self.examples, self.tn_count, self.itn_count, self.label_ids_semiotic, ) pickle.dump(data, out_file, protocol=pickle.HIGHEST_PROTOCOL) def __getitem__(self, idx): """ Returns a dataset item Args: idx: ID of the item Returns: A dictionary that represents the item, the dictionary contains the following fields: input_ids: input ids attention_mask: attention mask labels: ground truth labels semiotic_class_id: id of the semiotic class of the example direction: id of the TN/ITN tast (see constants for the values) inputs_center: ids of input center (only semiotic span, no special tokens and context) """ example = self.examples[idx] item = {key: val[0] for key, val in example.items()} return item def __len__(self): return len(self.examples) def batchify(self, batch_size: int): """ Creates a batch Args: batch_size: the size of the batch """ logging.info("Padding the data and creating batches...") long_examples_filtered = 0 inputs_all = [inst.input_str.strip() for inst in self.insts] targets_all = [inst.output_str.strip() for inst in self.insts] batch, batches = [], [] for idx in tqdm(range(len(self.insts))): # exclude examples that are longer than maximum sequence length # Input _input = self.tokenizer([inputs_all[idx]]) input_len = len(_input['input_ids'][0]) if input_len > self.max_seq_len: long_examples_filtered += 1 continue # Target _target = self.tokenizer([targets_all[idx]]) target_len = len(_target['input_ids'][0]) if target_len > self.max_seq_len: long_examples_filtered += 1 continue batch.append(self.insts[idx]) if len(batch) == batch_size: inputs = [inst.input_str.strip() for inst in batch] inputs_center = [inst.input_center_str.strip() for inst in batch] targets = [inst.output_str.strip() for inst in batch] # Here we assume that every input_file contains examples from every semiotic class classes = [[self.label_ids_semiotic[inst.semiotic_class]] for inst in batch] directions = [[constants.DIRECTIONS_TO_ID[inst.direction]] for inst in batch] batch = self.tokenizer(inputs, padding=True) batch['input_center'] = self.tokenizer(inputs_center, padding=True)['input_ids'] batch['direction'] = directions batch['semiotic_class_id'] = classes labels = self.tokenizer(targets, padding=True)['input_ids'] batch['decoder_input_ids'] = np.insert( [x[:-1] for x in labels], 0, self.tokenizer.pad_token_id, axis=-1 ) # use LABEL_PAD_TOKEN_ID to disregard padded values for the loss calculations batch['labels'] = [[x if x != 0 else constants.LABEL_PAD_TOKEN_ID for x in l] for l in labels] batches.append(batch) batch = [] logging.info(f'long_examples_filtered: {long_examples_filtered}') self.batches = batches class DecoderDataInstance: """ This class represents a data instance in a TextNormalizationDecoderDataset. Intuitively, each data instance can be thought as having the following form: Input: <Left Context of Input> <Input Span> <Right Context of Input> Output: <Output Span> where the context size is determined by the constant DECODE_CTX_SIZE. Args: w_words: List of words in the written form s_words: List of words in the spoken form inst_dir: Indicates the direction of the instance (i.e., INST_BACKWARD for ITN or INST_FORWARD for TN). start_idx: The starting index of the input span in the original input text end_idx: The ending index of the input span (exclusively) lang: Language of the instance semiotic_class: The semiotic class of the input span (can be set to None if not available) """ def __init__( self, w_words: List[str], s_words: List[str], inst_dir: str, start_idx: int, end_idx: int, lang: str, semiotic_class: str = None, ): processor = MosesProcessor(lang_id=lang) start_idx = max(start_idx, 0) end_idx = min(end_idx, len(w_words)) ctx_size = constants.DECODE_CTX_SIZE extra_id_0 = constants.EXTRA_ID_0 extra_id_1 = constants.EXTRA_ID_1 # Extract center words c_w_words = w_words[start_idx:end_idx] c_s_words = s_words[start_idx:end_idx] # Extract context w_left = w_words[max(0, start_idx - ctx_size) : start_idx] w_right = w_words[end_idx : end_idx + ctx_size] s_left = s_words[max(0, start_idx - ctx_size) : start_idx] s_right = s_words[end_idx : end_idx + ctx_size] # Process sil words and self words for jx in range(len(s_left)): if s_left[jx] == constants.SIL_WORD: s_left[jx] = '' if s_left[jx] == constants.SELF_WORD: s_left[jx] = w_left[jx] for jx in range(len(s_right)): if s_right[jx] == constants.SIL_WORD: s_right[jx] = '' if s_right[jx] == constants.SELF_WORD: s_right[jx] = w_right[jx] for jx in range(len(c_s_words)): if c_s_words[jx] == constants.SIL_WORD: c_s_words[jx] = c_w_words[jx] if inst_dir == constants.INST_BACKWARD: c_w_words[jx] = '' c_s_words[jx] = '' if c_s_words[jx] == constants.SELF_WORD: c_s_words[jx] = c_w_words[jx] # Extract input_words and output_words c_w_words = processor.tokenize(' '.join(c_w_words)).split() c_s_words = processor.tokenize(' '.join(c_s_words)).split() # for cases when nearby words are actually multiple tokens, e.g. '1974,' w_left = processor.tokenize(' '.join(w_left)).split()[-constants.DECODE_CTX_SIZE :] w_right = processor.tokenize(' '.join(w_right)).split()[: constants.DECODE_CTX_SIZE] w_input = w_left + [extra_id_0] + c_w_words + [extra_id_1] + w_right s_input = s_left + [extra_id_0] + c_s_words + [extra_id_1] + s_right if inst_dir == constants.INST_BACKWARD: input_center_words = c_s_words input_words = [constants.ITN_PREFIX] + s_input output_words = c_w_words if inst_dir == constants.INST_FORWARD: input_center_words = c_w_words input_words = [constants.TN_PREFIX] + w_input output_words = c_s_words # Finalize self.input_str = ' '.join(input_words) self.input_center_str = ' '.join(input_center_words) self.output_str = ' '.join(output_words) self.direction = inst_dir self.semiotic_class = semiotic_class class TarredTextNormalizationDecoderDataset(IterableDataset): """ A similar Dataset to the TextNormalizationDecoderDataset, but which loads tarred tokenized pickle files. Accepts a single JSON metadata file containing the total number of batches as well as the path(s) to the tarball(s) containing the pickled dataset batch files. Valid formats for the text_tar_filepaths argument include: (1) a single string that can be brace-expanded, e.g. 'path/to/text.tar' or 'path/to/text_{1..100}.tar', or (2) a list of file paths that will not be brace-expanded, e.g. ['text_1.tar', 'text_2.tar', ...]. Note: For brace expansion in (1), there may be cases where `{x..y}` syntax cannot be used due to shell interference. This occurs most commonly inside SLURM scripts. Therefore we provide a few equivalent replacements. Supported opening braces - { <=> (, [, < and the special tag _OP_. Supported closing braces - } <=> ), ], > and the special tag _CL_. For SLURM based tasks, we suggest the use of the special tags for ease of use. See the WebDataset documentation for more information about accepted data and input formats. If using multiple processes the number of shards should be divisible by the number of workers to ensure an even split among workers. If it is not divisible, logging will give a warning but training will proceed. Additionally, please note that the len() of this DataLayer is assumed to be the number of tokens of the text data. An incorrect manifest length may lead to some DataLoader issues down the line. Args: text_tar_filepaths: Either a list of tokenized text tarball filepaths, or a string (can be brace-expandable). num_batches: total number of batches shuffle_n: How many samples to look ahead and load to be shuffled.See WebDataset documentation for more details. shard_strategy: Tarred dataset shard distribution strategy chosen as a str value during ddp. - `scatter`: The default shard strategy applied by WebDataset, where each node gets a unique set of shards, which are permanently pre-allocated and never changed at runtime. - `replicate`: Optional shard strategy, where each node gets all of the set of shards available in the tarred dataset, which are permanently pre-allocated and never changed at runtime. The benefit of replication is that it allows each node to sample data points from the entire dataset independently of other nodes, and reduces dependence on value of `shuffle_n`. .. warning:: Replicated strategy allows every node to sample the entire set of available tarfiles, and therefore more than one node may sample the same tarfile, and even sample the same data points! As such, there is no assured guarantee that all samples in the dataset will be sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific occasions (when the number of shards is not divisible with ``world_size``), will not sample the entire dataset. For these reasons it is not advisable to use tarred datasets as validation or test datasets. global_rank: Worker rank, used for partitioning shards. world_size: Total number of processes, used for partitioning shards. """ def __init__( self, text_tar_filepaths: str, num_batches: int, shuffle_n: int = 0, shard_strategy: str = "scatter", global_rank: int = 0, world_size: int = 1, ): super(TarredTextNormalizationDecoderDataset, self).__init__() valid_shard_strategies = ['scatter', 'replicate'] if shard_strategy not in valid_shard_strategies: raise ValueError( f"Invalid shard strategy of type {type(shard_strategy)} " f"{repr(shard_strategy) if len(repr(shard_strategy)) < 100 else repr(shard_strategy)[:100] + '...'}! " f"Allowed values are: {valid_shard_strategies}." ) if isinstance(text_tar_filepaths, str): # Replace '(', '[', '<' and '_OP_' with '{' brace_keys_open = ['(', '[', '<', '_OP_'] for bkey in brace_keys_open: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "{") # Replace ')', ']', '>' and '_CL_' with '}' brace_keys_close = [')', ']', '>', '_CL_'] for bkey in brace_keys_close: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "}") if isinstance(text_tar_filepaths, str): # Brace expand text_tar_filepaths = list(braceexpand.braceexpand(text_tar_filepaths)) if shard_strategy == 'scatter': logging.info("Tarred dataset shards will be scattered evenly across all nodes.") if len(text_tar_filepaths) % world_size != 0: logging.warning( f"Number of shards in tarred dataset ({len(text_tar_filepaths)}) is not divisible " f"by number of distributed workers ({world_size}). " f"Some shards will not be used ({len(text_tar_filepaths) % world_size})." ) batches_per_tar = num_batches // len(text_tar_filepaths) begin_idx = (len(text_tar_filepaths) // world_size) * global_rank end_idx = begin_idx + (len(text_tar_filepaths) // world_size) logging.info('Begin Index : %d' % (begin_idx)) logging.info('End Index : %d' % (end_idx)) text_tar_filepaths = text_tar_filepaths[begin_idx:end_idx] logging.info( "Partitioning tarred dataset: process (%d) taking shards [%d, %d)", global_rank, begin_idx, end_idx ) self.length = batches_per_tar * len(text_tar_filepaths) * world_size elif shard_strategy == 'replicate': logging.info("All tarred dataset shards will be replicated across all nodes.") self.length = num_batches else: raise ValueError(f"Invalid shard strategy! Allowed values are: {valid_shard_strategies}") # Put together WebDataset self._dataset = wd.WebDataset(urls=text_tar_filepaths, nodesplitter=None) if shuffle_n > 0: self._dataset = self._dataset.shuffle(shuffle_n) else: logging.info("WebDataset will not shuffle files within the tar files.") self._dataset = self._dataset.rename(pkl='pkl', key='__key__').to_tuple('pkl', 'key').map(f=self._build_sample) def _build_sample(self, fname): # Load file pkl_file, _ = fname pkl_file = io.BytesIO(pkl_file) data = pickle.load(pkl_file) # loads np.int64 vector pkl_file.close() data = {k: torch.tensor(v) for k, v in data.items()} return data def __iter__(self): return self._dataset.__iter__() def __len__(self): return self.length
NeMo-main
nemo/collections/nlp/data/text_normalization/decoder_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import string from copy import deepcopy import regex as re from tqdm import tqdm from nemo.collections.nlp.data.text_normalization import constants __all__ = [ 'read_data_file', 'normalize_str', 'flatten', 'convert_fraction', 'convert_superscript', 'add_space_around_dash', ] def flatten(l): """ flatten a list of lists """ return [item for sublist in l for item in sublist] def add_space_around_dash(input: str): """ adds space around dash between numbers and non-numbers""" input = re.sub(r"([^\s0-9])-([0-9])", r"\1 - \2", input) input = re.sub(r"([0-9])-([^\s0-9])", r"\1 - \2", input) input = re.sub(r"([^\s0-9])-([0-9])", r"\1 - \2", input) input = re.sub(r"([0-9])-([^\s0-9])", r"\1 - \2", input) return input def convert_superscript(written: str): """convert superscript to regular character""" written = re.sub("²", "2", written) written = re.sub("³", "3", written) return written def convert_fraction(written: str): """ converts fraction to standard form, e.g "½" -> "1/2", "1 ½" -> "1 1/2" Args: written: written form Returns: written: modified form """ written = re.sub(" ½", " 1/2", written) written = re.sub(" ⅓", " 1/3", written) written = re.sub(" ⅔", " 2/3", written) written = re.sub(" ¼", " 1/4", written) written = re.sub(" ¾", " 3/4", written) written = re.sub(" ⅕", " 1/5", written) written = re.sub(" ⅖", " 2/5", written) written = re.sub(" ⅗", " 3/5", written) written = re.sub(" ⅘", " 4/5", written) written = re.sub(" ⅙", " 1/6", written) written = re.sub(" ⅚", " 5/6", written) written = re.sub(" ⅛", " 1/8", written) written = re.sub(" ⅜", " 3/8", written) written = re.sub(" ⅝", " 5/8", written) written = re.sub(" ⅞", " 7/8", written) written = re.sub("^½", "1/2", written) written = re.sub("^⅓", "1/3", written) written = re.sub("^⅔", "2/3", written) written = re.sub("^¼", "1/4", written) written = re.sub("^¾", "3/4", written) written = re.sub("^⅕", "1/5", written) written = re.sub("^⅖", "2/5", written) written = re.sub("^⅗", "3/5", written) written = re.sub("^⅘", "4/5", written) written = re.sub("^⅙", "1/6", written) written = re.sub("^⅚", "5/6", written) written = re.sub("^⅛", "1/8", written) written = re.sub("^⅜", "3/8", written) written = re.sub("^⅝", "5/8", written) written = re.sub("^⅞", "7/8", written) written = re.sub("-½", "-1/2", written) written = re.sub("-⅓", "-1/3", written) written = re.sub("-⅔", "-2/3", written) written = re.sub("-¼", "-1/4", written) written = re.sub("-¾", "-3/4", written) written = re.sub("-⅕", "-1/5", written) written = re.sub("-⅖", "-2/5", written) written = re.sub("-⅗", "-3/5", written) written = re.sub("-⅘", "-4/5", written) written = re.sub("-⅙", "-1/6", written) written = re.sub("-⅚", "-5/6", written) written = re.sub("-⅛", "-1/8", written) written = re.sub("-⅜", "-3/8", written) written = re.sub("-⅝", "-5/8", written) written = re.sub("-⅞", "-7/8", written) written = re.sub("([0-9])\s?½", "\\1 1/2", written) written = re.sub("([0-9])\s?⅓", "\\1 1/3", written) written = re.sub("([0-9])\s?⅔", "\\1 2/3", written) written = re.sub("([0-9])\s?¼", "\\1 1/4", written) written = re.sub("([0-9])\s?¾", "\\1 3/4", written) written = re.sub("([0-9])\s?⅕", "\\1 1/5", written) written = re.sub("([0-9])\s?⅖", "\\1 2/5", written) written = re.sub("([0-9])\s?⅗", "\\1 3/5", written) written = re.sub("([0-9])\s?⅘", "\\1 4/5", written) written = re.sub("([0-9])\s?⅙", "\\1 1/6", written) written = re.sub("([0-9])\s?⅚", "\\1 5/6", written) written = re.sub("([0-9])\s?⅛", "\\1 1/8", written) written = re.sub("([0-9])\s?⅜", "\\1 3/8", written) written = re.sub("([0-9])\s?⅝", "\\1 5/8", written) written = re.sub("([0-9])\s?⅞", "\\1 7/8", written) return written def input_preprocessing(sent: str, lang: str): """ Function for preprocessing the input texts. The function first does some basic tokenization. For English, it then also processes Greek letters such as Δ or λ (if any). Args: sent: input text. lang: language Returns: preprocessed input text. """ # Basic Preprocessing and Tokenization if lang == constants.ENGLISH: sent = sent.replace('+', ' plus ') sent = sent.replace('=', ' equals ') sent = sent.replace('@', ' at ') sent = sent.replace('*', ' times ') # Greek letters processing for jx, tok in enumerate(sent): if tok in constants.EN_GREEK_TO_SPOKEN: sent = sent[:jx] + constants.EN_GREEK_TO_SPOKEN[tok] + sent[jx + 1 :] sent = convert_superscript(sent) sent = convert_fraction(sent) sent = add_space_around_dash(sent) return sent def read_data_file(fp: str, lang: str, max_insts: int = -1): """ Reading the raw data from a file of NeMo format For more info about the data format, refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization.rst>`. Args: fp: file paths lang: language max_insts: Maximum number of instances (-1 means no limit) Returns: insts: List of sentences parsed as list of words """ insts, w_words, s_words, classes = [], [], [], [] # Read input file with open(fp, 'r', encoding='utf-8') as f: for line in tqdm(f): es = [e.strip() for e in input_preprocessing(line.strip(), lang=lang).split('\t')] if es[0] == '<eos>': inst = (deepcopy(classes), deepcopy(w_words), deepcopy(s_words)) insts.append(inst) # Reset w_words, s_words, classes = [], [], [] if max_insts > 0 and len(insts) >= max_insts: break else: classes.append(es[0]) w_words.append(es[1]) s_words.append(es[2]) return insts def normalize_str(input_str): """ Normalize an input string """ return input_str.strip().lower().replace(" ", " ") def remove_puncts(input_str): """ Remove punctuations from an input string """ return input_str.translate(str.maketrans('', '', string.punctuation))
NeMo-main
nemo/collections/nlp/data/text_normalization/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import List from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor from nemo.collections.nlp.data.text_normalization import constants from nemo.collections.nlp.data.text_normalization.utils import normalize_str, read_data_file, remove_puncts from nemo.utils import logging __all__ = ['TextNormalizationTestDataset'] # Test Dataset class TextNormalizationTestDataset: """ Creates dataset to use to do end-to-end inference Args: input_file: path to the raw data file (e.g., train.tsv). For more info about the data format, refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization.rst>`. mode: should be one of the values ['tn', 'itn', 'joint']. `tn` mode is for TN only. `itn` mode is for ITN only. `joint` is for training a system that can do both TN and ITN at the same time. lang: Language of the dataset """ def __init__(self, input_file: str, mode: str, lang: str): self.lang = lang insts = read_data_file(input_file, lang=lang) processor = MosesProcessor(lang_id=lang) # Build inputs and targets self.directions, self.inputs, self.targets, self.classes, self.nb_spans, self.span_starts, self.span_ends = ( [], [], [], [], [], [], [], ) for (classes, w_words, s_words) in insts: # Extract words that are not punctuations for direction in constants.INST_DIRECTIONS: if direction == constants.INST_BACKWARD: if mode == constants.TN_MODE: continue # ITN mode ( processed_w_words, processed_s_words, processed_classes, processed_nb_spans, processed_s_span_starts, processed_s_span_ends, ) = ([], [], [], 0, [], []) s_word_idx = 0 for cls, w_word, s_word in zip(classes, w_words, s_words): if s_word == constants.SIL_WORD: continue elif s_word == constants.SELF_WORD: processed_s_words.append(w_word) else: processed_s_words.append(s_word) s_word_last = processor.tokenize(processed_s_words.pop()).split() processed_s_words.append(" ".join(s_word_last)) num_tokens = len(s_word_last) processed_nb_spans += 1 processed_classes.append(cls) processed_s_span_starts.append(s_word_idx) s_word_idx += num_tokens processed_s_span_ends.append(s_word_idx) processed_w_words.append(w_word) self.span_starts.append(processed_s_span_starts) self.span_ends.append(processed_s_span_ends) self.classes.append(processed_classes) self.nb_spans.append(processed_nb_spans) input_words = ' '.join(processed_s_words) # Update self.directions, self.inputs, self.targets self.directions.append(direction) self.inputs.append(input_words) self.targets.append( processed_w_words ) # is list of lists where inner list contains target tokens (not words) # TN mode elif direction == constants.INST_FORWARD: if mode == constants.ITN_MODE: continue ( processed_w_words, processed_s_words, processed_classes, processed_nb_spans, w_span_starts, w_span_ends, ) = ([], [], [], 0, [], []) w_word_idx = 0 for cls, w_word, s_word in zip(classes, w_words, s_words): # TN forward mode # this is done for cases like `do n't`, this w_word will be treated as 2 tokens w_word = processor.tokenize(w_word).split() num_tokens = len(w_word) if s_word in constants.SPECIAL_WORDS: processed_s_words.append(" ".join(w_word)) else: processed_s_words.append(s_word) w_span_starts.append(w_word_idx) w_word_idx += num_tokens w_span_ends.append(w_word_idx) processed_nb_spans += 1 processed_classes.append(cls) processed_w_words.extend(w_word) self.span_starts.append(w_span_starts) self.span_ends.append(w_span_ends) self.classes.append(processed_classes) self.nb_spans.append(processed_nb_spans) input_words = ' '.join(processed_w_words) # Update self.directions, self.inputs, self.targets self.directions.append(direction) self.inputs.append(input_words) self.targets.append( processed_s_words ) # is list of lists where inner list contains target tokens (not words) self.examples = list( zip( self.directions, self.inputs, self.targets, self.classes, self.nb_spans, self.span_starts, self.span_ends, ) ) def __getitem__(self, idx): return self.examples[idx] def __len__(self): return len(self.inputs) @staticmethod def is_same(pred: str, target: str, inst_dir: str): """ Function for checking whether the predicted string can be considered the same as the target string Args: pred: Predicted string target: Target string inst_dir: Direction of the instance (i.e., INST_BACKWARD or INST_FORWARD). Return: an int value (0/1) indicating whether pred and target are the same. """ if inst_dir == constants.INST_BACKWARD: pred = remove_puncts(pred) target = remove_puncts(target) pred = normalize_str(pred) target = normalize_str(target) return int(pred == target) @staticmethod def compute_sent_accuracy(preds: List[str], targets: List[str], inst_directions: List[str]): """ Compute the sentence accuracy metric. Args: preds: List of predicted strings. targets: List of target strings. inst_directions: A list of str where each str indicates the direction of the corresponding instance (i.e., INST_BACKWARD or INST_FORWARD). Return: the sentence accuracy score """ assert len(preds) == len(targets) if len(targets) == 0: return 'NA' # Sentence Accuracy correct_count = 0 for inst_dir, pred, target in zip(inst_directions, preds, targets): correct_count += TextNormalizationTestDataset.is_same(pred, target, inst_dir) sent_accuracy = correct_count / len(targets) return sent_accuracy @staticmethod def compute_class_accuracy( inputs: List[List[str]], targets: List[List[str]], tag_preds: List[List[str]], inst_directions: List[str], output_spans: List[List[str]], classes: List[List[str]], nb_spans: List[int], span_ends: List[List[int]], ) -> dict: """ Compute the class based accuracy metric. This uses model's predicted tags. Args: inputs: List of lists where inner list contains words of input text targets: List of lists where inner list contains target strings grouped by class boundary tag_preds: List of lists where inner list contains predicted tags for each of the input words inst_directions: A list of str where each str indicates the direction of the corresponding instance (i.e., INST_BACKWARD or INST_FORWARD). output_spans: A list of lists where each inner list contains the decoded spans for the corresponding input sentence classes: A list of lists where inner list contains the class for each semiotic token in input sentence nb_spans: A list that contains the number of tokens in the input span_ends: A list of lists where inner list contains the end word index of the current token Return: the class accuracy scores as dict """ if len(targets) == 0: return 'NA' class2stats, class2correct = defaultdict(int), defaultdict(int) for ix, (sent, tags) in enumerate(zip(inputs, tag_preds)): try: assert len(sent) == len(tags) except: logging.warning(f"Error: skipping example {ix}") continue cur_words = [[] for _ in range(nb_spans[ix])] jx, span_idx = 0, 0 cur_spans = output_spans[ix] class_idx = 0 if classes[ix]: class2stats[classes[ix][class_idx]] += 1 while jx < len(sent): tag, word = tags[jx], sent[jx] while jx >= span_ends[ix][class_idx]: class_idx += 1 class2stats[classes[ix][class_idx]] += 1 if constants.SAME_TAG in tag: cur_words[class_idx].append(word) jx += 1 else: jx += 1 tmp = cur_spans[span_idx] cur_words[class_idx].append(tmp) span_idx += 1 while jx < len(sent) and tags[jx] == constants.I_PREFIX + constants.TRANSFORM_TAG: while jx >= span_ends[ix][class_idx]: class_idx += 1 class2stats[classes[ix][class_idx]] += 1 cur_words[class_idx].append(tmp) jx += 1 target_token_idx = 0 # assert len(cur_words) == len(targets[ix]) for class_idx in range(nb_spans[ix]): correct = TextNormalizationTestDataset.is_same( " ".join(cur_words[class_idx]), targets[ix][target_token_idx], inst_directions[ix] ) class2correct[classes[ix][class_idx]] += correct target_token_idx += 1 for key in class2stats: class2stats[key] = (class2correct[key] / class2stats[key], class2correct[key], class2stats[key]) return class2stats
NeMo-main
nemo/collections/nlp/data/text_normalization/test_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.glue_benchmark.glue_benchmark_dataset import GLUEDataset
NeMo-main
nemo/collections/nlp/data/glue_benchmark/__init__.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Some code of this file was adapted from the HuggingFace library available at # https://github.com/huggingface/transformers import os import pickle from typing import Dict, List, Optional, Union import numpy as np import torch from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.glue_benchmark.data_processors import ( ColaProcessor, MnliMismatchedProcessor, MnliProcessor, MrpcProcessor, QnliProcessor, QqpProcessor, RteProcessor, Sst2Processor, StsbProcessor, WnliProcessor, XNLIProcessor, ) from nemo.core.classes import Dataset from nemo.core.neural_types import CategoricalValuesType, ChannelType, MaskType, NeuralType, RegressionValuesType from nemo.utils import logging __all__ = ['GLUEDataset', 'TextToTextGLUEDataset', 'TextToTextXNLIDataset'] processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mnli-mm": MnliMismatchedProcessor, "mrpc": MrpcProcessor, "sst-2": Sst2Processor, "sts-b": StsbProcessor, "qqp": QqpProcessor, "qnli": QnliProcessor, "rte": RteProcessor, "wnli": WnliProcessor, "xnli": XNLIProcessor, } output_modes = { "cola": "classification", "mnli": "classification", "mnli-mm": "classification", "mrpc": "classification", "sst-2": "classification", "sts-b": "regression", "qqp": "classification", "qnli": "classification", "rte": "classification", "wnli": "classification", "xnli": "classification", } GLUE_TASKS_NUM_LABELS = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } class GLUEDataset(Dataset): @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), "labels": NeuralType( tuple('B'), RegressionValuesType() if self.task_name == 'sts-b' else CategoricalValuesType() ), } def __init__( self, file_name: str, task_name: str, tokenizer: TokenizerSpec, max_seq_length: str, use_cache: bool = True, compute_features: bool = True, ): """ Processes GLUE datasets Args: file_name: path to file task_name: GLUE task name tokenizer: such as AutoTokenizer max_seq_length: max sequence length minus 2 for [CLS] and [SEP] use_cache: whether to use data cache """ original_file_name = file_name logging.info(f'Processing {file_name}') data_dir, file_name = os.path.split(file_name) file_name = file_name[:-4] self.tokenizer = tokenizer evaluate = False if 'train' in file_name else True if task_name not in processors: raise ValueError(f'{task_name} not supported. Choose from {processors.keys()}') if task_name == 'mnli' and 'dev_mismatched' in file_name: self.task_name = 'mnli-mm' else: self.task_name = task_name processor = processors[self.task_name]() output_mode = output_modes[self.task_name] self.label_list = processor.get_labels() # TODO: use a different variable to decide whether to trust the user provided filename. This is a temporary workaround for T5 GLUE and XNLI. if not compute_features: if not os.path.exists(original_file_name): raise ValueError(f"Could not find file : {original_file_name}") self.examples = processor.get_examples(original_file_name) else: self.examples = ( processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) ) processor_name = type(processor).__name__ vocab_size = getattr(tokenizer, "vocab_size", 0) if compute_features: cached_features_file = os.path.join( data_dir, "cached_{}_{}_{}_{}_{}".format( processor_name, file_name, tokenizer.name, str(max_seq_length), str(vocab_size) ), ) if use_cache and os.path.exists(cached_features_file): logging.info(f"loading from {cached_features_file}") with open(cached_features_file, "rb") as reader: self.features = pickle.load(reader) else: token_params = { 'bos_token': None, 'eos_token': tokenizer.eos_token, 'pad_token': tokenizer.pad_token, 'cls_token': tokenizer.cls_token, 'sep_token_extra': tokenizer.eos_token if 'roberta' in tokenizer.name.lower() else None, } self.features = self.convert_examples_to_features( self.examples, self.label_list, max_seq_length, tokenizer, output_mode, **token_params ) master_device = not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0 if master_device: logging.info(f'Saving train features into {cached_features_file}') with open(cached_features_file, "wb") as writer: pickle.dump(self.features, writer) def __len__(self): return len(self.features) def __getitem__(self, idx): feature = self.features[idx] return ( np.array(feature.input_ids), np.array(feature.segment_ids), np.array(feature.input_mask, dtype=np.long), np.array(feature.label_id), ) def convert_examples_to_features( self, examples: List[str], label_list: List[int], max_seq_length: int, tokenizer: TokenizerSpec, output_mode: str, bos_token: str = None, eos_token: str = '[SEP]', pad_token: str = '[PAD]', cls_token: str = '[CLS]', sep_token_extra: str = None, cls_token_at_end: bool = False, cls_token_segment_id: int = 0, pad_token_segment_id: int = 0, pad_on_left: bool = False, mask_padding_with_zero: bool = True, sequence_a_segment_id: int = 0, sequence_b_segment_id: int = 1, ): """ Loads a data file into a list of `InputBatch`s. The `cls_token_at_end` defines the location of the CLS token: * False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] * True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] The `cls_token_segment_id` defines the segment id associated to the CLS token (0 for BERT, 2 for XLNet) The convention in BERT is: a. For sequence pairs: * tokens: [CLS] is this jack ##ville ? [SEP] no it is not . [SEP] * type_ids: 0 0 0 0 0 0 0 1 1 1 1 1 1 b. For single sequences: * tokens: [CLS] the dog is hairy . [SEP] * type_ids: 0 0 0 0 0 0 0 Where "type_ids" are used to indicate whether this is the first sequence or the second sequence. The embedding vectors for `type=0` and `type=1` were learned during pre-training and are added to the wordpiece embedding vector (and position vector). This is not *strictly* necessarysince the [SEP] token unambiguously separates the sequences, but it makes it easier for the model to learn the concept of sequences. For classification tasks, the first vector (corresponding to [CLS]) is used as as the "sentence vector". Note that this only makes sense because the entire model is fine-tuned. The convention for NMT is: a. For sequence pairs: * tokens:<BOS> is this jack ##ville ? <EOS> <BOS> no it is not . <EOS> * type_ids:0 0 0 0 0 0 0 1 1 1 1 1 1 1 b. For single sequences: * tokens: <BOS> the dog is hairy . <EOS> * type_ids: 0 0 0 0 0 0 0 """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in enumerate(examples): if example.label == "-": # skip examples without a consensus label (e.g. in SNLI data set) continue if ex_index % 10000 == 0: logging.info("Writing example %d of %d" % (ex_index, len(examples))) tokens_a = tokenizer.text_to_tokens(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.text_to_tokens(example.text_b) special_tokens_count = 2 if eos_token else 0 special_tokens_count += 1 if sep_token_extra else 0 special_tokens_count += 2 if bos_token else 0 special_tokens_count += 1 if cls_token else 0 self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count) else: special_tokens_count = 1 if eos_token else 0 special_tokens_count += 1 if sep_token_extra else 0 special_tokens_count += 1 if bos_token else 0 if len(tokens_a) > max_seq_length - special_tokens_count: tokens_a = tokens_a[: max_seq_length - special_tokens_count] # Add special tokens to sequence_a tokens = tokens_a if bos_token: tokens = [bos_token] + tokens if eos_token: tokens += [eos_token] segment_ids = [sequence_a_segment_id] * len(tokens) # Add sequence separator between sequences if tokens_b and sep_token_extra: tokens += [sep_token_extra] segment_ids += [sequence_a_segment_id] # Add special tokens to sequence_b if tokens_b: if bos_token: tokens += [bos_token] segment_ids += [sequence_b_segment_id] tokens += tokens_b segment_ids += [sequence_b_segment_id] * (len(tokens_b)) if eos_token: tokens += [eos_token] segment_ids += [sequence_b_segment_id] # Add classification token - for BERT models if cls_token: if cls_token_at_end: tokens += [cls_token] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) pad_token_id = tokenizer.tokens_to_ids([pad_token])[0] if pad_on_left: input_ids = ([pad_token_id] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids else: input_ids = input_ids + ([pad_token_id] * padding_length) input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) if len(input_ids) != max_seq_length: raise ValueError("input_ids must be of length max_seq_length") if len(input_mask) != max_seq_length: raise ValueError("input_mask must be of length max_seq_length") if len(segment_ids) != max_seq_length: raise ValueError("segment_ids must be of length max_seq_length") if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = np.float32(example.label) else: raise KeyError(output_mode) if ex_index < 5: logging.info("*** Example ***") logging.info("guid: %s" % (example.guid)) logging.info("tokens: %s" % " ".join(list(map(str, tokens)))) logging.info("input_ids: %s" % " ".join(list(map(str, input_ids)))) logging.info("input_mask: %s" % " ".join(list(map(str, input_mask)))) logging.info("segment_ids: %s" % " ".join(list(map(str, segment_ids)))) logging.info("label: %s (id = %d)" % (example.label, label_id)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id) ) return features def _truncate_seq_pair(self, tokens_a: str, tokens_b: str, max_length: int): """Truncates a sequence pair in place to the maximum length. This will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() class TextToTextGLUEDataset(GLUEDataset): """GLUE Dataset in a text-to-text format.""" @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return def __init__( self, file_name: str, task_name: str, tokenizer: TokenizerSpec, max_seq_length: int, max_seq_length_decoder: int = 128, use_cache: bool = True, prefix_override: str = None, pad_to_max_length: bool = True, ): """ Processes GLUE datasets Args: file_name: path to file task_name: GLUE task name tokenizer: such as AutoTokenizer max_seq_length: max sequence length minus 2 for [CLS] and [SEP] use_cache: whether to use data cache prefix_override: if you want to override default prompt for this task specify this via a string. pad_to_max_length: If true, pad to the maximum length. """ super().__init__(file_name, task_name, tokenizer, max_seq_length, use_cache, compute_features=False) self.max_seq_length = max_seq_length self.max_seq_length_decoder = max_seq_length_decoder self.pad_to_max_length = pad_to_max_length self.processor = processors[self.task_name]() self.prefix_override = prefix_override self.features = self.convert_examples_to_features() def __len__(self): return len(self.examples) def __getitem__(self, idx): enc_query, dec_input, labels = self.features[idx] return {'text_enc': enc_query, 'text_dec': dec_input, 'labels': labels} def collate_fn(self, batch): enc_query = [item['text_enc'] for item in batch] dec_input = [item['text_dec'] for item in batch] labels = [item['labels'] for item in batch] max_enc_query_length = max([len(item) for item in enc_query]) if enc_query else 0 max_dec_input_length = max([len(item) for item in dec_input]) if dec_input else 0 max_label_length = max([len(item) for item in labels]) if labels else 0 if self.pad_to_max_length: assert max_enc_query_length <= self.max_seq_length assert max_dec_input_length <= self.max_seq_length_decoder assert max_label_length <= self.max_seq_length_decoder max_enc_query_length = self.max_seq_length max_dec_input_length = self.max_seq_length_decoder max_label_length = self.max_seq_length_decoder loss_mask = [([1] * (len(item))) + ([0] * (max_label_length - len(item))) for item in labels] enc_query = [item + [self.tokenizer.pad_id] * (max_enc_query_length - len(item)) for item in enc_query] dec_input = [item + [self.tokenizer.pad_id] * (max_dec_input_length - len(item)) for item in dec_input] labels = [item + [self.tokenizer.pad_id] * (max_label_length - len(item)) for item in labels] enc_query = torch.LongTensor(enc_query) dec_input = torch.LongTensor(dec_input) labels = torch.LongTensor(labels) loss_mask = torch.LongTensor(loss_mask) enc_mask = (enc_query != self.tokenizer.pad_id).long() dec_mask = (dec_input != self.tokenizer.pad_id).long() return { 'text_enc': enc_query, 'text_dec': dec_input, 'labels': labels, 'loss_mask': loss_mask, 'enc_mask': enc_mask, 'dec_mask': dec_mask, } def make_history_mask_3d(self, block): batch, length = block.shape arange = np.arange(length) history_mask = (arange[None,] <= arange[:, None])[ None, ] history_mask = np.repeat(history_mask, batch, 0) return history_mask def convert_examples_to_features(self): """ Converts examples into Text-to-Text batches to be used with a model like T5. Inputs are prefixed with a text prompt that indicates the task to perform. """ features = [] for ex_index, example in enumerate(self.examples): if ex_index % 10000 == 0: logging.info(f"Writing example {ex_index} of {len(self.examples)}") text_to_text_query = self.processor.get_t5_prompted_query(example.text_a, example.text_b) enc_query = self.tokenizer.text_to_ids(text_to_text_query) if len(enc_query) > self.max_seq_length: enc_query = enc_query[: self.max_seq_length] dec_query = ( [self.tokenizer.bos_id] + self.tokenizer.text_to_ids(self.processor.label2string(example.label)) + [self.tokenizer.eos_id] ) dec_input = dec_query[:-1] labels = dec_query[1:] features.append([enc_query, dec_input, labels]) return features class TextToTextXNLIDataset(TextToTextGLUEDataset): """XNLI Dataset in a text-to-text format.""" def __init__( self, file_name: str, task_name: str, tokenizer: TokenizerSpec, max_seq_length: int, max_seq_length_decoder: int = 128, use_cache: bool = True, prefix_override: str = None, lang_list: List[str] = None, pad_to_max_length: bool = True, ): self.lang_list = set(lang_list) super().__init__( file_name, task_name, tokenizer, max_seq_length, max_seq_length_decoder, use_cache, prefix_override, pad_to_max_length, ) if len(lang_list) <= 0 or lang_list is None: raise ValueError(f"Found an empty or None lang_list for {self.task_name}") self.features = self.convert_xnli_examples_to_features() def __getitem__(self, idx): enc_query, dec_input, labels, lang = self.features[idx] return {'text_enc': enc_query, 'text_dec': dec_input, 'labels': labels, 'lang': lang} def collate_fn(self, batch): base_batch = super().collate_fn(batch) base_batch['lang'] = [item['lang'] for item in batch] return base_batch def convert_xnli_examples_to_features(self): """ Converts examples into Text-to-Text batches to be used with a model like T5. Inputs are prefixed with a text prompt that indicates the task to perform. """ features = self.features lang_filtered_features = [] for ex_index, example in enumerate(self.examples): language = example.guid.split('-')[1] if language in self.lang_list: lang_filtered_features.append(features[ex_index] + [language]) return lang_filtered_features def __len__(self): return len(self.features) class InputFeatures(object): """A single set of features of data. Args: input_ids: input/token ids input_mask: masks out subword tokens segment_ids: distinguish one sentence from the other one (if present) label_ids: label for the current example """ def __init__( self, input_ids: List[int], input_mask: List[int], segment_ids: List[int], label_id: Union[float, int] ): """Initialized InputFeatures.""" self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id
NeMo-main
nemo/collections/nlp/data/glue_benchmark/glue_benchmark_dataset.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from nemo.collections.nlp.data.data_utils.data_preprocessing import DataProcessor from nemo.utils import logging __all__ = [ 'ColaProcessor', 'MnliProcessor', 'MnliMismatchedProcessor', 'MrpcProcessor', 'Sst2Processor', 'StsbProcessor', 'QqpProcessor', 'QnliProcessor', 'RteProcessor', 'WnliProcessor', 'XNLIProcessor', ] class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" logging.info(f'LOOKING AT {os.path.join(data_dir, "train.tsv")}') return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): return f"mrpc sentence1: {text_a} sentence2: {text_b}" def label2string(self, label): return "equivalent" if label == "1" else "not equivalent" class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): return f"mnli hypothesis: {text_a} premise: {text_b}" def label2string(self, label): return label class XNLIProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[6] text_b = line[7] label = line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): return f"mnli hypothesis: {text_a} premise: {text_b}" def label2string(self, label): return label class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): assert text_b is None return f"cola sentence: {text_a}" def label2string(self, label): return "acceptable" if label == "1" else "not acceptable" class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[0] label = line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): assert text_b is None return f"sst2 sentence: {text_a}" def label2string(self, label): return "positive" if label == "1" else "negative" class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[7] text_b = line[8] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): return f"stsb sentence1: {text_a} sentence2: {text_b}" def label2string(self, label): return '%.1f' % float(label) class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) try: text_a = line[3] text_b = line[4] label = line[5] except IndexError: continue examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): return f"qqp question1: {text_a} question2: {text_b}" def label2string(self, label): return "duplicate" if label == "1" else "not_duplicate" class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): return f"qnli question: {text_a} sentence: {text_b}" def label2string(self, label): return label class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): return f"rte sentence1: {text_a} sentence2: {text_b}" def label2string(self, label): return label class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_examples(self, file_path): return self._create_examples(self._read_tsv(file_path), "example") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_t5_prompted_query(self, text_a, text_b): raise NotImplementedError("NeMo-Megatron T5 does not support WNLI at the moment.") def label2string(self, label): raise NotImplementedError("NeMo-Megatron T5 does not support WNLI at the moment.") class InputExample(object): """A single training/test example for simple sequence classification. Args: guid: Unique id for the example. text_a: The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label:The label of the example. This should be specified for train and dev examples, but not for test examples. """ def __init__(self, guid: int, text_a: str, text_b: str = None, label: str = None): """Constructs a InputExample.""" self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label def __repr__(self): return ( f"InputExample(guid='{self.guid}', text_a='{self.text_a}', text_b='{self.text_b}', label='{self.label}')" )
NeMo-main
nemo/collections/nlp/data/glue_benchmark/data_processors.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import random from typing import Dict, List, Optional import numpy as np import torch from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.data_utils.data_preprocessing import ( fill_class_weights, get_freq_weights, get_label_stats, get_stats, ) from nemo.collections.nlp.parts.utils_funcs import list2str from nemo.core.classes import Dataset from nemo.core.neural_types import ChannelType, LabelsType, MaskType, NeuralType from nemo.utils import logging from nemo.utils.env_var_parsing import get_envint __all__ = ['TextClassificationDataset', 'calc_class_weights'] class TextClassificationDataset(Dataset): """A dataset class that converts from raw data to a dataset that can be used by DataLayerNM. Args: input_file: file to sequence + label. the first line is header (sentence [tab] label) each line should be [sentence][tab][label] tokenizer: tokenizer object such as AutoTokenizer max_seq_length: max sequence length minus 2 for [CLS] and [SEP] num_samples: number of samples you want to use for the dataset. If -1, use all dataset. Useful for testing. shuffle: Shuffles the dataset after loading. use_cache: Enables caching to use pickle format to store and read data from """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'label': NeuralType(('B',), LabelsType()), } def __init__( self, tokenizer: TokenizerSpec, input_file: str = None, queries: List[str] = None, max_seq_length: int = -1, num_samples: int = -1, shuffle: bool = False, use_cache: bool = False, ): if not input_file and not queries: raise ValueError("Either input_file or queries should be passed to the text classification dataset.") if input_file and not os.path.exists(input_file): raise FileNotFoundError( f'Data file `{input_file}` not found! Each line of the data file should contain text sequences, where ' f'words are separated with spaces and the label separated by [TAB] following this format: ' f'[WORD][SPACE][WORD][SPACE][WORD][TAB][LABEL]' ) self.input_file = input_file self.tokenizer = tokenizer self.max_seq_length = max_seq_length self.num_samples = num_samples self.shuffle = shuffle self.use_cache = use_cache self.vocab_size = self.tokenizer.vocab_size self.pad_id = tokenizer.pad_id self.features = None labels, all_sents = [], [] if input_file: data_dir, filename = os.path.split(input_file) vocab_size = getattr(tokenizer, "vocab_size", 0) tokenizer_name = tokenizer.name cached_features_file = os.path.join( data_dir, f"cached_{filename}_{tokenizer_name}_{max_seq_length}_{vocab_size}_{num_samples}_{self.pad_id}_{shuffle}.pkl", ) if get_envint("LOCAL_RANK", 0) == 0: if use_cache and os.path.exists(cached_features_file): logging.warning( f"Processing of {input_file} is skipped as caching is enabled and a cache file " f"{cached_features_file} already exists." ) logging.warning( f"You may need to delete the cache file if any of the processing parameters (eg. tokenizer) or " f"the data are updated." ) else: with open(input_file, "r") as f: lines = f.readlines() logging.info(f'Read {len(lines)} examples from {input_file}.') if num_samples > 0: lines = lines[:num_samples] logging.warning( f"Parameter 'num_samples' is set, so just the first {len(lines)} examples are kept." ) if shuffle: random.shuffle(lines) for index, line in enumerate(lines): if index % 20000 == 0: logging.debug(f"Processing line {index}/{len(lines)}") line_splited = line.strip().split() try: label = int(line_splited[-1]) except ValueError: logging.debug(f"Skipping line {line}") continue labels.append(label) sent_words = line_splited[:-1] all_sents.append(sent_words) verbose = True self.features = self.get_features( all_sents=all_sents, tokenizer=tokenizer, max_seq_length=max_seq_length, labels=labels, verbose=verbose, ) with open(cached_features_file, 'wb') as out_file: pickle.dump(self.features, out_file, protocol=pickle.HIGHEST_PROTOCOL) else: for query in queries: all_sents.append(query.strip().split()) labels = [-1] * len(all_sents) verbose = False self.features = self.get_features( all_sents=all_sents, tokenizer=tokenizer, max_seq_length=max_seq_length, labels=labels, verbose=verbose ) # wait until the master process writes to the processed data files if torch.distributed.is_initialized(): torch.distributed.barrier() if input_file: with open(cached_features_file, "rb") as input_file: self.features = pickle.load(input_file) def __len__(self): return len(self.features) def __getitem__(self, idx): return self.features[idx] def _collate_fn(self, batch): """collate batch of input_ids, segment_ids, input_mask, and label Args: batch: A list of tuples of (input_ids, segment_ids, input_mask, label). """ max_length = 0 for input_ids, segment_ids, input_mask, label in batch: if len(input_ids) > max_length: max_length = len(input_ids) padded_input_ids = [] padded_segment_ids = [] padded_input_mask = [] labels = [] for input_ids, segment_ids, input_mask, label in batch: if len(input_ids) < max_length: pad_width = max_length - len(input_ids) padded_input_ids.append(np.pad(input_ids, pad_width=[0, pad_width], constant_values=self.pad_id)) padded_segment_ids.append(np.pad(segment_ids, pad_width=[0, pad_width], constant_values=self.pad_id)) padded_input_mask.append(np.pad(input_mask, pad_width=[0, pad_width], constant_values=self.pad_id)) else: padded_input_ids.append(input_ids) padded_segment_ids.append(segment_ids) padded_input_mask.append(input_mask) labels.append(label) return ( torch.LongTensor(padded_input_ids), torch.LongTensor(padded_segment_ids), torch.LongTensor(padded_input_mask), torch.LongTensor(labels), ) @staticmethod def get_features(all_sents, tokenizer, max_seq_length, labels=None, verbose=True): """Encode a list of sentences into a list of tuples of (input_ids, segment_ids, input_mask, label).""" features = [] sent_lengths = [] too_long_count = 0 for sent_id, sent in enumerate(all_sents): if sent_id % 1000 == 0: logging.debug(f"Encoding sentence {sent_id}/{len(all_sents)}") sent_subtokens = [tokenizer.cls_token] for word in sent: word_tokens = tokenizer.text_to_tokens(word) sent_subtokens.extend(word_tokens) if max_seq_length > 0 and len(sent_subtokens) + 1 > max_seq_length: sent_subtokens = sent_subtokens[: max_seq_length - 1] too_long_count += 1 sent_subtokens.append(tokenizer.sep_token) sent_lengths.append(len(sent_subtokens)) input_ids = [tokenizer.tokens_to_ids(t) for t in sent_subtokens] # The mask has 1 for real tokens and 0 for padding tokens. # Only real tokens are attended to. input_mask = [1] * len(input_ids) segment_ids = [0] * len(input_ids) if verbose and sent_id < 2: logging.info("*** Example ***") logging.info(f"example {sent_id}: {sent}") logging.info("subtokens: %s" % " ".join(sent_subtokens)) logging.info("input_ids: %s" % list2str(input_ids)) logging.info("segment_ids: %s" % list2str(segment_ids)) logging.info("input_mask: %s" % list2str(input_mask)) logging.info("label: %s" % labels[sent_id] if labels else "**Not Provided**") label = labels[sent_id] if labels else -1 features.append([np.asarray(input_ids), np.asarray(segment_ids), np.asarray(input_mask), label]) if max_seq_length > -1 and too_long_count > 0: logging.warning( f'Found {too_long_count} out of {len(all_sents)} sentences with more than {max_seq_length} subtokens. ' f'Truncated long sentences from the end.' ) if verbose: get_stats(sent_lengths) return features def calc_class_weights(file_path: str, num_classes: int): """ iterates over a data file and calculate the weights of each class to be used for class_balancing Args: file_path: path to the data file num_classes: number of classes in the dataset """ if not os.path.exists(file_path): raise FileNotFoundError(f"Could not find data file {file_path} to calculate the class weights!") with open(file_path, 'r') as f: input_lines = f.readlines() labels = [] for input_line in input_lines: parts = input_line.strip().split() try: label = int(parts[-1]) except ValueError: raise ValueError( f'No numerical labels found for {file_path}. Labels should be integers and separated by [TAB] at the end of each line.' ) labels.append(label) logging.info(f'Calculating stats of {file_path}...') total_sents, sent_label_freq, max_id = get_label_stats(labels, f'{file_path}_sentence_stats.tsv', verbose=False) if max_id >= num_classes: raise ValueError(f'Found an invalid label in {file_path}! Labels should be from [0, num_classes-1].') class_weights_dict = get_freq_weights(sent_label_freq) logging.info(f'Total Sentence: {total_sents}') logging.info(f'Sentence class frequencies: {sent_label_freq}') logging.info(f'Class Weights: {class_weights_dict}') class_weights = fill_class_weights(weights=class_weights_dict, max_id=num_classes - 1) return class_weights
NeMo-main
nemo/collections/nlp/data/text_classification/text_classification_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.text_classification.text_classification_dataset import ( TextClassificationDataset, calc_class_weights, )
NeMo-main
nemo/collections/nlp/data/text_classification/__init__.py
# Copyright 2022 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from typing import Dict, List, Optional from nemo.core.classes import Dataset from nemo.core.neural_types import NeuralType, StringLabel, StringType __all__ = ['PTuneTextClassificationDataset', 'token_wrapper'] def load_file(filename): data = [] with open(filename, "r") as f: for line in f.readlines(): data.append(json.loads(line)) return data def token_wrapper(token: str) -> str: return 'Ġ' + token class PTuneTextClassificationDataset(Dataset): @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return {"sentences": [NeuralType(('T'), StringType())], "labels": [NeuralType(('T'), StringLabel())]} def __init__(self, input_file: str, queries: List[str] = None, prompt: str = 'Sentiment'): """ A dataset class that feed data for P-tuning model Args: input_file: loose json data file. The format is {"sentence":"input sentence", "label":"class label"} queries: list of query input sentences prompt: the prompt string appended at the end of your input sentence """ super().__init__() if input_file and not os.path.exists(input_file): raise FileNotFoundError( f'Data file `{input_file}` not found! Each line of the data file should contain json object' f'where `sentence` key maps to sentence and `label` key maps to label' ) if queries is None: json_data = load_file(input_file) else: json_data = [] for line in queries: json_data.append({'sentence': line + f' {prompt} ', 'label': ''}) self.data = json_data def __len__(self): return len(self.data) def __getitem__(self, i): return self.data[i]['sentence'], self.data[i]['label']
NeMo-main
nemo/collections/nlp/data/text_classification/ptune_text_classification_dataset.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from typing import List import ijson import numpy as np from transformers.models.bert.tokenization_bert import BasicTokenizer from nemo.collections.nlp.data.data_utils import ( DataProcessor, check_chinese_char, normalize_answer, normalize_chinese_answer, ) from nemo.utils import logging """ Utility functions for Question Answering NLP tasks Some parts of this code were adapted from the HuggingFace library at https://github.com/huggingface/transformers """ TRAINING_MODE = "train" EVALUATION_MODE = "eval" INFERENCE_MODE = "infer" def _get_tokens(s): """get normalized tokens for both Chinese and English""" if not s: return [] # separate answers to en and ch pieces ch_seq = "" en_seq = "" pos = 0 # Normalize and connect final_tokens = [] while pos < len(s): if check_chinese_char(s[pos]): if en_seq != "": final_tokens.extend(normalize_answer(en_seq).split()) en_seq = "" ch_seq += s[pos] else: if ch_seq != "": final_tokens.extend(normalize_chinese_answer(ch_seq)) ch_seq = "" en_seq += s[pos] pos += 1 if en_seq != "": final_tokens.extend(normalize_answer(en_seq).split()) if ch_seq != "": final_tokens.extend(normalize_chinese_answer(ch_seq)) return final_tokens def get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" best_indices = np.argsort(logits)[::-1] return best_indices[:n_best_size] def get_final_text(pred_text: str, orig_text: str, do_lower_case: bool, verbose_logging: bool = False): """Project the tokenized prediction back to the original text. When we created the data, we kept track of the alignment between original (whitespace tokenized) tokens and our WordPiece tokenized tokens. So now `orig_text` contains the span of our original text corresponding to the span that we predicted. However, `orig_text` may contain extra characters that we don't want in our prediction. For example, let's say: pred_text = steve smith orig_text = Steve Smith's We don't want to return `orig_text` because it contains the extra "'s". We don't want to return `pred_text` because it's already been normalized (the SQuAD eval script also does punctuation stripping/lower casing but our tokenizer does additional normalization like stripping accent characters). What we really want to return is "Steve Smith". Therefore, we have to apply a semi-complicated alignment heuristic between `pred_text` and `orig_text` to get a character-to-character alignment. This can fail in certain cases in which case we just return `orig_text`.""" def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return ns_text, ns_to_s_map # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logging.warning("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logging.warning( "Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text, ) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logging.warning("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logging.warning("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position : (orig_end_position + 1)] return output_text def f1_score(prediction, ground_truth): """computes f1 score between prediction and ground truth""" prediction_tokens = _get_tokens(prediction) ground_truth_tokens = _get_tokens(ground_truth) common = collections.Counter(prediction_tokens) & collections.Counter(ground_truth_tokens) num_same = sum(common.values()) if len(ground_truth_tokens) == 0 or len(prediction_tokens) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(ground_truth_tokens == prediction_tokens) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): """computes exact match between prediction and ground truth""" return int(normalize_answer(prediction) == normalize_answer(ground_truth)) def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): """Applies no answer threshhold""" new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def make_eval_dict(exact_scores, f1_scores, qid_list=None): """returns dictionary with formatted evaluation scores""" if not qid_list: total = len(exact_scores) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(f1_scores.values()) / total), ("total", total), ] ) else: total = len(qid_list) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total), ("total", total), ] ) def merge_eval(main_eval, new_eval, prefix): """Merges 2 evaluation dictionaries into the first one by adding prefix as key for name collision handling""" for k in new_eval: main_eval["%s_%s" % (prefix, k)] = new_eval[k] def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): """ Find best threshholds to maximize all evaluation metrics. """ best_exact, exact_thresh = _find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh = _find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) main_eval["best_exact"] = best_exact main_eval["best_exact_thresh"] = exact_thresh main_eval["best_f1"] = best_f1 main_eval["best_f1_thresh"] = f1_thresh def _find_best_thresh(preds, scores, na_probs, qid_to_has_ans): """ Find best threshhold to maximize evaluation metric """ num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for _, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] return 100.0 * best_score / len(scores), best_thresh def _improve_answer_span( doc_tokens: List[str], input_start: int, input_end: int, tokenizer: object, orig_answer_text: str ): """Returns tokenized answer spans that better match the annotated answer.""" tok_answer_text = " ".join(tokenizer.text_to_tokens(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start : (new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) class SquadProcessor(DataProcessor): """ Processor for the SQuAD data set. used by the version 1.1 and version 2.0 of SQuAD, respectively. Args: data_file: data file path mode: TRAINING_MODE/EVALUATION_MODE/INFERENCE_MODE for creating training/evaluation/inference dataset """ def __init__(self, data_file: str, mode: str): self.data_file = data_file self.mode = mode # Memoizes documents to reduce memory use (as the same document is often used for many questions) self.doc_id = 0 self.context_text_to_doc_id = {} self.doc_id_to_context_text = {} def get_examples(self): """ Get examples from raw json file """ if self.data_file is None: raise ValueError(f"{self.mode} data file is None.") # remove this line and the replace cache line below - which is a temp fix with open(self.data_file.replace('_cache', ''), "r", encoding="utf-8") as reader: input_data = ijson.items(reader, "data.item") examples = [] for entry in input_data: len_docs = [] title = entry["title"] for paragraph in entry["paragraphs"]: context_text = paragraph["context"] for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] if not question_text: continue start_position_character = None answer_text = None answers = [] if "is_impossible" in qa: is_impossible = qa["is_impossible"] or len(qa["answers"]) < 1 else: is_impossible = False if not is_impossible: if self.mode in [TRAINING_MODE, EVALUATION_MODE]: answer = qa["answers"][0] answer_text = answer["text"] start_position_character = answer["answer_start"] if self.mode == EVALUATION_MODE: answers = qa["answers"] if context_text in self.context_text_to_doc_id: doc_id = self.context_text_to_doc_id[context_text] else: doc_id = self.doc_id self.context_text_to_doc_id[context_text] = doc_id self.doc_id_to_context_text[doc_id] = context_text self.doc_id += 1 len_docs.append(len(context_text)) example = SquadExample( qas_id=qas_id, question_text=question_text, context_text=context_text, context_id=doc_id, answer_text=answer_text, start_position_character=start_position_character, title=title, is_impossible=is_impossible, answers=answers, ) examples.append(example) logging.info('mean no. of chars in doc: {}'.format(np.mean(len_docs))) logging.info('max no. of chars in doc: {}'.format(np.max(len_docs))) return examples class SquadExample(object): """ A single training/test example for the Squad dataset, as loaded from disk. Args: qas_id: The example's unique identifier question_text: The question string context_text: The context string context_id: id representing context string answer_text: The answer string start_position_character: The character position of the start of the answer, 0 indexed title: The title of the example answers: None by default, this is used during evaluation. Holds answers as well as their start positions. is_impossible: False by default, set to True if the example has no possible answer. """ def __init__( self, qas_id: str, question_text: str, context_text: str, context_id: int, answer_text: str, start_position_character: int, title: str, answers: List[str] = [], is_impossible: bool = False, ): self.qas_id = qas_id self.question_text = question_text self.context_id = context_id self.answer_text = answer_text self.title = title self.is_impossible = is_impossible self.answers = answers self.start_position_character = start_position_character
NeMo-main
nemo/collections/nlp/data/question_answering_squad/qa_squad_processing.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
nemo/collections/nlp/data/question_answering_squad/__init__.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import os import pickle from functools import lru_cache from typing import Dict, List, Optional import numpy as np import psutil import torch from tqdm import trange from nemo.collections.common.parts.utils import _compute_softmax from nemo.collections.nlp.data.data_utils import is_whitespace from nemo.collections.nlp.data.question_answering_squad.qa_squad_processing import ( EVALUATION_MODE, INFERENCE_MODE, TRAINING_MODE, SquadProcessor, _improve_answer_span, apply_no_ans_threshold, exact_match_score, f1_score, find_all_best_thresh, get_best_indexes, get_final_text, make_eval_dict, merge_eval, normalize_answer, ) from nemo.core.classes import Dataset from nemo.utils import logging __all__ = ['SquadDataset', 'InputFeatures', '_check_is_max_context'] class InputFeatures(object): """A single set of features of data.""" def __init__( self, unique_id: int, input_ids: List[int], input_mask: List[int], segment_ids: List[int], example_index: int = None, doc_span_index: int = None, tokens: List[str] = None, token_to_orig_map: Dict[int, int] = None, token_is_max_context: Dict[int, bool] = None, start_position: Optional[int] = None, end_position: Optional[int] = None, is_impossible: Optional[int] = None, ): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token. Because of the sliding window approach taken to scoring documents, a single token can appear in multiple documents. Example: Doc: the man went to the store and bought a gallon of milk Span A: the man went to the Span B: to the store and bought Span C: and bought a gallon of ... Now the word 'bought' will have two scores from spans B and C. We only want to consider the score with "maximum context", which we define as the *minimum* of its left and right context (the *sum* of left and right context will always be the same, of course). In the example the maximum context for 'bought' would be span C since it has 1 left context and 3 right context, while span B has 4 left context and 0 right context. Code adapted from the code by the Google AI and HuggingFace. """ best_span_index = get_best_span_index(doc_spans, position) return cur_span_index == best_span_index @lru_cache(maxsize=10000) def get_best_span_index(doc_spans, position): """ For a particular position, identify which doc_span gives the most context around token Helper function for _check_is_max_context; see _check_is_max_context for more details """ best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return best_span_index class SquadDataset(Dataset): """ Creates SQuAD dataset for Question Answering. Args: data_file (str): train.*.json eval.*.json or test.*.json. tokenizer (obj): Tokenizer object, e.g. AutoTokenizer. version_2_with_negative (bool): True if training should allow unanswerable questions. doc_stride (int): When splitting up a long document into chunks, how much stride to take between chunks. max_query_length (iny): All training files which have a duration less than min_duration are dropped. Can't be used if the `utt2dur` file does not exist. Defaults to None. max_seq_length (int): All training files which have a duration more than max_duration are dropped. Can't be used if the `utt2dur` file does not exist. Defaults to None. num_samples: number of samples you want to use for the dataset. If -1, use all dataset. Useful for testing. mode (str): Use TRAINING_MODE/EVALUATION_MODE/INFERENCE_MODE to define between training, evaluation and inference dataset. use_cache (bool): Caches preprocessed data for future usage """ def __init__( self, data_file: str, keep_doc_spans: str, tokenizer: object, doc_stride: int, max_query_length: int, max_seq_length: int, version_2_with_negative: bool, num_samples: int, mode: str, use_cache: bool, ): self.tokenizer = tokenizer self.version_2_with_negative = version_2_with_negative self.processor = SquadProcessor(data_file=data_file, mode=mode) self.mode = mode self.keep_doc_spans = keep_doc_spans # hashing to reduce memory use self.input_mask_id = 0 self.input_mask_id_to_input_mask = {} self.input_mask_to_input_mask_id = {} self.segment_mask_id = 0 self.segment_mask_id_to_segment_mask = {} self.segment_mask_to_segment_mask_id = {} if mode not in [TRAINING_MODE, EVALUATION_MODE, INFERENCE_MODE]: raise ValueError( f"mode should be either {TRAINING_MODE}, {EVALUATION_MODE}, {INFERENCE_MODE} but got {mode}" ) self.examples = self.processor.get_examples() vocab_size = getattr(tokenizer, "vocab_size", 0) cached_features_file = ( data_file + '_cache' + '_{}_{}_{}_{}_{}_{}_{}'.format( mode, tokenizer.name, str(vocab_size), str(max_seq_length), str(doc_stride), str(max_query_length), str(num_samples), ) ) # check number of samples. Should be either -1 not to limit or positive number if num_samples == 0: raise ValueError( f"num_samples has to be positive or -1 (to use the entire dataset), however got {num_samples}." ) elif num_samples > 0: self.examples = self.examples[:num_samples] if use_cache and os.path.exists(cached_features_file): logging.info(f"loading from {cached_features_file}") # delete self.examples during training mode to save memory if self.mode == TRAINING_MODE: del self.examples del self.processor with open(cached_features_file, "rb") as reader: items_to_pickle = pickle.load(reader) ( self.features, self.input_mask_id_to_input_mask, self.input_mask_to_input_mask_id, self.segment_mask_id_to_segment_mask, self.segment_mask_to_segment_mask_id, ) = items_to_pickle items_to_pickle = None del items_to_pickle else: logging.info(f"Preprocessing data.") self.features = self.convert_examples_to_features( examples=self.examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, has_groundtruth=mode != INFERENCE_MODE, ) if use_cache: master_device = not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0 if master_device: logging.info(" Saving train features into cached file %s", cached_features_file) with open(cached_features_file, "wb") as writer: items_to_pickle = [ self.features, self.input_mask_id_to_input_mask, self.input_mask_to_input_mask_id, self.segment_mask_id_to_segment_mask, self.segment_mask_to_segment_mask_id, ] pickle.dump(items_to_pickle, writer) # delete self.examples during training mode to save memory if self.mode == TRAINING_MODE: self.examples = [] del self.processor logging.info("Converting dict features into object features") for i in trange(len(self.features)): self.features[i] = InputFeatures(**self.features[i]) @staticmethod def get_doc_tokens_and_offset_from_context_id( context_id, start_position_character, is_impossible, answer_text, context_id_to_context_text ): start_position, end_position = 0, 0 context_text = context_id_to_context_text[context_id] doc_tokens, char_to_word_offset = SquadDataset.split_into_words(context_text) # Start end end positions only has a value during evaluation. if start_position_character is not None and not is_impossible: # start_position is index of word, end_position inclusive start_position = char_to_word_offset[start_position_character] end_position = char_to_word_offset[ min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1) ] return doc_tokens, char_to_word_offset, start_position, end_position, context_text @staticmethod def split_into_words(context_text): """ Split on whitespace so that different tokens may be attributed to their original position. ex: context_text = "hi yo" char_to_word_offset = [0, 0, 0, 1, 1] doc_tokens = ["hi", "yo"] """ doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in context_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) return doc_tokens, char_to_word_offset def __len__(self): return len(self.features) def __getitem__(self, idx): """Some features are obtained from hashmap to reduce CPU memory use""" feature = self.features[idx] if self.mode == INFERENCE_MODE: return ( np.array(feature.input_ids), np.array(self.segment_mask_id_to_segment_mask[feature.segment_ids]), np.array(self.input_mask_id_to_input_mask[feature.input_mask]), np.array(feature.unique_id), ) else: return ( np.array(feature.input_ids), np.array(self.segment_mask_id_to_segment_mask[feature.segment_ids]), np.array(self.input_mask_id_to_input_mask[feature.input_mask]), np.array(feature.unique_id), np.array(feature.start_position), np.array(feature.end_position), ) @staticmethod def get_docspans(all_doc_tokens, max_tokens_for_doc, doc_stride): """ Get docspans which are sliding window spans from a document Args: all_doc_tokens: list of all tokens in document max_tokens_for_doc: maximum number of tokens in each doc span doc_stride: stride size which sliding window moves with Returns: doc_spans: all possible doc_spans from document """ _DocSpan = collections.namedtuple("DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) return doc_spans @staticmethod def check_if_sufficient_memory(): """ Check if there is sufficient memory to prevent system from being unresponsive Otherwise system can become unresponsive as memory is slowly filled up, possibly leading to system unable to kill process Interrupts run if CPU memory use is more than 75%, to leave some capacity for model loading """ percent_memory = psutil.virtual_memory().percent if percent_memory > 75: raise ValueError('Please use a device with more CPU ram or a smaller dataset') @staticmethod def get_average_dist_to_tok_start_and_end(doc_span, tok_start_position, tok_end_position): """ Find distance between doc_span and answer_span to determine if doc_span is likely to be useful for the answer Helper function to filter out doc_spans that may not be helpful Args: doc_span tok_start_position: start position of answer in document tok_end_position: end position of answer in document Returns: average distance of doc_span to answer """ center_answer = (tok_start_position + tok_end_position) // 2 dist_to_start = abs(doc_span.start - center_answer) dist_to_end = abs(doc_span.start + doc_span.length - 1 - center_answer) return (dist_to_start + dist_to_end) // 2 @staticmethod def keep_relevant_docspans(doc_spans, tok_start_position, tok_end_position, mode): """ Filters out doc_spans, which might not be relevant to answering question, which can be helpful when document is extremely long leading to many doc_spans with no answers Args: doc_spans: all possible doc_spans tok_start_position: start position of answer in document tok_end_position: end position of answer in document mode: all: do not filter only_positive: only keep doc_spans containing the answer limited_negative: only keep 10 doc_spans that are nearest to answer Returns: doc_spans: doc_spans after filtering """ if mode == 'all': return doc_spans elif mode == 'only_positive': if tok_start_position in [-1, None] or tok_end_position in [-1, None]: return [] else: return [ doc_span for doc_span in doc_spans if tok_start_position >= doc_span.start and tok_end_position <= doc_span.start + doc_span.length - 1 ] elif mode == 'limited_negative': n_candidates = 10 if tok_start_position in [-1, None] or tok_end_position in [-1, None]: pass else: doc_spans.sort( key=lambda doc_span: SquadDataset.get_average_dist_to_tok_start_and_end( doc_span, tok_start_position, tok_end_position ) ) return doc_spans[:n_candidates] else: raise ValueError('mode can only be in {all, only_positive and limited_negative') def convert_examples_to_features( self, examples: List[object], tokenizer: object, max_seq_length: int, doc_stride: int, max_query_length: int, has_groundtruth: bool, ): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 features = [] text_to_tokens_dict = {} for example_index in trange(len(examples)): if example_index % 1000 == 0: SquadDataset.check_if_sufficient_memory() example = examples[example_index] if example.question_text not in text_to_tokens_dict: text_to_tokens_dict[example.question_text] = tokenizer.text_to_tokens(example.question_text)[ :max_query_length ] query_tokens = text_to_tokens_dict[example.question_text] # context: index of token -> index of word tok_to_orig_index = [] # context: index of word -> index of first token in token list orig_to_tok_index = [] # context without white spaces after tokenization all_doc_tokens = [] # doc tokens is word separated context ( doc_tokens, char_to_word_offset, start_position, end_position, context_text, ) = SquadDataset.get_doc_tokens_and_offset_from_context_id( example.context_id, example.start_position_character, example.is_impossible, example.answer_text, self.processor.doc_id_to_context_text, ) example.start_position = start_position example.end_position = end_position if self.mode != TRAINING_MODE: example.doc_tokens = doc_tokens # the text to tokens step is the slowest step for (i, token) in enumerate(doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) if token not in text_to_tokens_dict: text_to_tokens_dict[token] = tokenizer.text_to_tokens(token) sub_tokens = text_to_tokens_dict[token] for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) # idx of query token start and end in context tok_start_position = None tok_end_position = None if has_groundtruth and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if has_groundtruth and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text ) # The -3 accounts for tokenizer.cls_token, tokenizer.sep_token and tokenizer.sep_token # doc_spans contains all possible contexts options of given length max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 doc_spans = SquadDataset.get_docspans(all_doc_tokens, max_tokens_for_doc, doc_stride) doc_spans = SquadDataset.keep_relevant_docspans( doc_spans, tok_start_position, tok_end_position, self.keep_doc_spans ) # make compatible for hashing doc_spans = tuple(doc_spans) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [tokenizer.cls_token] + query_tokens + [tokenizer.sep_token] segment_ids = [0 for i in range(len(tokens))] token_is_max_context = {} # maps context tokens idx in final input -> word idx in context token_to_orig_map = {} for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append(tokenizer.sep_token) segment_ids.append(1) input_ids = tokenizer.tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. # Only real tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(tokenizer.pad_id) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length # calculate start and end position in final array # of tokens in answer if no answer, # 0 for both pointing to tokenizer.cls_token start_position = 0 end_position = 0 if has_groundtruth and not example.is_impossible: doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if has_groundtruth and example.is_impossible: # if our document chunk does not contain # an annotation we throw it out, since there is nothing # to predict. start_position = 0 end_position = 0 if example_index < 1: logging.info("*** Example ***") logging.info("unique_id: %s" % (unique_id)) logging.info("example_index: %s" % (example_index)) logging.info("doc_span_index: %s" % (doc_span_index)) logging.info("tokens: %s" % " ".join(tokens)) logging.info( "token_to_orig_map: %s" % " ".join(["%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]) ) logging.info( "token_is_max_context: %s" % " ".join(["%d:%s" % (x, y) for (x, y) in token_is_max_context.items()]) ) logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if has_groundtruth and example.is_impossible: logging.info("impossible example") if has_groundtruth and not example.is_impossible: answer_text = " ".join(tokens[start_position : (end_position + 1)]) logging.info("start_position: %d" % (start_position)) logging.info("end_position: %d" % (end_position)) logging.info("answer: %s" % (answer_text)) # memoization to save CPU memory for large datasets input_mask = tuple(input_mask) if input_mask in self.input_mask_to_input_mask_id: feature_input_mask_id = self.input_mask_to_input_mask_id[input_mask] else: self.input_mask_id_to_input_mask[self.input_mask_id] = input_mask self.input_mask_to_input_mask_id[input_mask] = self.input_mask_id feature_input_mask_id = self.input_mask_id self.input_mask_id += 1 segment_mask = tuple(segment_ids) if segment_mask in self.segment_mask_to_segment_mask_id: feature_segment_mask_id = self.segment_mask_to_segment_mask_id[segment_mask] else: self.segment_mask_id_to_segment_mask[self.segment_mask_id] = segment_mask self.segment_mask_to_segment_mask_id[segment_mask] = self.segment_mask_id feature_segment_mask_id = self.segment_mask_id self.segment_mask_id += 1 # end memoization if self.mode == TRAINING_MODE: input_feature = { "unique_id": unique_id, "input_ids": input_ids, "input_mask": feature_input_mask_id, "segment_ids": feature_segment_mask_id, "start_position": start_position, "end_position": end_position, } else: input_feature = { "unique_id": unique_id, "input_ids": input_ids, "input_mask": feature_input_mask_id, "segment_ids": feature_segment_mask_id, "start_position": start_position, "end_position": end_position, "example_index": example_index, "doc_span_index": doc_span_index, "tokens": tokens, "token_to_orig_map": token_to_orig_map, "token_is_max_context": token_is_max_context, "is_impossible": example.is_impossible, } features.append(input_feature) unique_id += 1 return features def get_predictions( self, unique_ids: List[int], start_logits: List[List[float]], end_logits: List[List[float]], n_best_size: int, max_answer_length: int, do_lower_case: bool, version_2_with_negative: bool, null_score_diff_threshold: float, ): example_index_to_features = collections.defaultdict(list) unique_id_to_pos = {} for index, unique_id in enumerate(unique_ids): unique_id_to_pos[unique_id] = index for feature in self.features: example_index_to_features[feature.example_index].append(feature) _PrelimPrediction = collections.namedtuple( "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"] ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(self.examples): # finish this loop if we went through all batch examples if example_index >= len(unique_ids): break features = example_index_to_features[example_index] doc_tokens, _, _, _, _ = SquadDataset.get_doc_tokens_and_offset_from_context_id( example.context_id, example.start_position_character, example.is_impossible, example.answer_text, self.processor.doc_id_to_context_text, ) prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 # large and positive score_null = 1000000 # the paragraph slice with min null score min_null_feature_index = 0 # start logit at the slice with min null score null_start_logit = 0 # end logit at the slice with min null score null_end_logit = 0 for (feature_index, feature) in enumerate(features): pos = unique_id_to_pos[feature.unique_id] start_indexes = get_best_indexes(start_logits[pos], n_best_size) end_indexes = get_best_indexes(end_logits[pos], n_best_size) # if we could have irrelevant answers, # get the min score of irrelevant if version_2_with_negative: feature_null_score = start_logits[pos][0] + end_logits[pos][0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = start_logits[pos][0] null_end_logit = end_logits[pos][0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, # e.g., predict that the start of the span is in the # question. We throw out all invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=start_logits[pos][start_index], end_logit=end_logits[pos][end_index], ) ) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit, ) ) prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple("NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = doc_tokens[orig_doc_start : (orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only # have single null pred. We just create a nonce prediction # in this case to avoid failure. if len(nbest) == 1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["question"] = example.question_text output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = ( entry.start_logit if (isinstance(entry.start_logit, float) or isinstance(entry.start_logit, int)) else list(entry.start_logit) ) output["end_logit"] = ( entry.end_logit if (isinstance(entry.end_logit, float) or isinstance(entry.end_logit, int)) else list(entry.end_logit) ) nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - # the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json, scores_diff_json def evaluate_predictions( self, all_predictions: Dict[str, str], no_answer_probs: Optional[float] = None, no_answer_probability_threshold: float = 1.0, ): qas_id_to_has_answer = { example.qas_id: bool(example.answers) for example in self.examples[: len(all_predictions)] } has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer] no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer] if no_answer_probs is None: no_answer_probs = {k: 0.0 for k in all_predictions} exact, f1 = self.get_raw_scores(all_predictions) exact_threshold = apply_no_ans_threshold( exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold ) f1_threshold = apply_no_ans_threshold( f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold ) evaluation = make_eval_dict(exact_threshold, f1_threshold) if has_answer_qids: has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids) merge_eval(evaluation, has_ans_eval, "HasAns") if no_answer_qids: no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids) merge_eval(evaluation, no_ans_eval, "NoAns") if no_answer_probs: find_all_best_thresh(evaluation, all_predictions, exact, f1, no_answer_probs, qas_id_to_has_answer) return evaluation["best_exact"], evaluation["best_f1"] def get_raw_scores(self, preds: Dict[str, str]): """ Computes the exact and f1 scores from the examples and the model predictions """ exact_scores = {} f1_scores = {} for example in self.examples: qas_id = example.qas_id gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])] if not gold_answers: # For unanswerable questions, # only correct answer is empty string gold_answers = [""] if qas_id not in preds: logging.warning("Missing prediction for %s" % qas_id) continue prediction = preds[qas_id] exact_scores[qas_id] = max(exact_match_score(a, prediction) for a in gold_answers) f1_scores[qas_id] = max(f1_score(a, prediction) for a in gold_answers) return exact_scores, f1_scores def evaluate( self, unique_ids: List[str], start_logits: List[List[float]], end_logits: List[List[float]], n_best_size: int, max_answer_length: int, do_lower_case: bool, version_2_with_negative: bool, null_score_diff_threshold: float, ): (all_predictions, all_nbest_json, scores_diff_json) = self.get_predictions( unique_ids, start_logits, end_logits, n_best_size, max_answer_length, do_lower_case, version_2_with_negative, null_score_diff_threshold, ) exact_match, f1 = self.evaluate_predictions(all_predictions) return exact_match, f1, all_predictions, all_nbest_json
NeMo-main
nemo/collections/nlp/data/question_answering_squad/qa_dataset.py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility functions for Token Classification NLP tasks Some parts of this code were adapted from the HuggingFace library at https://github.com/huggingface/pytorch-pretrained-BERT """ import os import pickle import tempfile import time from typing import Dict, List, Optional import numpy as np from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.data_utils.data_preprocessing import get_stats from nemo.core.classes import Dataset from nemo.core.neural_types import ChannelType, LabelsType, MaskType, NeuralType from nemo.utils import logging from nemo.utils.get_rank import is_global_rank_zero __all__ = ['BertTokenClassificationDataset', 'BertTokenClassificationInferDataset'] def get_features( queries: List[str], tokenizer: TokenizerSpec, max_seq_length: int = -1, label_ids: dict = None, pad_label: str = 'O', raw_labels: List[str] = None, ignore_extra_tokens: bool = False, ignore_start_end: bool = False, ): """ Processes the data and returns features. Args: queries: text sequences tokenizer: such as AutoTokenizer max_seq_length: max sequence length minus 2 for [CLS] and [SEP], when -1 - use the max len from the data pad_label: pad value use for labels. By default, it's the neutral label. raw_labels: list of labels for every word in a sequence label_ids: dict to map labels to label ids. Starts with pad_label->0 and then increases in alphabetical order. Required for training and evaluation, not needed for inference. ignore_extra_tokens: whether to ignore extra tokens in the loss_mask ignore_start_end: whether to ignore bos and eos tokens in the loss_mask """ all_subtokens = [] all_loss_mask = [] all_subtokens_mask = [] all_segment_ids = [] all_input_ids = [] all_input_mask = [] sent_lengths = [] all_labels = [] with_label = False if raw_labels is not None: with_label = True for i, query in enumerate(queries): words = query.strip().split() # add bos token subtokens = [tokenizer.cls_token] loss_mask = [1 - ignore_start_end] subtokens_mask = [0] if with_label: pad_id = label_ids[pad_label] labels = [pad_id] query_labels = [label_ids[lab] for lab in raw_labels[i]] for j, word in enumerate(words): word_tokens = tokenizer.text_to_tokens(word) # to handle emojis that could be neglected during tokenization if len(word.strip()) > 0 and len(word_tokens) == 0: word_tokens = [tokenizer.ids_to_tokens(tokenizer.unk_id)] subtokens.extend(word_tokens) loss_mask.append(1) loss_mask.extend([int(not ignore_extra_tokens)] * (len(word_tokens) - 1)) subtokens_mask.append(1) subtokens_mask.extend([0] * (len(word_tokens) - 1)) if with_label: labels.extend([query_labels[j]] * len(word_tokens)) # add eos token subtokens.append(tokenizer.sep_token) loss_mask.append(1 - ignore_start_end) subtokens_mask.append(0) sent_lengths.append(len(subtokens)) all_subtokens.append(subtokens) all_loss_mask.append(loss_mask) all_subtokens_mask.append(subtokens_mask) all_input_mask.append([1] * len(subtokens)) if with_label: labels.append(pad_id) all_labels.append(labels) max_seq_length_data = max(sent_lengths) max_seq_length = min(max_seq_length, max_seq_length_data) if max_seq_length > 0 else max_seq_length_data logging.info(f'Setting Max Seq length to: {max_seq_length}') get_stats(sent_lengths) too_long_count = 0 for i, subtokens in enumerate(all_subtokens): if len(subtokens) > max_seq_length: subtokens = [tokenizer.cls_token] + subtokens[-max_seq_length + 1 :] all_input_mask[i] = [1] + all_input_mask[i][-max_seq_length + 1 :] all_loss_mask[i] = [int(not ignore_start_end)] + all_loss_mask[i][-max_seq_length + 1 :] all_subtokens_mask[i] = [0] + all_subtokens_mask[i][-max_seq_length + 1 :] if with_label: all_labels[i] = [pad_id] + all_labels[i][-max_seq_length + 1 :] too_long_count += 1 all_input_ids.append(tokenizer.tokens_to_ids(subtokens)) if len(subtokens) < max_seq_length: extra = max_seq_length - len(subtokens) all_input_ids[i] = all_input_ids[i] + [0] * extra all_loss_mask[i] = all_loss_mask[i] + [0] * extra all_subtokens_mask[i] = all_subtokens_mask[i] + [0] * extra all_input_mask[i] = all_input_mask[i] + [0] * extra if with_label: all_labels[i] = all_labels[i] + [pad_id] * extra all_segment_ids.append([0] * max_seq_length) logging.warning(f'{too_long_count} are longer than {max_seq_length}') for i in range(min(len(all_input_ids), 1)): logging.info("*** Example ***") logging.info("i: %s", i) logging.info("subtokens: %s", " ".join(list(map(str, all_subtokens[i])))) logging.info("loss_mask: %s", " ".join(list(map(str, all_loss_mask[i])))) logging.info("input_mask: %s", " ".join(list(map(str, all_input_mask[i])))) logging.info("subtokens_mask: %s", " ".join(list(map(str, all_subtokens_mask[i])))) if with_label: logging.info("labels: %s", " ".join(list(map(str, all_labels[i])))) return (all_input_ids, all_segment_ids, all_input_mask, all_subtokens_mask, all_loss_mask, all_labels) class BertTokenClassificationDataset(Dataset): """ Creates dataset to use during training for token classification tasks with a pretrained model. Converts from raw data to an instance that can be used by Dataloader. For dataset to use during inference without labels, see BertTokenClassificationInferDataset. Args: text_file: file to sequences, each line should a sentence, no header. label_file: file to labels, each line corresponds to word labels for a sentence in the text_file. No header. max_seq_length: max sequence length minus 2 for [CLS] and [SEP] tokenizer: such as AutoTokenizer num_samples: number of samples you want to use for the dataset. If -1, use all dataset. Useful for testing. pad_label: pad value use for labels. By default, it's the neutral label. label_ids: label_ids (dict): dict to map labels to label ids. Starts with pad_label->0 and then increases in alphabetical order For dev set use label_ids generated during training to support cases when not all labels are present in the dev set. For training set label_ids should be None. ignore_extra_tokens: whether to ignore extra tokens in the loss_mask ignore_start_end: whether to ignore bos and eos tokens in the loss_mask use_cache: whether to use processed data cache or not """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'labels': NeuralType(('B', 'T'), LabelsType()), } def __init__( self, text_file: str, label_file: str, max_seq_length: int, tokenizer: TokenizerSpec, num_samples: int = -1, pad_label: str = 'O', label_ids: Dict[str, int] = None, ignore_extra_tokens: bool = False, ignore_start_end: bool = False, use_cache: bool = True, ): """ Initializes BertTokenClassificationDataset. """ data_dir = os.path.dirname(text_file) text_filename = os.path.basename(text_file) lbl_filename = os.path.basename(label_file) if not text_filename.endswith('.txt'): raise ValueError("{text_file} should have extension .txt") vocab_size = getattr(tokenizer, "vocab_size", 0) features_pkl = os.path.join( data_dir, f"cached__{text_filename}__{lbl_filename}__{tokenizer.name}_{max_seq_length}_{vocab_size}_{num_samples}", ) master_device = is_global_rank_zero() features = None if master_device and (not use_cache or not os.path.exists(features_pkl)): if num_samples == 0: raise ValueError("num_samples has to be positive", num_samples) with open(text_file, 'r') as f: text_lines = f.readlines() labels_lines = [] with open(label_file, 'r') as f: for line in f: line = line.strip().split() labels_lines.append(line) if len(labels_lines) != len(text_lines): raise ValueError("Labels file should contain labels for every word") if num_samples > 0: dataset = list(zip(text_lines, labels_lines)) dataset = dataset[:num_samples] dataset = list(zip(*dataset)) text_lines = dataset[0] labels_lines = dataset[1] features = get_features( queries=text_lines, max_seq_length=max_seq_length, tokenizer=tokenizer, pad_label=pad_label, raw_labels=labels_lines, label_ids=label_ids, ignore_extra_tokens=ignore_extra_tokens, ignore_start_end=ignore_start_end, ) # save features to a temp file first to make sure that non-master processes don't start reading the file # until the master process is done with writing ofd, tmp_features_pkl = tempfile.mkstemp( suffix='.pkl', prefix=os.path.basename(features_pkl), dir=os.path.dirname(features_pkl) ) with os.fdopen(ofd, 'wb') as temp_f: pickle.dump(features, temp_f) os.rename(tmp_features_pkl, features_pkl) logging.info(f'features saved to {features_pkl}') # wait until the master process writes to the processed data files if not master_device: while features is None and not os.path.exists(features_pkl): time.sleep(10) if features is None: features = pickle.load(open(features_pkl, 'rb')) logging.info(f'features restored from {features_pkl}') self.all_input_ids = features[0] self.all_segment_ids = features[1] self.all_input_mask = features[2] self.all_subtokens_mask = features[3] self.all_loss_mask = features[4] self.all_labels = features[5] def __len__(self): return len(self.all_input_ids) def __getitem__(self, idx): return ( np.array(self.all_input_ids[idx]), np.array(self.all_segment_ids[idx]), np.array(self.all_input_mask[idx], dtype=np.long), np.array(self.all_subtokens_mask[idx]), np.array(self.all_loss_mask[idx]), np.array(self.all_labels[idx]), ) class BertTokenClassificationInferDataset(Dataset): """ Creates dataset to use during inference for token classification tasks with a pretrained model. For dataset to use during training with labels, see BertTokenClassificationDataset. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), } def __init__( self, queries: List[str], max_seq_length: int, tokenizer: TokenizerSpec, ): """ Initializes BertTokenClassificationInferDataset Args: queries: text sequences max_seq_length: max sequence length minus 2 for [CLS] and [SEP] tokenizer: such as AutoTokenizer """ features = get_features(queries=queries, max_seq_length=max_seq_length, tokenizer=tokenizer) self.all_input_ids = features[0] self.all_segment_ids = features[1] self.all_input_mask = features[2] self.all_subtokens_mask = features[3] def __len__(self): return len(self.all_input_ids) def __getitem__(self, idx): return ( np.array(self.all_input_ids[idx]), np.array(self.all_segment_ids[idx]), np.array(self.all_input_mask[idx], dtype=np.long), np.array(self.all_subtokens_mask[idx]), )
NeMo-main
nemo/collections/nlp/data/token_classification/token_classification_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ 'BertPunctuationCapitalizationDataset', 'LABEL_ID_DIR_FOR_NEMO_CHECKPOINT', 'Progress', 'PunctuationCapitalizationEvalDataConfig', 'PunctuationCapitalizationTrainDataConfig', 'create_label_ids', 'create_masks_and_segment_ids', 'is_legacy_data_config', 'legacy_data_config_to_new_data_config', 'load_label_ids', 'raise_not_equal_labels_error', 'save_label_ids', ] import itertools import multiprocessing as mp import os import pickle import tempfile from dataclasses import dataclass from math import ceil from pathlib import Path from queue import Empty from time import sleep from typing import Any, Dict, List, Optional, Set, Tuple, Union import numpy as np import torch from numpy import ndarray from omegaconf import MISSING, DictConfig, OmegaConf from torch.nn.utils.rnn import pad_sequence from tqdm import tqdm from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.data_utils.data_preprocessing import get_label_stats, get_stats from nemo.core.classes import Dataset from nemo.core.neural_types import AudioSignal, ChannelType, LabelsType, LengthsType, MaskType, NeuralType from nemo.utils import logging from nemo.utils.get_rank import is_global_rank_zero try: from nemo.collections.asr.parts.preprocessing import AudioSegment ASR_AVAILABLE = True except (ImportError, ModuleNotFoundError): ASR_AVAILABLE = False MAX_NUM_QUERIES_IN_SPLIT = 10 ** 4 TOKENIZATION_PROGRESS_REPORT_PERIOD = 10 ** 3 BATCH_MARK_UP_PROGRESS_REPORT_PERIOD = 10 ** 4 BATCH_BUILDING_PROGRESS_REPORT_PERIOD = 10 ** 4 LABEL_ID_DIR_FOR_NEMO_CHECKPOINT = "label_id_files_for_nemo_checkpoint" @dataclass class PunctuationCapitalizationDataConfigBase: """A base class for punctuation and capitalization data configs. This class does not define ``ds_item`` attribute which works differently for train and evaluation data.""" ################################################### # AUDIO DATASET PARAMETERS ################################################### use_audio: bool = False """ Whether to use audio or not. If set to True you should provide ``audio_file``. """ audio_file: Optional[str] = None """ Path to the file with audio paths one per row. """ sample_rate: Optional[int] = 16000 """ Sample rate of audios to use. """ use_bucketing: Optional[bool] = True """ Whether to pack samples into ``tokens_in_batch`` or not. Increases GPU utilization but may cause significant RAM consumption if used together with ``use_audio``. """ batch_size: Optional[int] = 32 """ Batch size used if ``use_bucketing`` set to False. """ preload_audios: Optional[bool] = True """ If set to True audios will be loaded during ``__init__`` call of dataset. Otherwise it will be loaded during ``collate_fn ``call """ ################################################### # PARAMETERS COMMON FOR REGULAR AND TARRED DATASETS ################################################### use_tarred_dataset: bool = MISSING """Whether to use tarred dataset. If True, then you should provide ``tar_metadata_file``. Otherwise, you should provide ``text_file``, ``labels_file``, ``tokens_in_batch``.""" label_info_save_dir: Optional[str] = None """A path to a directory where files created during dataset processing are stored. These files include label id files and label stats files. By default, it is a directory containing ``text_file`` or ``tar_metadata_file``. You may need this parameter if dataset directory is read-only and thus does not allow saving anything near dataset files""" ################################################# # REGULAR DATASET PARAMETERS ################################################# text_file: Optional[str] = None """A path to a file with source text data without punctuation and capitalization.""" labels_file: Optional[str] = None """A path to a file with punctuation and capitalization labels in NeMo format. NeMo format is described in `documentation <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#nemo-data-format>`_ """ tokens_in_batch: Optional[int] = None """Number of tokens in a batch including paddings and special tokens ([CLS], [SEP], [UNK]). This config does not have ``batch_size`` parameter.""" max_seq_length: int = 512 """Max number of tokens in a source sequence. ``max_seq_length`` includes [CLS] and [SEP] tokens. Sequences which are too long will be clipped by removal of tokens from the end of a sequence.""" num_samples: int = -1 """A number of samples loaded from ``text_file`` and ``labels_file`` which are used in the dataset. If this parameter equals ``-1``, then all samples are used.""" use_cache: bool = True """Whether to use pickled features. If pickled features file does not exist or ``use_cache=False``, then features are pickled in ``cache_dir``. Pickled features include input ids, subtokens mask (mask of first tokens in words), encoded punctuation and capitalization labels, label ids. Features creation consumes considerable time and this ``use_cache=True`` significantly speeds up training starting. Pickled features are also used for sharing features between processes if data parallel training is used.""" cache_dir: Optional[str] = None """A path to a directory containing cache or directory where newly created cache is saved. By default, it is a directory containing ``text_file``. You may need this parameter if cache for a dataset is going to be created and the dataset directory is read-only. ``cache_dir`` and ``label_info_save_dir`` are separate parameters for the case when a cache is ready and this cache is stored in a read only directory. In this case you will separate ``label_info_save_dir``.""" get_label_frequences: bool = False """Whether to show and save label frequencies. Frequencies are showed if ``verbose`` parameter is ``True``. If ``get_label_frequencies=True``, then frequencies are saved into ``label_info_save_dir``""" verbose: bool = True """If ``True`` dataset instance will print progress messages and examples of acquired features.""" n_jobs: Optional[int] = 0 """Number of workers used for features creation (tokenization, label encoding, and clipping). If 0, then multiprocessing is not used; if ``None``, then n_jobs is equal to the number of CPU cores. There can be weird deadlocking errors with some tokenizers (e.g. SentencePiece) if ``n_jobs`` is greater than zero. """ ################################################# # TARRED DATASET PARAMETERS ################################################# tar_metadata_file: Optional[str] = None """A path to tarred dataset metadata file. Tarred metadata file and other parts of tarred dataset are usually created by the script `examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py>`_ """ tar_shuffle_n: int = 1 """The size of shuffle buffer of `webdataset`. The number of batches which are permuted.""" shard_strategy: Optional[str] = 'scatter' """Tarred dataset shard distribution strategy chosen as a str value during ddp. Accepted values are `scatter` and `replicate`. `scatter`: The default shard strategy applied by WebDataset, where each node gets a unique set of shards, which are permanently pre-allocated and never changed at runtime. `replicate` is an optional shard strategy, where each node gets the entire set of shards available in the tarred dataset, which are permanently pre-allocated and never changed at runtime. The benefit of replication is that it allows each node to sample data points from the entire dataset independently of other nodes, and reduces dependence on value of ``tar_shuffle_n``. .. warning:: Replicated strategy allows every node to sample the entire set of available tar files, and therefore more than one node may sample the same tarfile, and even sample the same data points! As such, there is no assured guarantee that all samples in the dataset will be sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific occasions (when the number of shards is not divisible with ``world_size``), will not sample the entire dataset. For these reasons it is not advisable to use tarred datasets as validation or test datasets. """ ################################################# # PYTORCH DATALOADER PARAMETERS ################################################# shuffle: bool = True """Shuffle batches every epoch. For regular training datasets, the parameter also activates batch repacking every epoch. For tarred dataset, it would be only batches permutation.""" drop_last: bool = False """In cases when data parallelism is used, ``drop_last`` defines the way data pipeline behaves when some replicas are out of data and some are not. If ``drop_last`` is ``True``, then epoch ends in the moment when any replica runs out of data. If ``drop_last`` is ``False``, then the replica will replace missing batch with a batch from a pool of batches that the replica has already processed. If data parallelism is not used, then parameter ``drop_last`` does not do anything. For more information see ``torch.utils.data.distributed.DistributedSampler``""" pin_memory: bool = True """See ``torch.utils.data.DataLoader`` documentation.""" num_workers: int = 8 """See ``torch.utils.data.DataLoader`` documentation.""" persistent_workers: bool = True """See ``torch.utils.data.DataLoader`` documentation.""" @dataclass class PunctuationCapitalizationTrainDataConfig(PunctuationCapitalizationDataConfigBase): ds_item: Optional[str] = MISSING """Path to a directory where `tar_metadata_file` or `text_file` and `labels_file` lay.""" @dataclass class PunctuationCapitalizationEvalDataConfig(PunctuationCapitalizationDataConfigBase): ds_item: Optional[Any] = MISSING """Path to a directory where `tar_metadata_file` or `text_file` and `labels_file` lay. ``Any`` = ``str`` or ``List[str]``. If a ``List[str]``, then the model is tested or validated on several datasets.""" def is_legacy_data_config(ds_section: DictConfig) -> bool: return 'use_tarred_dataset' not in ds_section def legacy_data_config_to_new_data_config( ds_section: DictConfig, legacy_dataset_section: DictConfig, train: bool ) -> DictConfig: """ Transform old style dataset to new format dataset. Args: ds_section: a ds section (``train_ds``, or ``validation_ds``, or ``test_ds``) from old style config. Such section contain ``batch_size`` parameter. legacy_dataset_section: a ``model.dataset`` section. ``model.dataset`` section contains ``data_dir`` parameter train: ``True`` if ``train_ds`` is transformed and ``False`` otherwise Returns: New format dataset based on either ``PunctuationCapitalizationTrainDataConfig`` (``train=True``) or ``PunctuationCapitalizationEvalDataConfig`` (``train=False``) """ if train: cls = PunctuationCapitalizationTrainDataConfig ds_item = legacy_dataset_section.get('data_dir') else: cls = PunctuationCapitalizationEvalDataConfig ds_item = ds_section.get('ds_item') ds_item = legacy_dataset_section.get('data_dir') if ds_item is None else ds_item if ds_item is None: raise ValueError( f"Data directory was not found in legacy config.\nspecific dataset configuration:\n" f"{OmegaConf.to_yaml(ds_section)}\nmodel.dataset:\n{OmegaConf.to_yaml(legacy_dataset_section)}" ) new_config = OmegaConf.structured( cls( use_tarred_dataset=False, text_file=ds_section.text_file, labels_file=ds_section.labels_file, ds_item=ds_item, max_seq_length=legacy_dataset_section.get( 'max_seq_length', PunctuationCapitalizationDataConfigBase.max_seq_length ), ) ) return new_config def _check_number_of_labels( words: List[str], query: str, qi: int, split_i: int, punctuation_labels: List[str], capitalization_labels: List[str], ) -> None: if len(words) != len(punctuation_labels): raise ValueError( f"Number of punctuation labels for a query number {qi} in a split number {split_i} is not equal to " f"number of words. Number of words: {len(words)}, number of punctuation labels: " f"{len(punctuation_labels)}. First 100 characters of the query: '{query[:100]}', punctuation labels: " f"'{punctuation_labels}'" ) if len(words) != len(capitalization_labels): raise ValueError( f"Number of capitalization labels for a query number {qi} in a split number {split_i} is not equal to " f"number of words. Number of words: {len(words)}, number of capitalization labels: " f"{len(capitalization_labels)}. First 100 characters of the query: '{query[:100]}', " f"capitalization labels: '{capitalization_labels}'" ) def _show_prog(queues: Tuple[mp.Queue, ...], totals: List[int], descriptions: List[str], units: List[str]) -> None: """ Show several ``tqdm`` progress bars. Args: queues: a list of queues by which progress is delivered into this function. Each queue is responsible for one progress bar. ``show_prog`` function extracts integers from ``queues`` elements and adds them to progress bars. If value extracted from a queue equals ``-1``, then corresponding progress bar is closed. When all progress bars are closed, this function returns. totals: list of values 100% of progress bars. See more in a description of ``total`` parameter of ``tqdm.tqdm`` function descriptions: list of descriptions of progress bars. See more in a description of ``desc`` parameter of ``tqdm.tqdm`` function units: list of progress bar units. See more in a description of ``unit`` parameter of ``tqdm.tqdm`` function """ if not all([len(queues) == len(v) for v in [totals, descriptions, units]]): raise ValueError( f"All of parameters `queues`, `total_num_lines`, `descriptions`, `units` have to have equal lengths. " f"len(queues)={len(queues)}, len(total_num_lines)={len(totals)}, " f"len(descriptions)={len(descriptions)}, len(units)={len(units)}." ) prog = [ tqdm(total=tt, desc=dd, unit=uu, unit_scale=True, position=i) for i, (tt, dd, uu) in enumerate(zip(totals, descriptions, units)) ] finished = [False] * len(queues) while True: for i, queue in enumerate(queues): stop = False to_add = 0 try: v = queue.get(block=False) while v != -1: to_add += v v = queue.get(block=False) stop = True except Empty: if to_add == 0 and not stop: continue prog[i].n += to_add prog[i].update(0) if prog[i].n >= totals[i]: finished[i] = True prog[i].close() if stop: if prog[i].n < totals[i]: logging.warning( f"Progress with description '{descriptions[i]}' terminated before progress bar " f"reached 100%. prog.n={prog[i].n}, total_num_lines={totals[i]}" ) finished[i] = True prog[i].close() if all(finished): break sleep(0.1) class Progress: """ Manages several ``tqdm`` progress bars for multiprocess tasks. This class can be used as context manager. The class starts separate process which creates and updates progress bars. Information to progress process is passed via multiprocessing queues. There is a separate queue for every progress bar. You can use it as context manager: .. code-block:: python with Progress([10, 20], ["progress bar 1", "progress bar 2"], ["parrot", "frog"]) as progress_queues: num_processes = 10 with multiprocessing.Pool(num_processes) as pool: data = list(zip(my_data, [progress_queues[0]] * num_processes, [progress_queues[1]] * num_processes)) pool.starmap(worker_func, data) Or without context manager: .. code-block:: python progress = Progress([10, 20], ["progress bar 1", "progress bar 2"], ["parrot", "frog"]) progress_queues = progress.get_queue() num_processes = 10 with multiprocessing.Pool(num_processes) as pool: data = list(zip(my_data, [progress_queues[0]] * num_processes, [progress_queues[1]] * num_processes)) pool.starmap(worker_func, data) progress.finish() In a worker function you will have to put number of processed items into the progress queues. For example: .. code-block:: python def worker_func(my_datum, parrot_progress_queue, frog_progress_queue): ... for i in range(10): parrot_progress_queue.put(1) frog_progress_queue.put(2) Progress bars and progress process are closed when ``finish`` or ``__exit__`` methods are called. """ def __init__(self, total: Union[int, List[int]], desc: Union[str, List[str]], unit: Union[str, List[str]]) -> None: """ Starts progress process and creates queues for passing information to the progress process. Number of progress bars is equal to the max length of lists ``total``, ``desc``, ``unit``. If none of these parameters is a list, then 1 progress bar is created. Args: total: a list of ``int`` which length is equal to the number of progress bars OR an ``int`` OR a list of one ``int``. Number which comprises 100% of progress bar. When sum of values passed through the corresponding queue equals ``total`` corresponding progress bar reaches 100%. If ``total`` is an ``int`` or a list of one element, then all progress bars have equal ``total`` parameter. desc: a list of ``str`` which length is equal to the number of progress bars OR a ``str`` OR a list of one ``str``. Description of a progress bar which is showed as a prefix. See more in description of parameter ``desc`` of function ``tqdm.tqdm``. unit: a list of ``str`` which length is equal to the number of progress bars OR a ``str`` OR a list of one ``str``. A unit of a progress bar. See more in description of parameter ``unit`` of function ``tqdm.tqdm``. """ if not isinstance(total, list): total = [total] if not isinstance(desc, list): desc = [desc] if not isinstance(unit, list): unit = [unit] num_processes = max([len(total), len(desc), len(unit)]) for param in [total, desc, unit]: if len(param) not in [num_processes, 1]: raise ValueError( f"If parameter of `Progress.__init__` method is a list, then it has to be the same length as other " f"parameters which are lists" ) if len(param) == 1: param *= num_processes manager = mp.Manager() self.progress_queues = tuple(manager.Queue() for _ in range(num_processes)) self.progress_process = mp.Process(target=_show_prog, args=(self.progress_queues, total, desc, unit)) self.progress_process.start() def __enter__(self) -> Tuple[mp.Queue, ...]: return self.get_queues() def __exit__(self, exc_type, exc_val, exc_tb) -> None: self.finish() def get_queues(self) -> Tuple[mp.Queue, ...]: return self.progress_queues def finish(self) -> None: for q in self.progress_queues: q.put(-1) self.progress_process.join() class TokenizeCreateMasksClipWorker: """A worker for tokenization, encoding labels, creating masks for first token in a word, sequence clipping""" def __init__( self, max_seq_length: int, tokenizer: TokenizerSpec, punct_label_ids: Optional[Dict[str, int]], capit_label_ids: Optional[Dict[str, int]], pad_label: str, verbose: bool, progress_queue: mp.Queue, ) -> None: """ Args: max_seq_length: max number of tokens in an input sequence including [CLS] and [SEP] tokens. If number of tokens in a sequence exceeds ``max_seq_length``, then excess tokens in the end of the sequence are removed tokenizer: a tokenizer instance which has properties ``cls_id``, ``pad_id``, ``sep_id``, ``unk_id`` punct_label_ids: dict to map punctuation labels to label ids. Starts with pad_label->0. capit_label_ids: dict to map capitalization labels to label ids. Starts with pad_label->0. pad_label: pad value use for labels. By default, it's the neutral label for punctuation and capitalization. Its id in ``punct_label_ids`` and ``capit_label_ids`` has to be ``0`` verbose: whether to report when the worker finishes its job progress_queue: a multiprocessing queue used for reporting progress. Useful for creating tarred dataset """ self.max_seq_length = max_seq_length self.tokenizer = tokenizer self.punct_label_ids = punct_label_ids self.capit_label_ids = capit_label_ids self.pad_label = pad_label self.verbose = verbose self.progress_queue = progress_queue def _maybe_clip(self, values: List[int], append_value: int) -> List[int]: if len(values) > self.max_seq_length: return values[: self.max_seq_length - 1] + [append_value] return values def __call__( self, queries: List[str], punct_label_lines: Optional[Union[List[str], Tuple[str, ...]]], capit_label_lines: Optional[Union[List[str], Tuple[str, ...]]], split_i: int, audio_queries: Optional[List[str]] = None, sample_rate: Optional[int] = None, preload_audios: Optional[bool] = True, ) -> Tuple[ List[ndarray], List[ndarray], List[ndarray], List[ndarray], Union[List[Any], List[None]], Union[List[Any], List[None]], Union[List[Any], List[None]], ]: """ Tokenize, clip, encode labels, and create masks of first tokens in words. Args: queries: text sequences punct_label_lines: a list or a tuple of labels for every word in a sequence (str) capit_label_lines: a list of a tuple labels for every word in a sequence (str) split_i: number of a split which is processed. Used for logging audio_queries: a list of audio filepaths sample_rate: target sample rate of audios preload_audios: whether to preload audios or not Returns: input_ids: a list of 1D int32 arrays. Each array contains token ids of the corresponding query subtokens_mask: a list of 1D boolean arrays. An array element is ``True`` if corresponding token is the first token in a word punct_labels: a list of 1D int32 arrays. Encoded punctuation labels for every token in a query. Tokens in one word have identical labels capit_labels: a list of 1D int32 arrays. Encoded capitalization labels for every token in a query. Tokens in one word have identical labels """ all_input_ids, all_subtokens_mask, punct_all_labels, capit_all_labels = [], [], [], [] dummy = [None] * len(queries) # Needed to avoid code duplication with different values of `self.use_audio` all_audio_waveforms = [] if preload_audios else dummy audio_lengths = [] if preload_audios else dummy audio_filepaths = [] if not preload_audios else dummy progress_made = 0 queries = zip(queries, audio_queries) if audio_queries else zip(queries, dummy) for i, (query, audio_query) in enumerate(queries): words = query.split() input_ids, subtokens_mask = [self.tokenizer.cls_id], [0] _check_number_of_labels(words, query, i, split_i, punct_label_lines[i], capit_label_lines[i]) pad_id = self.punct_label_ids[self.pad_label] punct_labels = [pad_id] punct_query_labels = [self.punct_label_ids[lab] for lab in punct_label_lines[i]] capit_labels = [pad_id] capit_query_labels = [self.capit_label_ids[lab] for lab in capit_label_lines[i]] for j, word in enumerate(words): word_ids = self.tokenizer.text_to_ids(word) if not word_ids and len(word): word_ids = [self.tokenizer.unk_id] input_ids.extend(word_ids) subtokens_mask.append(1) subtokens_mask.extend([0] * (len(word_ids) - 1)) punct_labels.extend([punct_query_labels[j]] * len(word_ids)) capit_labels.extend([capit_query_labels[j]] * len(word_ids)) # add eos token input_ids.append(self.tokenizer.sep_id) subtokens_mask.append(0) all_input_ids.append(np.array(self._maybe_clip(input_ids, self.tokenizer.sep_id), dtype=np.int32)) all_subtokens_mask.append(np.array(self._maybe_clip(subtokens_mask, 0), dtype=bool)) punct_labels.append(pad_id) punct_all_labels.append(np.array(self._maybe_clip(punct_labels, pad_id), dtype=np.int32)) capit_labels.append(pad_id) capit_all_labels.append(np.array(self._maybe_clip(capit_labels, pad_id), dtype=np.int32)) if preload_audios and audio_query: if ASR_AVAILABLE: segment = AudioSegment.from_file(audio_query.strip(), target_sr=sample_rate) all_audio_waveforms.append(segment.samples) audio_lengths.append(segment.num_samples) else: raise ModuleNotFoundError( 'Nemo ASR was not installed, see https://github.com/NVIDIA/NeMo#installation for installation instructions' ) elif audio_query: audio_filepaths.append(audio_query.strip()) progress_made += 1 if progress_made >= TOKENIZATION_PROGRESS_REPORT_PERIOD: self.progress_queue.put(progress_made) progress_made = 0 self.progress_queue.put(progress_made) if self.verbose: logging.info(f"Finished processing data split number {split_i}") return ( all_input_ids, all_subtokens_mask, punct_all_labels, capit_all_labels, all_audio_waveforms, audio_lengths, audio_filepaths, ) def _get_features( queries: Union[List[str], Tuple[str, ...]], punct_label_lines: Union[List[str], Tuple[str, ...]], capit_label_lines: Union[List[str], Tuple[str, ...]], max_seq_length: int, tokenizer: TokenizerSpec, punct_label_ids: Dict[str, int] = None, capit_label_ids: Dict[str, int] = None, pad_label: str = 'O', verbose: bool = True, n_jobs: Optional[int] = 0, progress_queue: Optional[mp.Queue] = None, audio_queries: Optional[List[str]] = None, sample_rate: Optional[int] = None, preload_audios: Optional[bool] = True, ) -> Tuple[List[Any], List[Any], List[Any], List[Any], List[Any], List[Any], List[Any]]: """ Tokenizes data, encodes labels, creates masks of first tokens in words, clips sequences by number of tokens. Args: queries: text sequences max_seq_length: max number of tokens in an input sequence including [CLS] and [SEP] tokens. If number of tokens in a sequence exceeds ``max_seq_length``, then excess tokens in the end of the sequence are removed tokenizer: a tokenizer instance which has properties ``cls_id``, ``pad_id``, ``sep_id``, ``unk_id`` punct_label_ids: dict to map punctuation labels to label ids. Starts with pad_label->0. capit_label_ids: dict to map capitalization labels to label ids. Starts with pad_label->0. pad_label: pad value use for labels. By default, it's the neutral label for punctuation and capitalization. Its id in ``punct_label_ids`` and ``capit_label_ids`` has to be ``0`` punct_label_lines: a list of a tuple of labels for every word in a sequence (str) capit_label_lines: a list or a tuple of labels for every word in a sequence (str) verbose: whether to show examples of tokenized data and various progress information n_jobs: a number of workers used for preparing features. If ``n_jobs <= 0``, then do not use multiprocessing and run features creation in this process. If not set, number of workers will be equal to the number of CPUs. !!WARNING!! There can be deadlocking problems with some tokenizers (e.g. SentencePiece, HuggingFace AlBERT) if ``n_jobs > 0``. progress_queue: a multiprocessing queue used for reporting progress. Useful for creating tarred dataset audio_queries: a list of audio filepaths sample_rate: target sample rate of audios preload_audios: whether to preload audios or not Returns: input_ids: a list of 1D int32 arrays. Each array contains token ids of corresponding query subtokens_mask: a list of 1D boolean arrays. An array element is ``True`` if corresponding token is the first token in a word punct_labels: a list of 1D int32 arrays. Encoded punctuation labels for every token in a query. Tokens in one word have identical labels. capit_labels: a list of 1D int32 arrays. Encoded capitalization labels for every token in a query. Tokens in one word have identical labels """ if verbose: logging.info("Start initial tokenization.") create_progress_process = progress_queue is None if n_jobs is None: n_jobs = min(mp.cpu_count(), len(queries)) if verbose: logging.info(f"Running tokenization with {n_jobs} jobs.") # Number of queries in split split_size = min(len(queries) // max(n_jobs, 1), MAX_NUM_QUERIES_IN_SPLIT) n_split = len(queries) // split_size split_queries = [queries[split_size * i : split_size * (i + 1)] for i in range(n_split - 1)] + [ queries[split_size * (n_split - 1) :] ] split_punct_labels_lines = [ punct_label_lines[split_size * i : split_size * (i + 1)] for i in range(n_split - 1) ] + [punct_label_lines[split_size * (n_split - 1) :]] split_capit_labels_lines = [ capit_label_lines[split_size * i : split_size * (i + 1)] for i in range(n_split - 1) ] + [capit_label_lines[split_size * (n_split - 1) :]] args = list(zip(split_queries, split_punct_labels_lines, split_capit_labels_lines, range(n_split))) if audio_queries: split_audio_queries = [audio_queries[split_size * i : split_size * (i + 1)] for i in range(n_split - 1)] + [ audio_queries[split_size * (n_split - 1) :] ] args = list( zip( split_queries, split_punct_labels_lines, split_capit_labels_lines, range(n_split), split_audio_queries, [sample_rate for _ in range(n_split)], [preload_audios for _ in range(n_split)], ) ) if create_progress_process: progress = Progress(len(queries), "Tokenization", "query") progress_queue = progress.get_queues()[0] if n_jobs > 0: with mp.Pool(n_jobs) as pool: result = pool.starmap( TokenizeCreateMasksClipWorker( max_seq_length, tokenizer, punct_label_ids, capit_label_ids, pad_label, verbose, progress_queue, ), args, ) else: result = [] for x in args: result.append( TokenizeCreateMasksClipWorker( max_seq_length, tokenizer, punct_label_ids, capit_label_ids, pad_label, verbose, progress_queue, )(*x) ) if create_progress_process: progress.finish() input_ids, subtokens_mask, punct_labels, capit_labels, waveforms, audio_lengths, audio_filepaths = tuple( list(itertools.chain(*e)) for e in zip(*result) ) if verbose: logging.info("Finished initial tokenization.") get_stats([len(inp) for inp in input_ids]) logging.info(f"Finished clipping and padding.") for i in range(min(len(input_ids), 5)): logging.info("*** Example ***") logging.info("i: %s" % i) logging.info("subtokens: %s" % " ".join(list(map(str, input_ids[i])))) logging.info("subtokens_mask: %s" % " ".join(list(map(str, subtokens_mask[i])))) logging.info("punct_labels: %s" % " ".join(list(map(str, punct_labels[i])))) logging.info("capit_labels: %s" % " ".join(list(map(str, capit_labels[i])))) return ( input_ids, subtokens_mask, waveforms, audio_lengths, audio_filepaths, punct_labels, capit_labels, ) def create_masks_and_segment_ids( input_ids: np.ndarray, subtokens_mask: np.ndarray, pad_id: int, cls_id: int, sep_id: int, ignore_start_end: bool, ignore_extra_tokens: bool, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Creates segment ids array, input mask, loss mask. Segment ids array is BERT token type ids in HuggingFace terminology. It is a zeros array for punctuation and capitalization task. Input mask element is ``True`` if an element of ``input_ids`` is not padding and ``False`` otherwise. Loss mask element is ``True`` for the first token in a word. If ``ignore_start_end=False``, then loss mask element is ``True`` for [CLS] and [SEP] tokens. If ``ignore_extra_tokens=False``, then loss mask element is ``True`` for all word tokens. In all other cases loss mask elements are ``False``. Args: input_ids: an integer array of shape ``[Batch, Time]`` containing ids of source token ids subtokens_mask: a boolean array of shape ``[Batch, Time]`` which elements are ``True`` if they correspond to the first token of some word pad_id: an id of padding token cls_id: an id of [CLS] token sep_id: an id of [SEP] token ignore_start_end: whether to compute loss for [CLS] and [SEP] tokens ignore_extra_tokens: whether to compute loss for not first tokens in words Returns: segment_ids: int8 array of shape [Batch, Time] input_mask: boolean array of shape [Batch, Time] loss_mask: boolean array of shape [Batch, Time] """ segment_ids = np.zeros_like(input_ids, dtype=np.int8) input_mask = np.not_equal(input_ids, pad_id) special_mask = np.equal(input_ids, cls_id) & np.equal(input_ids, sep_id) if ignore_start_end: if ignore_extra_tokens: loss_mask = subtokens_mask else: loss_mask = input_mask & ~special_mask else: if ignore_extra_tokens: loss_mask = subtokens_mask | special_mask else: loss_mask = input_mask return segment_ids, input_mask, loss_mask def create_label_ids(unique_labels: Set[str], pad_label: str) -> Dict[str, int]: """ Returns label ids dictionary. ``pad_label`` always has id ``0``. Other labels are sorted in alphabetical order. Args: unique_labels: a set of labels from which label ids dictionary is created. May or may not contain ``pad_label`` pad_label: label used for padding. It is also a neutral label Returns: label ids dictionary """ label_ids = {pad_label: 0} if pad_label in unique_labels: unique_labels.remove(pad_label) for label in sorted(unique_labels): label_ids[label] = len(label_ids) return label_ids def load_label_ids(file_path: Union[str, os.PathLike]) -> Dict[str, int]: ids = {} with open(file_path, encoding='utf_8') as f: for i, line in enumerate(f): ids[line.strip()] = i return ids def save_label_ids(label_ids: Dict[str, int], file_path: Path) -> None: """ Saves label ids map to a file. In each line of a file one label is saved. Labels are saved in the order of increasing of their ids. Args: label_ids: label id dictionary. Pad label has to have id ``0`` file_path: path to a file where labels will be saved """ file_path.parent.mkdir(parents=True, exist_ok=True) with file_path.open('w', encoding='utf_8', newline='\n') as out: labels, _ = zip(*sorted(label_ids.items(), key=lambda x: x[1])) out.write('\n'.join(labels)) def raise_not_equal_labels_error( first_labels: Dict[str, int], second_labels: Dict[str, int], first_labels_desc: str, second_labels_desc: str ) -> None: """ A helper function for raising comprehensible error if labels from 2 sources are different. Such sources may include: - labels stored in .nemo checkpoint - labels stored in tarred dataset - labels passed in config parameters ``model.common_dataset_parameters.{punct_label_ids,capit_label_ids}`` - labels from files passed in config parameters ``model.class_labels.{punct_labels_file,capit_labels_file}`` - labels in attributes ``PunctuationCapitalizationModel.{punct_label_ids,capit_label_ids}`` - any other source This function helps to detect configuration early and give error messages that are easy to interpret. Call this function if ``first_labels != second_labels``. Args: first_labels: first dictionary with labels second_labels: second dictionary with labels first_labels_desc: a description of first labels second_labels_desc: a description of second labels """ missing_in_first = {k: second_labels[k] for k in set(second_labels) - set(first_labels)} missing_in_second = {k: first_labels[k] for k in set(first_labels) - set(second_labels)} not_equal = { k: {'FIRST LABELS': first_labels[k], 'SECOND LABELS': second_labels[k]} for k in set(first_labels) & set(second_labels) if first_labels[k] != second_labels[k] } msg = f"{first_labels_desc} (FIRST LABELS) are not equal to {second_labels_desc} (SECOND LABELS)." if len(missing_in_first) > 0: msg += f" Number of SECOND LABELS missing in the FIRST LABELS: {len(missing_in_first)}." if len(missing_in_second) > 0: msg += f" Number of FIRST LABELS missing in the SECOND LABELS: {len(missing_in_second)}." if len(not_equal) > 0: msg += f" Number of labels which are not equal: {len(not_equal)}." if len(missing_in_first) > 0: msg += ( f" Several examples of missing SECONDS LABELS in the FIRST LABELS: " f"{dict(list(missing_in_first.items())[:3])}." ) if len(missing_in_second) > 0: msg += ( f" Several examples of missing FIRST LABELS in the SECOND LABELS: " f"{dict(list(missing_in_second.items())[:3])}." ) if len(not_equal) > 0: msg += f" Several examples of labels which are not equal: {dict(list(not_equal.items())[:3])}" raise ValueError(msg) def pad(vectors: List[np.ndarray], length: int, value: Union[int, float, bool]) -> np.ndarray: """ Pad vectors to length ``length`` and then stack. Args: vectors: a list of 1D arrays. Arrays to pad and stack length: a length of padded sequence. Has to be greater or equal to the maximum length of an element of ``vectors``. value: a value used for padding Returns: an array of padded vectors """ result = [] for v in vectors: result.append(np.concatenate([v, np.full([length - v.shape[0]], value, dtype=v.dtype)])) return np.stack(result) class BertPunctuationCapitalizationDataset(Dataset): """ A dataset to use during training for punctuation and capitalization tasks. For inference, you will need :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_infer_dataset.BertPunctuationCapitalizationInferDataset`. For huge datasets which cannot be loaded into memory simultaneously use :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset.BertPunctuationCapitalizationTarredDataset`. Args: text_file (:obj:`Union[str, os.PathLike]`): a path to a file with sequences, each line should contain a text without punctuation and capitalization labels_file (:obj:`Union[str, os.PathLike]`): a path to a file with labels, each line corresponds to word labels for a sentence in the ``text_file``. Labels have to follow format described in this section of documentation :ref:`NeMo Data Format<nemo-data-format-label>`. max_seq_length (:obj:`int`): max number of tokens in a source sequence. ``max_seq_length`` includes for [CLS] and [SEP] tokens. Sequences which are too long will be clipped by removal of tokens from the end of the sequence. tokenizer (:obj:`TokenizerSpec`): a tokenizer instance which has properties ``unk_id``, ``sep_id``, ``bos_id``, ``eos_id``. num_samples (:obj:`int`, `optional`, defaults to :obj:`-1`): a number of samples you want to use for the dataset. If ``-1``, use all dataset. Useful for testing. tokens_in_batch (:obj:`int`, `optional`, defaults to :obj:`5000`): number of tokens in a batch including paddings and special tokens ([CLS], [SEP], [UNK]). This class :meth:`__getitem__` method returns not samples but ready batches. Number of samples in a batch is adjusted for input sequences lengths. If input sequences are short, then a batch will contain more samples. Before packing into batches, samples are sorted by number of tokens they contain. Sorting allows to reduce number of pad tokens in a batch significantly. Regular PyTorch data loader shuffling will only permute batches with changing their content. Proper shuffling is achieved via calling method :meth:`repack_batches_with_shuffle` every epoch. If parameter ``number_of_batches_is_multiple_of`` is greater than 1, some batches may be split into smaller pieces. pad_label (:obj:`str`, `optional`, defaults to :obj:`'O'`): pad value to use for labels. It's also the neutral label both for punctuation and capitalization. punct_label_ids (:obj:`Dict[str, int]`, `optional`): dict to map punctuation labels to label ids. For dev set, use label ids generated during training to support cases when not all labels are present in the dev set. For training, it is recommended to set ``punct_label_ids`` to ``None`` or load from cache. capit_label_ids (:obj:`Dict[str, int]`, `optional`): same ``punct_label_ids`` for capitalization labels. ignore_extra_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): whether to compute loss on tokens which are not first tokens in a word. For example, assume that word ``'tokenization'`` is tokenized into ``['token', 'ization']``. If ``ignore_extra_tokens=True``, loss mask for the word is ``[True, False]``, and if ``ignore_extra_tokens=False``, then loss mask is ``[True, True]``. ignore_start_end (:obj:`bool`, `optional`, defaults to :obj:`True`): whether to ignore [CLS] and [SEP] tokens in the loss_mask. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): whether to use pickled features already present in ``cache_dir`` or not. If pickled features file does not exist or ``use_cache=False``, then features are pickled in ``cache_dir``. Pickled features include input ids, subtokens mask (mask of first tokens in words), encoded punctuation and capitalization labels, label ids. Features creation consumes considerable time and this ``use_cache=True`` significantly speeds up training starting. Pickled features are also used for sharing features between processes if data parallel training is used. cache_dir (:obj:`Union[str, os.PathLike]`, `optional`): a path to a directory where cache (pickled features) is stored. By default, ``text_file`` parent directory is used. This parameter is useful if dataset directory is read-only, and you wish to pickle features. In such a case specify a path to directory which allows writing in ``cache_dir`` parameter. get_label_frequencies (:obj:`bool`, `optional`, defaults to :obj:`False`): whether to print and save label frequencies. Frequencies are showed if ``verbose`` parameter is ``True``. If ``get_label_frequencies=True``, then frequencies are saved into ``label_info_save_dir`` directory. label_info_save_dir (:obj:`Union[str, os.PathLike]`, `optional`): a path to a directory where label frequencies are saved. By default, a ``text_file`` parent directory is used. When method :meth:`save_labels_and_get_file_paths` is called label ids are saved into ``label_info_save_dir`` directory. This parameter is useful if directory containing ``text_file`` is read-only. punct_label_vocab_file (:obj:`Union[str, os.PathLike]`, `optional`): a path to a .csv file containing punctuation label vocabulary. Each line in such a vocabulary file contains exactly one label. The first line has to contain `pad_label`, otherwise error will be raised. capit_label_vocab_file (:obj:`Union[str, os.PathLike]`, `optional`): same as ``punct_label_vocab_file`` for capitalization labels. add_masks_and_segment_ids_to_batch (:obj:`bool`, `optional`, defaults to :obj:`True`): whether to add ``'loss_mask'``, ``'input_mask'``, ``'segment_ids'`` items to a batch. Useful for creation of tarred dataset and can NOT be used during model training and inference. verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): whether to show data examples, label stats and other useful information. n_jobs (:obj:`int`, `optional`, defaults to :obj:`0`): number of workers used for tokenization, encoding labels, creating "first token in word" mask, and clipping. If ``n_jobs <= 0`` data preparation is performed without multiprocessing. By default, ``n_jobs`` is ``0``. .. warning:: There can be deadlocking problems with some tokenizers (e.g. SentencePiece, HuggingFace AlBERT) if ``n_jobs > 0``. number_of_batches_is_multiple_of (:obj:`int`, `optional`, defaults to :obj:`1`): number of batches in the dataset is made divisible by ``number_of_batches_is_multiple_of``. If ``number_of_batches_is_multiple_of`` is greater than 1, then several batches are split in parts until number of batches is divisible by ``number_of_batches_is_multiple_of``. If there is no enough queries in the dataset to create enough batches, then a warning is printed. This parameter is useful for dev and validation datasets if multiple GPUs are used. The problem is that if number of batches is not evenly divisible by number of GPUs, then some queries may be processed several times and metrics will be distorted. batch_shuffling_random_seed (:obj:`int`, defaults to :obj:`int`): a random seed used for batches repacking and shuffling. tokenization_progress_queue (:obj:`multiprocessing.Queue`, `optional`): a queue for reporting tokenization progress. Useful for creation of tarred dataset batch_mark_up_progress_queue (:obj:`multiprocessing.Queue`, `optional`): a queue for reporting progress in deciding which samples batches will contain. Useful for creation of tarred dataset batch_building_progress_queue (:obj:`multiprocessing.Queue`, `optional`): a queue for reporting progress in batch creation (stacking and padding). Useful for creation of tarred dataset use_audio (:obj:`bool`, `optional`, defaults to :obj: `False`): If set to True dataset will return audio as well as text. audio_file (:obj:`Union[str, os.PathLike]`, `optional`): a path to file with audio paths. sample_rate (:obj:`int`, `optional`, defaults to :obj:`None`): sample rate of audios. Can be used for up sampling or down sampling of audio. use_bucketing (:obj:`bool`, `optional`, defaults to :obj: `True`): If set to False dataset will return ``batch_size`` batches instead of ``number_of_tokens`` tokens. preload_audios (:obj:`bool`, `optional`, defaults to :obj: `True`): If set to True batches will include waveforms, if set to False will store audio_filepaths instead and load audios during ``collate_fn`` call """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ if self.use_audio: return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'punct_labels': NeuralType(('B', 'T'), LabelsType()), 'capit_labels': NeuralType(('B', 'T'), LabelsType()), 'features': NeuralType(('B', 'T'), AudioSignal()), 'features_length': NeuralType(('B', 'T'), LengthsType()), } return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'punct_labels': NeuralType(('B', 'T'), LabelsType()), 'capit_labels': NeuralType(('B', 'T'), LabelsType()), } def __init__( self, text_file: Union[str, os.PathLike], labels_file: Union[str, os.PathLike], max_seq_length: int, tokenizer: TokenizerSpec, num_samples: int = -1, tokens_in_batch: int = 5000, pad_label: str = 'O', punct_label_ids: Optional[Union[Dict[str, int], DictConfig]] = None, capit_label_ids: Optional[Union[Dict[str, int], DictConfig]] = None, ignore_extra_tokens: bool = False, ignore_start_end: bool = True, use_cache: bool = True, cache_dir: Optional[Union[str, os.PathLike]] = None, get_label_frequencies: bool = False, label_info_save_dir: Optional[Union[str, os.PathLike]] = None, punct_label_vocab_file: Optional[Union[str, os.PathLike]] = None, capit_label_vocab_file: Optional[Union[str, os.PathLike]] = None, add_masks_and_segment_ids_to_batch: bool = True, verbose: bool = True, n_jobs: Optional[int] = 0, number_of_batches_is_multiple_of: int = 1, batch_shuffling_random_seed: int = 42, tokenization_progress_queue: Optional[mp.Queue] = None, batch_mark_up_progress_queue: Optional[mp.Queue] = None, batch_building_progress_queue: Optional[mp.Queue] = None, use_audio: Optional[bool] = False, audio_file: Optional[Union[str, os.PathLike]] = None, sample_rate: Optional[int] = None, use_bucketing: Optional[bool] = True, preload_audios: Optional[bool] = True, ) -> None: """ Initializes BertPunctuationCapitalizationDataset. """ if isinstance(punct_label_ids, DictConfig): punct_label_ids = OmegaConf.to_container(punct_label_ids) if isinstance(capit_label_ids, DictConfig): capit_label_ids = OmegaConf.to_container(capit_label_ids) self._check_constructor_parameters( text_file, labels_file, punct_label_ids, capit_label_ids, punct_label_vocab_file, capit_label_vocab_file, num_samples, use_cache, number_of_batches_is_multiple_of, use_audio, audio_file, sample_rate, ) if punct_label_vocab_file is not None: punct_label_vocab_file = Path(punct_label_vocab_file).expanduser() punct_label_ids = load_label_ids(punct_label_vocab_file) if capit_label_vocab_file is not None: capit_label_vocab_file = Path(capit_label_vocab_file).expanduser() capit_label_ids = load_label_ids(capit_label_vocab_file) self.text_file, self.labels_file = Path(text_file).expanduser(), Path(labels_file).expanduser() if label_info_save_dir is None: self.label_info_save_dir = self.text_file.parent else: self.label_info_save_dir = Path(label_info_save_dir).expanduser() self.tokens_in_batch = tokens_in_batch self.tokenizer = tokenizer self.pad_label = pad_label self.ignore_extra_tokens = ignore_extra_tokens self.ignore_start_end = ignore_start_end self.add_masks_and_segment_ids_to_batch = add_masks_and_segment_ids_to_batch self.verbose = verbose self.batch_mark_up_progress_queue = batch_mark_up_progress_queue self.batch_building_progress_queue = batch_building_progress_queue self.use_audio = use_audio self.audio_file = audio_file self.sample_rate = sample_rate self.use_bucketing = use_bucketing self.preload_audios = preload_audios master_device = is_global_rank_zero() self.features_pkl = self._get_path_to_pkl_features( self.text_file, self.labels_file, cache_dir, max_seq_length, num_samples ) features = None if master_device and not (self.features_pkl.is_file() and use_cache): if verbose: logging.info( f'Processing {self.text_file}' + f' {self.audio_file if self.audio_file else ""} '.rstrip() ) ( text_lines, punct_label_lines, capit_label_lines, punct_unique_labels, capit_unique_labels, audio_lines, ) = self._read_dataset(self.text_file, self.labels_file, num_samples, self.audio_file) if punct_label_ids: self._check_label_ids_vs_unique_labels( punct_label_ids, punct_unique_labels, 'punct', 'punctuation', self.labels_file ) else: punct_label_ids = create_label_ids(punct_unique_labels, self.pad_label) if capit_label_ids: self._check_label_ids_vs_unique_labels( capit_label_ids, capit_unique_labels, 'capit', 'capitalization', self.labels_file ) else: capit_label_ids = create_label_ids(capit_unique_labels, self.pad_label) features = _get_features( text_lines, punct_label_lines, capit_label_lines, max_seq_length, self.tokenizer, pad_label=self.pad_label, punct_label_ids=punct_label_ids, capit_label_ids=capit_label_ids, verbose=self.verbose, progress_queue=tokenization_progress_queue, n_jobs=n_jobs, audio_queries=audio_lines if self.use_audio else None, sample_rate=self.sample_rate, preload_audios=self.preload_audios, ) self.features_pkl.parent.mkdir(parents=True, exist_ok=True) # save features to a temp file first to make sure that non-master processes don't start reading the file # until the master process is done with writing ofd, tmp_features_pkl = tempfile.mkstemp( suffix='.pkl', prefix=os.path.basename(self.features_pkl), dir=os.path.dirname(self.features_pkl) ) with os.fdopen(ofd, 'wb') as temp_f: pickle.dump(tuple(list(features) + [punct_label_ids, capit_label_ids]), temp_f) os.rename(tmp_features_pkl, self.features_pkl) if self.verbose: logging.info(f'Features saved to {self.features_pkl}') # wait until the master process writes to the processed data files if not master_device: while features is None and not os.path.exists(self.features_pkl): sleep(10) if features is None: features = pickle.load(self.features_pkl.open('rb')) li = features[-2:] self._check_label_ids_loaded_from_pkl( punct_label_ids, capit_label_ids, *li, punct_label_vocab_file, capit_label_vocab_file ) punct_label_ids, capit_label_ids = li[-2], li[-1] if tokenization_progress_queue is not None: tokenization_progress_queue.put(len(features[0])) if self.verbose: logging.info(f'Features restored from {self.features_pkl}') features = features[:-2] ( self.input_ids, self.subtokens_mask, self.waveforms, self.waveforms_length, self.audio_filepaths, self.punct_labels, self.capit_labels, ) = features self.punct_label_ids, self.capit_label_ids = punct_label_ids, capit_label_ids self.number_of_batches_is_multiple_of = number_of_batches_is_multiple_of self.batch_shuffling_random_state = np.random.RandomState(batch_shuffling_random_seed) if get_label_frequencies: self.punct_label_frequencies = self._calculate_and_save_label_frequencies(self.punct_labels, 'punct') self.capit_label_frequencies = self._calculate_and_save_label_frequencies(self.capit_labels, 'capit') if self.use_bucketing: self.batches = self._pack_into_batches( input_ids=self.input_ids, subtokens_mask=self.subtokens_mask, punct_labels=self.punct_labels, capit_labels=self.capit_labels, waveforms=self.waveforms, audio_lengths=self.waveforms_length, audio_filepaths=self.audio_filepaths, ) else: self.batches = self._form_batches( input_ids=self.input_ids, subtokens_mask=self.subtokens_mask, punct_labels=self.punct_labels, capit_labels=self.capit_labels, waveforms=self.waveforms, audio_lengths=self.waveforms_length, audio_filepaths=self.audio_filepaths, ) def _get_path_to_pkl_features( self, text_file: Path, labels_file: Path, cache_dir: Optional[Union[str, os.PathLike]], max_seq_length: int, num_samples: int, ) -> Path: if cache_dir is None: cache_dir = text_file.parent else: cache_dir = Path(cache_dir).expanduser() vocab_size = getattr(self.tokenizer, "vocab_size", 0) features_pkl = cache_dir / "cached.{}.{}.max_seq_length{}.vocab{}.{}.punctuation_capitalization.pkl".format( '__' + text_file.name + '__' + labels_file.name + '__', self.tokenizer.name, max_seq_length, vocab_size, f'num_samples{num_samples}' if num_samples > 0 else 'all_samples', ) return features_pkl @staticmethod def _check_constructor_parameters( text_file: Union[str, os.PathLike], labels_file: Union[str, os.PathLike], punct_label_ids: Optional[Dict[str, int]], capit_label_ids: Optional[Dict[str, int]], punct_label_vocab_file: Union[str, os.PathLike], capit_label_vocab_file: Union[str, os.PathLike], num_samples: int, use_cache: bool, number_of_batches_is_multiple_of: int, use_audio: bool = False, audio_file: Optional[Union[str, os.PathLike]] = None, sample_rate: Optional[int] = None, ) -> None: if torch.distributed.is_initialized() and torch.distributed.get_world_size() > 1 and not use_cache: raise ValueError( f"If you already created process group and the world size is greater than 1, then `use_cache` " f"parameter has to be `True`. Only master process prepares features and if `use_cache=False`, then " f"other processes will not be able to obtain features. Alternatively, you may set `use_cache=False` " f"and set up data before spawning processes. Use `cache_dir` dataset directory with " f"`text_file` and `labels_file` is read-only." ) if not (os.path.exists(text_file) and os.path.exists(labels_file)): raise FileNotFoundError( f'{text_file} or {labels_file} not found. The data should be split into 2 files: text.txt and ' f'labels.txt. Each line of the text.txt file contains text sequences, where words are separated with ' f'spaces. The labels.txt file contains corresponding labels for each word in text.txt, the labels are ' f'separated with spaces. Each line of the files should follow the format:\n' f' [WORD] [SPACE] [WORD] [SPACE] [WORD] (for text.txt) and ' f' [LABEL] [SPACE] [LABEL] [SPACE] [LABEL] (for labels.txt).' ) if not use_audio and audio_file: raise ValueError(f"Audio file {audio_file} was passed but use_audio was set to False") if use_audio and audio_file and not os.path.exists(audio_file): raise FileNotFoundError( f'use_audio was set to True but {audio_file} not found. Audio data should be listed in .txt file with one path per line' ) if punct_label_ids is not None and punct_label_vocab_file is not None: punct_label_vocab_file = Path(punct_label_vocab_file).expanduser() file_punct_label_ids = load_label_ids(punct_label_vocab_file) if file_punct_label_ids != punct_label_ids: raise_not_equal_labels_error( first_labels=punct_label_ids, second_labels=file_punct_label_ids, first_labels_desc='Punctuation labels passed to the `PunctuationCapitalizationDataset` ' 'constructor in parameter `punct_label_ids`', second_labels_desc=f'Punctuation labels loaded from file {punct_label_vocab_file} path to which ' f'is passed in parameter `punct_label_vocab_file`', ) if capit_label_ids is not None and capit_label_vocab_file is not None: capit_vocab_file = Path(capit_label_vocab_file).expanduser() file_capit_label_ids = load_label_ids(capit_vocab_file) if file_capit_label_ids != capit_label_ids: raise_not_equal_labels_error( first_labels=capit_label_ids, second_labels=file_capit_label_ids, first_labels_desc='Capitalization labels passed to the `PunctuationCapitalizationDataset` ' 'constructor in parameter `capit_label_ids`', second_labels_desc=f'Capitalization labels loaded from file {capit_label_vocab_file} path to ' f'which is passed in parameter `capit_label_vocab_file`', ) if num_samples == 0: raise ValueError( f"Parameter `num_samples` has to be positive or negative whereas `num_samples={num_samples}`. " f"Negative `num_samples` is for using all samples in a dataset." ) if number_of_batches_is_multiple_of < 1 or not isinstance(number_of_batches_is_multiple_of, int): raise ValueError( f"Parameter `number_of_batches_is_multiple_of` has to be positive integer whereas " f"{number_of_batches_is_multiple_of} is given." ) if use_audio and not isinstance(sample_rate, int): raise TypeError(f'use_audio was set to True but sample_rate was not set') if use_audio and sample_rate < 1: raise ValueError(f'sample_rate set to {sample_rate} but it cannot be less than 1') def _check_label_ids_loaded_from_pkl( self, parameter_punct_label_ids: Dict[str, int], parameter_capit_label_ids: Dict[str, int], pkl_punct_label_ids: Any, pkl_capit_label_ids: Any, punct_label_vocab_file: Optional[Path], capit_label_vocab_file: Optional[Path], ) -> None: if not isinstance(pkl_punct_label_ids, dict): raise ValueError( f"Punctuation label ids loaded from features file {self.features_pkl} have wrong type " f"{type(pkl_punct_label_ids)}" ) if parameter_punct_label_ids is not None: if parameter_punct_label_ids != pkl_punct_label_ids: raise_not_equal_labels_error( first_labels=parameter_punct_label_ids, second_labels=pkl_punct_label_ids, first_labels_desc="Punctuation labels passed in parameter `punct_label_ids`" if punct_label_vocab_file is None else f"Punctuation labels loaded from file {punct_label_vocab_file}", second_labels_desc=f"Punctuation label ids loaded from features file {self.features_pkl}", ) if not isinstance(pkl_capit_label_ids, dict): raise ValueError( f"Capitalization label ids loaded from features file {self.features_pkl} has wrong type " f"{type(pkl_capit_label_ids)}" ) if parameter_capit_label_ids is not None: if parameter_capit_label_ids != pkl_capit_label_ids: raise_not_equal_labels_error( first_labels=parameter_capit_label_ids, second_labels=pkl_capit_label_ids, first_labels_desc="Capitalization labels passed in parameter `capit_label_ids`" if capit_label_vocab_file is None else f"Capitalization labels loaded from file {capit_label_vocab_file}", second_labels_desc=f"Capitalization label ids loaded from features file {self.features_pkl}", ) @staticmethod def _check_label_ids_vs_unique_labels( label_ids: Dict[str, int], unique_labels: Set[str], label_type: str, task: str, label_file: Path ) -> None: if unique_labels - set(label_ids): not_present_labels = list(unique_labels - set(label_ids)) raise ValueError( f"{len(not_present_labels)} {task} labels found in {label_file} are not present in " f"`{label_type}_label_ids`. Examples of unexpected labels from {label_file}: {not_present_labels[:3]}" ) @staticmethod def _read_dataset( text_file: Path, labels_file: Path, num_samples: int, audio_file: Optional[Path] = None ) -> Union[Tuple[Any, Any, Any, Set[Any], Set[Any], Any], Tuple[Any, Any, Any, Set[Any], Set[Any]]]: with open(text_file, 'r', encoding='utf_8') as f: text_lines = f.readlines() punct_unique_labels, capit_unique_labels = set(), set() punct_labels_lines, capit_labels_lines = [], [] with labels_file.open(encoding='utf_8') as f: for i, line in enumerate(f): pairs = line.split() if not all([len(p) == 2 for p in pairs]): raise ValueError( f"Some label pairs are not pairs but have wrong length (!= 2) in line {i} in label file " f"{labels_file}" ) words = text_lines[i].split() if len(pairs) != len(words): raise ValueError( f"In line {i} in text file {text_file} number of words {len(words)} is not equal to the " f"number of labels {len(pairs)} in labels file {labels_file}." ) punct_line, capit_line = zip(*pairs) punct_labels_lines.append(punct_line) capit_labels_lines.append(capit_line) punct_unique_labels.update(punct_line) capit_unique_labels.update(capit_line) if len(punct_labels_lines) != len(text_lines): raise ValueError( f"Number of text lines {len(text_lines)} in text file {text_file} is not equal to the number of lines " f"{len(punct_labels_lines)} in labels file {labels_file}." ) if audio_file: with open(audio_file, 'r') as f: audio_lines = f.readlines() if len(audio_lines) != len(text_lines): raise ValueError( f'Number of lines in {audio_file} equals {len(audio_lines)} which is not equal to ' f'number of lines in {text_file} which is {len(text_lines)}' ) dataset = list(zip(text_lines, punct_labels_lines, capit_labels_lines, audio_lines)) else: dataset = list(zip(text_lines, punct_labels_lines, capit_labels_lines)) if len(dataset) == 0: raise ValueError(f"Dataset loaded from files {text_file} and {labels_file} is empty.") if num_samples > 0: dataset = dataset[:num_samples] if audio_file: text_lines, punct_labels_lines, capit_labels_lines, audio_lines = zip(*dataset) return ( text_lines, punct_labels_lines, capit_labels_lines, punct_unique_labels, capit_unique_labels, audio_lines, ) else: text_lines, punct_labels_lines, capit_labels_lines = zip(*dataset) return text_lines, punct_labels_lines, capit_labels_lines, punct_unique_labels, capit_unique_labels, None @staticmethod def calc_batch_seq_length(queries: List[np.ndarray], length_is_multiple_of: int) -> int: return ceil(max([len(elem) for elem in queries]) / length_is_multiple_of) * length_is_multiple_of def _adjust_number_of_batches( self, input_ids: List[np.ndarray], batch_beginnings: List[int], batch_sizes: List[int], batch_seq_lengths: List[int], ) -> Tuple[List[int], List[int], List[int]]: """ If length of ``batch_sizes`` list is not divisible by ``self.number_of_batches_is_multiple_of``, then one or several batches are split into parts until number of batches is divisible by ``self.number_of_batches_is_multiple_of``. The method selects a batch and tries to slice smaller batches with 8 elements each from the batch. If the batch cannot be sliced any further and there are still not enough batches, then the next batch from dataset is selected. If slicing batches of size 8 is not enough, then batches of size 1 are created. If dataset is too small to create enough batches, then a warning is shown. Args: input_ids: tokenized queries of the dataset. `input_ids` are expected to be sorted by length in ascending order. batch_beginnings: indices of first elements of batches created inside :meth:`_mark_up_batches` method. Expected to be sorted in ascending order. batch_sizes: sizes of batches created inside :meth:`_mark_up_batches` method. batch_seq_lengths: lengths of elements in batch after padding created inside :meth:`_mark_up_batches` method. Returns: batch_beginnings: a list of indices in ``input_ids`` of first samples of every batch batch_sizes: a list of numbers of samples in batches batch_seq_lengths: a list of sequence lengths after padding for every batch """ batch_beginnings, batch_sizes = batch_beginnings.copy(), batch_sizes.copy() batch_seq_lengths = batch_seq_lengths.copy() num_missing_batches = ( self.number_of_batches_is_multiple_of - len(batch_sizes) % self.number_of_batches_is_multiple_of ) if num_missing_batches == 0: return batch_beginnings, batch_sizes, batch_seq_lengths if sum(batch_sizes) - len(batch_sizes) < num_missing_batches: logging.warning( f"Unable to achieve number of batches multiple of {self.number_of_batches_is_multiple_of} because " f"dataset in files '{self.text_file}' and '{self.labels_file}' contains not enough queries " f"({sum(batch_sizes)}) or queries in the dataset are too long. Dataset will have " f"{len(batch_sizes)} batches instead. For validation or test dataset if multiple GPUs are used " f"this will lead to distorted metrics because some batches will be processed several times. " f"To fix this problem you may try to tweak (increase) parameter `tokens_in_batch`, though result is " f"not guaranteed." ) return batch_beginnings, batch_sizes, batch_seq_lengths num_cut = 0 for ss in [8, 1]: # ss - split_size old_num_batches = len(batch_sizes) # Starting from the last batch because its size is likely to be not multiple of 8. Thus number of # batches which size is not multiple of 8 can be reduced by 1. original_batch_index = old_num_batches - 1 while original_batch_index >= 0 and num_cut < num_missing_batches: bs, bb = batch_sizes[original_batch_index], batch_beginnings[original_batch_index] rb = 0 # an index of sliced first element of sliced batch in original batch (relative beginning) if rb < bs - ss: while rb < bs - ss and num_cut < num_missing_batches: batch_sizes.append(ss) batch_beginnings.append(bb + rb) batch_seq_lengths.append( self.calc_batch_seq_length(input_ids[bb + rb : bb + rb + ss], length_is_multiple_of=8) ) rb += ss num_cut += 1 assert len(input_ids[bb + rb : bb + bs]) > 0 batch_sizes[original_batch_index] = bs - rb batch_beginnings[original_batch_index] = bb + rb batch_seq_lengths[original_batch_index] = self.calc_batch_seq_length( input_ids[bb + rb : bb + bs], length_is_multiple_of=8 ) original_batch_index -= 1 # Keeping order of batches. batch_beginnings, batch_sizes, batch_seq_lengths = map( list, zip(*sorted(zip(batch_beginnings, batch_sizes, batch_seq_lengths), key=lambda x: x[0])) ) assert len(batch_beginnings) % self.number_of_batches_is_multiple_of == 0 assert len(batch_sizes) % self.number_of_batches_is_multiple_of == 0 assert len(batch_seq_lengths) % self.number_of_batches_is_multiple_of == 0 return batch_beginnings, batch_sizes, batch_seq_lengths def _mark_up_batches(self, input_ids: List[np.ndarray]) -> Tuple[List[int], List[int], List[int]]: """ Computes indices of first samples in batch, batch sizes, seq lengths for batches. ``input_ids`` has to be sorted by number of tokens in ascending order. Batches are marked up with respect to following conditions: - total number of tokens in batch including paddings is less or equal to ``self.tokens_in_batch`` - batch size is evenly divisible by 8 (except for the last batch) - seq length (elements of the third returned object) is evenly divisible by 8 If ``self.batch_mark_up_progress_queue`` is not None, then the progress in mark up is reported via ``self.batch_mark_up_progress_queue``. Otherwise, ``tqdm`` instance is created in this function. Args: input_ids: a list of 1D int32 arrays. Elements of ``input_ids`` have to be sorted by length in ascending order Returns: batch_beginnings: a list of indices in ``input_ids`` of first samples of every batch batch_sizes: a list of numbers of samples in batches batch_seq_lengths: a list of sequence lengths after padding for every batch """ batch_beginnings, batch_sizes, batch_seq_lengths = [], [], [] current_max_length = 0 start = 0 if self.batch_mark_up_progress_queue is None: inp_iterator = tqdm(enumerate(input_ids), total=len(input_ids), desc="Batch mark up", unit="query") else: inp_iterator = enumerate(input_ids) progress_made = 0 for i, inp in inp_iterator: current_max_length = max(current_max_length, ceil(len(inp) / 8) * 8) if current_max_length * (i + 1 - start) > self.tokens_in_batch: batch_size = (i - start) // 8 * 8 if batch_size == 0: if i > start: batch_size = i - start logging.warning( f"Could not create batch with multiple of 8 size. Probably, there is a too long sequence " f"in the dataset or parameter `tokens_in_batch` is too small. Current length of sequences " f"in batch is {current_max_length}. Batch size will be reduced to {batch_size}. " f"tokens_in_batch={self.tokens_in_batch}. The batch includes sequences from " f"{start} to {i - 1}." ) else: logging.warning( f"Input sequence number {i - 1} is too long. Could not fit it into batch with " f"{self.tokens_in_batch} tokens. Sequence number {i - 1} will not be added to batches." ) start = i current_max_length = ceil(len(inp) / 8) * 8 continue seq_length = self.calc_batch_seq_length(input_ids[start : start + batch_size], length_is_multiple_of=8) batch_beginnings.append(start) batch_sizes.append(batch_size) batch_seq_lengths.append(seq_length) start += batch_size current_max_length = self.calc_batch_seq_length(input_ids[start : i + 1], length_is_multiple_of=8) if self.batch_mark_up_progress_queue is not None: progress_made += 1 if progress_made >= BATCH_MARK_UP_PROGRESS_REPORT_PERIOD: self.batch_mark_up_progress_queue.put(progress_made) progress_made = 0 if start < len(input_ids): seq_length = self.calc_batch_seq_length(input_ids[start:], length_is_multiple_of=8) batch_beginnings.append(start) batch_sizes.append(len(input_ids) - start) batch_seq_lengths.append(seq_length) if self.batch_mark_up_progress_queue is not None: self.batch_mark_up_progress_queue.put(progress_made) if len(batch_beginnings) % self.number_of_batches_is_multiple_of: batch_beginnings, batch_sizes, batch_seq_lengths = self._adjust_number_of_batches( input_ids, batch_beginnings, batch_sizes, batch_seq_lengths ) assert sum(batch_sizes) == len(input_ids) for i in range(len(batch_beginnings) - 1): assert batch_beginnings[i] + batch_sizes[i] == batch_beginnings[i + 1] assert batch_seq_lengths[i] >= max( [len(inp) for inp in input_ids[batch_beginnings[i] : batch_beginnings[i] + batch_sizes[i]]] ) return batch_beginnings, batch_sizes, batch_seq_lengths def _form_batches( self, input_ids: List[np.ndarray], subtokens_mask: List[np.ndarray], punct_labels: List[np.ndarray], capit_labels: List[np.ndarray], waveforms: Optional[List[np.ndarray]] = None, audio_lengths: Optional[List[np.ndarray]] = None, audio_filepaths: Optional[List[str]] = None, ) -> List[Dict[str, np.ndarray]]: """ Args: input_ids: a list of 1D int32 arrays which contain token ids of dataset source subtokens_mask: a list of 1D boolean arrays which elements are ``True`` if corresponding token is the first token in some word punct_labels: a list of 1D int32 arrays which contain encoded punctuation labels capit_labels: a list of 1D int32 arrays which contain encoded capitalization labels waveforms: a list of 1D float arrays which contain raw waveforms of audios. audio_lengths: a list of 1D int32 arrays which contain length of corresponding audio from `waveforms` audio_filepaths: a list of strings which contain paths to audio Returns: a list of batches. Each batch is a dictionary with items: - ``'input_ids'``: a ``np.int32`` numpy array; - ``'subtokens_mask'``: a boolean numpy array; - ``'punct_labels'``: a ``np.int32`` numpy array; - ``'capit_labels'``: a ``np.int32`` numpy array. If ``self.add_masks_and_segment_ids_to_batch`` is ``True``, then a batch also contain items - ``'segment_ids'``: a ``np.int8`` numpy array; - ``'input_mask'``: a boolean numpy array; - ``'loss_mask'``: a boolean numpy array. If ``waveforms`` is not ``None``, then a batch also contain items - ``features``: a ``np.float`` numpy array. - ``features_length`` a ``np.int32`` numpy array. If ``audio_filepaths`` is not ``None``, then a natch also contain items - ``audio_filepaths`` a list of strings. The values of a batch dictionary are numpy arrays of identical shape. """ batches = [] dummy = [None] * len(input_ids) zipped = list( zip( input_ids, subtokens_mask, punct_labels, capit_labels, waveforms if waveforms else dummy, audio_lengths if audio_lengths else dummy, audio_filepaths if audio_filepaths else dummy, ) ) for item in zipped: batch = { "input_ids": item[0], "subtokens_mask": item[1], "punct_labels": item[2].astype(np.int64), "capit_labels": item[3].astype(np.int64), } if self.use_audio and self.preload_audios: batch['features'] = item[4].astype(np.float) batch['features_length'] = item[5] elif self.use_audio and not self.preload_audios: batch['audio_filepaths'] = item[6] batches.append(batch) return batches def _pack_into_batches( self, input_ids: List[np.ndarray], subtokens_mask: List[np.ndarray], punct_labels: List[np.ndarray], capit_labels: List[np.ndarray], waveforms: Optional[List[np.ndarray]] = None, audio_lengths: Optional[List[np.ndarray]] = None, audio_filepaths: Optional[List[str]] = None, ) -> List[Dict[str, np.ndarray]]: """ Shuffle input sequences, sort them by number of tokens, pad, and pack into batches which satisfy following conditions: - total number of tokens in batch including paddings is less or equal to ``self.tokens_in_batch`` - batch size is evenly divisible by 8 (except for the last batch) - seq length (elements of the third returned object) is evenly divisible by 8 Created batches are shuffled before returning. If ``self.add_masks_and_segment_ids_to_batch`` is ``True``, then ``'segment_ids'``, ``'loss_mask'``, and ``'input_mask'`` are added to the batch. If ``self.batch_building_progress_queue`` is not ``None``, then padding progress is reported to ``self.batch_building_progress_queue``. Otherwise, a new ``tqdm`` instance is created in ``pack_into_batches`` method. Args: input_ids: a list of 1D int32 arrays which contain token ids of dataset source subtokens_mask: a list of 1D boolean arrays which elements are ``True`` if corresponding token is the first token in some word punct_labels: a list of 1D int32 arrays which contain encoded punctuation labels capit_labels: a list of 1D int32 arrays which contain encoded capitalization labels waveforms: a list of 1D float arrays which contain raw waveforms of audios. audio_lengths: a list of 1D int32 arrays which contain length of corresponding audio from `waveforms` audio_filepaths: a list of strings which contain paths to audio Returns: a list of batches. Each batch is a dictionary with items: - ``'input_ids'``: a ``np.int32`` numpy array; - ``'subtokens_mask'``: a boolean numpy array; - ``'punct_labels'``: a ``np.int32`` numpy array; - ``'capit_labels'``: a ``np.int32`` numpy array. If ``self.add_masks_and_segment_ids_to_batch`` is ``True``, then a batch also contain items - ``'segment_ids'``: a ``np.int8`` numpy array; - ``'input_mask'``: a boolean numpy array; - ``'loss_mask'``: a boolean numpy array. If ``waveforms`` is not ``None``, then a batch also contain items - ``features``: a ``np.float`` numpy array. - ``features_length`` a ``np.int32`` numpy array. If ``audio_filepaths`` is not ``None``, then a natch also contain items - ``audio_filepaths`` a list of strings. The values of a batch dictionary are numpy arrays of identical shape. """ dummy = [None] * len(input_ids) zipped = list( zip( input_ids, subtokens_mask, punct_labels, capit_labels, waveforms if waveforms else dummy, audio_lengths if audio_lengths else dummy, audio_filepaths if audio_filepaths else dummy, ) ) self.batch_shuffling_random_state.shuffle(zipped) dim_sort = 4 if self.use_audio and self.preload_audios else 0 input_ids, subtokens_mask, punct_labels, capit_labels, waveforms, audio_lengths, audio_filepaths = zip( *sorted(zipped, key=lambda x: x[dim_sort].shape[0]) ) batch_beginnings, batch_sizes, batch_seq_lengths = self._mark_up_batches(input_ids) batches = [] if self.batch_building_progress_queue is None: inp_iterator = tqdm( zip(batch_beginnings, batch_sizes, batch_seq_lengths), total=len(batch_beginnings), desc="Batch building", unit="batch", ) else: # In this case we report number of queries not number of batches inp_iterator = zip(batch_beginnings, batch_sizes, batch_seq_lengths) progress_made = 0 for start, size, length in inp_iterator: batch_input_ids = pad(input_ids[start : start + size], length, self.tokenizer.pad_id) batch_subtokens_mask = pad(subtokens_mask[start : start + size], length, False) batch = { "input_ids": batch_input_ids, "subtokens_mask": batch_subtokens_mask, "punct_labels": pad( punct_labels[start : start + size], length, self.punct_label_ids[self.pad_label] ).astype(np.int64), "capit_labels": pad( capit_labels[start : start + size], length, self.capit_label_ids[self.pad_label] ).astype(np.int64), } if self.use_audio and self.preload_audios: batch['features'] = pad( waveforms[start : start + size], max(audio_lengths[start : start + size]), 0.0 ).astype(np.float) batch['features_length'] = audio_lengths[start : start + size] elif self.use_audio and not self.preload_audios: batch['audio_filepaths'] = audio_filepaths[start : start + size] if self.add_masks_and_segment_ids_to_batch: batch_segment_ids, batch_input_mask, batch_loss_mask = create_masks_and_segment_ids( batch_input_ids, batch_subtokens_mask, self.tokenizer.pad_id, self.tokenizer.cls_id, self.tokenizer.sep_id, self.ignore_start_end, self.ignore_extra_tokens, ) batch['segment_ids'] = batch_segment_ids batch['input_mask'] = batch_input_mask batch['loss_mask'] = batch_loss_mask batches.append(batch) if self.batch_building_progress_queue is not None: progress_made += size if progress_made >= BATCH_BUILDING_PROGRESS_REPORT_PERIOD: self.batch_building_progress_queue.put(progress_made) progress_made = 0 if self.batch_building_progress_queue is not None: self.batch_building_progress_queue.put(progress_made) self.batch_shuffling_random_state.shuffle(batches) return batches def repack_batches_with_shuffle(self) -> None: """A function for proper shuffling of a dataset. Pytorch data loader shuffling will only permute batches.""" if not self.use_bucketing: return logging.info("Shuffling training dataset") self.batches = self._pack_into_batches( self.input_ids, self.subtokens_mask, self.punct_labels, self.capit_labels, self.waveforms, self.waveforms_length, self.audio_filepaths, ) def _calculate_and_save_label_frequencies(self, all_labels: List[np.ndarray], name: str) -> Dict[str, float]: """Calculates and saves labels frequencies in :attr:`label_info_save_dir`.""" merged_labels = itertools.chain.from_iterable(all_labels) if self.verbose: logging.info('Three most popular labels') self.label_info_save_dir.mkdir(parents=True, exist_ok=True) _, label_frequencies, _ = get_label_stats( merged_labels, str(self.label_info_save_dir / f'label_count_{name}.tsv') ) return label_frequencies def save_labels_and_get_file_paths( self, punct_labels_file_name: str, capit_labels_file_name: str ) -> Tuple[Path, Path]: """ Saves label ids into files located in ``self.label_info_save_dir``. Saved label ids are usually used for ``.nemo`` checkpoint creation. The signatures of this method and the signature of the method :meth:`~nemo.collections.nlp.data.token_classification.BertPunctuationCapitalizationTarredDataset.save_labels_and_get_file_paths` must be identical. Args: punct_labels_file_name (:obj:`str`): a name of a punctuation labels file capit_labels_file_name (:obj:`str`): a name of a capitalization labels file Returns: :obj:`Tuple[pathlib.Path, pathlib.Path]`: a tuple containing: - :obj:`pathlib.Path`: a path to the saved punctuation labels file - :obj:`pathlib.Path`: a path to the saved capitalization labels file """ nemo_dir = self.label_info_save_dir / LABEL_ID_DIR_FOR_NEMO_CHECKPOINT punct_labels_file = nemo_dir / punct_labels_file_name capit_labels_file = nemo_dir / capit_labels_file_name save_label_ids(self.punct_label_ids, punct_labels_file) save_label_ids(self.capit_label_ids, capit_labels_file) return punct_labels_file, capit_labels_file def __len__(self) -> int: return len(self.batches) def collate_fn(self, batches: List[Dict[str, np.ndarray]]) -> Dict[str, torch.Tensor]: """ If ``self.use_bucketing`` set to ``True`` returns zeroth batch from ``batches`` list passed for collating and casts ``'segment_ids'``, ``'punct_labels'``, ``'capit_labels'`` to types supported by :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel` or :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationLexicalAudioModel` if ``self.use_audio`` set to ``True`` All output tensors have shape ``[Batch, Time]``. .. warning:: A ``batch_size`` parameter of a PyTorch data loader and sampler has to be ``1`` if ``self.use_bucketing`` set to ``True`` Args: batches (:obj:`List[Dict[str, np.ndarray]]`): a list containing 1 batch passed for collating Returns: :obj:`Dict[str, torch.Tensor]`: a batch dictionary with following items (for detailed description of batch items see method :meth:`__getitem__`): - ``'input_ids'`` (:obj:`torch.Tensor`): :obj:`torch.int32` tensor, - ``'subtokens_mask'`` (:obj:`torch.Tensor`): :obj:`torch.bool` tensor, - ``'punct_labels'`` (:obj:`torch.Tensor`): :obj:`torch.int64` tensor, - ``'capit_labels'`` (:obj:`torch.Tensor`): :obj:`torch.int64` tensor, - ``'segment_ids'`` (:obj:`torch.Tensor`): :obj:`torch.int32` tensor, - ``'input_mask'`` (:obj:`torch.Tensor`): :obj:`torch.bool` tensor, - ``'loss_mask'`` (:obj:`torch.Tensor`): :obj:`torch.bool` tensor. - ``'features'`` (:obj:`torch.Tensor`): :obj:`torch.float` tensor. - ``'features_length'`` (:obj:`torch.Tensor`): :obj:`torch.long` tensor. """ if self.use_bucketing: batch = {k: torch.as_tensor(v) for k, v in batches[0].items() if k != 'audio_filepaths'} batch['segment_ids'] = batch['segment_ids'].int() batch['punct_labels'] = batch['punct_labels'].long() batch['capit_labels'] = batch['capit_labels'].long() if self.use_audio and self.preload_audios: batch['features'] = batch['features'].to(torch.float32) return batch else: for batch in batches: batch_segment_ids, batch_input_mask, batch_loss_mask = create_masks_and_segment_ids( batch['input_ids'], batch['subtokens_mask'], self.tokenizer.pad_id, self.tokenizer.cls_id, self.tokenizer.sep_id, self.ignore_start_end, self.ignore_extra_tokens, ) batch['segment_ids'] = torch.as_tensor(batch_segment_ids, dtype=torch.int) batch['input_mask'] = torch.as_tensor(batch_input_mask) batch['loss_mask'] = torch.as_tensor(batch_loss_mask) batch['input_ids'] = torch.as_tensor(batch['input_ids'], dtype=torch.int) batch['subtokens_mask'] = torch.as_tensor(batch['subtokens_mask']) batch['punct_labels'] = torch.as_tensor(batch['punct_labels'], dtype=torch.long) batch['capit_labels'] = torch.as_tensor(batch['capit_labels'], dtype=torch.long) if 'features' in batch: batch['features'] = torch.as_tensor(batch['features'], dtype=torch.float) batch['features_length'] = torch.as_tensor(batch['features_length'], dtype=torch.long) elif self.use_audio: if ASR_AVAILABLE: waveform = AudioSegment.from_file(batch['audio_filepaths'], target_sr=self.sample_rate) batch['features'] = torch.as_tensor(waveform.samples, dtype=torch.float) batch['features_length'] = torch.as_tensor(waveform.num_samples, dtype=torch.long) else: raise ModuleNotFoundError( 'Nemo ASR was not installed, see https://github.com/NVIDIA/NeMo#installation for installation instructions' ) segment_ids = pad_sequence([batch['segment_ids'] for batch in batches]) input_mask = pad_sequence([batch['input_mask'] for batch in batches]) loss_mask = pad_sequence([batch['loss_mask'] for batch in batches]) input_ids = pad_sequence([batch['input_ids'] for batch in batches], padding_value=self.tokenizer.pad_id) subtokens_mask = pad_sequence([batch['subtokens_mask'] for batch in batches], padding_value=False) punct_labels = pad_sequence([batch['punct_labels'] for batch in batches], padding_value=0) capit_labels = pad_sequence([batch['capit_labels'] for batch in batches], padding_value=0) features = pad_sequence([batch['features'] for batch in batches], padding_value=0.0) features_length = torch.tensor([batch['features_length'] for batch in batches]) return { 'input_ids': input_ids.T, 'subtokens_mask': subtokens_mask.T, 'punct_labels': punct_labels.T, 'capit_labels': capit_labels.T, 'features': features.T, 'features_length': features_length, 'segment_ids': segment_ids.T, 'input_mask': input_mask.T, 'loss_mask': loss_mask.T, } def __getitem__(self, idx: int) -> Dict[str, np.ndarray]: """ Return a batch with index ``idx``. The values of a batch dictionary are numpy arrays of identical shapes ``[Batch, Time]``. Labels are identical for all tokens in a word. For example, if - word ``'Tokenization'`` is tokenized into tokens ``['token', 'ization']``, - it is followed by comma, then punctuation labels are ``[',', ',']`` and capitalization labels are ``['U', 'U']`` (``'U'`` is a label for words which start with upper case character). Args: idx: an index of returned batch Returns: :obj:`Dict[str, np.ndarray]`: a dictionary with items: - ``'input_ids'`` (:obj:`numpy.ndarray`): :obj:`numpy.int32` array containing encoded tokens, - ``'subtokens_mask'`` (:obj:`numpy.ndarray`): :obj:`bool` array which elements are ``True`` if they correspond to first token in a word, - ``'punct_labels'`` (:obj:`numpy.ndarray`): :obj:`numpy.int32` array containing encoded punctuation labels, - ``'capit_labels'`` (:obj:`numpy.ndarray`): :obj:`numpy.int32` array containing encoded capitalization labels. - ``'segment_ids'`` (:obj:`numpy.ndarray`): :obj:`numpy.int8` array filled with zeros (BERT token types in HuggingFace terminology) (if ``self.add_masks_and_segment_ids_to_batch`` is ``False``, then these items is missing), - ``'input_mask'`` (:obj:`numpy.ndarray`): :obj:`bool` array which elements are ``True`` if corresponding token is not a padding token (if ``self.add_masks_and_segment_ids_to_batch`` is ``False``, then these items is missing), - ``'loss_mask'`` (:obj:`numpy.ndarray`): :obj:`bool` array which elements are ``True`` if loss is computed for corresponding token. See more in description of constructor parameters ``ignore_start_end``, ``ignore_extra_tokens`` (if ``self.add_masks_and_segment_ids_to_batch`` is ``False``, then these items is missing). - ``'features'`` (:obj:`numpy.ndarray`) :obj:`np.float` array of waveforms of audio if ``self.preload_audio`` is set to ``True`` else empty. - ``'features_length'`` (:obj:`numpy.ndarray`) :obj:`np.long` array of number of samples per audio. - ``'audio_filepaths'`` (:obj:`List`) :obj:`str` contains paths of audio files if ``self.preload_audio`` set to ``False`` """ return self.batches[idx]
NeMo-main
nemo/collections/nlp/data/token_classification/punctuation_capitalization_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
nemo/collections/nlp/data/token_classification/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json import multiprocessing as mp import os import pickle import re import shutil import tempfile from collections import deque from pathlib import Path from typing import Any, Callable, Dict, Iterator, List, Optional, Set, Tuple, Type, Union import numpy as np import torch import webdataset as wds from joblib import Parallel, delayed from omegaconf import DictConfig from torch.utils.data import IterableDataset from nemo.collections.common.tokenizers import TokenizerSpec from nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset import ( LABEL_ID_DIR_FOR_NEMO_CHECKPOINT, BertPunctuationCapitalizationDataset, Progress, create_label_ids, create_masks_and_segment_ids, load_label_ids, raise_not_equal_labels_error, ) from nemo.collections.nlp.modules.common.tokenizer_utils import get_tokenizer from nemo.core.neural_types import AudioSignal, ChannelType, LabelsType, LengthsType, MaskType, NeuralType from nemo.utils import logging NUMBER_RE = "(0|[1-9][0-9]*)" TAR_FRAGMENT_TMPL_IN_PROGRESS = "fragment{fragment_idx}.{file_idx}.tar" TAR_FRAGMENT_TMPL_FINISHED = "fragment{fragment_idx}.num_batches{num_batches}.{file_idx}.tar" TAR_FRAGMENT_TMPL_TO_REPACK = "fragment{fragment_idx}.num_batches{num_batches}.{file_idx}.tar.to_repack" TAR_FRAGMENT_PATTERN_IN_PROGRESS = re.compile(f"fragment{NUMBER_RE}.{NUMBER_RE}.tar$") TAR_FRAGMENT_PATTERN_FINISHED = re.compile(f"fragment{NUMBER_RE}.num_batches{NUMBER_RE}.{NUMBER_RE}.tar$") TAR_FRAGMENT_PATTERN_TO_REPACK = re.compile(f"fragment{NUMBER_RE}.num_batches{NUMBER_RE}.{NUMBER_RE}.tar.to_repack$") NOT_ALLOWED_CHARACTERS_IN_FILE_NAME = re.compile(f"[^a-zA-Z0-9_.-]") REPLACE_NOT_ALLOWED_CHARACTERS_IN_FILE_NAME = re.compile(f"-*[^a-zA-Z0-9_.-]+-*") DATASET_PARAMETERS_TMPL = "{prefix}.tokens{tokens_in_batch}.max_seq_length{max_seq_length}.{tokenizer}" TAR_FINAL_TMPL = ".batches{num_batches}.{ctr}.tar" PROGRESS_REPORT_PERIOD = 10 ** 4 METADATA_PUNCT_LABEL_VOCAB_KEY = 'punct_label_vocab_file' METADATA_CAPIT_LABEL_VOCAB_KEY = 'capit_label_vocab_file' DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME = 'punct_label_vocab.csv' DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME = 'capit_label_vocab.csv' def count_lines_and_get_fragment_starting_positions( file_name: Path, lines_per_dataset_fragment: int ) -> Tuple[int, List[int]]: """ Returns number of lines in a file and indices of fragment starting bytes. Args: file_name: a path to a text or label file lines_per_dataset_fragment: number of lines in a dataset fragment. The last fragment can contain fewer lines Returns: num_lines: number of lines in a file start_bytes: indices of fragment starting bytes """ pos = [0] with file_name.open() as f: i = 0 line = f.readline() while line: i += 1 if i % lines_per_dataset_fragment == 0: pos.append(f.tell()) line = f.readline() return i, pos[:-1] if i % lines_per_dataset_fragment == 0 else pos def get_fragment_start_bytes( text_file: Path, labels_file: Path, lines_per_dataset_fragment: int, audio_file: Path = None ) -> Union[Tuple[Any, Any, Any, Any], Tuple[Any, Any, Any]]: """ A function for calculating borders of dataset fragments. The function is used to split ``text_file`` and ``labels_file`` for processing them in parallel. Args: text_file: a path to a dataset source file labels_file: a path to a dataset label file lines_per_dataset_fragment: a number of lines in one fragment audio_file: a path to a dataset audio file if one needed Returns: num_lines: total number of elements in the dataset (number of lines in ``text_file``` and ``labels_file``) text_start_bytes: indices of the first bytes of fragments in ``text_file`` label_start_bytes: indices of the first bytes of fragments in ``labels_file`` """ logging.info( f"Counting lines in files {text_file} and {labels_file} and creating segment borders. This may take " f"considerable time. 86GB, 1.27b lines file was processed in 7 minutes." ) if audio_file: result = Parallel(n_jobs=3)( delayed(count_lines_and_get_fragment_starting_positions)(file_name, lines_per_dataset_fragment) for file_name in [text_file, labels_file, audio_file] ) num_lines = result[0][0] if result[0][0] != result[1][0]: raise ValueError( f"Text file {text_file} and label file {labels_file} contain different number of lines. Number of lines " f"in text file: {result[0][0]}, number of lines in label file: {result[1][0]}." ) text_start_bytes, label_start_bytes, manifest_start_bytes = result[0][1], result[1][1], result[2][1] assert len(text_start_bytes) == len(label_start_bytes) == len(manifest_start_bytes) return num_lines, text_start_bytes, label_start_bytes, manifest_start_bytes else: result = Parallel(n_jobs=2)( delayed(count_lines_and_get_fragment_starting_positions)(file_name, lines_per_dataset_fragment) for file_name in [text_file, labels_file] ) num_lines = result[0][0] if result[0][0] != result[1][0]: raise ValueError( f"Text file {text_file} and label file {labels_file} contain different number of lines. Number of lines " f"in text file: {result[0][0]}, number of lines in label file: {result[1][0]}." ) text_start_bytes, label_start_bytes = result[0][1], result[1][1] assert len(text_start_bytes) == len(label_start_bytes) return num_lines, text_start_bytes, label_start_bytes def process_fragment( text_file: Path, labels_file: Path, output_dir: Path, text_start_pos: int, label_start_pos: int, lines_per_dataset_fragment: int, max_seq_length: int, tokens_in_batch: int, num_batches_per_tarfile: int, tokenizer_name: str, tokenizer_model: Optional[Path], vocab_file: Optional[Path], merges_file: Optional[Path], special_tokens: Dict[str, str], use_fast_tokenizer: Optional[bool], pad_label: str, punct_label_ids: Dict[str, int], capit_label_ids: Dict[str, int], fragment_idx: int, tokenization_progress_queue: mp.Queue, batch_mark_up_progress_queue: mp.Queue, batch_building_progress_queue: mp.Queue, writing_to_tar_progress_queue: mp.Queue, audio_file: Path = None, sample_rate: int = None, audio_file_start_pos: int = None, use_audio: bool = False, ) -> None: tokenizer = get_tokenizer( tokenizer_name, tokenizer_model=None if tokenizer_model is None else str(tokenizer_model), vocab_file=None if vocab_file is None else str(vocab_file), merges_file=None if merges_file is None else str(merges_file), special_tokens=special_tokens, use_fast=use_fast_tokenizer, ) tmp_text: Optional[str] = None tmp_labels: Optional[str] = None tmp_audio: Optional[str] = None try: otfd, tmp_text = tempfile.mkstemp(suffix='.txt', prefix=f'text_{fragment_idx}_', dir=output_dir, text=True) olfd, tmp_labels = tempfile.mkstemp(suffix='.txt', prefix=f'labels_{fragment_idx}_', dir=output_dir, text=True) if use_audio: oafd, tmp_audio = tempfile.mkstemp( suffix='.txt', prefix=f'audio_{fragment_idx}_', dir=output_dir, text=True ) with text_file.open() as tf, labels_file.open() as lf, os.fdopen(otfd, 'w') as otf, os.fdopen( olfd, 'w' ) as olf: # handle audio manifest if use_audio: mf = audio_file.open() mf.seek(audio_file_start_pos) oaf = os.fdopen(oafd, 'w') tf.seek(text_start_pos) lf.seek(label_start_pos) for _ in range(lines_per_dataset_fragment): text_line = tf.readline() if not text_line: break otf.write(text_line) olf.write(lf.readline()) if use_audio: oaf.write(mf.readline()) if use_audio: mf.close() oaf.close() dataset = BertPunctuationCapitalizationDataset( tmp_text, tmp_labels, max_seq_length, tokenizer, tokens_in_batch=tokens_in_batch, pad_label=pad_label, punct_label_ids=punct_label_ids, capit_label_ids=capit_label_ids, n_jobs=0, use_cache=False, add_masks_and_segment_ids_to_batch=False, verbose=False, tokenization_progress_queue=tokenization_progress_queue, batch_mark_up_progress_queue=batch_mark_up_progress_queue, batch_building_progress_queue=batch_building_progress_queue, audio_file=tmp_audio, sample_rate=sample_rate, use_audio=use_audio, use_bucketing=True, preload_audios=use_audio, ) finally: if tmp_text is not None and os.path.exists(tmp_text): os.remove(tmp_text) if tmp_labels is not None and os.path.exists(tmp_labels): os.remove(tmp_labels) if tmp_audio is not None and os.path.exists(tmp_audio): os.remove(tmp_audio) dataset.features_pkl.unlink() tar_ctr = 0 current_file_name = output_dir / TAR_FRAGMENT_TMPL_IN_PROGRESS.format(fragment_idx=fragment_idx, file_idx=tar_ctr) current_num_batches = 0 sink = wds.TarWriter(str(current_file_name)) progress_made = 0 for batch_i, batch in enumerate(dataset): sink.write({"__key__": f"fragment-{fragment_idx}-batch-{batch_i}", "batch.pyd": batch}) current_num_batches += 1 progress_made += len(batch['input_ids']) if current_num_batches % num_batches_per_tarfile == 0: sink.close() current_file_name.rename( output_dir / TAR_FRAGMENT_TMPL_FINISHED.format( fragment_idx=fragment_idx, num_batches=current_num_batches, file_idx=tar_ctr ) ) writing_to_tar_progress_queue.put(progress_made) progress_made = 0 tar_ctr += 1 current_file_name = output_dir / TAR_FRAGMENT_TMPL_IN_PROGRESS.format( fragment_idx=fragment_idx, file_idx=tar_ctr ) current_num_batches = 0 sink = wds.TarWriter(str(current_file_name)) sink.close() writing_to_tar_progress_queue.put(progress_made) if progress_made > 0: new_file_name = output_dir / TAR_FRAGMENT_TMPL_TO_REPACK.format( fragment_idx=fragment_idx, num_batches=current_num_batches, file_idx=tar_ctr ) current_file_name.rename(new_file_name) else: current_file_name.unlink() if fragment_idx == 0: punct_label_ids_file, capit_label_ids_file = dataset.save_labels_and_get_file_paths( DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME, DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME ) punct_label_ids_file.rename(output_dir / DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME) capit_label_ids_file.rename(output_dir / DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME) shutil.rmtree(punct_label_ids_file.parent) def remove_unexpected_files_and_dirs(output_dir: Path, output_file_tmpl: str, metadata_file_name: Path) -> None: """ This function removes all files with names which may be used in the dataset creation. Args: output_dir: a path to directory where removal is performed output_file_tmpl: a format string for a name of final tar file. Must include fields ``ctr`` for number of the file and ``num_batches`` for number of batches in the file. metadata_file_name: a metadata file name """ if not output_dir.is_dir(): return tar_final_pattern = re.compile(output_file_tmpl.format(ctr=NUMBER_RE, num_batches=NUMBER_RE)) unexpected_tar_files = [ path for path in output_dir.iterdir() if any( [ p.match(path.name) is not None for p in [ TAR_FRAGMENT_PATTERN_IN_PROGRESS, TAR_FRAGMENT_PATTERN_FINISHED, TAR_FRAGMENT_PATTERN_TO_REPACK, tar_final_pattern, ] ] ) ] if unexpected_tar_files: logging.warning( f"Found {len(unexpected_tar_files)} unexpected tar files in the output directory {output_dir}. " f"All of them are going to be removed. The files match one of 3 patterns: " f"'{TAR_FRAGMENT_PATTERN_IN_PROGRESS.pattern}', '{TAR_FRAGMENT_PATTERN_FINISHED.pattern}', " f"'{tar_final_pattern.pattern}'. The first unexpected files: " f"{', '.join([str(f) for f in unexpected_tar_files[:3]])}." ) for fn in unexpected_tar_files: fn.unlink() if metadata_file_name.exists(): logging.warning(f"Found metadata file {metadata_file_name}. It is going to be removed.") metadata_file_name.unlink() punct_label_ids = output_dir / DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME capit_label_ids = output_dir / DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME if punct_label_ids.exists(): logging.warning(f"Found unexpected punctuation label file {punct_label_ids}. It is going to be removed.") punct_label_ids.unlink() if capit_label_ids.exists(): logging.warning(f"Found unexpected capitalization label file {capit_label_ids}. It is going to be removed.") capit_label_ids.unlink() def collect_unique_labels_from_fragment( labels_file: Path, start_pos: int, lines_per_dataset_fragment: int, progress_queue: mp.Queue, fragment_idx: int ) -> Tuple[Set[str], Set[str]]: """ Returns a set of unique punctuation labels and a set of unique capitalization labels. Args: labels_file: a path to a file with labels start_pos: an index of the first byte of a fragment in ``labels_file`` lines_per_dataset_fragment: number of lines in dataset fragment. In the last fragment there can be less lines. progress_queue: a queue for reporting number of processed lines fragment_idx: a processed fragment index Returns: unique_punct: a set of unique punctuation labels unique_capit: a set of unique capitalization labels """ unique_punct, unique_capit = set(), set() with labels_file.open() as f: f.seek(start_pos) progress_report = 0 for i in range(lines_per_dataset_fragment): line = f.readline() if not line: break pairs = line.split() if not all([len(p) == 2 for p in pairs]): broken_pairs = [i for i, p in enumerate(pairs) if len(p) != 2] raise ValueError( f"Found broken labels line in number {fragment_idx * lines_per_dataset_fragment + i} in file " f"{labels_file}. Indices of broken pairs of labels: {broken_pairs}" ) punct, capit = zip(*pairs) unique_punct.update(punct) unique_capit.update(capit) progress_report += 1 if progress_report >= PROGRESS_REPORT_PERIOD: progress_queue.put(progress_report) progress_report = 0 progress_queue.put(progress_report) return unique_punct, unique_capit def create_label_dictionaries( labels_file: Path, text_start_bytes: List[int], num_lines: int, lines_per_dataset_fragment: int, pad_label: str, n_jobs: int, ) -> Tuple[Dict[str, int], Dict[str, int]]: """ Creates punctuation and capitalization label ids dictionaries based on labels present in ``labels_file``. Args: labels_file: a path to file with labels text_start_bytes: indices of first bytes of fragments in ``labels_file`` num_lines: total number of lines in ``labels_file`` lines_per_dataset_fragment: number of lines in dataset fragments. The last fragment can have fewer lines pad_label: a label used for padding and for absence of punctuation and capitalization n_jobs: a number of fragments processed in parallel Returns: punct_label_ids: a dictionary with punctuation label ids capit_label_ids: a dictionary with capitalization label ids """ with Progress(num_lines, "Creating label dictionary", "line") as progress_queues: result = Parallel(n_jobs=min(n_jobs, len(text_start_bytes)))( delayed(collect_unique_labels_from_fragment)( labels_file, start_pos, lines_per_dataset_fragment, *progress_queues, fragment_idx ) for fragment_idx, start_pos in enumerate(text_start_bytes) ) unique_punct, unique_capit = zip(*result) unique_punct = set().union(*unique_punct) unique_capit = set().union(*unique_capit) return create_label_ids(unique_punct, pad_label), create_label_ids(unique_capit, pad_label) def check_label_ids(pad_label: str, punct_label_ids: Dict[str, int], capit_label_ids: Dict[str, int]) -> None: """ A function for checking that pad label has zeroth id in ``punct_label_dis`` and ``capit_label_ids`` dictionaries. Args: pad_label: a pad label punct_label_ids: a dictionary with punctuation label ids capit_label_ids: a dictionary with capitalization label ids """ msg = "Parameter `pad_label` has to have id 0 in dictionary `{param_name}` whereas it has id {id_}." + ( '' if len(pad_label) > 10 else f" pad_label='{pad_label}'" ) if punct_label_ids is not None: if punct_label_ids[pad_label] != 0: raise ValueError(msg.format(param_name='punct_label_ids', id_=punct_label_ids[pad_label])) if capit_label_ids is not None: if capit_label_ids[pad_label] != 0: raise ValueError(msg.format(param_name='capit_label_ids', id_=capit_label_ids[pad_label])) def process_error(msg: str, error_class_or_function: Union[Type[Exception], Callable[[str], Any]]) -> None: if inspect.isclass(error_class_or_function) and issubclass(error_class_or_function, Exception): raise error_class_or_function(msg) if callable(error_class_or_function): error_class_or_function(msg) raise ValueError( f"Parameter `error_class_or_function` has to be a subclass of `Exception` or a function." f"Given {type(error_class_or_function)}" ) def check_labels_for_being_unique_before_building_label_ids( pad_label: str, other_labels: List[str], pad_label_name: str, other_labels_name: str, error_class_or_function: Union[Type[Exception], Callable[[str], Any]], ) -> None: """ A function for checking that that all labels are unique. Args: pad_label: a pad label other_labels: a list of labels except for the pad label pad_label_name: a name of the pad label used in error message other_labels_name: a name of other labels used in error message error_class_or_function: a class of an exception which is raised if there is a problem with labels. Alternatively it can be a function for handling exceptions, for example ``argparse.ArgumentParser.error``. Such a function has to take one argument -- error message. """ for i, lbl in enumerate(other_labels): if lbl == pad_label: msg = f"Label number {i} in parameter `{other_labels_name}` is equal to `{pad_label_name}`." process_error(msg, error_class_or_function) for i in range(len(other_labels) - 1): for lbl in other_labels[i + 1 :]: if lbl == other_labels[i]: msg = f"Label number {i} occurs at least 2 times in parameter `{other_labels_name}`." process_error(msg, error_class_or_function) def build_label_ids_from_list_of_labels(pad_label: str, other_labels: List[str]) -> Dict[str, int]: """ Builds label ids dictionary from pad label and list of other labels. Used for parsing command line arguments. Args: pad_label: a pad label other_labels: list of labels except for the pad label Returns: a dictionary with label ids """ check_labels_for_being_unique_before_building_label_ids( pad_label, other_labels, 'pad_label', 'other_labels', ValueError ) ids = {pad_label: 0} for lbl in other_labels: ids[lbl] = len(ids) return ids def get_label_dictionaries( labels_file: Path, start_bytes: List[int], num_lines: int, lines_per_dataset_fragment: int, pad_label: str, punct_label_ids: Optional[Dict[str, int]], capit_label_ids: Optional[Dict[str, int]], punct_label_vocab_file: Optional[Path], capit_label_vocab_file: Optional[Path], n_jobs: int, ) -> Tuple[Dict[str, int], Dict[str, int]]: """ Return label ids if the label ids are present in parameters ``punct_label_ids``, ``capit_label_ids``, ``punct_label_vocab_file``, ``capit_label_vocab_file``. Otherwise, label ids are created using ``labels_file``. Args: labels_file: a path to file with labels. Labels have to be given in the format described in https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#nemo-data-format start_bytes: a list of positions in ``labels_file`` at which fragments start. Parameter ``start_bytes`` is used for creating labels for several fragments in parallel num_lines: total number of lines in ``labels_file``. Parameter ``num_lines`` is used for showing progress of label ids collection lines_per_dataset_fragment: number of lines in a dataset fragment pad_label: a label used for padding and also neutral label showing there is no punctuation and capitalization. Label ``pad_label`` has to have id ``0`` in parameters ``punct_label_ids``, ``capit_label_ids``, ``punct_label_vocab_file``, ``capit_label_vocab_file`` if these parameters are provided. punct_label_ids: a dictionary with punctuation label ids. Pad label has to have id ``0``. No more than 1 of parameters ``punct_label_ids`` and ``punct_label_vocab_file`` can be provided. capit_label_ids: a dictionary with capitalization label ids. Pad label has to have id ``0``. No more than 1 of parameters ``capit_label_ids`` and ``capit_label_vocab_file`` can be provided. punct_label_vocab_file: a text file with punctuation labels. Every line in the file contains 1 label. Pad label has to be in the first line. No more than 1 of parameters ``punct_label_ids`` and ``punct_label_vocab_file`` can be provided. capit_label_vocab_file: a text file with capitalization labels. Every line in the file contains 1 label. Pad label has to be in the first line. No more than 1 of parameters ``capit_label_ids`` and ``capit_label_vocab_file`` can be provided. n_jobs: a number of fragments processed in parallel Returns: punct_label_ids: a dictionary with punctuation label ids capit_label_ids: a dictionary with capitalization label ids """ if punct_label_ids is not None and punct_label_vocab_file is not None: raise ValueError("You can provide at most one of parameters `punct_label_ids` and `punct_label_vocab_file`.") if capit_label_ids is not None and capit_label_vocab_file is not None: raise ValueError("You can provide at most one of parameters `capit_label_ids` and `capit_label_vocab_file`.") if punct_label_ids is None and punct_label_vocab_file is not None: punct_label_ids = load_label_ids(punct_label_vocab_file) if capit_label_ids is None and capit_label_vocab_file is not None: capit_label_ids = load_label_ids(capit_label_vocab_file) check_label_ids(pad_label, punct_label_ids, capit_label_ids) if punct_label_ids is None or capit_label_ids is None: _punct_label_ids, _capit_label_ids = create_label_dictionaries( labels_file, start_bytes, num_lines, lines_per_dataset_fragment, pad_label, n_jobs ) if punct_label_ids is None: punct_label_ids = _punct_label_ids if capit_label_ids is None: capit_label_ids = _capit_label_ids return punct_label_ids, capit_label_ids def decode_pyd(key: str, value: bytes) -> Any: """ Used for decoding batch loaded by ``webdataset`` from tar files. Args: key: name of a batch value: pickled batch Returns: decoded batch """ return pickle.loads(value) def repack_tar_files_with_not_enough_batches(output_dir: Path, num_batches_per_tarfile: int) -> None: f""" It is possible that number of batches in a fragment is not evenly divisible by ``num_batches_per_tarfile``. In such a case excess batches are put in a tar file which matches a pattern ``fragment(0|[1-9][0-9]*).num_batches(0|[1-9][0-9]*).(0|[1-9][0-9]*).tar.to_repack``. Such files are repacked by ``repack_tar_files_with_not_enough_batches`` function into tar files with correct ``num_batches_per_tarfile`` batches each. If there is no enough batches in repacked files, then up to ``num_batches_per_tarfile - 1`` remaining batches may be discarded. Args: output_dir: a path to the output directory which contains files to repack and where new files are saved num_batches_per_tarfile: a number of batches in 1 tar file. If number of batches in files matching a pattern ``fragment(0|[1-9][0-9]*).num_batches(0|[1-9][0-9]*).(0|[1-9][0-9]*).tar.to_repack`` is not evenly divisible by ``num_batches_per_tarfile`` excess batches are discarded. """ files_to_repack_with_matches = [ (path, TAR_FRAGMENT_PATTERN_TO_REPACK.match(path.name)) for path in output_dir.iterdir() if TAR_FRAGMENT_PATTERN_TO_REPACK.match(path.name) is not None ] files_to_repack_with_matches = sorted(files_to_repack_with_matches, key=lambda x: int(x[1].group(3))) logging.info(f"Found {len(files_to_repack_with_matches)} files for repacking.") files_to_repack_with_matches = deque(files_to_repack_with_matches) total_batches_in_repacked_files = 0 initial_number_of_files_to_repack = len(files_to_repack_with_matches) pop_file_ds = None new_file_sink = None new_file_num_batches = 0 while files_to_repack_with_matches: assert pop_file_ds is None or new_file_sink is None if new_file_sink is None: # `append_file` is a file which content will serve as a start for new tar file. `append_file` content is # copied into a `new_file` and then content of other files needing repacking is appended to content of # `new_file`. append_file, match = files_to_repack_with_matches.popleft() new_file = append_file.parent / TAR_FRAGMENT_TMPL_FINISHED.format( fragment_idx=match.group(1), num_batches=num_batches_per_tarfile, file_idx=match.group(3) ) new_file_sink = wds.TarWriter(str(new_file)) append_ds_to_rewrite = ( wds.WebDataset(urls=[str(append_file)], nodesplitter=None) .decode(wds.handle_extension('.pyd', decode_pyd)) .to_tuple('__key__', 'batch.pyd') ) for key, batch in iter(append_ds_to_rewrite): new_file_sink.write({"__key__": key, "batch.pyd": batch}) new_file_num_batches += 1 total_batches_in_repacked_files += 1 assert total_batches_in_repacked_files < initial_number_of_files_to_repack * num_batches_per_tarfile assert new_file_num_batches == int(match.group(2)), ( f"Number of batches {new_file_num_batches} in {append_file} is different from number of batches " f"{match.group(2)} in repacked tar file with name {append_file}." ) append_file.unlink() if files_to_repack_with_matches and pop_file_ds is None: pop_file, _ = files_to_repack_with_matches.pop() pop_file_ds = ( wds.WebDataset(urls=[str(pop_file)], nodesplitter=None) .decode(wds.handle_extension('.pyd', decode_pyd)) .to_tuple('__key__', 'batch.pyd') ) pop_file_ds = iter(pop_file_ds) if pop_file_ds is not None and new_file_sink is not None: while new_file_num_batches < num_batches_per_tarfile: try: key, batch = next(pop_file_ds) except StopIteration: pop_file_ds = None pop_file.unlink() break new_file_sink.write({"__key__": key, "batch.pyd": batch}) total_batches_in_repacked_files += 1 assert total_batches_in_repacked_files < initial_number_of_files_to_repack * num_batches_per_tarfile new_file_num_batches += 1 if new_file_num_batches >= num_batches_per_tarfile: assert new_file_num_batches == num_batches_per_tarfile new_file_sink.close() new_file_sink = None new_file_num_batches = 0 if new_file_sink is not None: new_file_sink.close() new_file.unlink() logging.info(f"Discarded {new_file_num_batches} batches.") if pop_file_ds is not None: pop_file.unlink() logging.info(f"Repacked {total_batches_in_repacked_files} batches from short tar files") def create_metadata_file( output_dir: Path, output_file_tmpl: str, metadata_file_name: Path, num_batches_per_tarfile: int ) -> None: """ Rename tar files according to template ``output_file_tmpl`` and save metadata file. Args: output_dir: a path to directory which contains initial tar files and where renamed tar files are saved output_file_tmpl: a template of a new tar file name metadata_file_name: a path to a file into which metadata is going to be saved num_batches_per_tarfile: a required number of batches in tar files. Used for checking that present tar files have correct number of batches """ metadata = {"num_batches": 0, "tar_files": []} for i, fn in enumerate([fn for fn in output_dir.iterdir() if TAR_FRAGMENT_PATTERN_FINISHED.match(fn.name)]): nb = int(TAR_FRAGMENT_PATTERN_FINISHED.match(fn.name).group(2)) assert nb == num_batches_per_tarfile new_name = output_dir / output_file_tmpl.format(ctr=i, num_batches=nb) fn.rename(new_name) metadata['tar_files'].append(new_name.name) metadata["num_batches"] += nb metadata[METADATA_PUNCT_LABEL_VOCAB_KEY] = DEFAULT_PUNCT_LABEL_VOCAB_FILE_NAME metadata[METADATA_CAPIT_LABEL_VOCAB_KEY] = DEFAULT_CAPIT_LABEL_VOCAB_FILE_NAME logging.info(f"{metadata['num_batches']} batches are in tarred dataset with metadata file {metadata_file_name}") with metadata_file_name.open('w') as f: json.dump(metadata, f, indent=2) def check_tar_file_prefix( tar_file_prefix: str, error_class_or_function: Union[Type[Exception], Callable[[str], Any]], var_name: str ) -> None: not_allowed_characters_in_prefix = NOT_ALLOWED_CHARACTERS_IN_FILE_NAME.findall(tar_file_prefix) if not_allowed_characters_in_prefix: not_allowed_characters_in_prefix = set(not_allowed_characters_in_prefix) msg = ( f"Found {len(not_allowed_characters_in_prefix)} not allowed characters in `{var_name}`. Only 'A-Z', " f"'a-z', '0-9', '_', '-', '.' characters are allowed. Examples of not allowed characters: " f"{list(not_allowed_characters_in_prefix)[:10]}. `{var_name}`[:30]={repr(tar_file_prefix)[:30]}." ) process_error(msg, error_class_or_function) def create_tarred_dataset( text_file: Union[os.PathLike, str], labels_file: Union[os.PathLike, str], output_dir: Union[os.PathLike, str], max_seq_length: int, tokens_in_batch: int, lines_per_dataset_fragment: int, num_batches_per_tarfile: int, tokenizer_name: str, tokenizer_model: Optional[Union[os.PathLike, str]] = None, vocab_file: Optional[Union[os.PathLike, str]] = None, merges_file: Optional[Union[os.PathLike, str]] = None, special_tokens: Optional[Dict[str, str]] = None, use_fast_tokenizer: Optional[bool] = False, pad_label: str = 'O', punct_label_ids: Optional[Dict[str, int]] = None, capit_label_ids: Optional[Dict[str, int]] = None, punct_label_vocab_file: Optional[Union[os.PathLike, str]] = None, capit_label_vocab_file: Optional[Union[os.PathLike, str]] = None, tar_file_prefix: Optional[str] = 'punctuation_capitalization', n_jobs: Optional[int] = None, audio_file: Optional[Path] = None, use_audio: Optional[bool] = False, sample_rate: Optional[int] = 16000, ) -> None: """ Creates tarred dataset from ``text_file`` and ``labels_file``. A tarred dataset allows to train on large amounts of data without storing it all into memory simultaneously. You may use these function directly or try script `examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py>`_. Tarred dataset is a directory which contains metadata file, tar files with batches, ``punct_label_vocab.csv`` and ``capit_label_vocab.csv`` files. Metadata file is a JSON file with 4 items: ``'num_batches'``, ``'tar_files'``, ``'punct_label_vocab_file'``, ``'capit_label_vocab_file'``. The item ``'num_batches'`` (``int``) is a total number of batches in tarred dataset. ``'tar_files'`` is a list of paths to tar files relative to directory containing the metadata file. The items ``'punct_label_vocab_file'`` and ``'capit_label_vocab_file'`` are correspondingly paths to punctuation and capitalization label vocabulary files. These paths are relative to directory containing the metadata file. Every tar file contains objects written using ``webdataset.TarWriter``. Each object is a dictionary with two items: ``'__key__'`` and ``'batch.pyd'``. ``'__key__'`` is a name of a batch and ``'batch.pyd'`` is a pickled dictionary which contains ``'input_ids'``, ``'subtokens_mask'``, ``'punct_labels'``, ``'capit_labels'``. ``'input_ids'`` is an array containing ids of source tokens, ``'subtokens_mask'`` is a boolean array showing first tokens in words, ``'punct_labels'`` and ``'capit_labels'`` are arrays with ids of labels. Metadata file should be passed to constructor of :class:`BertPunctuationCapitalizationTarredDataset` and the instance of the class will handle iteration and constructing masks and token types for BERT model. Args: text_file (:obj:`Union[os.PathLike, str]`): a path to a file with dataset source. Dataset source is lowercase text without punctuation. Number of lines in ``text_file`` has to be equal to the number of lines in ``labels_file``. labels_file (:obj:`Union[os.PathLike, str]`): a path to a file with labels. Labels are given in the format described in :ref:`NeMo Data Format<nemo-data-format-label>`. output_dir (:obj:`Union[os.PathLike, str]`): a path to a directory where metadata file, tar files and ``'punct_label_ids.csv'`` and ``'capit_label_ids.csv'`` files are saved. max_seq_length (:obj:`int`): Maximum number of subtokens in an input sequence. A source sequence which contains too many subtokens is clipped to ``max_seq_length - 2`` subtokens and then [CLS] token is prepended to the clipped sequence and [SEP] token is appended to the clipped sequence. The clipping is performed via removal of subtokens in the end of a source sequence. tokens_in_batch (:obj:`int`): maximum number of tokens in a batch including [CLS], [SEP], [UNK], and [PAD] tokens. Before packing into batches source sequences are sorted by number of tokens in order to reduce number of pad tokens. So the number of samples in a batch may vary. lines_per_dataset_fragment (:obj:`int`): a number of lines processed by one worker during creation of tarred dataset. A worker tokenizes ``lines_per_dataset_fragment`` lines and keeps in RAM tokenized text labels before packing them into batches. Reducing ``lines_per_dataset_fragment`` leads to reducing of the amount of memory used by this function. num_batches_per_tarfile (:obj:`int`): a number of batches saved in a tar file. If you increase ``num_batches_per_tarfile``, then there will be less tar files in the dataset. There cannot be less than ``num_batches_per_tarfile`` batches in a tar file, and all excess batches are removed. Maximum number of discarded batches is ``num_batches_per_tarfile - 1``. tokenizer_name (:obj:`str`): a name of the tokenizer used for tokenization of source sequences. Possible options are ``'sentencepiece'``, ``'word'``, ``'char'``, HuggingFace tokenizers. For more options see function ``nemo.collections.nlp.modules.common.get_tokenizer``. The tokenizer must have properties ``cls_id``, ``pad_id``, ``sep_id``, ``unk_id``. tokenizer_model (:obj:`Union[os.PathLike, str]`, `optional`): a path to a tokenizer model required for ``'sentencepiece'`` tokenizer. vocab_file (:obj:`Union[os.PathLike, str]`, `optional`): a path to a vocabulary file which can be used in ``'word'``, ``'char'``, and HuggingFace tokenizers. merges_file (:obj:`Union[os.PathLike, str]`, `optional`): a path to merges file which can be used in HuggingFace tokenizers. special_tokens (:obj:`Dict[str, str]`, `optional`): a dictionary with special tokens passed to constructors of ``'char'``, ``'word'``, ``'sentencepiece'``, and various HuggingFace tokenizers. use_fast_tokenizer (:obj:`bool`, `optional`, defaults to :obj:`False`): whether to use fast HuggingFace tokenizer. pad_label (:obj:`str`, `optional`, defaults to :obj:`'O'`): a pad label both for punctuation and capitalization. This label is also a neutral label (used for marking words which do not need punctuation and capitalization). punct_label_ids (:obj:`Dict[str, int]`, `optional`): a dictionary which keys are punctuation labels and values are label ids. The pad label ``pad_label`` has to have id ``0``. You can provide at most one of parameters ``punct_label_ids`` and ``punct_label_vocab_file``. If none of parameters ``punct_label_ids`` and ``punct_label_vocab_file`` is provided, then punctuation label ids will be inferred from ``labels_file`` file. capit_label_ids (:obj:`Dict[str, int]`, `optional`): same as ``punct_label_ids`` for capitalization labels. punct_label_vocab_file (:obj:`Union[os.PathLike, str]`, `optional`): a path to a file with punctuation labels. These labels include pad label. The pad label has to be the first label in the file. Each label is written on a separate line. Alternatively you can use ``punct_labels_ids`` parameter. If none of parameters ``punct_labels_ids`` and ``punct_label_vocab_file`` is provided, then punctuation label ids will be inferred from ``labels_file`` file. capit_label_vocab_file (:obj:`Union[os.PathLike, str]`, `optional`): same as ``punct_label_vocab_file`` for capitalization labels. tar_file_prefix (:obj:`str`, `optional`, defaults :obj:`'punctuation_capitalization'`): a string from which tar file names start. The string can contain only characters ``A-Z``, ``a-z``, ``0-9``, ``_``, ``-``, ``.``. n_jobs (:obj:`int`, `optional`): a number of workers for creating tarred dataset. If ``None``, then ``n_jobs`` is equal to number of CPUs. audio_file (:obj:`Optional[Union[os.PathLike, str]]`, defaults to :obj:`None`): a path to a file with audio dataset file paths if dataset is lexical and audio. Must contain one path per line. use_audio (:obj:`bool`, `optional`, defaults to :obj:`False`): If set to ``True`` dataset becomes lexical and audio rather than only lexical. sample_rate (:obj:`int`, `optional`, defaults to :obj:`16000`) Targeted sample rate of audios If ``use_audio`` set to ``True``. """ check_tar_file_prefix(tar_file_prefix, ValueError, 'tar_file_prefix') if n_jobs is None: n_jobs = mp.cpu_count() text_file, labels_file = Path(text_file).expanduser(), Path(labels_file).expanduser() output_dir = Path(output_dir).expanduser() ds_params_str = DATASET_PARAMETERS_TMPL.format( prefix=tar_file_prefix, tokens_in_batch=tokens_in_batch, max_seq_length=max_seq_length, tokenizer=REPLACE_NOT_ALLOWED_CHARACTERS_IN_FILE_NAME.sub('-', tokenizer_name), ) output_file_tmpl = ds_params_str + TAR_FINAL_TMPL metadata_file_name = output_dir / ('metadata.' + ds_params_str + '.json') remove_unexpected_files_and_dirs(output_dir, output_file_tmpl, metadata_file_name) audio_start_bytes = None if use_audio: num_lines, text_start_bytes, label_start_bytes, audio_start_bytes = get_fragment_start_bytes( text_file, labels_file, lines_per_dataset_fragment, audio_file ) else: num_lines, text_start_bytes, label_start_bytes = get_fragment_start_bytes( text_file, labels_file, lines_per_dataset_fragment ) if text_start_bytes: output_dir.mkdir(parents=True, exist_ok=True) else: raise ValueError(f"Both {labels_file} and {text_file} are empty. Tarred dataset cannot be created.") punct_label_ids, capit_label_ids = get_label_dictionaries( labels_file, label_start_bytes, num_lines, lines_per_dataset_fragment, pad_label, punct_label_ids, capit_label_ids, punct_label_vocab_file, capit_label_vocab_file, n_jobs, ) with Progress( num_lines, ["Tokenization", "Batch mark up", "Batch building", "Writing tarred dataset"], "query" ) as progress_queues: Parallel(n_jobs=min(n_jobs, len(text_start_bytes)))( delayed(process_fragment)( text_file, labels_file, output_dir, text_start_pos, label_start_pos, lines_per_dataset_fragment, max_seq_length, tokens_in_batch, num_batches_per_tarfile, tokenizer_name, None if tokenizer_model is None else Path(tokenizer_model).expanduser(), None if vocab_file is None else Path(vocab_file).expanduser(), None if merges_file is None else Path(merges_file).expanduser(), special_tokens, use_fast_tokenizer, pad_label, punct_label_ids, capit_label_ids, fragment_idx, *progress_queues, audio_file, sample_rate, audio_file_start_pos, use_audio, ) for fragment_idx, (text_start_pos, label_start_pos, audio_file_start_pos) in enumerate( zip( text_start_bytes, label_start_bytes, audio_start_bytes if use_audio else [None for _ in range(len(text_start_bytes))], ) ) ) repack_tar_files_with_not_enough_batches(output_dir, num_batches_per_tarfile) create_metadata_file(output_dir, output_file_tmpl, metadata_file_name, num_batches_per_tarfile) class BertPunctuationCapitalizationTarredDataset(IterableDataset): """ Punctuation capitalization dataset which allows not to load all data in memory simultaneously. A tarred dataset is created from text and label files using script `examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py>`_ or function :func:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset.create_tarred_dataset`. Args: metadata_file (:obj:`Union[os.PathLike, str]`): a path to tarred dataset metadata file. Metadata file and files referenced in metadata file are created by `examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py <https://github.com/NVIDIA/NeMo/blob/main/examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py>`_. Metadata file is a JSON file which contains ``'num_batches'``, ``'tar_files'``, ``'punct_label_vocab_file'``, ``'capit_label_vocab_file'`` items. The first item is total number of batches in a dataset, the second is a list of paths to tar files relative to directory containing ``metadata_file``. Items ``'punct_label_vocab_file'`` and ``'capit_label_vocab_file'`` are paths to ``.csv`` files which contain unique punctuation a capitalization label vocabularies. Vocabulary file paths are relative to directory containing the ``metadata_file``. Each line in ``'punct_label_vocab_file'`` and ``'capit_label_vocab_file'`` contains 1 label. The first lines in ``'punct_label_vocab_file'`` and ``'capit_label_vocab_file'`` files are neutral labels which also serve as pad labels. Neutral labels for punctuation and capitalization must be equal to the ``pad_label`` parameter. tokenizer (:obj:`TokenizerSpec`): a tokenizer instance used for tokenization of dataset source. A tokenizer instance is used for getting ids of [CLS], [PAD], and [SEP] tokens which are used for masks creation. pad_label (:obj:`str`): a label that is used for padding and for absence of punctuation or capitalization. Used for checking items ``'punct_label_vocab'`` and ``'capit_label_vocab'`` of dictionary in ``metadata_file``. label_info_save_dir (:obj:`Union[os.PathLike, str]`, `optional`): a path to a directory where label vocabularies are copied when method :meth:`save_labels_and_get_file_paths` is called. This parameter is useful if tarred dataset directory is read-only. ignore_extra_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): whether to use only first token in a word for loss computation and training. If set to ``True``, then loss will be computed only for the first tokens of words. ignore_start_end (:obj:`bool`, `optional`, defaults to :obj:`True`): whether to compute loss for [CLS] and [SEP] tokens. If set to ``True``, then loss will not be computed for [CLS] and [SEP] tokens. world_size (:obj:`int`, `optional`, defaults to :obj:`1`): a number of processes used for model training. It is used together with a ``global_rank`` parameter to decide which tar files will be used in the current process. global_rank (:obj:`int`, `optional`, defaults to :obj:`0`): a number of current process in the pool of workers used for model training. It is used together with ``world_size`` parameter to decide which tar files will be used in the current process. shuffle_n (:obj:`int`, `optional`, defaults to :obj:`1`): a number of shuffled batches in a buffer. ``shuffle_n`` batches are loaded into memory, shuffled, and then yielded by a dataset instance. shard_strategy (:obj:`str`, defaults to :obj:``'scatter'``): Tarred dataset shard distribution strategy chosen as a str value during ddp. - ``'scatter'``: The default shard strategy applied by WebDataset, where each node gets a unique set of shards, which are permanently pre-allocated and never changed at runtime. - ``'replicate'``: Optional shard strategy, where each node gets all the set of shards available in the tarred dataset, which are permanently pre-allocated and never changed at runtime. The benefit of replication is that it allows each node to sample data points from the entire dataset independently of other nodes, and reduces dependence on value of :param:`shuffle_n`. .. warning:: Replicated strategy allows every node to sample the entire set of available tar files, and therefore more than one node may sample the same tarfile, and even sample the same data points! As such, there is no assured guarantee that all samples in the dataset will be sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific occasions (when the number of shards is not divisible with ``world_size``), will not sample the entire dataset. For these reasons it is not advisable to use tarred datasets as validation or test datasets. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns definitions of module output ports. """ if self.use_audio: return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'punct_labels': NeuralType(('B', 'T'), LabelsType()), 'capit_labels': NeuralType(('B', 'T'), LabelsType()), 'features': NeuralType(('B', 'T'), AudioSignal()), 'features_length': NeuralType(('B', 'T'), LengthsType()), } return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'loss_mask': NeuralType(('B', 'T'), MaskType()), 'punct_labels': NeuralType(('B', 'T'), LabelsType()), 'capit_labels': NeuralType(('B', 'T'), LabelsType()), } def __init__( self, metadata_file: Union[os.PathLike, str], tokenizer: TokenizerSpec, pad_label: str, label_info_save_dir: Optional[Union[os.PathLike, str]] = None, ignore_extra_tokens: bool = False, ignore_start_end: bool = True, world_size: int = 1, global_rank: int = 0, shuffle_n: int = 1, shard_strategy: str = "scatter", use_audio: bool = False, ) -> None: super().__init__() valid_shard_strategies = ['scatter', 'replicate'] if shard_strategy not in valid_shard_strategies: raise ValueError( f"Invalid shard strategy of type {type(shard_strategy)} " f"{repr(shard_strategy) if len(repr(shard_strategy)) < 100 else repr(shard_strategy)[:100] + '...'}! " f"Allowed values are: {valid_shard_strategies}." ) self.tokenizer = tokenizer self.metadata_file = Path(metadata_file).expanduser() if label_info_save_dir is None: self.for_nemo_ckpt = self.metadata_file.parent / LABEL_ID_DIR_FOR_NEMO_CHECKPOINT else: self.for_nemo_ckpt = Path(label_info_save_dir).expanduser() / LABEL_ID_DIR_FOR_NEMO_CHECKPOINT with open(self.metadata_file) as f: self.metadata = json.load(f) self.ignore_extra_tokens = ignore_extra_tokens self.ignore_start_end = ignore_start_end self.tar_files = [] for file_path in self.metadata['tar_files']: file_path = Path(file_path).expanduser() if file_path.is_absolute(): self.tar_files.append(str(file_path)) else: self.tar_files.append(str(self.metadata_file.parent / file_path)) self.punct_label_vocab_file = self.metadata_file.parent / self.metadata[METADATA_PUNCT_LABEL_VOCAB_KEY] self.capit_label_vocab_file = self.metadata_file.parent / self.metadata[METADATA_CAPIT_LABEL_VOCAB_KEY] self.punct_label_ids = load_label_ids(self.punct_label_vocab_file) self.capit_label_ids = load_label_ids(self.capit_label_vocab_file) self.pad_label = pad_label self._check_pad_label() if shard_strategy == 'scatter': logging.info("Tarred dataset shards will be scattered evenly across all nodes.") if len(self.tar_files) % world_size != 0: logging.warning( f"Number of shards in tarred dataset ({len(self.tar_files)}) is not divisible " f"by number of distributed workers ({world_size}). " f"Some shards will not be used ({len(self.tar_files) % world_size})." ) begin_idx = (len(self.tar_files) // world_size) * global_rank end_idx = begin_idx + (len(self.tar_files) // world_size) logging.info( "Partitioning tarred dataset: process (%d) taking shards [%d, %d)", global_rank, begin_idx, end_idx ) batches_per_tar = self.metadata['num_batches'] // len(self.tar_files) self.tar_files = self.tar_files[begin_idx:end_idx] self.length = batches_per_tar * len(self.tar_files) * world_size elif shard_strategy == 'replicate': logging.info("All tarred dataset shards will be replicated across all nodes.") self.length = self.metadata['num_batches'] else: raise ValueError(f"Invalid shard strategy! Allowed values are: {valid_shard_strategies}") self._dataset = wds.WebDataset(urls=self.tar_files, nodesplitter=None).decode( wds.handle_extension('.pyd', decode_pyd) ) if shuffle_n > 0: self._dataset.shuffle(shuffle_n) else: logging.info("WebDataset will not shuffle files within the tar files.") self._dataset = self._dataset.to_tuple('__key__', 'batch.pyd').map(f=self._build_sample) self.use_audio = use_audio def _check_pad_label(self) -> None: """ Checks the condition that ``pad_label`` passed to this class constructor has ``0`` id in ``self.punct_label_ids`` and ``self.capit_label_ids`` loaded from tarred dataset. """ for label_ids, labels_file, task in [ (self.punct_label_ids, self.metadata[METADATA_PUNCT_LABEL_VOCAB_KEY], "punctuation"), (self.capit_label_ids, self.metadata[METADATA_CAPIT_LABEL_VOCAB_KEY], "capitalization"), ]: if label_ids[self.pad_label] != 0: raise ValueError( f"Pad label '{self.pad_label}' has non zero id {label_ids[self.pad_label]} in {task} " f"ids dictionary loaded from {labels_file}." ) def check_for_label_consistency_with_model_config( self, punct_label_ids: Optional[Dict[str, int]], capit_label_ids: Optional[Dict[str, int]], class_labels: DictConfig, common_dataset_parameters_config: DictConfig, ) -> None: """ Checks that label ids loaded from tarred dataset are identical to those provided in ``model.common_dataset_parameters`` :ref:`config<common-dataset-parameters-config-label>` item. In addition, this method checks that label ids set in attributes ``punct_label_ids`` and ``capit_label_ids`` of an instance of :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel` are identical to label ids loaded from tarred dataset. Args: punct_label_ids: a content of ``punct_label_ids`` attribute of an instance of :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel` in which this tarred dataset is used. capit_label_ids: a content of ``capit_label_ids`` attribute of an instance of :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel` in which this tarred dataset is used. class_labels: a config item ``model.class_labels``. See more in description of :ref:`class labels' config<class-labels-config-label>`. common_dataset_parameters_config: a config item ``model.common_dataset_parameters``. See more in of :ref:`common dataset parameters config<common-dataset-parameters-config-label>`. """ tarred_dataset_label_desc_tmpl = ( f'{{label_type}} labels loaded from tarred dataset with metadata file {self.metadata_file}' ) if punct_label_ids is not None: if punct_label_ids != self.punct_label_ids: raise_not_equal_labels_error( first_labels=self.punct_label_ids, second_labels=punct_label_ids, first_labels_desc=tarred_dataset_label_desc_tmpl.format(label_type='Punctuation'), second_labels_desc="Punctuation labels stored in an attribute " "`PunctuationCapitalizationModel.punct_label_ids`", ) if capit_label_ids is not None: if capit_label_ids != self.capit_label_ids: raise_not_equal_labels_error( first_labels=self.capit_label_ids, second_labels=capit_label_ids, first_labels_desc=tarred_dataset_label_desc_tmpl.format(label_type='Capitalization'), second_labels_desc="Capitalization labels stored in an attribute" "`PunctuationCapitalizationModel.capit_label_ids`", ) if common_dataset_parameters_config.punct_label_ids is not None: cfg_punct_label_ids = dict(common_dataset_parameters_config.punct_label_ids) if cfg_punct_label_ids != self.punct_label_ids: raise_not_equal_labels_error( first_labels=self.punct_label_ids, second_labels=cfg_punct_label_ids, first_labels_desc=tarred_dataset_label_desc_tmpl.format(label_type='Punctuation'), second_labels_desc='Punctuation labels stored a config field ' '`model.common_dataset_parameters.punct_label_ids`', ) if common_dataset_parameters_config.capit_label_ids is not None: cfg_capit_label_ids = dict(common_dataset_parameters_config.capit_label_ids) if cfg_capit_label_ids != self.capit_label_ids: raise_not_equal_labels_error( first_labels=self.capit_label_ids, second_labels=cfg_capit_label_ids, first_labels_desc=tarred_dataset_label_desc_tmpl.format(label_type='Capitalization'), second_labels_desc='Capitalization labels stored a config field ' '`model.common_dataset_parameters.capit_label_ids`', ) if common_dataset_parameters_config.label_vocab_dir is not None: label_vocab_dir = Path(common_dataset_parameters_config.label_vocab_dir).expanduser() punct_label_vocab_file = label_vocab_dir / class_labels.punct_labels_file file_punct_vocab = load_label_ids(punct_label_vocab_file) if file_punct_vocab != self.punct_label_ids: raise_not_equal_labels_error( first_labels=self.punct_label_ids, second_labels=file_punct_vocab, first_labels_desc=tarred_dataset_label_desc_tmpl.format(label_type='Punctuation'), second_labels_desc=f'labels stored in file {punct_label_vocab_file} passed in ' f'`model.common_dataset_parameters.punct_label_vocab_file`', ) capit_label_vocab_file = label_vocab_dir / class_labels.capit_labels_file file_capit_vocab = load_label_ids(capit_label_vocab_file) if file_capit_vocab != self.capit_label_ids: raise_not_equal_labels_error( first_labels=self.capit_label_ids, second_labels=file_capit_vocab, first_labels_desc=tarred_dataset_label_desc_tmpl.format(label_type='Capitalization'), second_labels_desc=f'labels stored in file {capit_label_vocab_file} passed in ' f'`model.common_dataset_parameters.capit_label_vocab_file`', ) def save_labels_and_get_file_paths( self, punct_labels_file_name: str, capit_labels_file_name: str ) -> Tuple[Path, Path]: """ Copies label vocabulary files for punctuation and capitalization into directory passed in the constructor parameter ``label_info_save_dir``. The names of new files are ``punct_labels_file_name`` and ``capit_labels_file_name``. The signatures of this method and the signature of the method :meth:`~nemo.collections.nlp.data.token_classification.BertPunctuationCapitalizationDataset.save_labels_and_get_file_paths` must be identical. Args: punct_labels_file_name (:obj:`str`): a name of punctuation labels file capit_labels_file_name (:obj:`str`): a name of capitalization labels file Returns: :obj:`Tuple[Path, Path]`: a tuple of 2 elements - :obj:`pathlib.Path`: a path to the new punctuation label ids file - :obj:`pathlib.Path`: a path to the new capitalization label ids file """ self.for_nemo_ckpt.mkdir(parents=True, exist_ok=True) punct_label_ids_file = self.for_nemo_ckpt / punct_labels_file_name capit_label_ids_file = self.for_nemo_ckpt / capit_labels_file_name shutil.copy(str(self.punct_label_vocab_file), str(punct_label_ids_file)) shutil.copy(str(self.capit_label_vocab_file), str(capit_label_ids_file)) return punct_label_ids_file, capit_label_ids_file def _build_sample(self, batch: Tuple[str, Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]: """ Takes batch loaded from tarred dataset and transforms it for passing to the model. Adds ``'segment_ids'``, ``'input_mask'``, ``'loss_mask'`` items to the batch. Args: batch: a tuple of 2 elements: batch name and a dictionary with ``'input_ids'``, ``'subtokens_mask'``, ``'punct_labels'``, ``'capit_labels'``. Batch name is not needed for training and inference and discarded. Returns: a batch in the form of a dictionary with items: - ``'input_ids'``: a ``np.int32`` numpy array of shape ``[Batch, Time]``; - ``'subtokens_mask'``: a boolean numpy array of shape ``[Batch, Time]``; - ``'punct_labels'``: a ``np.int32`` numpy array of shape ``[Batch, Time]``; - ``'capit_labels'``: a ``np.int32`` numpy array of shape ``[Batch, Time]``; - ``'segment_ids'``: a ``np.int8`` numpy array of shape ``[Batch, Time]``; - ``'input_mask'``: a boolean numpy array of shape ``[Batch, Time]``; - ``'loss_mask'``: a boolean numpy array of shape ``[Batch, Time]``. """ _, batch = batch batch_segment_ids, batch_input_mask, batch_loss_mask = create_masks_and_segment_ids( batch['input_ids'], batch['subtokens_mask'], self.tokenizer.pad_id, self.tokenizer.cls_id, self.tokenizer.sep_id, self.ignore_start_end, self.ignore_extra_tokens, ) batch['segment_ids'] = batch_segment_ids batch['input_mask'] = batch_input_mask batch['loss_mask'] = batch_loss_mask return batch def __iter__(self) -> Iterator[Dict[str, np.ndarray]]: """ Constructs an iterator of batches. The values of one batch dictionary are numpy arrays of identical shapes ``[Batch, Time]``. Returns: :obj:`Iterator[Dict[str, np.ndarray]]`: an iterator of batches with items: - ``'input_ids'``: ``np.int32`` array containing encoded tokens, - ``'subtokens_mask'``: ``bool`` array which elements are ``True`` if they correspond to first token in a word, - ``'punct_labels'``: ``np.int32`` array with encoded punctuation labels, - ``'capit_labels'``: ``np.int32`` array with encoded capitalization labels, - ``'segment_ids'``: ``np.int8`` array filled with zeros (BERT token types in HuggingFace terminology), - ``'input_mask'``: ``bool`` array which elements are ``True`` if corresponding token is not a padding token, - ``'loss_mask'``: ``bool`` array which elements are ``True`` if loss is computed for corresponding token. See more in description of constructor parameters ``ignore_start_end``, ``ignore_extra_tokens``. """ return self._dataset.__iter__() def __len__(self) -> int: return self.length def collate_fn(self, batches: List[Dict[str, np.ndarray]]) -> Dict[str, torch.Tensor]: """ Return zeroth batch of ``batches`` list passed for collating and casts ``'segment_ids'``, ``'punct_labels'``, ``'capit_labels'`` to types supported by :class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel`. All output tensors have shape ``[Batch, Time]``. .. warning:: ``batch size`` parameter of a PyTorch data loader and sampler has to be ``1``. Args: batches (:obj:`List[Dict[str, np.ndarray]]`): a list of batches passed for collating Returns: :obj:`Dict[str, torch.Tensor]`: a batch dictionary with following items (for detailed description of batch items see method :meth:`__getitem__`): - ``'input_ids'`` (:obj:`torch.Tensor`): :obj:`torch.int32` tensor, - ``'subtokens_mask'`` (:obj:`torch.Tensor`): :obj:`torch.bool` tensor, - ``'punct_labels'`` (:obj:`torch.Tensor`): :obj:`torch.int64` tensor, - ``'capit_labels'`` (:obj:`torch.Tensor`): :obj:`torch.int64` tensor, - ``'segment_ids'`` (:obj:`torch.Tensor`): :obj:`torch.int32` tensor, - ``'input_mask'`` (:obj:`torch.Tensor`): :obj:`torch.bool` tensor, - ``'loss_mask'`` (:obj:`torch.Tensor`): :obj:`torch.bool` tensor. """ batch = {k: torch.as_tensor(v) for k, v in batches[0].items()} batch['segment_ids'] = batch['segment_ids'].int() batch['punct_labels'] = batch['punct_labels'].long() batch['capit_labels'] = batch['capit_labels'].long() if self.use_audio: batch['features'] = batch['features'].to(torch.float32) return batch
NeMo-main
nemo/collections/nlp/data/token_classification/punctuation_capitalization_tarred_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import re import string from typing import Dict from nemo.collections.nlp.data.data_utils.data_preprocessing import ( fill_class_weights, get_freq_weights, get_label_stats, ) from nemo.utils import logging __all__ = ['get_label_ids', 'create_text_and_labels'] def remove_punctuation(word: str): """ Removes all punctuation marks from a word except for ' that is often a part of word: don't, it's, and so on """ all_punct_marks = string.punctuation.replace("'", '') return re.sub('[' + all_punct_marks + ']', '', word) def create_text_and_labels(output_dir: str, file_path: str, punct_marks: str = ',.?'): """ Create datasets for training and evaluation. Args: output_dir: path to the output data directory file_path: path to file name punct_marks: supported punctuation marks The data will be split into 2 files: text.txt and labels.txt. \ Each line of the text.txt file contains text sequences, where words\ are separated with spaces. The labels.txt file contains \ corresponding labels for each word in text.txt, the labels are \ separated with spaces. Each line of the files should follow the \ format: \ [WORD] [SPACE] [WORD] [SPACE] [WORD] (for text.txt) and \ [LABEL] [SPACE] [LABEL] [SPACE] [LABEL] (for labels.txt).' """ if not os.path.exists(file_path): raise ValueError(f'{file_path} not found') os.makedirs(output_dir, exist_ok=True) base_name = os.path.basename(file_path) labels_file = os.path.join(output_dir, 'labels_' + base_name) text_file = os.path.join(output_dir, 'text_' + base_name) with open(file_path, 'r') as f: with open(text_file, 'w') as text_f: with open(labels_file, 'w') as labels_f: for line in f: line = line.split() text = '' labels = '' for word in line: label = word[-1] if word[-1] in punct_marks else 'O' word = remove_punctuation(word) if len(word) > 0: if word[0].isupper(): label += 'U' else: label += 'O' word = word.lower() text += word + ' ' labels += label + ' ' text_f.write(text.strip() + '\n') labels_f.write(labels.strip() + '\n') print(f'{text_file} and {labels_file} created from {file_path}.') def get_label_ids( label_file: str, is_training: bool = False, pad_label: str = 'O', label_ids_dict: Dict[str, int] = None, get_weights: bool = True, class_labels_file_artifact='label_ids.csv', ): """ Generates str to int labels mapping for training data or checks correctness of the label_ids_dict file for non-training files or if label_ids_dict is specified Args: label_file: the path of the label file to process is_training: indicates whether the label_file is used for training pad_label: token used for padding label_ids_dict: str label name to int ids mapping. Required for non-training data. If specified, the check that all labels from label_file are present in label_ids_dict will be performed. For training data, if label_ids_dict is None, a new mapping will be generated from label_file. get_weights: set to True to calculate class weights, required for Weighted Loss. class_labels_file_artifact: name of the file to save in .nemo """ if not os.path.exists(label_file): raise ValueError(f'File {label_file} was not found.') logging.info(f'Processing {label_file}') if not is_training and label_ids_dict is None: raise ValueError( f'For non training data, label_ids_dict created during preprocessing of the training data ' f'should be provided' ) # collect all labels from the label_file data_dir = os.path.dirname(label_file) unique_labels = set(pad_label) all_labels = [] with open(label_file, 'r') as f: for line in f: line = line.strip().split() all_labels.extend(line) unique_labels.update(line) # check that all labels from label_file are present in the specified label_ids_dict # or generate label_ids_dict from data (for training only) if label_ids_dict: logging.info(f'Using provided labels mapping {label_ids_dict}') for name in unique_labels: if name not in label_ids_dict: raise ValueError(f'{name} class from {label_file} not found in the provided mapping: {label_ids_dict}') else: label_ids_dict = {pad_label: 0} if pad_label in unique_labels: unique_labels.remove(pad_label) for label in sorted(unique_labels): label_ids_dict[label] = len(label_ids_dict) label_ids_filename = os.path.join(data_dir, class_labels_file_artifact) if is_training: with open(label_ids_filename, 'w') as f: labels, _ = zip(*sorted(label_ids_dict.items(), key=lambda x: x[1])) f.write('\n'.join(labels)) logging.info(f'Labels mapping {label_ids_dict} saved to : {label_ids_filename}') # calculate label statistics base_name = os.path.splitext(os.path.basename(label_file))[0] stats_file = os.path.join(data_dir, f'{base_name}_label_stats.tsv') if os.path.exists(stats_file) and not is_training and not get_weights: logging.info(f'{stats_file} found, skipping stats calculation.') else: all_labels = [label_ids_dict[label] for label in all_labels] logging.info(f'Three most popular labels in {label_file}:') total_labels, label_frequencies, max_id = get_label_stats(all_labels, stats_file) logging.info(f'Total labels: {total_labels}. Label frequencies - {label_frequencies}') if get_weights: class_weights_pkl = os.path.join(data_dir, f'{base_name}_weights.p') if os.path.exists(class_weights_pkl): class_weights = pickle.load(open(class_weights_pkl, 'rb')) logging.info(f'Class weights restored from {class_weights_pkl}') else: class_weights_dict = get_freq_weights(label_frequencies) logging.info(f'Class Weights: {class_weights_dict}') class_weights = fill_class_weights(class_weights_dict, max_id) pickle.dump(class_weights, open(class_weights_pkl, "wb")) logging.info(f'Class weights saved to {class_weights_pkl}') else: class_weights = None return label_ids_dict, label_ids_filename, class_weights
NeMo-main
nemo/collections/nlp/data/token_classification/token_classification_utils.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import itertools from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch from numpy import ndarray from torch import Tensor from torch.nn.utils.rnn import pad_sequence from nemo.collections.common.tokenizers import TokenizerSpec from nemo.collections.nlp.data import get_stats from nemo.core import Dataset from nemo.core.neural_types import ChannelType, Index, MaskType, NeuralType from nemo.core.neural_types.elements import AudioSignal, BoolType, LengthsType from nemo.utils import logging try: from nemo.collections.asr.parts.preprocessing import AudioSegment ASR_AVAILABLE = True except (ImportError, ModuleNotFoundError): ASR_AVAILABLE = False def get_features_infer( queries: List[str], tokenizer: TokenizerSpec, max_seq_length: int = 64, step: Optional[int] = 8, margin: Optional[int] = 16, audio_queries: Optional[Union[List[bytes], List[str]]] = None, target_sr: Optional[int] = None, ) -> Tuple[ List[List[int]], List[List[int]], List[List[int]], List[List[int]], List[int], List[int], List[bool], List[bool], Optional[List[float]], Optional[List[int]], ]: """ Processes the data and returns features. Args: queries: text sequences tokenizer: such as AutoTokenizer max_seq_length: max sequence length minus 2 for [CLS] and [SEP] step: relative shift of consequent segments into which long queries are split. Long queries are split into segments which can overlap. Parameter ``step`` controls such overlapping. Imagine that queries are tokenized into characters, ``max_seq_length=5``, and ``step=2``. In such a case query "hello" is tokenized into segments ``[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]``. margin: number of subtokens near edges of segments which are not used for punctuation and capitalization prediction. The first segment does not have left margin and the last segment does not have right margin. For example, if input sequence is tokenized into characters, ``max_seq_length=5``, ``step=1``, and ``margin=1``, then query "hello" will be tokenized into segments ``[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'e', 'l', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]``. These segments are passed to the model. Before final predictions computation, margins are removed. In the next list, subtokens which logits are not used for final predictions computation are marked with asterisk: ``[['[CLS]'*, 'h', 'e', 'l'*, '[SEP]'*], ['[CLS]'*, 'e'*, 'l', 'l'*, '[SEP]'*], ['[CLS]'*, 'l'*, 'l', 'o', '[SEP]'*]]``. audio_queries (:obj:`List[str]`, `optional`): paths to audio files. target_sr (:obj:`int`, `optional`): target sample rate for audios. Returns: all_input_ids: list of input ids of all segments all_segment_ids: token type ids of all segments all_input_mask: attention mask to use for BERT model all_subtokens_mask: masks out all subwords besides the first one all_quantities_of_preceding_words: number of words in query preceding a segment. Used for joining predictions from overlapping segments. all_query_ids: index of a query to which segment belongs all_is_first: is segment first segment in a query all_is_last: is segment last segment in a query """ st = [] stm = [] sent_lengths = [] audios = [] audio_queries = audio_queries if audio_queries else [None] * len(queries) # Dummy if no `audio_queries` passed for i, (query, audio_query) in enumerate(zip(queries, audio_queries)): subtokens, subtokens_mask = _get_subtokens_and_subtokens_mask(query, tokenizer) sent_lengths.append(len(subtokens)) st.append(subtokens) stm.append(subtokens_mask) if audio_query: if ASR_AVAILABLE: if isinstance(audio_query, bytes): audios.append(AudioSegment.from_file(io.BytesIO(audio_query), target_sr=target_sr)) elif isinstance(audio_query, str): audios.append(AudioSegment.from_file(audio_query.strip(), target_sr=target_sr)) else: raise ModuleNotFoundError( 'Nemo ASR was not installed, see https://github.com/NVIDIA/NeMo#installation for installation instructions' ) audios = audios if len(audios) else [None] * len(st) _check_max_seq_length_and_margin_and_step(max_seq_length, margin, step) if max_seq_length > max(sent_lengths) + 2: max_seq_length = max(sent_lengths) + 2 # If `max_seq_length` is greater than maximum length of input query, parameters ``margin`` and ``step`` are # not used will not be used. step = 1 # Maximum number of word subtokens in segment. The first and the last tokens in segment are CLS and EOS length = max_seq_length - 2 else: # Maximum number of word subtokens in segment. The first and the last tokens in segment are CLS and EOS length = max_seq_length - 2 step = min(length - margin * 2, step) logging.info(f'Max length: {max_seq_length}') get_stats(sent_lengths) all_input_ids, all_segment_ids, all_subtokens_mask, all_input_mask, all_input_mask = [], [], [], [], [] all_quantities_of_preceding_words, all_query_ids, all_is_first, all_is_last = [], [], [], [] all_audio_queries, all_audio_lengths = [], [] for q_i, (query_st, query_audio) in enumerate(zip(st, audios)): q_inp_ids, q_segment_ids, q_subtokens_mask, q_inp_mask, q_quantities_of_preceding_words = [], [], [], [], [] q_audio_queries, q_audio_lengths = [], [] if query_audio and length < len(query_st): logging.info(f'Ignoring query with id {q_i}') continue for i in range(0, max(len(query_st), length) - length + step, step): subtokens = [tokenizer.cls_token] + query_st[i : i + length] + [tokenizer.sep_token] q_inp_ids.append(tokenizer.tokens_to_ids(subtokens)) q_segment_ids.append([0] * len(subtokens)) q_subtokens_mask.append([False] + stm[q_i][i : i + length] + [False]) q_inp_mask.append([True] * len(subtokens)) q_quantities_of_preceding_words.append(np.count_nonzero(stm[q_i][:i])) if query_audio: samples = query_audio.samples q_audio_queries.append(samples) q_audio_lengths.append(len(samples)) all_input_ids.append(q_inp_ids) all_segment_ids.append(q_segment_ids) all_subtokens_mask.append(q_subtokens_mask) all_input_mask.append(q_inp_mask) all_quantities_of_preceding_words.append(q_quantities_of_preceding_words) all_query_ids.append([q_i] * len(q_inp_ids)) all_is_first.append([True] + [False] * (len(q_inp_ids) - 1)) all_is_last.append([False] * (len(q_inp_ids) - 1) + [True]) if query_audio: all_audio_queries.append(q_audio_queries) all_audio_lengths.append(q_audio_lengths) return ( list(itertools.chain(*all_input_ids)), list(itertools.chain(*all_segment_ids)), list(itertools.chain(*all_input_mask)), list(itertools.chain(*all_subtokens_mask)), list(itertools.chain(*all_quantities_of_preceding_words)), list(itertools.chain(*all_query_ids)), list(itertools.chain(*all_is_first)), list(itertools.chain(*all_is_last)), list(itertools.chain(*all_audio_queries)), list(itertools.chain(*all_audio_lengths)), ) def _check_max_seq_length_and_margin_and_step(max_seq_length: int, margin: int, step: int): """ Checks values of ``max_seq_length``, ``margin``, and ``step``. Args: max_seq_length: a segment length with ``[CLS]`` and ``[SEP]`` tokens margin: a number of input tokens near edges of segments which are not used in punctuation and capitalization prediction. step: offset of consequent segments. Returns: None """ if max_seq_length < 3: raise ValueError( f"Parameter `max_seq_length={max_seq_length}` cannot be less than 3 because `max_seq_length` is a length " f"of a segment with [CLS] and [SEP] tokens." ) if margin >= (max_seq_length - 2) // 2 and margin > 0 or margin < 0: raise ValueError( f"Parameter `margin` has to be not negative and less than `(max_seq_length - 2) // 2`. Don't forget about " f"CLS and EOS tokens in the beginning and the end of segment. margin={margin}, " f"max_seq_length={max_seq_length}" ) if step <= 0: raise ValueError(f"Parameter `step` has to be positive whereas step={step}") if step > max_seq_length - 2 - 2 * margin: logging.warning( f"Parameter step={step} is too big. It will be reduced to `min(max_seq_length, <maximum query length> + 2) " f"- 2 - 2 * margin`." ) def _get_subtokens_and_subtokens_mask(query: str, tokenizer: TokenizerSpec) -> Tuple[List[str], List[bool]]: """ Tokenizes input query into subtokens and creates subtokens mask. Subtokens mask is an array of the same length as subtokens array and contains zeros and ones in which. If element of mask equals 1, then corresponding subtoken in subtokens array is first subtoken in some word Args: query: a string that will be tokenized tokenizer: an instance of tokenizer Returns: subtokens: list of subtokens subtokens_mask: list of ints """ words = query.strip().split() subtokens = [] subtokens_mask = [] for j, word in enumerate(words): word_tokens = tokenizer.text_to_tokens(word) subtokens.extend(word_tokens) subtokens_mask.append(True) subtokens_mask.extend([False] * (len(word_tokens) - 1)) return subtokens, subtokens_mask class BertPunctuationCapitalizationInferDataset(Dataset): """ Creates dataset to use during inference for punctuation and capitalization tasks with a pretrained model. For dataset to use during training with labels, see :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.BertPunctuationCapitalizationDataset` and :class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset.BertPunctuationCapitalizationTarredDataset`. Parameters ``max_seq_length``, ``step``, ``margin`` are for controlling the way queries are split into segments which then processed by the model. Parameter ``max_seq_length`` is a length of a segment after tokenization including special tokens [CLS] in the beginning and [SEP] in the end of a segment. Parameter ``step`` is shift between consequent segments. Parameter ``margin`` is used to exclude negative effect of subtokens near borders of segments which have only one side context. Args: queries (:obj:`List[str]`): list of sequences. tokenizer (:obj:`TokenizerSpec`): a tokenizer which was used for model training. It should have properties ``cls_id``, ``sep_id``, ``unk_id``, ``pad_id``. max_seq_length (:obj:`int`, `optional`, defaults to :obj:`128`): max sequence length which includes [CLS] and [SEP] tokens step (:obj:`int`, `optional`, defaults to :obj:`8`): relative shift of consequent segments into which long queries are split. Long queries are split into segments which can overlap. Parameter ``step`` controls such overlapping. Imagine that queries are tokenized into characters, ``max_seq_length=5``, and ``step=2``. In such a case query "hello" is tokenized into segments ``[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]``. margin (:obj:`int`, `optional`, defaults to :obj:`16`): number of subtokens in the beginning and the end of segments which are not used for prediction computation. The first segment does not have left margin and the last segment does not have right margin. For example, if input sequence is tokenized into characters, ``max_seq_length=5``, ``step=1``, and ``margin=1``, then query "hello" will be tokenized into segments ``[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'e', 'l', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]``. These segments are passed to the model. Before final predictions computation, margins are removed. In the next list, subtokens which logits are not used for final predictions computation are marked with asterisk: ``[['[CLS]'*, 'h', 'e', 'l'*, '[SEP]'*], ['[CLS]'*, 'e'*, 'l', 'l'*, '[SEP]'*], ['[CLS]'*, 'l'*, 'l', 'o', '[SEP]'*]]``. """ @property def output_types(self) -> Optional[Dict[str, NeuralType]]: """Returns neural types of :meth:`collate_fn` output.""" if self.use_audio: return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'quantities_of_preceding_words': NeuralType(('B',), Index()), 'query_ids': NeuralType(('B',), Index()), 'is_first': NeuralType(('B',), BoolType()), 'is_last': NeuralType(('B',), BoolType()), 'features': NeuralType(('B', 'T'), AudioSignal()), 'features_length': NeuralType(('B', 'T'), LengthsType()), } return { 'input_ids': NeuralType(('B', 'T'), ChannelType()), 'segment_ids': NeuralType(('B', 'T'), ChannelType()), 'input_mask': NeuralType(('B', 'T'), MaskType()), 'subtokens_mask': NeuralType(('B', 'T'), MaskType()), 'quantities_of_preceding_words': NeuralType(('B',), Index()), 'query_ids': NeuralType(('B',), Index()), 'is_first': NeuralType(('B',), BoolType()), 'is_last': NeuralType(('B',), BoolType()), } def __init__( self, queries: List[str], tokenizer: TokenizerSpec, max_seq_length: int = 64, step: int = 8, margin: int = 16, audio_queries: Optional[Union[List[bytes], List[str]]] = None, target_sr: Optional[int] = None, ): features = get_features_infer( queries=queries, max_seq_length=max_seq_length, tokenizer=tokenizer, step=step, margin=margin, audio_queries=audio_queries, target_sr=target_sr, ) self.all_input_ids: List[List[int]] = features[0] self.all_segment_ids: List[List[int]] = features[1] self.all_input_mask: List[List[int]] = features[2] self.all_subtokens_mask: List[List[int]] = features[3] self.all_quantities_of_preceding_words: List[int] = features[4] self.all_query_ids: List[int] = features[5] self.all_is_first: List[bool] = features[6] self.all_is_last: List[bool] = features[7] self.all_audio_queries: Optional[List[List[float]]] = features[8] self.all_audio_lengths: Optional[List[List[int]]] = features[9] self.use_audio = audio_queries is not None def __len__(self) -> int: return len(self.all_input_ids) def collate_fn( self, batch: List[ Tuple[ np.ndarray, np.ndarray, np.ndarray, np.ndarray, int, int, bool, bool, Optional[np.ndarray], Optional[np.ndarray], ] ], ) -> Union[ Tuple[Tensor, Tensor, Tensor, Tensor, Any, Any, Any, Any], Tuple[Tensor, Tensor, Tensor, Tensor, Any, Any, Any, Any, Any, Any], ]: """ Collates samples into batches. Args: batch (:obj:`List[tuple]`): a list of samples returned by :meth:`__getitem__` method. Returns: :obj:`Tuple[torch.Tensor (x4), Tuple[int, ...] (x2), Tuple[bool, ...] (x2)]`: a tuple containing 8 elements: - ``input_ids`` (:obj:`torch.Tensor`): an integer tensor of shape ``[Batch, Time]`` containing encoded input text. - ``segment_ids`` (:obj:`torch.Tensor`): an integer tensor of shape ``[Batch, Time]`` filled with zeros. - ``input_mask`` (:obj:`torch.Tensor`): a boolean tensor of shape ``[Batch, Time]`` which elements are ``True`` if corresponding token is not a padding token. - ``subtokens_mask`` (:obj:`torch.Tensor`): a boolean tensor of shape ``[Batch, Time]`` which elements are ``True`` if corresponding tken is the first token in a word. - ``quantities_of_preceding_words`` (:obj:`Tuple[int, ...]`): a tuple containing number of words in a query preceding current segment. - ``query_ids`` (:obj:`Tuple[int, ...]`): a tuple containing indices of queries to which segments belong. - ``is_first`` (:obj:`Tuple[bool, ...]`): a tuple booleans which elements are ``True`` if corresponding segment is the first segment in a query. - ``is_last`` (:obj:`Tuple[bool, ...]`): a tuple of booleans which elements are ``True`` if corresponding segment is the last segment in a query. """ if not self.use_audio: inp_ids, segment_ids, inp_mask, st_mask, n_preceding, query_ids, is_first, is_last = zip(*batch) return ( pad_sequence([torch.tensor(x) for x in inp_ids], batch_first=True, padding_value=0), pad_sequence([torch.tensor(x) for x in segment_ids], batch_first=True, padding_value=0), pad_sequence([torch.tensor(x) for x in inp_mask], batch_first=True, padding_value=0), pad_sequence([torch.tensor(x) for x in st_mask], batch_first=True, padding_value=0), n_preceding, query_ids, is_first, is_last, ) ( inp_ids, segment_ids, inp_mask, st_mask, n_preceding, query_ids, is_first, is_last, features, features_length, ) = zip(*batch) return ( pad_sequence([torch.tensor(x) for x in inp_ids], batch_first=True, padding_value=0), pad_sequence([torch.tensor(x) for x in segment_ids], batch_first=True, padding_value=0), pad_sequence([torch.tensor(x) for x in inp_mask], batch_first=True, padding_value=0), pad_sequence([torch.tensor(x) for x in st_mask], batch_first=True, padding_value=0), n_preceding, query_ids, is_first, is_last, pad_sequence([torch.tensor(x) for x in features], batch_first=True, padding_value=0).float(), torch.tensor(features_length, dtype=torch.long), ) def __getitem__( self, idx: int ) -> Union[ Tuple[ndarray, ndarray, ndarray, ndarray, int, int, bool, bool], Tuple[ndarray, ndarray, ndarray, ndarray, int, int, bool, bool, ndarray, List[int]], ]: """ Returns batch used for punctuation and capitalization inference. Args: idx (:obj:`int`): a batch index Returns: :obj:`Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int, int, bool, bool]`: a tuple containing: - ``input_ids`` (:obj:`np.ndarray`): an integer numpy array of shape ``[Time]``. Ids of word subtokens encoded using tokenizer passed in constructor ``tokenizer`` parameter. - ``segment_ids`` (:obj:`np.ndarray`): an integer zeros numpy array of shape ``[Time]``. Indices of segments for BERT model (token types in HuggingFace terminology). - ``input_mask`` (:obj:`np.ndarray`): a boolean numpy array of shape ``[Time]``. An element of this array is ``True`` if corresponding token is not padding token. - ``subtokens_mask`` (:obj:`np.ndarray`): a boolean numpy array of shape ``[Time]``. An element equals ``True`` if corresponding token is the first token in a word and ``False`` otherwise. For example, if input query ``"language processing"`` is tokenized into ``["[CLS]", "language", "process", "ing", "SEP"]``, then ``subtokens_mask`` will be ``[False, True, True, False, False]``. - ``quantities_of_preceding_words`` (:obj:`int`): a number of words preceding current segment in the query to which the segment belongs. This parameter is used for uniting predictions from adjacent segments. - ``query_ids`` (:obj:`int`): an index of query to which the segment belongs - ``is_first`` (:obj:`bool`): whether a segment is the first segment in a query. The left margin of the first segment in a query is not removed. - ``is_last`` (:obj:`bool`): whether a query is the last query in a query. The right margin of the last segment in a query is not removed. """ if not self.use_audio: return ( np.array(self.all_input_ids[idx]), np.array(self.all_segment_ids[idx]), np.array(self.all_input_mask[idx], dtype=np.float32), np.array(self.all_subtokens_mask[idx]), self.all_quantities_of_preceding_words[idx], self.all_query_ids[idx], self.all_is_first[idx], self.all_is_last[idx], ) return ( np.array(self.all_input_ids[idx]), np.array(self.all_segment_ids[idx]), np.array(self.all_input_mask[idx], dtype=np.float32), np.array(self.all_subtokens_mask[idx]), self.all_quantities_of_preceding_words[idx], self.all_query_ids[idx], self.all_is_first[idx], self.all_is_last[idx], np.array(self.all_audio_queries[idx], dtype=np.float), self.all_audio_lengths[idx], )
NeMo-main
nemo/collections/nlp/data/token_classification/punctuation_capitalization_infer_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import json from typing import Optional import braceexpand import numpy as np import webdataset as wd from torch.utils.data import Dataset, IterableDataset from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.data_utils import dataset_to_ids from nemo.utils import logging __all__ = ['L2RLanguageModelingDataset', 'TarredL2RLanguageModelingDataset'] class L2RLanguageModelingDataset(Dataset): """ Dataset for training and evaluating left-to-right language models. Args: tokenizer: tokenizer, such as WordTokenizer or CharTokenizer dataset: path to data max_seq_length: maximum sequence length (in tokens) of input tensors batch_step: distance (in tokens) between two successive sequences of the text. By default, it is equal to max_seq_length which corresponds to splitting text into disjoint segments covering full dataset use_cache: bool value, defaults to False. Determines whether the preprocessed, tokenized dataset should be cached into a pickle file. If true, cache is saved at the path provided in `dataset`. """ def __init__( self, tokenizer: TokenizerSpec, dataset: str, max_seq_length: Optional[int] = 512, batch_step: Optional[int] = None, use_cache: bool = False, ): self.tokenizer = tokenizer self.max_seq_length = max_seq_length self.batch_step = batch_step or self.max_seq_length ids = dataset_to_ids(dataset, tokenizer, cache_ids=use_cache, add_bos_eos=False) self.ids = np.array([j for i in ids for j in i]) def __len__(self): return (len(self.ids) - self.max_seq_length) // self.batch_step def __getitem__(self, idx): left = idx * self.batch_step right = left + self.max_seq_length src_ids = self.ids[left:right] labels = self.ids[left + 1 : right + 1] src_mask = (src_ids != self.tokenizer.pad_id).astype(np.float32) return src_ids, src_mask, labels class TarredL2RLanguageModelingDataset(IterableDataset): """ A similar Dataset to the L2RLanguageModelingDataset, but which loads tarred tokenized numpy files. Accepts a single JSON metadata manifest file as well as the path(s) to the tarball(s) containing the wav files. The manifest should contain information such as the number of shards, the number of tokens in the corpus, and the number of tokens contained within each shard of the tarfile(s). Valid formats for the text_tar_filepaths argument include: (1) a single string that can be brace-expanded, e.g. 'path/to/text.tar' or 'path/to/text_{1..100}.tar.gz', or (2) a list of file paths that will not be brace-expanded, e.g. ['text_1.tar', 'text_2.tar', ...]. Note: For brace expansion in (1), there may be cases where `{x..y}` syntax cannot be used due to shell interference. This occurs most commonly inside SLURM scripts. Therefore we provide a few equivalent replacements. Supported opening braces - { <=> (, [, < and the special tag _OP_. Supported closing braces - } <=> ), ], > and the special tag _CL_. For SLURM based tasks, we suggest the use of the special tags for ease of use. See the WebDataset documentation for more information about accepted data and input formats. If using multiple processes the number of shards should be divisible by the number of workers to ensure an even split among workers. If it is not divisible, logging will give a warning but training will proceed. Additionally, please note that the len() of this DataLayer is assumed to be the number of tokens of the text data. An incorrect manifest length may lead to some DataLoader issues down the line. Args: text_tar_filepaths: Either a list of tokenized text tarball filepaths, or a string (can be brace-expandable). metadata_path (str): Path to the metadata manifest. tokenizer: tokenizer, such as WordTokenizer or CharTokenizer dataset: path to data max_seq_length: maximum sequence length (in tokens) of input tensors batch_step: distance (in tokens) between two successive sequences of the text. By default, it is equal to max_seq_length which corresponds to splitting text into disjoint segments covering full dataset shuffle_n (int): How many samples to look ahead and load to be shuffled. See WebDataset documentation for more details. Defaults to 0. shard_strategy (str): Tarred dataset shard distribution strategy chosen as a str value during ddp. - `scatter`: The default shard strategy applied by WebDataset, where each node gets a unique set of shards, which are permanently pre-allocated and never changed at runtime. - `replicate`: Optional shard strategy, where each node gets all of the set of shards available in the tarred dataset, which are permanently pre-allocated and never changed at runtime. The benefit of replication is that it allows each node to sample data points from the entire dataset independently of other nodes, and reduces dependence on value of `shuffle_n`. .. warning:: Replicated strategy allows every node to sample the entire set of available tarfiles, and therefore more than one node may sample the same tarfile, and even sample the same data points! As such, there is no assured guarantee that all samples in the dataset will be sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific occasions (when the number of shards is not divisible with ``world_size``), will not sample the entire dataset. For these reasons it is not advisable to use tarred datasets as validation or test datasets. global_rank (int): Worker rank, used for partitioning shards. Defaults to 0. world_size (int): Total number of processes, used for partitioning shards. Defaults to 0. """ def __init__( self, text_tar_filepaths: str, metadata_path: str, tokenizer, max_seq_length: int = 512, batch_step: int = None, shuffle_n: int = 1, shard_strategy: str = "scatter", global_rank: int = 0, world_size: int = 0, ): super(TarredL2RLanguageModelingDataset, self).__init__() self.tokenizer = tokenizer self.max_seq_length = max_seq_length self.batch_step = batch_step or self.max_seq_length valid_shard_strategies = ['scatter', 'replicate'] if shard_strategy not in valid_shard_strategies: raise ValueError( f"Invalid shard strategy of type {type(shard_strategy)} " f"{repr(shard_strategy) if len(repr(shard_strategy)) < 100 else repr(shard_strategy)[:100] + '...'}! " f"Allowed values are: {valid_shard_strategies}." ) with open(metadata_path, 'r') as f: metadata = json.load(f) self.metadata = metadata if isinstance(text_tar_filepaths, str): # Replace '(', '[', '<' and '_OP_' with '{' brace_keys_open = ['(', '[', '<', '_OP_'] for bkey in brace_keys_open: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "{") # Replace ')', ']', '>' and '_CL_' with '}' brace_keys_close = [')', ']', '>', '_CL_'] for bkey in brace_keys_close: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "}") if isinstance(text_tar_filepaths, str): # Brace expand text_tar_filepaths = list(braceexpand.braceexpand(text_tar_filepaths)) if shard_strategy == 'scatter': logging.info("All tarred dataset shards will be scattered evenly across all nodes.") if len(text_tar_filepaths) % world_size != 0: logging.warning( f"Number of shards in tarred dataset ({len(text_tar_filepaths)}) is not divisible " f"by number of distributed workers ({world_size})." ) begin_idx = (len(text_tar_filepaths) // world_size) * global_rank end_idx = begin_idx + (len(text_tar_filepaths) // world_size) text_tar_filepaths = text_tar_filepaths[begin_idx:end_idx] logging.info( "Partitioning tarred dataset: process (%d) taking shards [%d, %d)", global_rank, begin_idx, end_idx ) elif shard_strategy == 'replicate': logging.info("All tarred dataset shards will be replicated across all nodes.") else: raise ValueError(f"Invalid shard strategy ! Allowed values are : {valid_shard_strategies}") self.tarpath = text_tar_filepaths # Put together WebDataset self._dataset = wd.WebDataset(urls=text_tar_filepaths, nodesplitter=None) if shuffle_n > 0: self._dataset = self._dataset.shuffle(shuffle_n) else: logging.info("WebDataset will not shuffle files within the tar files.") self._dataset = self._dataset.rename(npy='npy', key='__key__').to_tuple('npy', 'key').map(f=self._build_sample) def _build_sample(self, tup): # Load file npy, filepath = tup npy = io.BytesIO(npy) data = np.load(npy) # loads np.int64 vector npy.close() # Select random contiguous subsegment idx = np.random.randint(0, (len(data) - self.max_seq_length) // self.batch_step) # Slice of data chunk left = idx * self.batch_step right = left + self.max_seq_length data = data[left : right + 1] # Create batch src_ids = data[:-1] labels = data[1:] src_mask = (src_ids != self.tokenizer.pad_id).astype(np.float32) return src_ids, src_mask, labels def __iter__(self): # We need to wrap an infinite generator since the actual files # within the tar files contains large chunks of contiguous data. # This prevents PTL from early exiting the train loop after exhausting # all of the files in one iteration (though the actual dataset is many # times larger due to each file containing a large chunk of data). dl_iter = iter(self._dataset) while True: try: batch = next(dl_iter) yield batch except StopIteration: dl_iter = iter(self._dataset) continue def __len__(self): return (self.metadata['num_text'] - self.max_seq_length) // self.batch_step
NeMo-main
nemo/collections/nlp/data/language_modeling/l2r_lm_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import array import os import pickle import random from typing import Dict, List, Optional import h5py import numpy as np from torch.utils.data import DataLoader, DistributedSampler from tqdm import tqdm from nemo.collections.nlp.data.data_utils.data_preprocessing import find_newlines, load_data_indices from nemo.core.classes import Dataset __all__ = ['BertPretrainingDataset', 'BertPretrainingPreprocessedDataloader'] def load_h5(input_file: str): return h5py.File(input_file, "r") class BertPretrainingDataset(Dataset): """ Dataset for bert pretraining when using data preprocessing including tokenization """ def __init__( self, tokenizer: object, data_file: str, max_seq_length: Optional[int] = 128, mask_prob: Optional[float] = 0.15, short_seq_prob: Optional[float] = 0.1, seq_a_ratio: Optional[float] = 0.6, sentence_idx_file: Optional[str] = None, ): """ Args: tokenizer: tokenizer data_file: path to data max_seq_length: maximum sequence length of input tensors mask_probability: proability to mask token short_seq_prob: probability to create a sequence shorter than max_seq_length seq_a_ratio: ratio between lengths of first and second sequence sentence_idx_file: sentence indices file for caching """ self.tokenizer = tokenizer # Loading enormous datasets into RAM isn't always feasible -- for # example, the pubmed corpus is 200+ GB, which doesn't fit into RAM on # most computers. To get around this, we store the indices of newlines # in each file so we can seek to and retrieve sentences immediately # from main memory when needed during training. # Try and load sentence indices file if already exists sentence_indices, sentence_idx_file, data_dir = load_data_indices( sentence_idx_file, data_file, "sentence_indices" ) # If sentence indices file doesn't exists, generate and store sentence indices if sentence_indices is None: sentence_indices = {} filenames = [data_file] for filename in tqdm(filenames): with open(filename, "rb") as f: contents = f.read() newline_indices = find_newlines(contents) if os.path.isdir(data_dir): # Only keep the parts of the filepath that are invariant to # the dataset's location on disk filename = os.path.basename(filename) # In python, arrays are much more space-efficient than lists sentence_indices[filename] = array.array("I", newline_indices) # Save sentence indices so we don't have to do this again with open(sentence_idx_file, "wb") as f: pickle.dump(sentence_indices, f) corpus_size = 0 empty_files = [] # Find total number of newlines across entire corpus and remove files # without any newlines for filename in sentence_indices: if len(sentence_indices[filename]) <= 1: empty_files.append(filename) else: corpus_size += len(sentence_indices[filename]) for filename in empty_files: del sentence_indices[filename] self.corpus_size = corpus_size self.dataset = data_dir self.filenames = list(sentence_indices.keys()) self.mask_probability = mask_prob self.max_seq_length = max_seq_length self.sentence_indices = sentence_indices self.vocab_size = self.tokenizer.vocab_size self.short_seq_prob = short_seq_prob self.seq_a_ratio = seq_a_ratio def __len__(self): return self.corpus_size def __getitem__(self, idx: int, min_doc_length: Optional[int] = 16): # Each sequence has three special tokens, as follows: # tokenizer.cls_token <document a> tokenizer.sep_token <document b> tokenizer.eos_token num_special_tokens = 3 max_num_tokens = self.max_seq_length - num_special_tokens target_seq_length = max_num_tokens if random.random() < self.short_seq_prob: # TODO: maybe introduce an argument to control this. target_seq_length = random.randint(2, max_num_tokens) # prefer the seq_a to be slightly longer than seq_b, 0.6 by default target_seq_length_a = int(round(target_seq_length * self.seq_a_ratio)) target_seq_length_b = target_seq_length - target_seq_length_a def get_document(filepath, offset): # Retrieve a specific line from a file and return as a document if os.path.isdir(self.dataset): filepath = os.path.join(self.dataset, filepath) with open(filepath, "rb") as f: f.seek(offset) doc_text = f.readline()[:-1].decode("utf-8", errors="ignore") document = self.tokenizer.text_to_ids(doc_text) return document def match_target_seq_length( document: str, target_seq_length: int, filename: str, line_idx: int, sentence_indices: Dict[str, dict] ): # If document is shorter than target sequence length, # append the next line or take a random line as replacement. num_lines = len(sentence_indices[filename]) while len(document) < target_seq_length: if line_idx < (num_lines - 1): # append the next line line_idx += 1 else: # current line is the last line, take a random one line_idx = random.randrange(num_lines) document = [] offset = sentence_indices[filename][line_idx] document += get_document(filename, offset) return document, line_idx # Take sequence A from a random file and a random line a_filename = random.choice(self.filenames) a_line_idx = random.randrange(len(self.sentence_indices[a_filename])) a_line_offset = self.sentence_indices[a_filename][a_line_idx] a_document = get_document(a_filename, a_line_offset) a_document, a_line_idx = match_target_seq_length( a_document, target_seq_length_a, a_filename, a_line_idx, self.sentence_indices ) is_last_line = a_line_idx >= (len(self.sentence_indices[a_filename]) - 1) # About 50% of the time, B is a random sentence from the corpus take_random_b = (random.random() < 0.5) or is_last_line if take_random_b: # This should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document # we're processing. for _ in range(10): b_filename = random.choice(self.filenames) b_line_idx = random.choice(range(len(self.sentence_indices[b_filename]))) if b_filename != a_filename: break else: # Take another line from the same file b_line_pos = self.sentence_indices[b_filename][b_line_idx] a_line_pos = self.sentence_indices[a_filename][a_line_idx] # TODO unclear about the following check if abs(b_line_pos - a_line_pos) > max_num_tokens: break else: pass else: b_filename = a_filename b_line_idx = a_line_idx + 1 is_next = int(not take_random_b) b_line_pos = self.sentence_indices[b_filename][b_line_idx] b_document = get_document(b_filename, b_line_pos) b_document, b_line_idx = match_target_seq_length( b_document, target_seq_length_b, b_filename, b_line_idx, self.sentence_indices ) def truncate_seq_pair(a, b, max_num_tokens): # Truncates a pair of sequences to a maximum sequence length while (len(a) + len(b)) > max_num_tokens: # Truncate the longer sequence if len(a) > len(b): trunc_document = a else: trunc_document = b if len(trunc_document) <= 1: raise ValueError( "Input text corpora probably too small. " "Failed to truncate sequence pair to " "maximum sequence legnth." ) # Randomly truncate from the front or the back if random.random() < 0.5: del trunc_document[0] else: trunc_document.pop() truncate_seq_pair(a_document, b_document, max_num_tokens) output_ids = ( [self.tokenizer.cls_id] + a_document + [self.tokenizer.sep_id] + b_document + [self.tokenizer.eos_id] ) input_ids, output_mask = self.mask_ids(output_ids) input_mask = np.zeros(self.max_seq_length, dtype=np.long) input_mask[: len(input_ids)] = 1 input_type_ids = np.zeros(self.max_seq_length, dtype=np.int) input_type_ids[len(a_document) + 2 : len(output_ids) + 1] = 1 padding_length = max(0, self.max_seq_length - len(input_ids)) if padding_length > 0: input_ids.extend([self.tokenizer.pad_id] * padding_length) output_ids.extend([self.tokenizer.pad_id] * padding_length) output_mask.extend([0] * padding_length) # TODO: wrap the return value with () for consistent style. return ( np.array(input_ids), input_type_ids, np.array(input_mask, dtype=np.long), np.array(output_ids), np.array(output_mask, dtype=np.float32), is_next, ) def mask_ids(self, ids: List[int]): """ Args: ids: list of token ids representing a chunk of text Returns: masked_ids: list of input tokens with some of the entries masked according to the following protocol from the original BERT paper: each token is masked with a probability of 15% and is replaced with 1) the [MASK] token 80% of the time, 2) random token 10% of the time, 3) the same token 10% of the time. output_mask: list of binary variables which indicate what tokens has been masked (to calculate the loss function for these tokens only) """ # Whole-word masking by default, as it gives better performance. cand_indexes = [[ids[0]]] for tid in ids[1:]: token = self.tokenizer.ids_to_tokens([tid])[0] is_suffix = token.startswith('\u2581') if is_suffix: # group together with its previous token to form a whole-word cand_indexes[-1].append(tid) else: cand_indexes.append([tid]) masked_ids, output_mask = [], [] mask_id = self.tokenizer.token_to_id("[MASK]") for word_ids in cand_indexes: is_special = (word_ids[0] == self.tokenizer.cls_id) or (word_ids[0] == self.tokenizer.sep_id) if is_special or (random.random() > self.mask_probability): output_mask.extend([0] * len(word_ids)) masked_ids.extend(word_ids) else: output_mask.extend([1] * len(word_ids)) p = random.random() # for 80%, replace with mask if p < 0.8: masked_ids.extend([mask_id] * len(word_ids)) # for 10%, replace by a random token elif p < 0.9: for _ in word_ids: # randomly select a valid word random_word = random.randrange(self.vocab_size) while random_word in (self.tokenizer.cls_id, self.tokenizer.sep_id): random_word = random.randrange(self.vocab_size) masked_ids.append(random_word) # for 10%, use same token else: masked_ids.extend(word_ids) return masked_ids, output_mask class BertPretrainingPreprocessedDataset(Dataset): """ Dataset for already preprocessed data. """ def __init__(self, input_file: str, max_predictions_per_seq: int): """ Args: input_file: data file in hdf5 format with preprocessed data in array format max_predictions_per_seq: maximum number of masked tokens per sequence. Need to be consistent with data in input file. """ self.input_file = input_file self.max_predictions_per_seq = max_predictions_per_seq f = load_h5(input_file) keys = [ 'input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions', 'masked_lm_ids', 'next_sentence_labels', ] self.inputs = [np.asarray(f[key][:]) for key in keys] f.close() def __len__(self): 'Denotes the total number of samples' return len(self.inputs[0]) def __getitem__(self, index: int): [input_ids, input_mask, segment_ids, masked_lm_positions, masked_lm_ids, next_sentence_labels] = [ input[index].astype(np.int64) for input in self.inputs ] output_mask = np.zeros_like(input_ids) output_ids = input_ids.copy() index = self.max_predictions_per_seq padded_mask_indices = (masked_lm_positions == 0).nonzero() if len(padded_mask_indices[0]) != 0: index = padded_mask_indices[0][0] output_mask[masked_lm_positions[:index]] = 1.0 output_ids[masked_lm_positions[:index]] = masked_lm_ids[:index] # input_mask = np.asarray(input_mask, dtype=np.float32) # output_mask = np.asarray(output_mask, dtype=np.float32) return (input_ids, segment_ids, input_mask, output_ids, output_mask, next_sentence_labels) class BertPretrainingPreprocessedDataloader(DataLoader): """ Dataloader for already preprocessed data in hdf5 files that is already in the format expected by BERT model. """ def __init__(self, data_files: List[str], max_predictions_per_seq: int, batch_size: int, seed: Optional[int] = 42): """ Args: data_files: list of data files in hdf5 format with preprocessed data in array format max_predictions_per_seq: maximum number of masked tokens per sequence. Need to be consistent with data in input file. batch_size: batch size per gpu per forward pass seed: seed to ensure each gpu process opens the same data file in each iteration """ super().__init__(None, batch_size=batch_size) self.random = random.Random(seed) self.data_files = data_files self.max_predictions_per_seq = max_predictions_per_seq # def __len__(self): # return sum([len(load_h5(data_file)['input_ids']) for data_file in self.data_files])//(self.batch_size) def __iter__(self): self.random.shuffle(self.data_files) for data_file in self.data_files: train_data = BertPretrainingPreprocessedDataset( input_file=data_file, max_predictions_per_seq=self.max_predictions_per_seq ) train_sampler = DistributedSampler(train_data) # print("---") # print(os.getpid(), train_sampler.rank, train_sampler.num_replicas, train_sampler.num_samples) # print("---") train_dataloader = DataLoader( dataset=train_data, sampler=train_sampler, batch_size=self.batch_size, shuffle=False, ) for x in train_dataloader: yield x
NeMo-main
nemo/collections/nlp/data/language_modeling/lm_bert_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.language_modeling.l2r_lm_dataset import L2RLanguageModelingDataset from nemo.collections.nlp.data.language_modeling.lm_bert_dataset import ( BertPretrainingDataset, BertPretrainingPreprocessedDataloader, ) from nemo.collections.nlp.data.language_modeling.sentence_dataset import SentenceDataset, TarredSentenceDataset
NeMo-main
nemo/collections/nlp/data/language_modeling/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import get_samples_mapping from nemo.collections.nlp.data.language_modeling.text_memmap_dataset import JSONLMemMapDataset, TextMemMapDataset from nemo.core.classes import Dataset class T0Dataset(Dataset): def __init__( self, file_path: str, tokenizer: TokenizerSpec, max_src_seq_length: int = 512, max_tgt_seq_length: int = 512, replace_bos_with_pad: bool = False, add_bos_to_input: bool = False, add_eos_to_input: bool = False, max_num_samples: int = None, seed: int = 1234, ): """ src_file_name: Path to a JSONL T0 dataset file. tokenizer: Tokenizer for the dataset. Instance of a class that inherits TokenizerSpec (ex: YTTM, SentencePiece). max_src_seq_length: Maximum length of the source sequences. Lines above this length will be truncated. max_tgt_seq_length: Maximum length of the target sequences. Lines above this length will be truncated. replace_bos_with_pad: Whether the decoder starts with a pad token. This is needed for Google's T5 models that may be converted from HF. add_bos_to_input: Whether to add the bos_id to the input sequence. add_eos_to_input: Whether to add the eos_id to the input sequence. seed: Random seed for data shuffling. max_num_samples: Maximum number of samples to load. This can be > dataset length if you want to oversample data. If None, all samples will be loaded. """ self.tokenizer = tokenizer self.file_path = file_path self.max_src_seq_length = max_src_seq_length self.max_tgt_seq_length = max_tgt_seq_length self.replace_bos_with_pad = replace_bos_with_pad self.add_bos_to_input = add_bos_to_input self.add_eos_to_input = add_eos_to_input self.max_num_samples = max_num_samples self.seed = seed self.indexed_dataset = JSONLMemMapDataset(dataset_paths=[file_path], tokenizer=None, header_lines=0) # Will be None after this call if `max_num_samples` is None self._build_samples_mapping() def _build_samples_mapping(self): if self.max_num_samples is not None: # This means max src and max tgt sequence length need to be the same if self.max_src_seq_length != self.max_tgt_seq_length: raise ValueError( f"max_src_seq_length ({self.max_src_seq_length}) != max_tgt_seq_length ({self.max_tgt_seq_length}). This is needed for max_samples based training for now." ) self.samples_mapping = get_samples_mapping( indexed_dataset=self.indexed_dataset, data_prefix=self.file_path, num_epochs=None, max_num_samples=self.max_num_samples, max_seq_length=self.max_src_seq_length - 2, short_seq_prob=0, seed=self.seed, name=self.file_path.split('/')[-1], binary_head=False, ) else: self.samples_mapping = None def __len__(self): if self.max_num_samples is None: return len(self.indexed_dataset) else: return len(self.samples_mapping) def __getitem__(self, idx): if isinstance(idx, np.int64): idx = idx.item() if self.samples_mapping is not None: assert idx < len(self.samples_mapping) idx, _, _ = self.samples_mapping[idx] if isinstance(idx, np.uint32): idx = idx.item() assert idx < len(self.indexed_dataset) example = self.indexed_dataset[idx] return self._process_example(example) def _process_example(self, example): """ Process a single example from the dataset into IDs and other T0-related metadata. """ tokenized_input = self.tokenizer.text_to_ids(example['input']) tokenized_output = self.tokenizer.text_to_ids(example['output']) offset = 0 if self.add_bos_to_input: offset += 1 if self.add_eos_to_input: offset += 1 if len(tokenized_input) > self.max_src_seq_length - offset: tokenized_input = tokenized_input[: self.max_src_seq_length - offset] if len(tokenized_output) > self.max_tgt_seq_length - 2: tokenized_output = tokenized_output[: self.max_tgt_seq_length - 2] bos_id = self.tokenizer.pad_id if self.replace_bos_with_pad else self.tokenizer.bos_id if self.add_bos_to_input: tokenized_input = [bos_id] + tokenized_input if self.add_eos_to_input: tokenized_input = tokenized_input + [self.tokenizer.eos_id] target = [bos_id] + tokenized_output + [self.tokenizer.eos_id] processed_example = { 'text_enc': tokenized_input, 'text_dec': target[:-1], 'labels': target[1:], } # Process optional args: if 'chunked_idx' in example: original = "" template = "" for item in example['chunked_idx'].split(', '): item = item.split('-') if item[0] == "original_text": original += example['input'][int(item[1]) : int(item[2])] elif item[0] == "template": template += example['input'][int(item[1]) : int(item[2])] else: raise ValueError(f"Unknown chunk type: {item[0]}") additional_args = { 'original': self.tokenizer.text_to_ids(original), 'template': self.tokenizer.text_to_ids(template), 'prompt': self.tokenizer.text_to_ids(example['prompt']), } processed_example.update(additional_args) if 'choices' in example: additional_args = { 'choices': [self.tokenizer.text_to_ids(choice) for choice in example['choices']], } processed_example.update(additional_args) if 'task_name_with_prompt' in example: additional_args = { 'task_name_with_prompt': self.tokenizer.text_to_ids(example['task_name_with_prompt']), } processed_example.update(additional_args) return processed_example def _maybe_cast_to_list(self, x): if isinstance(x, np.ndarray): return [item.tolist() for item in x] return x def _collate_item(self, item): item = self._maybe_cast_to_list(item) max_length = max([len(x) for x in item]) if item else 0 item = [x + [self.tokenizer.pad_id] * (max_length - len(x)) for x in item] return item def collate_fn(self, batch): enc_query = [item['text_enc'] for item in batch] dec_input = [item['text_dec'] for item in batch] labels = [item['labels'] for item in batch] enc_query = torch.LongTensor(self._collate_item(enc_query)) dec_input = torch.LongTensor(self._collate_item(dec_input)) loss_mask = torch.LongTensor( [([1] * (len(item))) + ([0] * (dec_input.size(1) - len(item))) for item in labels] ) labels = torch.LongTensor(self._collate_item(labels)) enc_mask = (enc_query != self.tokenizer.pad_id).long() dec_mask = (dec_input != self.tokenizer.pad_id).long() processed_example = { 'text_enc': enc_query, 'text_dec': dec_input, 'labels': labels, 'loss_mask': loss_mask, 'enc_mask': enc_mask, 'dec_mask': dec_mask, } # Collate additional args if present in the batch. if 'original' in batch[0]: original = self._collate_item([item['original'] for item in batch]) processed_example['original'] = torch.LongTensor(original) if 'template' in batch[0]: template = self._collate_item([item['template'] for item in batch]) processed_example['template'] = torch.LongTensor(template) if 'prompt' in batch[0]: prompt = self._collate_item([item['prompt'] for item in batch]) processed_example['prompt'] = torch.LongTensor(prompt) if 'task_name_with_prompt' in batch[0]: task_name_with_prompt = self._collate_item([item['task_name_with_prompt'] for item in batch]) processed_example['task_name_with_prompt'] = torch.LongTensor(task_name_with_prompt) return processed_example
NeMo-main
nemo/collections/nlp/data/language_modeling/t0_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import json import multiprocessing as mp import os import pickle import time from functools import partial from typing import Callable, List, Optional, Type import numpy as np import torch from nemo.core import Dataset from nemo.utils import AppState, logging __all__ = ["TextMemMapDataset", "CSVMemMapDataset", "build_index_files"] __idx_version__ = "0.2" # index file version __idx_suffix__ = "idx" # index file suffix def _build_index_from_memdata(fn, newline_int): """ Build index of delimiter positions between samples in memmap. Can be provided externally. Returns a 1D array of ints. """ # use memmap to read file mdata = np.memmap(fn, dtype=np.uint8, mode="r") # find newline positions midx = np.where(mdata == newline_int)[0] midx_dtype = midx.dtype # make sure to account for all data midx = midx.tolist() # add last item in case there is no new-line at the end of the file if (len(midx) == 0) or (midx[-1] + 1 != len(mdata)): midx = midx + [len(mdata) + 1] # remove empty lines from end of file while len(midx) > 1 and (midx[-1] - midx[-2]) < 2: midx.pop(-1) midx = np.asarray(midx, dtype=midx_dtype) # free memmap mdata._mmap.close() del mdata return midx class TextMemMapDataset(Dataset): """ Allow per-line lazy access to multiple text files using numpy memmap. """ def __init__( self, dataset_paths: List[str], newline_int: Optional[int] = 10, header_lines: Optional[int] = 0, workers: Optional[int] = None, tokenizer: Optional[Type["TokenizerSpec"]] = None, build_index_fn: Optional[Callable[[str, Optional[int]], bool]] = _build_index_from_memdata, sort_dataset_paths: Optional[bool] = True, index_mapping_dir: Optional[str] = None, ): """ Args: dataset_paths: list of JSONL file paths. newline_int: ASCII code to use to interpret newlines in file. header_lines: number of header lines in JSON files. workers: number of workers to use for creating index files. tokenizer: tokenizer to use to convert text to tokens. build_index_fn: a callable build_index_fn(fn, newline_int) -> midx [np.array] that returns the index of newlines in a file fn must be pickleable (to be used in multiprocessing.Pool.map). sort_dataset_paths: whether to sort datasets by paths. index_mapping_dir: directory to save the index mapping to. If None, will write to the same folder as the dataset. """ super().__init__() self.mdata_midx_list = [] # Make a single string into a list if isinstance(dataset_paths, str): dataset_paths = [dataset_paths] if len(dataset_paths) < 1: raise ValueError("files_list must contain at leat one file name") self._newline_int = newline_int # skip first N lines self._header_lines = header_lines self._files_list = dataset_paths self._worker = workers self.tokenizer = tokenizer self._sort_dataset_paths = sort_dataset_paths if sort_dataset_paths: self._files_list = sorted(self._files_list) logging.info(f"Building data files") # load all files into memmap is_distributed = torch.distributed.is_available() and torch.distributed.is_initialized() if not is_distributed or (is_distributed and torch.distributed.get_rank() == 0): # Create index files on global rank 0. build_index_files( dataset_paths, newline_int, workers=self._worker, build_index_fn=build_index_fn, index_mapping_dir=index_mapping_dir, ) if is_distributed: torch.distributed.barrier() if is_distributed and AppState().local_rank == 0: # If we are in a distributed multi-node set-up and index files are not stored on # a shared filesystem, then the index files created on global rank 0 are only # accessible to the workers on that node. # # Two cases may occur here: # # 1. case of a shared filesystem, or global_rank==0: the index files are present in # the locally available filesystem, calling build_index_files() again is a no-op. # 2. case of a non-shared filesystem, and global_rank>0: the index files are not # present in the locally available filesystem, calling build_index_files() again # will create them. # # Outcome in all cases: all nodes have access to the index files in their filesystem. build_index_files( dataset_paths, newline_int, workers=self._worker, build_index_fn=build_index_fn, index_mapping_dir=index_mapping_dir, ) if is_distributed: torch.distributed.barrier() logging.info(f"Loading data files") start_time = time.time() mdata_midx_list = [self.load_file(fn, index_mapping_dir) for fn in self._files_list] logging.info( f"Time loading {len(mdata_midx_list)} mem-mapped files: {datetime.timedelta(seconds=time.time() - start_time)}" ) logging.info("Computing global indices") midx_bins = np.cumsum([(len(midx) - header_lines) for _, midx in mdata_midx_list]) self.midx_bins = midx_bins self.mdata_midx_list = mdata_midx_list # figure out size of the dataset self._size = self.midx_bins[-1] def __del__(self): if self.mdata_midx_list: for mdata, midx in self.mdata_midx_list: mdata._mmap.close() def __len__(self): return self._size def __getitem__(self, idx): """ Return a string from binary memmap """ if (idx >= len(self)) or (idx < 0): raise IndexError(f"Index {idx} if out of dataset range with {len(self)} samples") # Identify the file containing the record file_id = np.digitize(idx, self.midx_bins, right=False) base_idx = self.midx_bins[file_id - 1] if file_id > 0 else 0 file_idx = idx - base_idx + self._header_lines mdata, midx = self.mdata_midx_list[file_id] # load sample if file_idx == 0: i = 0 j = midx[0] else: i = midx[file_idx - 1] + 1 # ignore newline j = midx[file_idx] # fetch sample from memmap try: sample = self._fetch_sample_from_memmap(mdata, i, j) except Exception as e: logging.error(f"Error while fetching sample from memmap: {e}") logging.error(f"file_id: {file_id}, file_idx: {file_idx}, i: {i}, j: {j}") raise e # parse raw text (e.g., tokenize) try: data = self._build_data_from_text(sample) except Exception as e: logging.error( f"Error while building data from text, possible issue with sample expected format (see offending sample below): {e}" ) logging.error(f"sample: {sample}, file_id: {file_id}, file_idx: {file_idx}, i: {i}, j: {j}") raise e return data def _fetch_sample_from_memmap(self, mdata, i, j): """Fetchs the text sample. Can be overriden by child-classes to support loading of partial samples and alternative decode methods""" # load text sample by slicing memmap data[i:j] text = mdata[i:j].tobytes().decode("utf-8") return text def _build_data_from_text(self, text): """Allows child-classes to modify the parsing of raw text, prior to tokenization""" # tokenize text if tokenizer is given if self.tokenizer is not None: data = self.tokenizer.text_to_ids(text) else: data = text return data def load_file(self, fn, index_mapping_dir: Optional[str] = None): """ Loads a text file as np.int8. Returns: mdata - memorymap of np.int8 midx - indices pointing to the end-of-line (or end of file) position size - number of lines in file """ logging.info(f"Loading {fn}") idx_fn = _index_fn(fn, index_mapping_dir) # create data map mdata = np.memmap(fn, dtype=np.uint8, mode="r") if _index_file_exists(idx_fn): # load index file into memory map midx = np.load(idx_fn + ".npy", allow_pickle=True, mmap_mode="r") # test for header if len(midx) < self._header_lines: raise RuntimeError(f"Missing header, expected {self._header_lines} header lines") # load meta info idx_info_dict = pickle.load(open(idx_fn + ".info", "rb")) # test for mismatch in expected newline_int if "newline_int" in idx_info_dict: newline_int = idx_info_dict["newline_int"] if self._newline_int != newline_int: logging.warning( f"Mismatch in newline_int, expected = {self._newline_int} but loaded {newline_int}" ) # test for version mismatch (useful to force recreation of index files) idx_version = idx_info_dict.get("version", "0.0") if __idx_version__ != idx_version: raise RuntimeError( f"Version mismatch: Please delete existing '.{__idx_suffix__}' files. Expected version = {__idx_version__}, but file version = {idx_version}. File path = {idx_fn}" ) else: raise ValueError( f"Memory Map for {fn} is not found, missing one or more of files: {idx_fn}.{{.npy,.info}}" ) return (mdata, midx) class CSVMemMapDataset(TextMemMapDataset): """ Allow per-line lazy access to multiple text files using numpy memmap. """ def __init__( self, dataset_paths: List[str], newline_int: Optional[int] = 10, header_lines: Optional[int] = 0, workers: Optional[int] = None, tokenizer: Optional[Type["TokenizerSpec"]] = None, sort_dataset_paths: Optional[bool] = True, data_col=1, data_sep=",", index_mapping_dir: Optional[str] = None, ): """ Args: dataset_paths: list of JSONL file paths. newline_int: ASCII code to use to interpret newlines in file. header_lines: number of header lines in JSON files. workers: number of workers to use for creating index files. tokenizer: tokenizer to use to convert text to tokens. sort_dataset_paths: whether to sort datasets by paths. data_col: index of data column. data_sep: data separator. index_mapping_dir: directory to save the index mapping to. If None, will write to the same folder as the dataset. """ super().__init__( dataset_paths=dataset_paths, newline_int=newline_int, header_lines=header_lines, workers=workers, tokenizer=tokenizer, sort_dataset_paths=sort_dataset_paths, index_mapping_dir=index_mapping_dir, ) self._data_col = data_col self._data_sep = data_sep def _build_data_from_text(self, text): """Return a CSV field from text""" # get CSV field text = text.split(self._data_sep)[self._data_col] # tokenize return super()._build_data_from_text(text) class CSVFieldsMemmapDataset(TextMemMapDataset): """ Allow per-line lazy access to multiple csv files using numpy memmap. Returns a dictionary with multiple fields. """ def __init__( self, dataset_paths, newline_int=10, header_lines=1, workers=None, tokenizer=None, sort_dataset_paths=True, data_sep=',', data_fields={"data": 0}, index_mapping_dir: Optional[str] = None, ): """ Args: dataset_paths: list of csv file paths to read data from newline_int: ASCII code to use to interpret newlines in file. header_lines: number of header lines in csv files. workers: number of workers to use for creating index files. tokenizer: tokenizer to use to convert text to tokens. sort_dataset_paths: whether to sort datasets by paths. data_sep: data separator. data_fields: dict of field names and their corresponding column indices index_mapping_dir: directory to save the index mapping to. If None, will write to the same folder as the dataset. """ super().__init__( dataset_paths=dataset_paths, newline_int=newline_int, header_lines=header_lines, workers=workers, tokenizer=tokenizer, sort_dataset_paths=sort_dataset_paths, index_mapping_dir=index_mapping_dir, ) self._data_fields = data_fields self._data_sep = data_sep def _build_data_from_text(self, text: str): """ """ _build_data_from_text = super()._build_data_from_text data = {} text_fields = text.split(self._data_sep) for field_name, field_idx in self._data_fields.items(): data[field_name] = _build_data_from_text(text_fields[field_idx]) return data class JSONLMemMapDataset(TextMemMapDataset): """ Memory-mapped iteration over a JSONL file. """ def __init__( self, dataset_paths: List[str], newline_int: Optional[int] = 10, header_lines: Optional[int] = 0, workers: Optional[int] = None, tokenizer: Optional[Type["TokenizerSpec"]] = None, sort_dataset_paths: Optional[bool] = True, index_mapping_dir: Optional[str] = None, ): """ Args: dataset_paths: list of JSONL file paths. newline_int: ASCII code to use to interpret newlines in file. header_lines: number of header lines in JSON files. workers: number of workers to use for creating index files. tokenizer: tokenizer to use to convert text to tokens. sort_dataset_paths: whether to sort datasets by paths. index_mapping_dir: directory to save the index mapping to. If None, will write to the same folder as the dataset. """ super().__init__( dataset_paths=dataset_paths, newline_int=newline_int, header_lines=header_lines, workers=workers, tokenizer=tokenizer, sort_dataset_paths=sort_dataset_paths, index_mapping_dir=index_mapping_dir, ) def _build_data_from_text(self, text): """Return a dictionary of data based on a single JSON line.""" try: record = json.loads(text) except Exception as e: logging.error(f"Exception: {e}") logging.error(f"datapoint: {text}") raise e return record def _index_file_exists(idx_fn): """Helper function to test if index file exists""" if os.path.exists(idx_fn + ".npy") and os.path.exists(idx_fn + ".info"): return True else: return False def _index_fn(fn: str, index_mapping_dir: str) -> str: """Return base file name of index files. This returns the base file name associated with specified index files. This base name is the base on top of which suffixes like .npy or .info are added. The parent directory is created if it does not already exist. fn may be specified in multiple ways: 1. file name: data.jsonl, 2. relative path to a file: relative/path/to/data.jsonl, 3. absolute path to a file: /absolute/path/to/data.jsonl. This function returns paths in the pattern of: 1. /path/to/input_mapping_dir/data.jsonl.idx 2. /path/to/input_mapping_dir/relative/path/to/data.jsonl.idx 3. /path/to/input_mapping_dir/absolute/path/to/data.jsonl.idx Args: fn: filename to get base name for. index_mapping_dir: directory to save the index mapping to. If None, will write to the same folder as the dataset. """ if index_mapping_dir: # Remove leading "/" and "..". while fn.startswith(("/", "..")): if fn.startswith(".."): fn = fn.lstrip("..") if fn.startswith("/"): fn = fn.lstrip("/") idx_fn = f"{os.path.join(index_mapping_dir, fn)}.{__idx_suffix__}" # Create parent directory if needed. os.makedirs(os.path.dirname(idx_fn), exist_ok=True) else: idx_fn = f"{fn}.{__idx_suffix__}" return idx_fn def _build_memmap_index_files(newline_int, build_index_fn, fn, index_mapping_dir: str): """Helper function to build an index file""" idx_fn = _index_fn(fn, index_mapping_dir) # create data map if _index_file_exists(idx_fn): return False else: logging.info(f"Building indexing for fn = {fn}") # find all newline positions midx = build_index_fn(fn, newline_int) # validate midx midx = np.asarray(midx) if not np.issubdtype(midx.dtype, np.integer): raise TypeError(f"midx must be an integer array, but got type = {midx.dtype}") # create e metadata file data = dict(newline_int=newline_int, version=__idx_version__) # save index as numpy array to enable memmap reading logging.info(f"Saving idx file = {idx_fn}.npy") np.save(idx_fn + ".npy", midx, allow_pickle=True) logging.info(f"Saving metadata file = {idx_fn}.info") pickle.dump(data, open(idx_fn + ".info", "wb")) return True def build_index_files( dataset_paths, newline_int, workers=None, build_index_fn=_build_index_from_memdata, index_mapping_dir: str = None, ): """Auxiliary method to build multiple index files""" if len(dataset_paths) < 1: raise ValueError("files_list must contain at leat one file name") if workers is None: workers = max(1, os.cpu_count() // 2) logging.info(f"Processing {len(dataset_paths)} data files using {workers} workers") # load all files into memmap start_time = time.time() with mp.Pool(workers) as p: build_status = p.map( partial(_build_memmap_index_files, newline_int, build_index_fn, index_mapping_dir=index_mapping_dir,), dataset_paths, ) logging.info( f"Time building {sum(build_status)} / {len(build_status)} mem-mapped files: {datetime.timedelta(seconds=time.time() - start_time)}" )
NeMo-main
nemo/collections/nlp/data/language_modeling/text_memmap_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pytorch Dataset with sentences packed into batches by length.""" import io import json import logging import pickle from collections import OrderedDict from typing import Any import braceexpand import numpy as np import webdataset as wd from torch.utils.data import IterableDataset from nemo.collections.nlp.data.data_utils.data_preprocessing import dataset_to_ids from nemo.core import Dataset __all__ = ['SentenceDataset', 'TarredSentenceDataset'] class SentenceDataset(Dataset): def __init__( self, tokenizer: Any, dataset: Any, tokens_in_batch: int = 1024, clean: bool = False, cache_ids: bool = False, max_seq_length: int = 512, min_seq_length: int = 1, ): self.tokenizer = tokenizer self.tokens_in_batch = tokens_in_batch ids = dataset_to_ids(dataset, tokenizer, cache_ids=cache_ids) if clean: ids = self.clean(ids, max_tokens=max_seq_length, min_tokens=min_seq_length) self.batch_sent_ids, self.batch_elem_lengths = self.pack_data_into_batches(ids) self.batches = self.pad_batches(ids) def __len__(self): return len(self.batches) def __getitem__(self, idx): ids = self.batches[idx] mask = (ids != self.tokenizer.pad_id).astype(np.int32) return ids, mask def pad_batches(self, ids): """ Augments source and target ids in the batches with padding symbol to make the lengths of all sentences in the batches equal. """ batches = [] for batch_elem_len, batch_sent_ids in zip(self.batch_elem_lengths, self.batch_sent_ids): batch = self.tokenizer.pad_id * np.ones((len(batch_sent_ids), batch_elem_len), dtype=np.int) for i, sentence_idx in enumerate(batch_sent_ids): batch[i][: len(ids[sentence_idx])] = ids[sentence_idx] batches.append(batch) return batches def pack_data_into_batches(self, ids): """ Takes two lists of source and target sentences, sorts them, and packs into batches to minimize the use of padding tokens. Returns a list of batches where each batch contains indices of sentences included into it """ # create buckets sorted by the number of src tokens # each bucket is also sorted by the number of tgt tokens buckets = {} for i, line_ids in enumerate(ids): len_ = len(line_ids) if len_ not in buckets: buckets[len_] = [i] else: buckets[len_].append(i) for b_idx in buckets: buckets[b_idx] = sorted(buckets[b_idx]) buckets = OrderedDict(sorted(buckets.items())) batches = [] batch_elem_lengths = [] curr_batch = [] len_of_longest_sent = 0 for sent_len, bucket in buckets.items(): for sent_i in bucket: if sent_len * (len(curr_batch) + 1) > self.tokens_in_batch: if not curr_batch: raise ValueError( f"The limitation on number of tokens in batch {self.tokens_in_batch} is too strong." f"Several sentences contain {sent_len} tokens." ) batches.append(curr_batch) batch_elem_lengths.append(sent_len) curr_batch = [] curr_batch.append(sent_i) len_of_longest_sent = sent_len if curr_batch: batches.append(curr_batch) batch_elem_lengths.append(len_of_longest_sent) return batches, batch_elem_lengths def clean(self, ids, max_tokens=None, min_tokens=None): """ Cleans source and target sentences to get rid of noisy data. Specifically, a pair of sentences is removed if -- either source or target is longer than *max_tokens* -- either source or target is shorter than *min_tokens* -- absolute difference between source and target is larger than *max_tokens_diff* -- one sentence is *max_tokens_ratio* times longer than the other """ ids_ = [] for i in range(len(ids)): len_ = len(ids[i]) if (max_tokens is not None and len_ > max_tokens) or (min_tokens is not None and len_ < min_tokens): continue ids_.append(ids[i]) return ids_ class TarredSentenceDataset(IterableDataset): """ A similar Dataset to the SentenceDataset, but which loads tarred tokenized pickle files. Accepts a single JSON metadata file containing the total number of batches as well as the path(s) to the tarball(s) containing the wav files. Valid formats for the text_tar_filepaths argument include: (1) a single string that can be brace-expanded, e.g. 'path/to/text.tar' or 'path/to/text_{1..100}.tar.gz', or (2) a list of file paths that will not be brace-expanded, e.g. ['text_1.tar', 'text_2.tar', ...]. Note: For brace expansion in (1), there may be cases where `{x..y}` syntax cannot be used due to shell interference. This occurs most commonly inside SLURM scripts. Therefore we provide a few equivalent replacements. Supported opening braces - { <=> (, [, < and the special tag _OP_. Supported closing braces - } <=> ), ], > and the special tag _CL_. For SLURM based tasks, we suggest the use of the special tags for ease of use. See the WebDataset documentation for more information about accepted data and input formats. If using multiple processes the number of shards should be divisible by the number of workers to ensure an even split among workers. If it is not divisible, logging will give a warning but training will proceed. Additionally, please note that the len() of this DataLayer is assumed to be the number of tokens of the text data. An incorrect manifest length may lead to some DataLoader issues down the line. Args: text_tar_filepaths: Either a list of tokenized text tarball filepaths, or a string (can be brace-expandable). metadata_path (str): Path to the metadata manifest. encoder_tokenizer: Autokenizer wrapped BPE tokenizer model, such as YTTM decoder_tokenizer: Autokenizer wrapped BPE tokenizer model, such as YTTM shuffle_n (int): How many samples to look ahead and load to be shuffled. See WebDataset documentation for more details. Defaults to 0. shard_strategy (str): Tarred dataset shard distribution strategy chosen as a str value during ddp. - `scatter`: The default shard strategy applied by WebDataset, where each node gets a unique set of shards, which are permanently pre-allocated and never changed at runtime. - `replicate`: Optional shard strategy, where each node gets all of the set of shards available in the tarred dataset, which are permanently pre-allocated and never changed at runtime. The benefit of replication is that it allows each node to sample data points from the entire dataset independently of other nodes, and reduces dependence on value of `shuffle_n`. .. warning:: Replicated strategy allows every node to sample the entire set of available tarfiles, and therefore more than one node may sample the same tarfile, and even sample the same data points! As such, there is no assured guarantee that all samples in the dataset will be sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific occasions (when the number of shards is not divisible with ``world_size``), will not sample the entire dataset. For these reasons it is not advisable to use tarred datasets as validation or test datasets. global_rank (int): Worker rank, used for partitioning shards. Defaults to 0. world_size (int): Total number of processes, used for partitioning shards. Defaults to 0. reverse_lang_direction (bool): When True, swaps the source and target directions when returning minibatches. """ def __init__( self, text_tar_filepaths: str, metadata_path: str, tokenizer: str, shuffle_n: int = 1, shard_strategy: str = "scatter", global_rank: int = 0, world_size: int = 0, ): super(TarredSentenceDataset, self).__init__() self.tokenizer = tokenizer self.pad_id = tokenizer.pad_id valid_shard_strategies = ['scatter', 'replicate'] if shard_strategy not in valid_shard_strategies: raise ValueError( f"Invalid shard strategy of type {type(shard_strategy)} " f"{repr(shard_strategy) if len(repr(shard_strategy)) < 100 else repr(shard_strategy)[:100] + '...'}! " f"Allowed values are: {valid_shard_strategies}." ) with open(metadata_path, 'r') as f: metadata = json.load(f) self.metadata = metadata if isinstance(text_tar_filepaths, str): # Replace '(', '[', '<' and '_OP_' with '{' brace_keys_open = ['(', '[', '<', '_OP_'] for bkey in brace_keys_open: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "{") # Replace ')', ']', '>' and '_CL_' with '}' brace_keys_close = [')', ']', '>', '_CL_'] for bkey in brace_keys_close: if bkey in text_tar_filepaths: text_tar_filepaths = text_tar_filepaths.replace(bkey, "}") if isinstance(text_tar_filepaths, str): # Brace expand text_tar_filepaths = list(braceexpand.braceexpand(text_tar_filepaths)) if shard_strategy == 'scatter': logging.info("Tarred dataset shards will be scattered evenly across all nodes.") if len(text_tar_filepaths) % world_size != 0: logging.warning( f"Number of shards in tarred dataset ({len(text_tar_filepaths)}) is not divisible " f"by number of distributed workers ({world_size}). " f"Some shards will not be used ({len(text_tar_filepaths) % world_size})." ) batches_per_tar = self.metadata['num_batches'] // len(text_tar_filepaths) begin_idx = (len(text_tar_filepaths) // world_size) * global_rank end_idx = begin_idx + (len(text_tar_filepaths) // world_size) logging.info('Begin Index : %d' % (begin_idx)) logging.info('End Index : %d' % (end_idx)) text_tar_filepaths = text_tar_filepaths[begin_idx:end_idx] logging.info( "Partitioning tarred dataset: process (%d) taking shards [%d, %d)", global_rank, begin_idx, end_idx ) self.length = batches_per_tar * len(text_tar_filepaths) * world_size elif shard_strategy == 'replicate': logging.info("All tarred dataset shards will be replicated across all nodes.") self.length = self.metadata['num_batches'] else: raise ValueError(f"Invalid shard strategy ! Allowed values are : {valid_shard_strategies}") self.tarpath = text_tar_filepaths # Put together WebDataset self._dataset = wd.WebDataset(urls=text_tar_filepaths, nodesplitter=None) if shuffle_n > 0: self._dataset = self._dataset.shuffle(shuffle_n) else: logging.info("WebDataset will not shuffle files within the tar files.") self._dataset = self._dataset.rename(pkl='pkl', key='__key__').to_tuple('pkl', 'key').map(f=self._build_sample) def _build_sample(self, fname): # Load file pkl_file, _ = fname pkl_file = io.BytesIO(pkl_file) data = pickle.load(pkl_file) # loads np.int64 vector pkl_file.close() ids = data["src"] mask = (ids != self.pad_id).astype(np.int32) return ids, mask def __iter__(self): return self._dataset.__iter__() def __len__(self): return self.length
NeMo-main
nemo/collections/nlp/data/language_modeling/sentence_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import shutil import struct from functools import lru_cache from itertools import accumulate from typing import List import numpy as np import torch from nemo.utils import logging __all__ = ["KNNIndex", "MMapRetrievalIndexedDataset", "MMapRetrievalIndexedDatasetBuilder"] dtypes = {1: np.uint8, 2: np.int8, 3: np.int16, 4: np.int32, 5: np.int64, 6: np.float64, 7: np.double, 8: np.uint16} def code(dtype): for k in dtypes.keys(): if dtypes[k] == dtype: return k raise ValueError(dtype) def index_file_path(prefix_path): return prefix_path + '.idx' def data_file_path(prefix_path): return prefix_path + '.bin' def _warmup_mmap_file(path): with open(path, 'rb') as stream: while stream.read(100 * 1024 * 1024): pass class KNNIndex(object): """ Index file for fast KNN mapping. It is built by `build_knn_map_index.py` script. It contains a big matrix of shape (chunk_id, K neighbors) where `chunk_id` are all the chunk ids in the RETRO training data. E.g. the KNN neighbor chunk ids in the retrieval data for ith chunk id in the training data is self.knn_map[i]. This index can hold partial maps used for building sharding index. """ _HDR_MAGIC = b'KNNRETM\x00\x00' @classmethod def writer(cls, path, K, offset=0): """ path: file path of the index K: number of neighbors for a chunk offset: start chunk_id for shard index """ class _Writer(object): def __enter__(self): self._file = open(path, 'wb') self._file.write(cls._HDR_MAGIC) self._file.write(struct.pack('<Q', 1)) self._file.write(struct.pack('<Q', K)) # reserve the space for total number of chunks self._file.write(struct.pack('<Q', 0)) # chunk start self._file.write(struct.pack('<Q', offset)) self.K = K self.count_chunks = 0 self.path = path return self def write(self, chunk_knn: np.array): assert chunk_knn.dtype == np.int64 assert chunk_knn.shape[1] == self.K self._file.write(chunk_knn.tobytes(order='C')) self.count_chunks += chunk_knn.shape[0] def __exit__(self, exc_type, exc_val, exc_tb): self._file.close() # Update the chunk size, Since total number of chunks is determined in the end _bin_buffer_mmap = np.memmap(self.path, mode='r+', order='C', shape=(9 + 8 + 8 + 8),) buffer = memoryview(_bin_buffer_mmap) len_array = np.frombuffer(buffer, dtype=np.int64, count=1, offset=9 + 8 + 8) len_array[0] = self.count_chunks _bin_buffer_mmap.flush() _bin_buffer_mmap._mmap.close() return _Writer() def __init__(self, path, skip_warmup=True): with open(path, 'rb') as stream: magic_test = stream.read(9) assert self._HDR_MAGIC == magic_test, 'Index file doesn\'t match expected format. ' version = struct.unpack('<Q', stream.read(8)) assert (1,) == version self.K = struct.unpack('<Q', stream.read(8))[0] self.len = struct.unpack('<Q', stream.read(8))[0] self.chunk_start_id = struct.unpack('<Q', stream.read(8))[0] self.chunk_end_id = self.chunk_start_id + self.len offset = stream.tell() if not skip_warmup: logging.info(" warming up index mmap file...") _warmup_mmap_file(path) self._bin_buffer_mmap = np.memmap(path, mode='r', order='C') self._bin_buffer = memoryview(self._bin_buffer_mmap) logging.info(" reading KNN map") self.knn_map = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self.len * self.K, offset=offset).reshape( self.len, self.K ) def get_KNN_chunk_ids(self, chunk_id): """ get the chunk address (in bytes) from chunk id """ if not (self.chunk_start_id <= chunk_id < self.chunk_end_id): raise ValueError(f'chunk {chunk_id} is out side the range [{self.chunk_start_id}, {self.chunk_end_id})') return self.knn_map[chunk_id - self.chunk_start_id] def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap def __len__(self): """ total number of chunks in the data """ return self.len def merge_knn_files(knn_files: List[KNNIndex], output_file: str): """ Merge a list of knn sharding index files into one. """ files = [KNNIndex(f) for f in knn_files] sorted_files = sorted(files, key=lambda x: x.chunk_start_id) # consistence check start_id = sorted_files[0].chunk_start_id previous_end = sorted_files[0].chunk_end_id K = sorted_files[0].K for i in sorted_files[1:]: assert previous_end == i.chunk_start_id assert K == i.K previous_end = i.chunk_end_id with KNNIndex.writer(output_file, K, offset=start_id) as w: for i in sorted_files: w.write(i.knn_map) f = KNNIndex(output_file) logging.info(f'{output_file} index starts at {f.chunk_start_id}') logging.info(f'{output_file} index ends at {f.chunk_end_id}') logging.info(f'total len {f.len}') assert f.len == (f.chunk_end_id - f.chunk_start_id) class MMapRetrievalIndexedDataset(torch.utils.data.Dataset): """ Memory Map Index and Binary file for RETRO DATA. It provides `chunks` to the original MMap data so data can be fetched at both document and chunk level. It can be used both for training data and Retrieval Data. Retrieval Dataset adds an extra `chunk_size` padded tokens at the end of each document. ' `self._index.retrieval_db` is indicating whether it is retrieval dataset or not. It is built by `preprocess_data_for_megatron.py` script. """ class Index(object): _HDR_MAGIC = b'MMIDRET\x00\x00' @classmethod def writer(cls, path, dtype, retrieval_db): class _Writer(object): def __enter__(self): self._file = open(path, 'wb') self._file.write(cls._HDR_MAGIC) # write index file version self._file.write(struct.pack('<L', 1)) return self @staticmethod def _get_pointers(sizes, chunk_size): dtype_size = dtype().itemsize address = 0 pointers = [] for size in sizes: pointers.append(address) address += size * dtype_size if retrieval_db: # if it is retrieval db, the the last chunk is reserved for padding address += chunk_size * dtype_size return pointers @staticmethod def _get_chunk_id_and_address(sizes, chunk_size, stride): if chunk_size % stride != 0: raise ValueError(f"the chunk size {chunk_size} should be the multiple of {stride}") dtype_size = dtype().itemsize chunk_ids = [] last_id = 0 address = 0 pointers = [] for size in sizes: chunk_ids.append(last_id) num_of_chunks = len(range(0, size - chunk_size + 1, stride)) if size % chunk_size != 0: raise ValueError(f"the document size {size} should be the multiple of {chunk_size}") for i in range(0, size - chunk_size + 1, stride): pointers.append(address) if i == size - chunk_size: address += chunk_size * dtype_size else: address += stride * dtype_size if retrieval_db: # if it is retrieval db, the the last chunk is reserved for padding address += chunk_size * dtype_size last_id += num_of_chunks return chunk_ids, pointers def write(self, sizes, chunk_size, stride=64): pointers = self._get_pointers(sizes, chunk_size) chunk_ids, chunk_address = self._get_chunk_id_and_address(sizes, chunk_size, stride) # write index chunk stride step self._file.write(struct.pack('<L', stride)) self._file.write(struct.pack('<B', code(dtype))) self._file.write(struct.pack('<Q', len(sizes))) self._file.write(struct.pack('<Q', chunk_size)) self._file.write(struct.pack('<Q', len(chunk_address))) self._file.write(struct.pack('<B', int(retrieval_db))) sizes = np.array(sizes, dtype=np.int32) self._file.write(sizes.tobytes(order='C')) del sizes pointers = np.array(pointers, dtype=np.int64) self._file.write(pointers.tobytes(order='C')) del pointers chunk_ids = np.array(chunk_ids, dtype=np.int64) self._file.write(chunk_ids.tobytes(order='C')) del chunk_ids chunk_address = np.array(chunk_address, dtype=np.int64) self._file.write(chunk_address.tobytes(order='C')) def __exit__(self, exc_type, exc_val, exc_tb): self._file.close() return _Writer() def __init__(self, path, skip_warmup=True): with open(path, 'rb') as stream: magic_test = stream.read(9) assert self._HDR_MAGIC == magic_test, ( 'Index file doesn\'t match expected format. ' 'Make sure that --dataset-impl is configured properly.' ) version = struct.unpack('<L', stream.read(4)) assert (1,) == version # load the stride size (self.stride,) = struct.unpack('<L', stream.read(4)) # for legacy compatibility if self.stride == 0: self.stride = 64 (dtype_code,) = struct.unpack('<B', stream.read(1)) self._dtype = dtypes[dtype_code] self._dtype_size = self._dtype().itemsize self._len = struct.unpack('<Q', stream.read(8))[0] self.chunk_size = struct.unpack('<Q', stream.read(8))[0] self.num_chunks = struct.unpack('<Q', stream.read(8))[0] self.retrieval_db = bool(struct.unpack('<B', stream.read(1))[0]) # self.chunk_size = struct.unpack('<Q', stream.read(8))[0] # self.num_chunks = struct.unpack('<Q', stream.read(8))[0] offset = stream.tell() if not skip_warmup: logging.info(" warming up index mmap file...") _warmup_mmap_file(path) self._bin_buffer_mmap = np.memmap(path, mode='r', order='C') self._bin_buffer = memoryview(self._bin_buffer_mmap) logging.info(" reading document sizes...") self._sizes = np.frombuffer(self._bin_buffer, dtype=np.int32, count=self._len, offset=offset) logging.info(" reading document pointers...") self._pointers = np.frombuffer( self._bin_buffer, dtype=np.int64, count=self._len, offset=offset + self._sizes.nbytes ) logging.info(" reading document chunk offset...") self._chunk_id_start = np.frombuffer( self._bin_buffer, dtype=np.int64, count=self._len, offset=offset + self._sizes.nbytes + self._pointers.nbytes, ) logging.info(" reading chunk address...") self._chunk_address = np.frombuffer( self._bin_buffer, dtype=np.int64, count=self.num_chunks, offset=offset + self._sizes.nbytes + self._pointers.nbytes + self._chunk_id_start.nbytes, ) def get_chunk_address(self, chunk_id): """ get the chunk address from chunk id """ return self._chunk_address[chunk_id] def get_chunk_id(self, sentence_id, position): """ get the chunk id from sentence idx and offset position. """ chunk_offset = position // self.stride size = self._sizes[sentence_id] if chunk_offset * self.stride >= size: raise ValueError('offset is too large') return (self._chunk_id_start[sentence_id] + chunk_offset).item() def from_chunk_id_to_doc_id(self, chunk_id): """ from chunk_id, calculate the document id """ if chunk_id >= self.num_chunks: raise ValueError('chunk_id is out of bound') doc_id = np.searchsorted(self._chunk_id_start, chunk_id, side='right') return doc_id - 1 def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap @property def dtype(self): """ Token id integer type """ return self._dtype @property def sizes(self): """ number of tokens for each of the documents """ return self._sizes @lru_cache(maxsize=8) def __getitem__(self, i): """ return a single document staring address (in bytes) and number of tokens """ return self._pointers[i], self._sizes[i] def __len__(self): return self._len def __init__(self, path, skip_warmup=True): super().__init__() self._path = None self._index = None self._bin_buffer = None self._do_init(path, skip_warmup) def __getstate__(self): return self._path # def __setstate__(self, state): # self._do_init(state) def _do_init(self, path, skip_warmup): self._path = path self._index = self.Index(index_file_path(self._path), skip_warmup) if not skip_warmup: logging.info(" warming up data mmap file...") _warmup_mmap_file(data_file_path(self._path)) logging.info(" creating numpy buffer of mmap...") self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode='r', order='C') logging.info(" creating memory view of numpy buffer...") self._bin_buffer = memoryview(self._bin_buffer_mmap) def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap del self._index def __len__(self): """ Total number of documents """ return len(self._index) # @lru_cache(maxsize=8) def __getitem__(self, idx): """ return a single document or a slice of documents, excluding the paddings for the retrieval db """ if isinstance(idx, int): # no need to handle retrieval_db since size exclude the paddings ptr, size = self._index[idx] np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr) return np_array elif isinstance(idx, slice): start, stop, step = idx.indices(len(self)) if step != 1: raise ValueError("Slices into indexed_dataset must be contiguous") ptr = self._index._pointers[start] if self._index.retrieval_db: # for retrieval db, need to add the padding of chunk_size at the end of each document sizes = self._index._sizes[idx] + self._index.chunk_size else: sizes = self._index._sizes[idx] # offsets get the number of tokens for each document including the paddings offsets = list(accumulate(sizes)) total_size = sum(sizes) np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr) sents = np.split(np_array, offsets[:-1]) if self._index.retrieval_db: # remove the paddings sents = [sent[: -self._index.chunk_size] for sent in sents] return sents def get(self, idx, offset=0, length=None): """ Retrieves a single item from the dataset with the option to only return a portion of the item. get(idx) is the same as [idx] but get() does not support slicing. """ # no need to handle retrieval_db since size exclude the paddings ptr, size = self._index[idx] if length is None: length = size - offset ptr += offset * np.dtype(self._index.dtype).itemsize np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr) return np_array def get_chunk_id(self, idx, offset=0): """ get the chunk id from document idx and offset position. """ # make sure offset is a multiple of chunk_size assert offset % self._index.chunk_size == 0 return self._index.get_chunk_id(idx, offset) def from_chunk_id_to_doc_id(self, chunk_id): """ from chunk_id, calculate the document id """ return self._index.from_chunk_id_to_doc_id(chunk_id) def get_chunk(self, chunk_id, force_no_cont_ids=False): """ Retrieves a single chunk item from the dataset. It will get chunk_size tokens for training data or 2*chunk_size tokens for retrieval data. If force_no_cont_ids=True, it will always get chunk_size tokens """ if isinstance(chunk_id, (int, np.int64, np.int32)): ptr = self._index.get_chunk_address(chunk_id) if self._index.retrieval_db and (not force_no_cont_ids): size = self._index.chunk_size * 2 else: size = self._index.chunk_size np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr) return np_array elif isinstance(chunk_id, slice): start, stop, step = chunk_id.indices(self.chunks) if step != 1: raise ValueError("Slices into indexed_dataset must be contiguous") if self._index.retrieval_db and (not force_no_cont_ids): chunk_size = self._index.chunk_size * 2 else: chunk_size = self._index.chunk_size ptr = self._index.get_chunk_address(start) end_address = self._index.get_chunk_address(stop - 1) + chunk_size * self._index._dtype_size address = self._index._chunk_address[chunk_id] starting_pos = address // self._index._dtype_size total_size = (end_address - ptr) // self._index._dtype_size np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr) sents = [np_array[pos : pos + chunk_size] for pos in starting_pos - starting_pos[0]] return sents @property def sizes(self): """ Number of tokens for each of the documents """ return self._index.sizes @property def chunks(self): """ Total number of chunks """ return self._index.num_chunks @property def chunk_size(self): """ Number of tokens per chunk """ return self._index.chunk_size @property def supports_prefetch(self): return False @staticmethod def exists(path): return os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path)) class MMapRetrievalIndexedDatasetBuilder(object): def __init__(self, out_file, chunk_size, pad_id, retrieval_db=False, dtype=np.int64, stride=64): self._data_file = open(out_file, 'wb') self._dtype = dtype self.chunk_size = chunk_size self._sizes = [] self.retrieval_db = retrieval_db self.pad_id = pad_id self.stride = stride def add_item(self, tensor): """ Add one document to the indexed dataset. It will pad the tokens to be the multiple of chunk_size. If it is retrieval dataset, it will pad extra chunk_size tokens at the end of the document. """ np_array = np.array(tensor.numpy(), dtype=self._dtype) padded_size = self.chunk_size - (len(np_array) % self.chunk_size) data_size = np_array.size + padded_size if self.retrieval_db: # for retrieval database, added one more chunk in the end as padding padded_size += self.chunk_size np_array = np.pad(np_array, (0, padded_size), 'constant', constant_values=self.pad_id) self._data_file.write(np_array.tobytes(order='C')) self._sizes.append(data_size) def end_document(self): """ Do nothing. Since each item is one document """ pass def merge_file_(self, another_file): # Concatenate index index = MMapRetrievalIndexedDataset.Index(index_file_path(another_file)) assert index.dtype == self._dtype for size in index.sizes: self._sizes.append(size) # Concatenate data with open(data_file_path(another_file), 'rb') as f: shutil.copyfileobj(f, self._data_file) def finalize(self, index_file): """ Last step of creating the indexed dataset. Flush and close the binary file. Finalizing the index file by using the aggregated document size information. """ self._data_file.close() with MMapRetrievalIndexedDataset.Index.writer(index_file, self._dtype, self.retrieval_db) as index: index.write(self._sizes, self.chunk_size, stride=self.stride)
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/indexed_retrieval_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import warnings from typing import Tuple import torch from nemo.utils.decorators import experimental __all__ = [ "MegatronPretrainingBatchSampler", "MegatronPretrainingRandomBatchSampler", ] class BaseMegatronBatchSampler: """Megatron style BatchSampler. Let mbs, gbs, tp, pp, and dp stand for "micro batch size", "global batch size", "tensor model parallel world size", "pipeline model parallel world size", and "data parallel world size", the number of micro batches (hereafter, nmb) is defined as :math:`nmb = gbs \\div (mbs \\times dp)`. See `apex/transformer/microbatches.py#L91-L98 <https://github.com/NVIDIA/apex/blob/ 44c3043685b6115e7b81b3458a6c76601b1e55b4/apex/transformer/microbatches.py#L91-L98>`_ for the initial settings of the number of micro batches and `apex/transformer/microbatches.py#L160-L177 <https://github.com/NVIDIA/apex/blob/ 44c3043685b6115e7b81b3458a6c76601b1e55b4/apex/transformer/microbatches.py#L160-L177>_`. for warming up of global batch size. e.g.) `(mbs, gbs, tp, pp, dp) = (1, 16, 1, 1, 2)`, then the number of micro batches is :math:`gbs \\div (mbs \\times dp) = 16 \\div (1 \\times 2) = 8`. In this case, an instance of Megatron Batch Sampler on each data parallel rank is expected returns :math:`nmb \\times mbs = 8` indices. """ _global_batch_size: int _num_micro_batches: int _global_batch_size_on_this_data_parallel_rank: int def __init__( self, total_samples: int, consumed_samples: int, micro_batch_size: int, global_batch_size: int, data_parallel_rank: int, data_parallel_size: int, drop_last: bool, pad_samples_to_global_batch_size=False, ) -> None: """Constructor of Megatron-LM style Batch Sampler. Args: total_samples: The size of dataset. consumed_samples: The number of samples that have been used. micro_batch_size: The size of each micro batch. global_batch_size: The size of global batch. data_parallel_rank: The value you can obtain via `parallel_state.get_data_parallel_rank()` of megatron.core. data_parallel_size: The value you can obtain via `parallel_state.get_data_parallel_world_size()` of megatron.core. """ # Sanity checks. if total_samples <= 0: raise RuntimeError("no sample to consume: {}".format(total_samples)) if consumed_samples >= total_samples: raise RuntimeError("no samples left to consume: {}, {}".format(consumed_samples, total_samples)) if micro_batch_size <= 0: raise RuntimeError(f"micro_batch_size size must be greater than 0, but {micro_batch_size}") if data_parallel_size <= 0: raise RuntimeError(f"data parallel size must be greater than 0, but {data_parallel_size}") if data_parallel_rank >= data_parallel_size: raise RuntimeError( "data_parallel_rank should be smaller than data size, but {} >= {}".format( data_parallel_rank, data_parallel_size ) ) # Keep a copy of input params for later use. self.total_samples: int = total_samples self.consumed_samples: int = consumed_samples self.micro_batch_size: int = micro_batch_size self.data_parallel_rank: int = data_parallel_rank self.data_parallel_size: int = data_parallel_size self.drop_last: bool = drop_last self.pad_samples_to_global_batch_size = pad_samples_to_global_batch_size self.update_global_batch_size(global_batch_size) def update_global_batch_size(self, new_global_batch_size: int) -> None: """Update the global batch size.""" self._global_batch_size = new_global_batch_size if self._global_batch_size % (self.micro_batch_size * self.data_parallel_size) != 0: raise RuntimeError( f"`global_batch_size` ({self._global_batch_size}) is not divisible by " f"`micro_batch_size ({self.micro_batch_size}) x data_parallel_size " f"({self.data_parallel_size})`" ) self._num_micro_batches = self._global_batch_size // (self.micro_batch_size * self.data_parallel_size) self._global_batch_size_on_this_data_parallel_rank = self._num_micro_batches * self.micro_batch_size @property def global_batch_size(self) -> int: return self._global_batch_size @global_batch_size.setter def global_batch_size(self, new_global_batch_size: int) -> None: warnings.warn("`self.update_global_batch_size(new_global_batch_size)` is recommended.") self.update_global_batch_size(new_global_batch_size=new_global_batch_size) def __len__(self) -> int: """Length of Batch Sampler. ..note:: When `rampup_batch_size` is enabled, the return value can be not exactly precise. """ num_available_samples: int = self.total_samples - self.consumed_samples if self.drop_last: return num_available_samples // self.global_batch_size else: return (num_available_samples + self.global_batch_size - 1) // self.global_batch_size @abc.abstractmethod def __iter__(self): ... class MegatronPretrainingBatchSampler(BaseMegatronBatchSampler): def get_start_end_idx(self) -> Tuple[int, int]: start_idx = self.data_parallel_rank * self._global_batch_size_on_this_data_parallel_rank end_idx = start_idx + self._global_batch_size_on_this_data_parallel_rank return start_idx, end_idx def __iter__(self): batch = [] # Last batch will be dropped if drop_last is not set False for idx in range(self.consumed_samples, self.total_samples): batch.append(idx) if len(batch) == self._global_batch_size: # start_idx, end_idx = self.get_start_end_idx() indices = [ batch[i] for i in range(self.data_parallel_rank, self._global_batch_size, self.data_parallel_size,) ] assert len(indices) == self._global_batch_size_on_this_data_parallel_rank yield indices # yield batch[start_idx:end_idx] batch = [] # Check the last partial batch and see drop_last is set if len(batch) > 0 and not self.drop_last: # start_idx, end_idx = self.get_start_end_idx() indices = [batch[i] for i in range(self.data_parallel_rank, len(batch), self.data_parallel_size)] if self.pad_samples_to_global_batch_size: num_pad = self._global_batch_size // self.data_parallel_size - len(indices) indices = indices + [-1] * num_pad yield indices @experimental class MegatronPretrainingRandomBatchSampler(BaseMegatronBatchSampler): # NOTE (mkozuki): [[Argument of `dataset` and `data_sharding`]] # From the commit below, it seems like `dataset` argument and `data_sharding` argument # are necessary for ViT training. However, to keep this simple, # I omit those two arguments. # commit: https://github.com/NVIDIA/Megatron-LM/commit/7a77abd9b6267dc0020a60b424b4748fc22790bb def __init__( self, total_samples: int, consumed_samples: int, micro_batch_size: int, global_batch_size: int, data_parallel_rank: int, data_parallel_size: int, drop_last: bool, ) -> None: super().__init__( total_samples=total_samples, consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, global_batch_size=global_batch_size, data_parallel_rank=data_parallel_rank, data_parallel_size=data_parallel_size, drop_last=drop_last, ) self.last_batch_size = self.total_samples % self._global_batch_size def __iter__(self): active_total_samples = self.total_samples - self.last_batch_size self.epoch = self.consumed_samples // active_total_samples current_epoch_samples = self.consumed_samples % active_total_samples assert current_epoch_samples % (self.micro_batch_size * self.data_parallel_size) == 0 # data sharding and random sampling bucket_size = (self.total_samples // (self.micro_batch_size * self.data_parallel_size)) * self.micro_batch_size bucket_offset = current_epoch_samples // self.data_parallel_size start_idx = self.data_parallel_rank * bucket_size g = torch.Generator() g.manual_seed(self.epoch) random_idx = torch.randperm(bucket_size, generator=g).tolist() idx_range = [start_idx + x for x in random_idx[bucket_offset:]] batch = [] # Last batch if not complete will be dropped. for idx in idx_range: batch.append(idx) if len(batch) == self._global_batch_size_on_this_data_parallel_rank: self.consumed_samples += self._global_batch_size yield batch batch = [] # Check the last partial batch and see drop_last is set if len(batch) > 0 and not self.drop_last: yield batch
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/megatron_batch_samplers.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from random import sample import numpy as np import torch from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import get_samples_mapping from nemo.collections.nlp.data.language_modeling.text_memmap_dataset import JSONLMemMapDataset from nemo.core import Dataset from nemo.utils import logging __all__ = ['RetroQAFineTuneDataset'] class RetroQAFineTuneDataset(Dataset): """ The dataset class for fine tune RETRO models. Args: data (list[strings], list[dicts]): (1) paths to .jsonl or .json files, (2) dict objects corresponding to each input example tokenizer (tokenizer): Tokenizer from frozen language model task_templates (dict): Dictionary containing all task template information needed to format prompts. Created in the GPTPromptLearningModel class. pad_token_id (int): ID of pad token from tokenizer max_seq_length (int): maximum sequence length for each dataset examples. Examples will either be truncated to fit this length or dropped if they cannot be truncated. min_seq_length (int): min length of each data example in the dataset. Data examples will be dropped if they do not meet the min length requirements. add_bos (bool): Whether to add a beginning of sentence token to each data example add_eos (bool): Whether to add an end of sentence token to each data example for_train (bool): Whether you're creating a dataset for training or inference tokens_to_generate (int): (inference only) Number of tokens to generate during inference """ def __init__( self, data, tokenizer, answer_only_loss: bool, pad_token_id: int, max_seq_length: int, add_bos: bool = False, add_eos: bool = True, max_num_samples: int = None, seed: int = 1234, neighbors: int = 20, ): self.tokenizer = tokenizer self.pad_token_id = pad_token_id self.max_seq_length = max_seq_length self.add_bos = add_bos self.add_eos = add_eos self.answer_only_loss = answer_only_loss self.max_num_samples = max_num_samples self.seed = seed self.neighbors = neighbors assert self.max_seq_length > 0, "Max sequence length should be greater than 0" logging.info("Loading and tokenizing dataset ... ") self.indexed_dataset = JSONLMemMapDataset(dataset_paths=[data], tokenizer=None, header_lines=0, workers=12) # Will be None after this call if `max_num_samples` is None self._build_samples_mapping(data) def _build_samples_mapping(self, file_path): if self.max_num_samples is not None: self.samples_mapping = get_samples_mapping( indexed_dataset=self.indexed_dataset, data_prefix=file_path, num_epochs=None, max_num_samples=self.max_num_samples, max_seq_length=self.max_seq_length - 2, short_seq_prob=0, seed=self.seed, name=file_path.split('/')[-1], binary_head=False, ) else: self.samples_mapping = None def __len__(self): if self.max_num_samples is None: return len(self.indexed_dataset) else: return len(self.samples_mapping) def __getitem__(self, idx): if isinstance(idx, np.int64): idx = idx.item() if self.samples_mapping is not None: assert idx < len(self.samples_mapping) idx, _, _ = self.samples_mapping[idx] if isinstance(idx, np.uint32): idx = idx.item() assert idx < len(self.indexed_dataset) example = self.indexed_dataset[idx] return self._process_example(example) def _process_example(self, example): """ Process a single example from the dataset into IDs and other T0-related metadata. """ question = example['question'].strip() tokenized_input = self.tokenizer.text_to_ids(f"question: {question}\n") # add a space between input and output if 'answers' in example: # sample one answer from answers answer = sample(example['answers'], 1)[0].strip() tokenized_output = self.tokenizer.text_to_ids(f"answer: {answer}") else: tokenized_output = self.tokenizer.text_to_ids('answer: ') bos_id = self.tokenizer.bos_id if self.add_bos: tokenized_input = [bos_id] + tokenized_input if self.add_eos: target = tokenized_output + [self.tokenizer.eos_id] else: target = tokenized_output # pad the question so 'answer:' coincides with the end of the first chunk of 64 if len(tokenized_input) < 64: padding_length = 64 - len(tokenized_input) tokenized_input = [self.pad_token_id] * padding_length + tokenized_input if len(tokenized_input) + len(target) > self.max_seq_length: cut_tokens = len(tokenized_input) + len(target) - self.max_seq_length if len(tokenized_input) - cut_tokens > 0: # cut the input by default tokenized_input = tokenized_input[: len(tokenized_input) - cut_tokens] elif len(target) - cut_tokens > 0: # cut the output target = target[: len(target) - cut_tokens] else: # cut both the input and output cut_input_tokens = len(tokenized_input) - 1 # retain at least one token cut_output_tokens = cut_tokens - cut_input_tokens tokenized_input = tokenized_input[: len(tokenized_input) - cut_input_tokens] target = target[: len(target) - cut_output_tokens] chunks = [] contexts = example['ctxs'] assert self.neighbors <= len( contexts ), f"specify {self.neighbors}, but only provide {len(contexts)} neighbors in the dataset" for neighbor in contexts[: self.neighbors]: tokens = self.tokenizer.text_to_ids(neighbor) tokens = tokens[:128] if len(tokens) < 128: tokens = tokens + [self.pad_token_id] * (128 - len(tokens)) chunks.append(tokens) answer_start_idx = len(tokenized_input) input_ids = tokenized_input + target assert len(input_ids) <= 128, "cannot handle more than two chunks yet" chunks = np.array(chunks).reshape(1, self.neighbors, -1).astype(np.int64) results = (input_ids, answer_start_idx, chunks) return results def collate_fn(self, batch, tp_workers=0): """ Prepares input_ids, labels, loss mask, attention_mask, and position ids for global batch """ input_ids, answer_starts, chunks = zip(*batch) # convert chunks into torch tensors chunks = torch.tensor(chunks) # Get max sequence length of batch batch_max = max(len(ids) for ids in input_ids) if tp_workers > 1: # make sure the sequence length is multiply of number of tp_workers, needed for sequence parallel. resi_padding = (tp_workers - (batch_max - 1) % tp_workers) % tp_workers else: resi_padding = 0 batch_max += resi_padding input_ids, loss_mask = self.pad_batch_and_build_loss_mask(input_ids, batch_max, answer_starts) # Should be a label for every token in batch, label is the next token labels = input_ids[:, 1:].contiguous() input_ids = input_ids[:, :-1].contiguous() batch_max -= 1 # Loss mask should align with labels loss_mask = loss_mask[:, 1:].contiguous() hidden_mask = input_ids != self.pad_token_id context_mask = chunks != self.pad_token_id # Using causal attention mask for whole input return { 'tokens': input_ids, 'labels': labels, 'tokens_mask': hidden_mask, 'loss_mask': loss_mask, 'retrieved_emb_mask': context_mask, 'retrieved_ids': chunks, } def pad_batch_and_build_loss_mask(self, input_ids, batch_max, answer_starts): """ Pad input_ids in batch to max batch length while building loss mask """ batch_loss_masks = [] padded_input_ids = [] for ids, answer_start_idx in zip(input_ids, answer_starts): if self.answer_only_loss and answer_start_idx is not None: # Loss mask where answer tokens are 1.0 and all other tokens are 0.0 loss_mask = [float(idx >= answer_start_idx) for idx in range(len(ids))] else: # Loss mask where virtual tokens are 0.0 and all other tokens are 1.0 loss_mask = [1.0] * len(ids) # Pad to max length input_length = len(ids) padding_length = batch_max - input_length ids = ids + [self.pad_token_id] * padding_length padded_input_ids.append(ids) # Account for padding in loss mask loss_mask.extend([0.0] * padding_length) batch_loss_masks.append(torch.tensor(loss_mask, dtype=torch.float)) # Make into torch tensors padded_input_ids = torch.tensor(padded_input_ids, dtype=torch.long) batch_loss_masks = torch.stack(batch_loss_masks) return padded_input_ids, batch_loss_masks
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/retro_fine_tune_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.collections.nlp.modules.common import VirtualPromptSource from nemo.core import Dataset from nemo.utils import logging __all__ = ['BasePromptLearningDataset'] class BasePromptLearningDataset(Dataset): """ The base dataset class for prompt-tuning or p-tuning. TODO: (@adithyare) should be merged into GPTPromptLearningDataset """ def __init__( self, datasets, tokenizer, virtual_prompt_source: VirtualPromptSource, task_templates: dict, pseudo_tokens, pad_token_id: str, max_seq_length: int, min_seq_length: int = 1, add_bos: bool = False, add_eos: bool = True, for_train: bool = True, ): self.tokenizer = tokenizer self.virtual_prompt_source = virtual_prompt_source self.task_templates = task_templates self.pseudo_tokens = pseudo_tokens self.pseudo_token_ids = set(self.tokenizer.tokens_to_ids(self.pseudo_tokens)) self.pad_token_id = pad_token_id self.max_seq_length = max_seq_length self.min_seq_length = min_seq_length self.add_bos = add_bos self.add_eos = add_eos self.for_train = for_train self.examples = [] assert self.min_seq_length <= max_seq_length, "Min sequence length should be less than or equal to max" assert self.max_seq_length > 0, "Max sequence length should be greater than 0" logging.info("Loading and tokenizing dataset ... ") # Datasets is just a list of json dicts if isinstance(datasets[0], dict): self.load_data(datasets) # Datasets are a list of file path strings to .json or .jsonl files elif isinstance(datasets[0], str): for path in datasets: dataset = open(path, 'r', encoding='utf-8') self.load_data(dataset) else: raise ValueError("Datasets must be a list of dicts or a list of filepath strings") def _insert_virtual_token_placeholders(self, input_example, virtual_token_splits): """ Insert the correct number of pseudo tokens at the <|VIRTUAL_PROMPT_n|> markers """ total_inserted_tokens = 0 for idx in range(len(virtual_token_splits)): split_start = total_inserted_tokens split_end = total_inserted_tokens + virtual_token_splits[idx] pseudo_tokens_for_split = "".join(self.pseudo_tokens[split_start:split_end]) input_example = input_example.replace(f'<|VIRTUAL_PROMPT_{idx}|>', pseudo_tokens_for_split) total_inserted_tokens = split_end return input_example def _truncate_input(self, truncation_field, input_ids, taskname, doc, total_virtual_tokens=0): """ Try to truncate input text to fit into the max sequence length """ logging.info( f"Input greater than max sequence length. Attempting to truncate: '{truncation_field}' in task: '{taskname}'" ) # Truncate the text ids in this part of input to try and fit max sequence length if truncation_field is not None and truncation_field in doc.keys(): truncation_length = len(input_ids) - self.max_seq_length field_text = doc[truncation_field] field_text = self._add_leading_space(taskname, truncation_field, field_text) # Truncate field text field_text_ids = self.tokenizer.text_to_ids(field_text) truncated_text_ids = field_text_ids[: -min(truncation_length, len(field_text_ids))] # Replace original text ids with truncated text ids field_start, field_end = find_subsequence_location(input_ids, field_text_ids) input_ids = input_ids[:field_start] + truncated_text_ids + input_ids[field_end + 1 :] else: if not self.for_train: # Hack alert! Slash and burn # @TODO (@adithyare) need a more graceful truncation here, we should not skip examples in test input_ids = ( input_ids[:total_virtual_tokens] + input_ids[total_virtual_tokens:][-self.max_seq_length + total_virtual_tokens :] ) return input_ids def _add_leading_space(self, taskname, field_name, field_text): """ Add leading space to text if there is a space before it in the template """ prompt_template = self.task_templates[taskname]["prompt_template"] field_text_start = prompt_template.find("{" + field_name + "}") if field_text_start != 0 and prompt_template[field_text_start - 1] == " ": field_text = " " + field_text return field_text def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx] def _input_sanity_checks( self, total_virtual_tokens, virtual_token_splits, prompt_template, prompt_template_fields, truncation_field, answer_field, doc, answer_only_loss=None, ): # Sanity check amount of virtual token assert ( total_virtual_tokens < self.max_seq_length ), "virtual prompt tokens should not exceed max sequence length" # Make sure virtual token splits add up to the total number of virtual tokens assert ( sum(virtual_token_splits) == total_virtual_tokens ), "Sum of prompt token split values must equal total number of prompt tokens" # Make sure number of virtual prompt locations match the number of virtual prompt splits assert prompt_template.count('<|VIRTUAL_PROMPT_') == len( virtual_token_splits ), "The number of '<|VIRTUAL_PROMPT_n|>' markers and the number of prompt token splits must match" # Check if input example has fields not present in template keys_not_in_template = list(set(doc.keys()) - set(prompt_template_fields) - set(['taskname'])) assert ( len(keys_not_in_template) == 0 ), f"Examples in your dataset contain the fields: {keys_not_in_template} that are not in the task template." # Check answer field if self.for_train: assert answer_field is not None, "An answer_field must be given" assert answer_field in doc.keys(), f"The given answer_field '{answer_field}' is not in data json" assert truncation_field != answer_field, "Answer field and truncation field should not match" answer_placeholder = "{" + answer_field + "}" answer_placeholder_len = len(answer_placeholder) placeholder_start = len(prompt_template) - answer_placeholder_len assert prompt_template[placeholder_start:] == answer_placeholder, "Answer field must be at prompt end" def pad_taskname_ids(self, taskname_ids): # Pad taskname_ids to be the same length for the prompt encoder if self.virtual_prompt_source == VirtualPromptSource.PROMPT_ENCODER: max_taskname_length = max(len(ids) for ids in taskname_ids) taskname_ids = [ids + [self.pad_token_id] * (max_taskname_length - len(ids)) for ids in taskname_ids] taskname_ids = torch.tensor(taskname_ids) # Task ids are just used for a look up embeddings for prompt-table elif self.virtual_prompt_source == VirtualPromptSource.NO_PROMPT: taskname_ids = torch.tensor(taskname_ids) return taskname_ids def find_subsequence_location(sequence, subsequence): """ Finds the start and end index of the first occurance of a given subsequence within a larger list. Returns the two indices corresponding to the postition of the first and last token of the subseqeunce. Assumes subsequence is known to be in sequence. """ assert len(sequence) >= len(subsequence), "subsequence too long" start_idx = None next_subseq_token = subsequence[0] next_subsequence_idx = 1 for seq_idx, token in enumerate(sequence): if token == next_subseq_token: if start_idx is None: start_idx = seq_idx if next_subsequence_idx == len(subsequence): end_idx = seq_idx return start_idx, end_idx else: next_subseq_token = subsequence[next_subsequence_idx] next_subsequence_idx += 1 else: start_idx = None next_subseq_token = subsequence[0] next_subsequence_idx = 1 raise ValueError("Subsequence not found in sequence")
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/base_prompt_learning_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RETRO Style dataset.""" import os from typing import List import numpy as np import torch from nemo.collections.nlp.data.language_modeling.megatron.base_dataset_utils import ( get_datasets_weights_and_num_samples, get_train_valid_test_split_, ) from nemo.collections.nlp.data.language_modeling.megatron.blendable_dataset import BlendableDataset from nemo.collections.nlp.data.language_modeling.megatron.gpt_dataset import ( _build_index_mappings, get_indexed_dataset_, ) from nemo.collections.nlp.data.language_modeling.megatron.indexed_retrieval_dataset import ( KNNIndex, MMapRetrievalIndexedDataset, ) from nemo.core import Dataset from nemo.utils import logging try: from megatron.core import parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False __all__ = [ "RETRODataset", "build_train_valid_test_datasets", "MockRETRODataset", "build_mock_train_valid_test_datasets", ] class RETRODataset(Dataset): """ Dataset for RETRO model. It constructs single data record from the training/retrieval indexed retrieval dataset and knn index file. The KNN index file maps data chunk id to K-nearest neighbors in the the retrieval dataset chunk ids. First, it loads a long sequence (2048) from training dataset. Then for each chunk in the sequence, it finds the kNN chunks from the retrieval dataset using the KNN index. Lastly, compute the masks based on pad id. """ def __init__( self, cfg, trainer, tokenizer, name: str, data_prefix: str, documents, # document ids in the indexed_dataset used for this dataset indexed_dataset: MMapRetrievalIndexedDataset, num_samples: int, # number of data samples, max_steps * global_batch_size seq_length: int, # input seq length seed: int, knn_index: KNNIndex, retrieval_index: MMapRetrievalIndexedDataset, ): if not HAVE_MEGATRON_CORE: raise ImportError( "megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) super().__init__() self.name = name self.indexed_dataset: MMapRetrievalIndexedDataset = indexed_dataset self.knn_index: KNNIndex = knn_index self.retrieval_index: MMapRetrievalIndexedDataset = retrieval_index self.chunk_size = self.indexed_dataset.chunk_size # make sure seq_length is a multiple of chunk_size assert seq_length % self.chunk_size == 0 # Checks assert np.min(documents) >= 0 assert np.max(documents) < indexed_dataset.sizes.shape[0] self.eos_id = tokenizer.eos_id self.pad_id = tokenizer.pad_id assert self.retrieval_index._index.retrieval_db self._validate_pad_id() # save index mappings to a configurable dir self.index_mapping_dir = cfg.data.get('index_mapping_dir', None) self.neighbors = cfg.data.get('neighbors', self.knn_index.K) # the number of neighbors cannot exceed the max number of neighbors in the index assert self.neighbors <= self.knn_index.K # create index_mapping_dir on rank 0 if torch.distributed.is_available() and torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: if self.index_mapping_dir is not None and not os.path.isdir(self.index_mapping_dir): os.makedirs(self.index_mapping_dir) torch.distributed.barrier() # Build index mappings. self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings( self.name, data_prefix, documents, self.indexed_dataset.sizes, num_samples, seq_length, seed, index_mapping_dir=self.index_mapping_dir, ) if len(self.doc_idx) > np.iinfo('int32').max: raise "number of epochs exceeds the maximum number for int32 used by sample_idx" self.padding_context = np.ones(2 * self.chunk_size, dtype=self.retrieval_index._index.dtype) * self.pad_id def _validate_pad_id(self): # validate the pad_id matches the dataset pad_id ptr, size = self.retrieval_index._index[0] ptr += size * np.dtype(self.retrieval_index._index.dtype).itemsize # padded chunk_size of pad_ids at the end of the doc retrieval_paddings = np.frombuffer( self.retrieval_index._bin_buffer, dtype=self.retrieval_index._index.dtype, count=self.chunk_size, offset=ptr, ) assert (retrieval_paddings == self.pad_id).all() ptr, size = self.indexed_dataset._index[0] ptr += (size - 1) * np.dtype(self.indexed_dataset._index.dtype).itemsize data_paddings = np.frombuffer( self.indexed_dataset._bin_buffer, dtype=self.indexed_dataset._index.dtype, count=1, offset=ptr ) # the last element is either a padding or an eos assert (data_paddings == self.pad_id).all() or (data_paddings == self.eos_id).all() def __len__(self): # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) return self.sample_idx.shape[0] - 1 def _get_chunks(self, chunk_id: int, num_chunks: int, chunks: List): """ starting from chunk_id, loop for num_chunks, get the KNN chunk ids from retrieval dataset, and get the chunk token ids, put them into the chunks list """ for i in range(chunk_id, chunk_id + num_chunks): knn = self.knn_index.get_KNN_chunk_ids(i) for rid in knn[: self.neighbors]: if rid < 0: # no neighbor, just pad it one_chunk = self.padding_context else: one_chunk = self.retrieval_index.get_chunk(rid) chunks.append(one_chunk) def _get_text(self, idx: int) -> np.ndarray: # Get the shuffled index. idx = self.shuffle_idx[idx] # Start and end documents and offsets. doc_index_f = self.sample_idx[idx][0] doc_index_l = self.sample_idx[idx + 1][0] offset_f = self.sample_idx[idx][1] offset_l = self.sample_idx[idx + 1][1] # If we are within the same document, just extract the chunk. if doc_index_f == doc_index_l: sample = self.indexed_dataset.get( self.doc_idx[doc_index_f], offset=offset_f, length=offset_l - offset_f + 1 ) chunk_id = self.indexed_dataset.get_chunk_id(self.doc_idx[doc_index_f], offset_f) num_chunks = (offset_l - offset_f) // self.chunk_size chunks = [] self._get_chunks(chunk_id, num_chunks, chunks) chunks = np.stack(chunks, axis=0).reshape(num_chunks, self.neighbors, -1).astype(np.int64) else: # Otherwise, get the rest of the initial document. sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f], offset=offset_f)] num_chunks = (self.indexed_dataset._index.sizes[self.doc_idx[doc_index_f]] - offset_f) // self.chunk_size total_chunks = num_chunks chunks = [] chunk_id = self.indexed_dataset.get_chunk_id(self.doc_idx[doc_index_f], offset_f) self._get_chunks(chunk_id, num_chunks, chunks) # Loop over all in between documents and add the entire document. for i in range(doc_index_f + 1, doc_index_l): sample_list.append(self.indexed_dataset.get(self.doc_idx[i])) chunk_id = self.indexed_dataset.get_chunk_id(self.doc_idx[i], 0) num_chunks = self.indexed_dataset._index.sizes[self.doc_idx[i]] // self.chunk_size total_chunks += num_chunks self._get_chunks(chunk_id, num_chunks, chunks) # And finally add the relevant portion of last document. chunk_id = self.indexed_dataset.get_chunk_id(self.doc_idx[doc_index_l], 0) num_chunks = (offset_l) // self.chunk_size total_chunks += num_chunks self._get_chunks(chunk_id, num_chunks, chunks) sample_list.append(self.indexed_dataset.get(self.doc_idx[doc_index_l], length=offset_l + 1)) sample = np.concatenate(sample_list) chunks = np.stack(chunks, axis=0).reshape(total_chunks, self.neighbors, -1).astype(np.int64) return sample.astype(np.int64), chunks def __getitem__(self, idx): text, retrieved = self._get_text(idx) text = torch.from_numpy(text) retrieved = torch.from_numpy(retrieved) tokens = text[:-1].contiguous() labels = text[1:].contiguous() hidden_mask = tokens != self.pad_id context_mask = retrieved != self.pad_id return { 'tokens': tokens, 'labels': labels, 'tokens_mask': hidden_mask, 'loss_mask': hidden_mask, 'retrieved_emb_mask': context_mask, 'retrieved_ids': retrieved, } def build_train_valid_test_datasets( cfg, trainer, data_prefix: List[str], data_impl: str, splits_string: str, train_valid_test_num_samples, seq_length: int, seed: int, skip_warmup: bool, tokenizer, retrieval_prefix: str, knn_map_path: List[str], ): """Build train, valid, and test RETRO datasets. There is one to one mapping between data_prefix and knn_map_path. Currently only supports one retrieval dataset. """ # make sure there is one to one mapping between data_prefix and knn_map_path assert len(data_prefix) == len(knn_map_path) # Single dataset. if len(data_prefix) == 1: return _build_train_valid_test_datasets( cfg, trainer, data_prefix[0], data_impl, splits_string, train_valid_test_num_samples, seq_length, seed, skip_warmup, tokenizer, retrieval_prefix, knn_map_path[0], ) # Blending dataset. # Parse the values. output = get_datasets_weights_and_num_samples(data_prefix, train_valid_test_num_samples) prefixes, weights, datasets_train_valid_test_num_samples = output train_n, valid_n, test_n = map(sum, zip(*datasets_train_valid_test_num_samples)) # Build individual datasets. train_datasets = [] valid_datasets = [] test_datasets = [] for i in range(len(prefixes)): train_ds, valid_ds, test_ds = _build_train_valid_test_datasets( cfg, trainer, prefixes[i], data_impl, splits_string, datasets_train_valid_test_num_samples[i], seq_length, seed, skip_warmup, tokenizer, retrieval_prefix, knn_map_path[i], ) if train_ds: train_datasets.append(train_ds) if valid_ds: valid_datasets.append(valid_ds) if test_ds: test_datasets.append(test_ds) # Blend. blending_train_dataset = None if train_datasets: blending_train_dataset = BlendableDataset(train_datasets, weights, train_n) blending_valid_dataset = None if valid_datasets: blending_valid_dataset = BlendableDataset(valid_datasets, weights, valid_n) blending_test_dataset = None if test_datasets: blending_test_dataset = BlendableDataset(test_datasets, weights, test_n) return (blending_train_dataset, blending_valid_dataset, blending_test_dataset) def _build_train_valid_test_datasets( cfg, trainer, data_prefix: str, data_impl: str, splits_string: str, train_valid_test_num_samples, seq_length: int, seed: int, skip_warmup: bool, tokenizer, retrieval_prefix: str, knn_map_path: str, ): """Build train, valid, and test datasets.""" # Indexed dataset. indexed_dataset: MMapRetrievalIndexedDataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup) knn_index: KNNIndex = KNNIndex(knn_map_path, skip_warmup) retrieval_index: MMapRetrievalIndexedDataset = get_indexed_dataset_(retrieval_prefix, data_impl, skip_warmup) total_num_of_documents = indexed_dataset.sizes.shape[0] splits = get_train_valid_test_split_(splits_string, total_num_of_documents) # Print stats about the splits. logging.info(' > dataset split:') def print_split_stats(name, index): logging.info(' {}:'.format(name)) logging.info( ' document indices in [{}, {}) total of {} ' 'documents'.format(splits[index], splits[index + 1], splits[index + 1] - splits[index]) ) print_split_stats('train', 0) print_split_stats('validation', 1) print_split_stats('test', 2) def build_dataset(index, name): dataset = None if splits[index + 1] > splits[index]: documents = np.arange(start=splits[index], stop=splits[index + 1], step=1, dtype=np.int32) dataset = RETRODataset( cfg, trainer, tokenizer, name, data_prefix, documents, indexed_dataset, train_valid_test_num_samples[index], seq_length, seed, knn_index, retrieval_index, ) return dataset train_dataset = build_dataset(0, 'train') valid_dataset = build_dataset(1, 'valid') test_dataset = build_dataset(2, 'test') return (train_dataset, valid_dataset, test_dataset) class MockRETRODataset(torch.utils.data.Dataset): def __init__(self, cfg, trainer, tokenizer, name, size): super().__init__() self.name = name self.tokenizer = tokenizer self._cfg = cfg self.size = size seed_val = parallel_state.get_data_parallel_rank() * 131 + 97 torch.manual_seed(seed_val) def __len__(self): return self.size def __getitem__(self, idx): vocab_size = self.tokenizer.vocab_size neighbors = self._cfg.data.neighbors input_length = self._cfg.data.seq_length chunks = input_length // self._cfg.chunk_size chunk_size = self._cfg.chunk_size pad_id = self.tokenizer.pad_id all_tokens = torch.randint(0, vocab_size, (input_length + 1,)) # make sure the eod happens at the end of each chunk, can add paddings to it # e.g. [..., id, id, pad, pad, pad, eod] each has chunk_size, each sentence # has length of multiple of chunk_size hidden = all_tokens[:-1] labels = all_tokens[1:] hidden_mask = hidden != pad_id # to mask out the token ids [id, id, eod, id, pad, eod, id, id] # so attention is not across eod, mask should be: # [false, true, true, true, true, true, true, true] # [false, false, true, true, true, true, true, true] # [false, false, false,true, true, true, true, true] # [true, true, true, false, true, true, true, true] # [true, true, true, true, true, true, true, true] # [true, true, true, false, true, false, true, true] # [true, true, true, true, true, true, false, true] # [true, true, true, true, true, true, false, false] retrieved = torch.randint(0, vocab_size, (chunks, neighbors, 2 * chunk_size)) context_mask = retrieved != pad_id return { 'tokens': hidden, 'labels': labels, 'tokens_mask': hidden_mask, 'loss_mask': hidden_mask, 'retrieved_emb_mask': context_mask, 'retrieved_ids': retrieved, } def build_mock_train_valid_test_datasets( cfg, trainer, splits_string, tokenizer, mock_data_size, ): """Build train, valid, and test datasets.""" splits = get_train_valid_test_split_(splits_string, mock_data_size) # Print stats about the splits. logging.info(' > dataset split:') def print_split_stats(name, index): logging.info(' {}:'.format(name)) logging.info( ' document indices in [{}, {}) total of {} ' 'documents'.format(splits[index], splits[index + 1], splits[index + 1] - splits[index]) ) print_split_stats('train', 0) print_split_stats('validation', 1) print_split_stats('test', 2) def build_dataset(index, name): dataset = None if splits[index + 1] > splits[index]: dataset = MockRETRODataset(cfg, trainer, tokenizer, name, splits[index + 1] - splits[index],) return dataset train_dataset = build_dataset(0, 'train') valid_dataset = build_dataset(1, 'valid') test_dataset = build_dataset(2, 'test') return (train_dataset, valid_dataset, test_dataset)
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/retro_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Blendable dataset.""" import time import numpy as np import torch from nemo.utils import logging from nemo.utils.app_state import AppState class BlendableDataset(torch.utils.data.Dataset): def __init__(self, datasets, weights, size): self.datasets = datasets num_datasets = len(datasets) assert num_datasets == len(weights) self.size = size # Normalize weights. weights = np.array(weights, dtype=np.float64) sum_weights = np.sum(weights) assert sum_weights > 0.0 weights /= sum_weights # Build indecies. start_time = time.time() assert num_datasets < 255 self.dataset_index = np.zeros(self.size, dtype=np.uint8) self.dataset_sample_index = np.zeros(self.size, dtype=np.int64) app_state = AppState() try: if app_state.local_rank == 0: from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import compile_helper compile_helper() torch.distributed.barrier() from nemo.collections.nlp.data.language_modeling.megatron import helpers except ImportError: raise ImportError( f'Could not compile megatron dataset C++ helper functions and therefore cannot import helpers python file.' ) helpers.build_blending_indices( self.dataset_index, self.dataset_sample_index, weights, num_datasets, self.size, torch.distributed.get_rank() == 0, ) logging.info( '> elapsed time for building blendable dataset indices: ' '{:.2f} (sec)'.format(time.time() - start_time) ) def __len__(self): return self.size def __getitem__(self, idx): dataset_idx = self.dataset_index[idx] sample_idx = self.dataset_sample_index[idx] return self.datasets[dataset_idx][sample_idx] def create_data_mmap(self): for dataset in self.datasets: dataset.create_data_mmap() class MemoryEfficientBlendableDataset(torch.utils.data.Dataset): """ A BlendableDataset implementation that uses less memory than the original implementation. Indices are computed algorithmically instead of storing them in memory. To test call: MemoryEfficientBlendableDataset.test_index_blending() """ def __init__(self, datasets, weights, size, weight_bins=100): self.datasets = datasets num_datasets = len(datasets) assert num_datasets == len(weights) weight_bins = min(weight_bins, size) self.size = size self.weight_bins = weight_bins # Normalize weights. weights = np.array(weights, dtype=np.float64) assert (weights > 0.0).all() sum_weights = np.sum(weights) assert sum_weights > 0.0 self.weights = weights / sum_weights # create ds index based on weights ds_index = [] ds_bias = [] for i, w in enumerate(self.weights): n = int(w * weight_bins) ds_index.extend([i] * n) ds_bias.extend(range(n)) # make sure arrays have length of weight_bins n = weight_bins - len(ds_index) ds_index.extend([i] * n) ds_bias.extend(range(ds_bias[-1], ds_bias[-1] + n)) self.ds_index = np.array(ds_index, dtype=np.uint32) self.ds_index_size = np.array([(self.ds_index == i).sum() for i in range(num_datasets)], dtype=np.uint32) assert ( self.ds_index_size > 0 ).all(), f"Some datasets have no samples in the blendable dataset, increase weight_bins or the offending weight. ds_index_size = {self.ds_index_size}" self.ds_bias = np.array(ds_bias, dtype=np.uint32) self.ds_size = np.array([len(ds) for ds in datasets], dtype=np.uint32) def get_ds_sample_idx(self, idx): """Returns ds index and sample index (within the ds) for the given index in the blendable dataset.""" bin = idx % self.weight_bins ds_idx = self.ds_index[bin] sample_idx = (self.ds_bias[bin] + (idx // self.weight_bins) * self.ds_index_size[ds_idx]) % self.ds_size[ ds_idx ] return ds_idx, sample_idx def __len__(self): return self.size def __getitem__(self, idx): ds_idx, sample_idx = self.get_ds_sample_idx(idx) return self.datasets[ds_idx][sample_idx] @classmethod def test_index_blending(cls): """Visualize indices of blended dataset""" import matplotlib.pyplot as plt plt.ion() class DS(torch.utils.data.Dataset): def __init__(self, size, data): self.size = size self.data = data def __len__(self): return self.size def __getitem__(self, idx): return self.data[idx] for weight_bins in [10, 100]: blend_ds = MemoryEfficientBlendableDataset( [DS(10, "a"), DS(10, "b"), DS(10, "c")], [0.5, 0.3, 0.2], 50, weight_bins=weight_bins ) ds_sample_idx_list = [blend_ds.get_ds_sample_idx(i) for i in range(50)] ds_list = list(zip(*ds_sample_idx_list))[0] sample_list = list(zip(*ds_sample_idx_list))[1] plt.figure() plt.plot(ds_list, label="ds idx") plt.plot(sample_list, label="sample") plt.legend() plt.grid() plt.title(f"weight_bins={weight_bins}")
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/blendable_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from nemo.collections.nlp.data.language_modeling.megatron.gpt_dataset import GPTDataset from nemo.collections.nlp.data.language_modeling.megatron.length_distribution_type import LengthDistribution class T5LMAdaptedDataset(GPTDataset): """ Dataset for unlearning span corruption (https://arxiv.org/abs/2104.08691) in T5 models. Corresponds to the prefix-LM objective in the T5 paper (Table 3 in https://arxiv.org/abs/1910.10683). """ def __init__( self, cfg, trainer, tokenizer, name, data_prefix, documents, indexed_dataset, num_samples, seed, max_seq_length_encoder, max_seq_length_decoder, **kwargs, ): self.max_seq_length_encoder = max_seq_length_encoder self.max_seq_length_decoder = max_seq_length_decoder self.seed = seed self.tokenizer = tokenizer super().__init__( cfg, trainer, tokenizer, name, data_prefix, documents, indexed_dataset, num_samples, self.max_seq_length_encoder + self.max_seq_length_decoder + 1, # +1 because the decoder sequence gets truncated by one due to shifting to for teacher-forcing. seed, ) @classmethod def get_prefix_lm_sample( cls, sample, max_seq_length_encoder, max_seq_length_decoder, np_rng, tokenizer, pivot_mean=0.25, pivot_distribution=LengthDistribution.uniform, add_eos=False, ): # get random split index if pivot_distribution == LengthDistribution.truncated_normal and (pivot_mean < 0.0 or pivot_mean > 1.0): raise ValueError( f"Invalid pivot_mean: {pivot_mean}. Must be in [0.0, 1.0]. It is a fraction of the encoder sequence length." ) # 1) If the sample is larger than max encoder sequence length, use max encoder sequence length # 2) Otherwwise use sample length - 1 so that there is at least one token on the decoder. max_split_idx = min(len(sample) - 1, max_seq_length_encoder) if pivot_distribution == LengthDistribution.uniform: split_idx = np_rng.randint(0, max_split_idx) elif pivot_distribution == LengthDistribution.truncated_normal: loc = pivot_mean * max_split_idx split_idx = np.clip(int(np_rng.normal(loc=loc, scale=loc)), 0, max_split_idx,) else: raise ValueError(f"Invalid pivot_distribution: {pivot_distribution}") # Encoder inputs get truncated based on the split indx tokens_enc = np.concatenate( [sample[:split_idx], [tokenizer.pad_id] * (max_seq_length_encoder - split_idx)] ).astype(np.int64) # The decoder sequence is never truncated and is always of max decoder length. offset = 1 if add_eos else 0 tokens_dec = sample[split_idx : split_idx + max_seq_length_decoder - offset] # NOTE: Add bos only and not eos because the model will always generate till max seq length. example = np.concatenate([[tokenizer.bos_id], tokens_dec]) if add_eos: example = np.concatenate([example, [tokenizer.eos_id]]) # Example can be + 1 over sequence length at this point since we'll be shifting by 1 to create the inputs and outputs to the decoder. assert len(example) <= max_seq_length_decoder + 1 tokens_dec = np.concatenate( [example, [tokenizer.pad_id] * (max_seq_length_decoder - len(example) + 1)] ).astype(np.int64) # Shift sequences for teacher forcing tokens_dec_in = tokens_dec[:-1] labels = tokens_dec[1:] # Create attention masks enc_mask = (tokens_enc != tokenizer.pad_id).astype(np.int64) dec_mask = (tokens_dec_in != tokenizer.pad_id).astype(np.int64) loss_mask = dec_mask train_sample = { 'text_enc': tokens_enc, 'text_dec': tokens_dec_in, 'labels': labels, 'loss_mask': loss_mask, 'enc_mask': enc_mask, 'dec_mask': dec_mask, } return train_sample def __getitem__(self, idx): text = super()._get_text(idx) np_rng = np.random.RandomState(seed=(self.seed + idx)) sample = T5LMAdaptedDataset.get_prefix_lm_sample( sample=text, max_seq_length_encoder=self.max_seq_length_encoder, max_seq_length_decoder=self.max_seq_length_decoder, np_rng=np_rng, tokenizer=self.tokenizer, pivot_distribution=LengthDistribution.uniform, ) return sample
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/lm_adapted_t5_dataset.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pickle import torch from tqdm.auto import tqdm from nemo.collections.nlp.modules.common import VirtualPromptSource from nemo.collections.nlp.modules.common.megatron.utils import build_position_ids from nemo.core import Dataset from nemo.utils import AppState, logging __all__ = ['GPTPromptLearningDataset'] class GPTPromptLearningDataset(Dataset): """ The dataset class for prompt-tuning or p-tuning pretrained GPT models. Args: data (list[strings], list[dicts]): (1) paths to .jsonl or .json files, (2) dict objects corresponding to each input example tokenizer (tokenizer): Tokenizer from frozen language model virtual_prompt_source (Enum): Either VirtualPromptSource.NO_PROMPTS or VirtualPromptSource.PROMPT_ENCODER task_templates (dict): Dictionary containing all task template information needed to format prompts. Created in the GPTPromptLearningModel class. pseudo_tokens (list[strings]): A list of virtual prompt token placeholders e.g [<prompt_1>, <prompt_2>, ...] up to max num virtual tokens pad_token_id (int): ID of pad token from tokenizer max_seq_length (int): maximum sequence length for each dataset examples. Examples will either be truncated to fit this length or dropped if they cannot be truncated. min_seq_length (int): min length of each data example in the dataset. Data examples will be dropped if they do not meet the min length requirements. add_bos (bool): Whether to add a beginning of sentence token to each data example add_eos (bool): Whether to add an end of sentence token to each data example for_train (bool): Whether you're creating a dataset for training or inference tokens_to_generate (int): (inference only) Number of tokens to generate during inference """ def __init__( self, data, tokenizer, virtual_prompt_source: VirtualPromptSource, task_templates: dict, pseudo_tokens, pad_token_id: int, max_seq_length: int, min_seq_length: int = 1, add_bos: bool = False, add_eos: bool = True, for_train: bool = True, tokens_to_generate=None, cache_data_path: str = None, # the cache file load_cache: bool = True, # whether to load from the cache if it is available ): self.tokenizer = tokenizer self.virtual_prompt_source = virtual_prompt_source self.task_templates = task_templates self.pseudo_tokens = pseudo_tokens self.pseudo_token_ids = set(self.tokenizer.tokens_to_ids(self.pseudo_tokens)) self.pad_token_id = pad_token_id self.max_seq_length = max_seq_length self.min_seq_length = min_seq_length self.add_bos = add_bos self.add_eos = add_eos self.for_train = for_train self.examples = [] if not self.for_train: self.tokens_to_generate = tokens_to_generate assert self.min_seq_length <= max_seq_length, "Min sequence length should be less than or equal to max" assert self.max_seq_length > 0, "Max sequence length should be greater than 0" logging.info("Loading and tokenizing dataset ... ") if load_cache and cache_data_path is not None and os.path.exists(cache_data_path): # load it from the cache logging.info(f'load the data from the cache file {cache_data_path}') with open(cache_data_path, 'rb') as f: self.examples = pickle.load(f) else: # Data is just a list of dicts already loaded from a json file or passed in directly as a dict if isinstance(data[0], dict): self.load_data(data) # Datasets are a list of file path strings to .json or .jsonl files elif isinstance(data[0], str): for path in data: dataset = open(path, 'r', encoding='utf-8') self.load_data(dataset) else: raise ValueError("Datasets must be a list of filepath strings or a list of data example dicts") if cache_data_path is not None: # the first worker save the results into the cache file app_state = AppState() if app_state._global_rank == 0: with open(cache_data_path, 'wb') as f: pickle.dump(self.examples, f) logging.info(f'save the data to the cache file {cache_data_path}') def load_data(self, dataset): """ Loads a dataset by filling in the task templates specified in the config file with the information from each training/inference example. Converts all input text into token ids. Also replaces the <|VIRTUAL_PROMPT_#|> placeholders in the task templates with the actual virtual prompt token ids. params: dataset: A list of json objects or a dictionary objects each containing the information needed for a training example """ skipped = 0 for json_line in tqdm(dataset): # Read example dict or load the information for a single example from .json file if type(json_line) == dict: doc = json_line else: doc = json.loads(json_line) taskname = doc["taskname"] prompt_template = self.task_templates[taskname]["prompt_template"] prompt_template_fields = self.task_templates[taskname]["prompt_template_fields"] total_virtual_tokens = self.task_templates[taskname]["total_virtual_tokens"] virtual_token_splits = self.task_templates[taskname]["virtual_token_splits"] truncation_field = self.task_templates[taskname]['truncate_field'] answer_only_loss = self.task_templates[taskname]["answer_only_loss"] answer_field = self.task_templates[taskname]["answer_field"] input_example = prompt_template self._input_sanity_checks( total_virtual_tokens, virtual_token_splits, prompt_template, prompt_template_fields, truncation_field, answer_only_loss, answer_field, doc, ) # Format the input example according to the template input_example = self._insert_text_in_template(input_example, prompt_template_fields, doc) input_example = self._insert_virtual_token_placeholders(input_example, virtual_token_splits) input_ids = self.tokenizer.text_to_ids(input_example) # Add BOS/EOS if desired, adds EOS by default if self.add_bos: input_ids = [self.tokenizer.bos_id] + input_ids if self.add_eos: input_ids = input_ids + [self.tokenizer.eos_id] # Try to truncate input text to fit into the max sequence length if len(input_ids) > self.max_seq_length: input_ids = self._truncate_input( truncation_field, input_ids, taskname, doc, prompt_template, prompt_template_fields, virtual_token_splits, ) # Skip example if the final length doesn't fit length requirements even after truncation if self.min_seq_length <= len(input_ids) <= self.max_seq_length: if self.virtual_prompt_source == VirtualPromptSource.PROMPT_ENCODER: taskname_id = self.tokenizer.text_to_ids(taskname) elif self.virtual_prompt_source == VirtualPromptSource.NO_PROMPT: taskname_id = -1 else: raise ValueError("Invalid virtual prompt source specified") # Find answer field indices if training and answer_only_loss is True answer_start_idx = None if answer_only_loss and self.for_train: answer_start_idx = self._find_answer_start(taskname, input_ids, answer_field, doc) self.examples.append((taskname_id, input_ids, answer_start_idx)) else: skipped += 1 logging.info(f'Skipped {skipped} sentences, sequence length too short or too long even after truncation') def _input_sanity_checks( self, total_virtual_tokens, virtual_token_splits, prompt_template, prompt_template_fields, truncation_field, answer_only_loss, answer_field, doc, ): # Sanity check amount of virtual token assert ( total_virtual_tokens < self.max_seq_length ), "virtual prompt tokens should not exceed max sequence length" # Make sure virtual token splits add up to the total number of virtual tokens assert ( sum(virtual_token_splits) == total_virtual_tokens ), "Sum of prompt token split values must equal total number of prompt tokens" # Make sure number of virtual prompt locations match the number of virtual prompt splits assert prompt_template.count('<|VIRTUAL_PROMPT_') == len( virtual_token_splits ), "The number of '<|VIRTUAL_PROMPT_n|>' markers and the number of prompt token splits must match" # Check if input example has fields not present in template keys_not_in_template = list(set(doc.keys()) - set(prompt_template_fields) - set(['taskname'])) assert ( len(keys_not_in_template) == 0 ), f"Examples in your dataset contain the fields: {keys_not_in_template} that are not in the task template." # Answer field checks if answer_only_loss and self.for_train: assert answer_field is not None, "If answer_only_loss=True, an answer_field must be given" assert ( answer_field in doc.keys() ), f"answer_only_loss=True but the given answer_field '{answer_field}' is not in data json" assert truncation_field != answer_field, "Answer field and truncation field should not match" answer_placeholder = "{" + answer_field + "}" answer_placeholder_len = len(answer_placeholder) placeholder_start = len(prompt_template) - answer_placeholder_len assert prompt_template[placeholder_start:] == answer_placeholder, "Answer field must be at prompt end" def _insert_text_in_template(self, input_example, prompt_template_fields, doc): """ Format the input example according to the template """ for field in prompt_template_fields: if field in doc.keys(): field_text = doc[field] input_example = input_example.replace('{' + field + '}', field_text) # If some fields from the template aren't present, e.g. {answer} during inference # just remove that field from the template, leaving the space blank else: input_example = input_example.replace('{' + field + '}', "") return input_example.strip(" ") def _insert_virtual_token_placeholders(self, input_example, virtual_token_splits): """ Insert the correct number of pseudo tokens at the <|VIRTUAL_PROMPT_n|> markers """ total_inserted_tokens = 0 for idx in range(len(virtual_token_splits)): split_start = total_inserted_tokens split_end = total_inserted_tokens + virtual_token_splits[idx] pseudo_tokens_for_split = "".join(self.pseudo_tokens[split_start:split_end]) input_example = input_example.replace(f'<|VIRTUAL_PROMPT_{idx}|>', pseudo_tokens_for_split) total_inserted_tokens = split_end return input_example def _truncate_input( self, truncation_field, input_ids, taskname, doc, prompt_template, prompt_template_fields, virtual_token_splits ): """ Try to truncate input text to fit into the max sequence length """ logging.info( f"Input greater than max sequence length. Attempting to truncate: '{truncation_field}' in task: '{taskname}'" ) # Truncate the text ids in this part of input to try and fit max sequence length if truncation_field is not None and truncation_field in doc.keys(): truncation_length = (len(input_ids) - self.max_seq_length) + 1 field_text = doc[truncation_field] # Truncate field text field_text_ids = self.tokenizer.text_to_ids(field_text) truncated_text_ids = field_text_ids[: -min(truncation_length, len(field_text_ids))] truncated_field_text = self.tokenizer.ids_to_text(truncated_text_ids) doc[truncation_field] = truncated_field_text # Re-insert the truncated text string into the text prompt input_example = prompt_template input_example = self._insert_text_in_template(input_example, prompt_template_fields, doc) input_example = self._insert_virtual_token_placeholders(input_example, virtual_token_splits) # Re-tokenize the whole prompt input_ids = self.tokenizer.text_to_ids(input_example) return input_ids def _find_answer_start(self, taskname, input_ids, answer_field, doc): """ Find the token ids corresponding to the answer start, for loss masking purposes. Assumes the answer is always at the end of the prompt. """ answer_text = doc[answer_field] answer_text = self._add_leading_space(taskname, answer_field, answer_text) answer_text_ids = self.tokenizer.text_to_ids(answer_text) num_answer_text_ids = len(answer_text_ids) if self.add_eos: num_answer_text_ids += 1 answer_start_idx = len(input_ids) - num_answer_text_ids return answer_start_idx def _add_leading_space(self, taskname, field_name, field_text): """ Add leading space to text if there is a space before it in the template """ prompt_template = self.task_templates[taskname]["prompt_template"] field_text_start = prompt_template.find("{" + field_name + "}") if field_text_start != 0 and prompt_template[field_text_start - 1] == " ": field_text = " " + field_text return field_text def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx] def _ceil_to_nearest(self, n, m): return (n + m - 1) // m * m def collate_fn(self, batch, tp_workers=0): """ Prepares input_ids, labels, loss mask, attention_mask, and position ids for global batch """ taskname_ids, input_ids, answer_starts = zip(*batch) # Pad taskname_ids to be the same length for the prompt encoder if self.virtual_prompt_source == VirtualPromptSource.PROMPT_ENCODER: max_taskname_length = max(len(ids) for ids in taskname_ids) taskname_ids = [ids + [self.pad_token_id] * (max_taskname_length - len(ids)) for ids in taskname_ids] taskname_ids = torch.tensor(taskname_ids) # Task ids are just used for a look up embeddings for prompt-table elif self.virtual_prompt_source == VirtualPromptSource.NO_PROMPT: taskname_ids = torch.tensor(taskname_ids) # Get max sequence length of batch batch_max = max(len(ids) for ids in input_ids) if tp_workers > 1: # more sure the sequence length is multiply of number of tp_workers, needed for sequence parallel. resi_padding = (tp_workers - (batch_max - 1) % tp_workers) % tp_workers else: resi_padding = 0 batch_max += resi_padding ceil_batch_max = self._ceil_to_nearest( batch_max, 8 ) # @adithyare this padding does not conflict with the tp_workers padding above # since tp_workers is always a multiple of 2. the padding to multiple of 8 is to ensure an mem-optimized softmax is used. batch_max = ceil_batch_max + 1 input_ids, loss_mask = self.pad_batch_and_build_loss_mask(input_ids, batch_max, answer_starts) # Should be a label for every token in batch, label is the next token labels = input_ids[:, 1:].contiguous() input_ids = input_ids[:, :-1].contiguous() batch_max -= 1 # @adithyare I *think* this negatition is done to account for the above 2 lines which removes one item from the input_ids seq. # Loss mask should align with labels loss_mask = loss_mask[:, 1:].contiguous() # Using causal attention mask for whole input batch_size = len(input_ids) attention_mask = torch.tril(torch.ones((batch_size, batch_max, batch_max))).view( batch_size, 1, batch_max, batch_max ) # Convert attention mask from float to bool attention_mask = attention_mask < 0.5 position_ids = build_position_ids(input_ids) return input_ids, labels, loss_mask, position_ids, attention_mask, taskname_ids def pad_batch_and_build_loss_mask(self, input_ids, batch_max, answer_starts): """ Pad input_ids in batch to max batch length while building loss mask """ batch_loss_masks = [] padded_input_ids = [] for ids, answer_start_idx in zip(input_ids, answer_starts): if answer_start_idx is not None: # Loss mask where answer tokens are 1.0 and all other tokens are 0.0 loss_mask = [float(idx >= answer_start_idx) for idx in range(len(ids))] else: # Loss mask where virtual tokens are 0.0 and all other tokens are 1.0 loss_mask = [float(token_id not in self.pseudo_token_ids) for token_id in ids] # Pad to max length input_length = len(ids) padding_length = batch_max - input_length pad_extend = [self.pad_token_id] * padding_length ids = ids + pad_extend padded_input_ids.append(ids) # Account for padding in loss mask loss_mask.extend([0.0] * padding_length) batch_loss_masks.append(torch.tensor(loss_mask, dtype=torch.float)) # Make into torch tensors padded_input_ids = torch.tensor(padded_input_ids, dtype=torch.long) batch_loss_masks = torch.stack(batch_loss_masks) return padded_input_ids, batch_loss_masks def inference_collate_fn(self, batch): """ Used for loading inference data. """ task_id_nums, input_ids, answer_starts = zip(*batch) input_lengths = torch.cuda.LongTensor([len(inputs) for inputs in input_ids]) task_id_nums = torch.cuda.LongTensor(task_id_nums) batch_max = input_lengths.max().item() batch_max += self.tokens_to_generate input_ids, _ = self.pad_batch_and_build_loss_mask(input_ids, batch_max, answer_starts) input_ids = input_ids.cuda() input_ids = torch.cuda.LongTensor(input_ids) return task_id_nums, (input_ids, input_lengths)
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/gpt_prompt_learning_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT Style dataset.""" import os from typing import Any, Optional import numpy as np import torch from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import ( create_masked_lm_predictions, create_tokens_and_tokentypes, get_a_and_b_segments, get_samples_mapping, truncate_segments, ) from nemo.collections.nlp.data.language_modeling.megatron.indexed_dataset import MMapIndexedDataset class BertDataset(torch.utils.data.Dataset): def __init__( self, cfg: dict, name: str, indexed_dataset: MMapIndexedDataset, data_prefix: str, num_epochs: Optional[int], max_num_samples: int, masked_lm_prob: float, max_seq_length: int, short_seq_prob: float, seed: int, binary_head: bool, tokenizer: Any, ): # Params to store. self.name = name self.seed = seed self.masked_lm_prob = masked_lm_prob self.max_seq_length = max_seq_length self.binary_head = binary_head # Dataset. self.indexed_dataset = indexed_dataset # save index mappings to a configurable dir self.index_mapping_dir = cfg.data.get('index_mapping_dir', None) # create index_mapping_dir on rank 0 if torch.distributed.is_available() and torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: if self.index_mapping_dir is not None and not os.path.isdir(self.index_mapping_dir): os.makedirs(self.index_mapping_dir) torch.distributed.barrier() # Build the samples mapping. self.samples_mapping = get_samples_mapping( self.indexed_dataset, data_prefix, num_epochs, max_num_samples, self.max_seq_length - 3, # account for added tokens short_seq_prob, self.seed, self.name, self.binary_head, index_mapping_dir=self.index_mapping_dir, ) # Vocab stuff. self.vocab_id_list = list(tokenizer.ids_to_tokens.keys()) self.vocab_id_to_token_dict = tokenizer.ids_to_tokens self.cls_id = tokenizer.cls_token_id self.sep_id = tokenizer.sep_token_id self.mask_id = tokenizer.mask_token_id self.pad_id = tokenizer.pad_token_id def __len__(self): return self.samples_mapping.shape[0] def __getitem__(self, idx): start_idx, end_idx, seq_length = self.samples_mapping[idx] sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)] # Note that this rng state should be numpy and not python since # python randint is inclusive whereas the numpy one is exclusive. # We % 2**32 since numpy requres the seed to be between 0 and 2**32 - 1 np_rng = np.random.RandomState(seed=((self.seed + idx) % 2 ** 32)) return build_training_sample( sample, seq_length, self.max_seq_length, # needed for padding self.vocab_id_list, self.vocab_id_to_token_dict, self.cls_id, self.sep_id, self.mask_id, self.pad_id, self.masked_lm_prob, np_rng, self.binary_head, ) def build_training_sample( sample, target_seq_length, max_seq_length, vocab_id_list, vocab_id_to_token_dict, cls_id, sep_id, mask_id, pad_id, masked_lm_prob, np_rng, binary_head, whole_word_masking=True, skip_masking_id=None, ): """Biuld training sample. Arguments: sample: A list of sentences in which each sentence is a list token ids. target_seq_length: Desired sequence length. max_seq_length: Maximum length of the sequence. All values are padded to this length. vocab_id_list: List of vocabulary ids. Used to pick a random id. vocab_id_to_token_dict: A dictionary from vocab ids to text tokens. cls_id: Start of example id. sep_id: Separator id. mask_id: Mask token id. pad_id: Padding token id. masked_lm_prob: Probability to mask tokens. np_rng: Random number genenrator. Note that this rng state should be numpy and not python since python randint is inclusive for the opper bound whereas the numpy one is exclusive. whole_word_masking: Whether to mask only whole words instead of independent subwords. skip_mask_id: ID of a token that should not be masked. #TODO: make this a list of tokens. """ if binary_head: # We assume that we have at least two sentences in the sample assert len(sample) > 1 assert target_seq_length <= max_seq_length # Divide sample into two segments (A and B). if binary_head: tokens_a, tokens_b, is_next_random = get_a_and_b_segments(sample, np_rng) else: tokens_a = [] for j in range(len(sample)): tokens_a.extend(sample[j]) tokens_b = [] is_next_random = False # Truncate to `target_sequence_length`. max_num_tokens = target_seq_length truncated = truncate_segments(tokens_a, tokens_b, len(tokens_a), len(tokens_b), max_num_tokens, np_rng) # Build tokens and toketypes. tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b, cls_id, sep_id) # Masking. max_predictions_per_seq = masked_lm_prob * max_num_tokens (tokens, masked_positions, masked_labels, _, _) = create_masked_lm_predictions( tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob, cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng, whole_word_masking=whole_word_masking, skip_masking_id=skip_masking_id, ) # Padding. tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np = pad_and_convert_to_numpy( tokens, tokentypes, masked_positions, masked_labels, pad_id, max_seq_length ) train_sample = { 'text': tokens_np, 'types': tokentypes_np, 'labels': labels_np, 'is_random': int(is_next_random), 'loss_mask': loss_mask_np, 'padding_mask': padding_mask_np, 'truncated': int(truncated), } return train_sample def pad_and_convert_to_numpy(tokens, tokentypes, masked_positions, masked_labels, pad_id, max_seq_length): """Pad sequences and convert them to numpy.""" # Some checks. num_tokens = len(tokens) padding_length = max_seq_length - num_tokens assert padding_length >= 0 assert len(tokentypes) == num_tokens assert len(masked_positions) == len(masked_labels) # Tokens and token types. filler = [pad_id] * padding_length tokens_np = np.array(tokens + filler, dtype=np.int64) tokentypes_np = np.array(tokentypes + filler, dtype=np.int64) # Padding mask. padding_mask_np = np.array([1] * num_tokens + [0] * padding_length, dtype=np.int64) # Lables and loss mask. labels = [-1] * max_seq_length loss_mask = [0] * max_seq_length for i in range(len(masked_positions)): assert masked_positions[i] < num_tokens labels[masked_positions[i]] = masked_labels[i] loss_mask[masked_positions[i]] = 1 labels_np = np.array(labels, dtype=np.int64) loss_mask_np = np.array(loss_mask, dtype=np.int64) return tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/bert_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from typing import List, Optional import numpy as np import torch from datasets import load_dataset from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import get_samples_mapping from nemo.collections.nlp.data.language_modeling.text_memmap_dataset import JSONLMemMapDataset from nemo.core.classes import Dataset from nemo.utils import logging __all__ = ['GPTSFTDataset'] class GPTSFTDataset(Dataset): def __init__( self, file_path: str, tokenizer: TokenizerSpec, max_seq_length: int = 1024, min_seq_length: int = 1, add_bos: bool = False, add_eos: bool = True, add_sep: bool = False, sep_id: int = None, max_num_samples: int = None, seed: int = 1234, label_key: str = "answer", answer_only_loss: bool = True, truncation_field: str = "text", pad_to_max_length: bool = False, # (@adithyare) allows for much faster training especially in PEFT settings. index_mapping_dir: str = None, prompt_template: str = None, virtual_tokens: int = 0, tokens_to_generate: int = 0, memmap_workers: Optional[int] = None, hf_dataset: bool = False, truncation_method: str = 'right', ): """ file_path: Path to a JSONL GPT supervised fine-tuning dataset. Data is formatted as multiple JSON lines with each line formatted as follows. {'input': 'John von Neumann\nVon Neumann made fundamental contributions .... Q: What did the math of artificial viscosity do?', 'output': 'smoothed the shock transition without sacrificing basic physics'} tokenizer: Tokenizer for the dataset. Instance of a class that inherits TokenizerSpec (ex: YTTM, SentencePiece). max_seq_length (int): maximum sequence length for each dataset examples. Examples will either be truncated to fit this length or dropped if they cannot be truncated. min_seq_length (int): min length of each data example in the dataset. Data examples will be dropped if they do not meet the min length requirements. add_bos (bool): Whether to add a beginning of sentence token to each data example add_eos (bool): Whether to add an end of sentence token to each data example add_sep (bool): Whether to add a separation token to each data example (goes between prompt and answer) tokens_to_generate (int): (inference only) Number of tokens to generate during inference seed: Random seed for data shuffling. max_num_samples: Maximum number of samples to load. This can be > dataset length if you want to oversample data. If None, all samples will be loaded. seed: int = 1234, label_key: Key to use for the label in your JSONL file answer_only_loss: If True, will compute the loss only on the answer part of the input. If False, will compute the loss on the entire input. truncation_field: Field to use for truncation. (Options: keys in prompt_template). Field to be used for truncation if the combined length exceeds the max sequence length. pad_to_max_length: Whether to pad the input to the max sequence length. If False, will pad to the max length of the current batch. index_mapping_dir: Directory to save the index mapping to. If None, will write to the same folder as the dataset. prompt_template: Prompt template to inject via an fstring. Formatted like Q: {context_key}\n\nA: {label_key} hf_dataset: Whether to load the json file with the HuggingFace dataset. otherwise, will load the jsonl file with the JSONLMemMapDataset. truncation_method: Truncation from which position. Options: ['left', 'right'] """ self.tokenizer = tokenizer self.file_path = file_path self.max_seq_length = max_seq_length self.min_seq_length = min_seq_length self.add_bos = add_bos self.add_eos = add_eos self.add_sep = add_sep self.sep_id = sep_id self.max_num_samples = max_num_samples self.seed = seed self.label_key = label_key self.answer_only_loss = answer_only_loss self.truncation_fields = truncation_field.split(',') self.pad_to_max_length = pad_to_max_length self.index_mapping_dir = index_mapping_dir self.prompt_template = prompt_template self.virtual_tokens = virtual_tokens self.tokens_to_generate = tokens_to_generate self.truncation_method = truncation_method if hf_dataset: self.indexed_dataset = load_dataset( 'json', data_files=file_path, cache_dir=index_mapping_dir, num_proc=memmap_workers, split='train' ) else: self.indexed_dataset = JSONLMemMapDataset( dataset_paths=[file_path], tokenizer=None, header_lines=0, index_mapping_dir=index_mapping_dir, workers=memmap_workers, ) # Validate prompt template self._maybe_validate_prompt_template() # Will be None after this call if `max_num_samples` is None self._build_samples_mapping() def _maybe_validate_prompt_template(self): assert ( self.prompt_template is not None ), f'we need prompt_template to combine contexts and label {self.label_key}' # When providing things like newlines in the prompt template via the CLI, they are escaped. This line unescapes them. self.prompt_template = self.prompt_template.encode('utf-8').decode('unicode_escape') self.prompt_template_keys = re.findall(r'{(.*?)}', self.prompt_template) label_placeholder = f'{{{self.label_key}}}' assert ( self.prompt_template[-len(label_placeholder) :] == label_placeholder ), f'{label_placeholder} must be at the end of prompt_template.' # Legacy checkpoints has self.truncation_fields = ['context'] and self.prompt_template_keys = ['input', 'output'] if self.prompt_template_keys[0] == 'input' and self.truncation_fields[0] == 'context': self.truncation_fields[0] = self.prompt_template_keys[0] assert set(self.truncation_fields).issubset( self.prompt_template_keys ), f'truncation_fields {self.truncation_fields} must in {self.prompt_template_keys}' def _build_samples_mapping(self): if self.max_num_samples is not None: self.samples_mapping = get_samples_mapping( indexed_dataset=self.indexed_dataset, data_prefix=self.file_path, num_epochs=None, max_num_samples=self.max_num_samples, max_seq_length=self.max_seq_length - 2, short_seq_prob=0, seed=self.seed, name=self.file_path.split('/')[-1], binary_head=False, index_mapping_dir=self.index_mapping_dir, ) else: self.samples_mapping = None def __len__(self): if self.max_num_samples is None: return len(self.indexed_dataset) else: return len(self.samples_mapping) def __getitem__(self, idx): if isinstance(idx, np.int64): idx = idx.item() if self.samples_mapping is not None: assert idx < len(self.samples_mapping) idx, _, _ = self.samples_mapping[idx] if isinstance(idx, np.uint32): idx = idx.item() assert idx < len(self.indexed_dataset) # idx may < 0 because we pad_samples_to_global_batch_size, e.g. id = -1 if idx < 0: idx = len(self) + idx try: example = self.indexed_dataset[idx] except Exception as e: logging.error(f"Error while loading example {idx} from dataset {self.file_path}") raise e return self._process_example(example) def _separate_template(self, prompt_template_values: List[str]): """ Combine contexts and label based on prompt_template into a list of strings and a list of keys. Args: prompt_template_values (List[str]): the list of context and label strings extrated from jsonl file with prompt_template_keys. Returns: template_strings (List[str]): separated prompt_template with contexts/label placeholder filled with corresponding strings template_strings_keys (List[str]): strings point to placeholder keys or <template> Examples: prompt_template = 'Context: {context} Question: {question} Answer: {label}' prompt_template_values = ['xxx', 'yyy', 'zzz'] # tokenizer.space_sensitive = True template_strings = ['Context:', ' xxx', ' Question:', ' yyy', ' Answer:', ' zzz'] # tokenizer.space_sensitive = False template_strings = ['Context:', ' xxx', 'Question:', 'yyy', 'Answer:', 'zzz'] template_strings_keys = ['<template>', 'context', '<template>', 'question', '<template>', 'label'] """ placeholders = [f'{{{k}}}' for k in self.prompt_template_keys] # placeholder to string ph_to_s = {ph: s for ph, s in zip(placeholders, prompt_template_values)} # placeholder to key ph_to_k = {ph: k for ph, k in zip(placeholders, self.prompt_template_keys)} # separate prompt_template based on '<space>{placeholder}' # examples: # self.prompt_template = "Context:{context} Passage: {passage}\n\nQuestion:{question} {label}" # template_with_placeholder_separated = ['Context:', '{context}', ' Passage:', ' {passage}', '\n\nQuestion:', '{question}', ' {label}'] template_with_placeholder_separated = re.split('( *?{.+?})', self.prompt_template) template_with_placeholder_separated = [s for s in template_with_placeholder_separated if len(s) > 0] # remove space if we have leading space and tokenizer is not space_sensitive # space_sensitive = True : tokenizer.text_to_tokens('A{num_spaces}B') = tokenizer.text_to_tokens('A') + tokenizer.text_to_tokens('{num_spaces}B') # space_sensitive = False: tokenizer.text_to_tokens('A{num_spaces}B') = tokenizer.text_to_tokens('A') + tokenizer.text_to_tokens('{num_spaces-1}B') space_sensitive = getattr(self.tokenizer, 'space_sensitive', False) template_with_space_reduced = [ s[1:] if not space_sensitive and s[0] == ' ' else s for s in template_with_placeholder_separated ] # convert placeholder to the corresponding string (preserve left spaces) and key template_strings, template_strings_keys = [], [] for t in template_with_space_reduced: placeholder = t.lstrip(' ') left_spaces = ' ' * (len(t) - len(placeholder)) template_strings.append(left_spaces + ph_to_s.get(placeholder, placeholder)) template_strings_keys.append(ph_to_k.get(placeholder, '<template>')) return template_strings, template_strings_keys def _multiple_truncation(self, template_ids: List[List[int]], template_ids_keys: List[str]): """ Calculate total tokens and truncate multiple contexts in truncation_fields. Args: template_ids (List[List[int]]): the list of separate prompt_template ids. template_ids_keys (List[str]): the list of placeholder keys or <template> (used to check key in truncation_fields). Returns: context_ids (List[int]): all context ids. label_ids (List[int]): all label ids. """ context_ids = template_ids[:-1] label_ids = template_ids[-1] total_ids = ( self.virtual_tokens + sum(len(ids) for ids in context_ids) + max(len(label_ids), self.tokens_to_generate) + self.add_bos + self.add_sep + self.add_eos # Only training need to consider eos token ) if total_ids > self.max_seq_length: truncation_length_total = total_ids - self.max_seq_length num_fields = len(self.truncation_fields) # sorted equal divide length to each field # examples: # truncation_length_total = 3 # num_fields = 11 # truncation_length_list = [3,4,4] truncation_length_list = [ truncation_length_total // num_fields + (1 if i < truncation_length_total % num_fields else 0) for i in range(num_fields)[::-1] ] for i, (ids, key) in enumerate(zip(template_ids, template_ids_keys)): if key in self.truncation_fields: truncation_length = truncation_length_list.pop() assert len(ids) >= truncation_length, f'{key} is not long enough to truncate.' if self.truncation_method == 'left': window_offset = truncation_length elif self.truncation_method == 'right': window_offset = 0 else: raise ValueError(f'{self.truncation_method} is not supported') window_length = len(ids) - truncation_length template_ids[i] = ids[window_offset : window_offset + window_length] context_ids = [i for ids in template_ids[:-1] for i in ids] label_ids = template_ids[-1] return context_ids, label_ids def _process_example(self, example): """ Create an example by concatenating text and answer. Truncation is carried out when needed, but it is performed only on the prompt side. BOS, EOS, and SEP, are added if specified. """ prompt_template_values = [example[c].strip(' ') for c in self.prompt_template_keys] template_strings, template_strings_keys = self._separate_template(prompt_template_values) template_ids = [self.tokenizer.text_to_ids(s) for s in template_strings] context_ids, answer_ids = self._multiple_truncation(template_ids, template_strings_keys) if self.virtual_tokens: # (@adithyare) we are going to insert "pad/eos" tokens in the beginning of the text and context # these pad/eos tokens are placeholders for virtual tokens context_ids = [self.tokenizer.eos_id] * self.virtual_tokens + context_ids input_ids = context_ids answer_start_idx = len(input_ids) # Adds bos token in the start if self.add_bos: context_ids = [self.tokenizer.bos_id] + context_ids input_ids = [self.tokenizer.bos_id] + input_ids answer_start_idx += 1 # Adds sep token between text/prompt and answer if self.add_sep: context_ids = context_ids + [self.sep_id] input_ids = input_ids + [self.sep_id] answer_start_idx += 1 input_ids = input_ids + answer_ids # Only training need to consider eos token if self.add_eos: input_ids = input_ids + [self.tokenizer.eos_id] if len(input_ids) > self.max_seq_length: logging.warning(f'Input ids length {len(input_ids)} exceed max sequence length {self.max_seq_length}') input_ids = input_ids[: self.max_seq_length] # store metadata in dataset, in case user may have keys required in the prediction json files metadata = {k: v for k, v in example.items() if k not in self.prompt_template_keys} processed_example = { 'input_ids': input_ids, 'answer_start_idx': answer_start_idx, 'context_ids': context_ids, 'context_length': len(context_ids), 'answer_ids': answer_ids, 'metadata': metadata, } return processed_example def _maybe_cast_to_list(self, x): if isinstance(x, np.ndarray): return [item.tolist() for item in x] return x def _ceil_to_nearest(self, n, m): return (n + m - 1) // m * m def _collate_item(self, item, max_length, pad_id): item = self._maybe_cast_to_list(item) # max_length = max([len(x) for x in item]) if item else 0 # here [0] should be tokenizer.pad_id item = [x + [pad_id] * (max_length - len(x)) for x in item] return item def _build_loss_mask(self, processed_example): """ Pad input_ids in batch to max batch length while building loss mask """ input_ids = processed_example['input_ids'] answer_start_idx = processed_example['answer_start_idx'] if self.answer_only_loss: loss_mask = [float(idx >= answer_start_idx) for idx in range(len(input_ids))] else: loss_mask = [1.0] * len(input_ids) return loss_mask @torch.no_grad() def _create_attention_mask(self, max_length): """Create `attention_mask`. Args: input_ids: A 1D tensor that holds the indices of tokens. """ # seq_length = len(input_ids) # `attention_mask` has the shape of [1, seq_length, seq_length] attention_mask = torch.tril(torch.ones((max_length, max_length))).unsqueeze(0) attention_mask = attention_mask < 0.5 return attention_mask def collate_fn(self, batch): input_ids = [item['input_ids'][:-1] for item in batch] labels = [item['input_ids'][1:] for item in batch] contexts = [item['context_ids'] for item in batch] context_lengths = torch.LongTensor([item['context_length'] for item in batch]) answers = [item['answer_ids'] for item in batch] loss_mask = [self._build_loss_mask(item)[1:] for item in batch] metadata = [item['metadata'] for item in batch] max_length = max(max([len(x) for x in input_ids]), max([len(x) for x in contexts]) + self.tokens_to_generate) # increase max length to nearest multiple of 4 or 8 if self.pad_to_max_length: max_length = self.max_seq_length else: max_length = min(self.max_seq_length, self._ceil_to_nearest(max_length, 8)) assert max_length <= self.max_seq_length attention_mask = [self._create_attention_mask(max_length) for _ in batch] attention_mask = torch.stack(attention_mask) position_ids = [list(range(max_length)) for _ in batch] position_ids = torch.LongTensor(position_ids) input_ids = torch.LongTensor( self._collate_item(input_ids, max_length=max_length, pad_id=self.tokenizer.eos_id) ) labels = torch.LongTensor(self._collate_item(labels, max_length=max_length, pad_id=self.tokenizer.eos_id)) loss_mask = torch.LongTensor(self._collate_item(loss_mask, max_length=max_length, pad_id=0)) contexts = torch.LongTensor(self._collate_item(contexts, max_length=max_length, pad_id=self.tokenizer.eos_id)) answers = torch.LongTensor(self._collate_item(answers, max_length=max_length, pad_id=self.tokenizer.eos_id)) processed_batch = { 'tokens': input_ids, 'labels': labels, 'attention_mask': attention_mask, 'loss_mask': loss_mask, 'position_ids': position_ids, 'contexts': contexts, 'context_lengths': context_lengths, 'answers': answers, 'metadata': metadata, } return processed_batch
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/gpt_sft_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import torch from nemo.collections.common.tokenizers.sentencepiece_tokenizer import SentencePieceTokenizer from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.language_modeling.megatron.gpt_sft_dataset import GPTSFTDataset from nemo.utils import logging __all__ = ['GPTSFTChatDataset'] IGNORE_INDEX = -100 END_SIGNAL = "\n" END_NAME_SIGNAL = "\n" SYSTEM_TOKEN = "<extra_id_0>System\n" TURN_TOKEN = "<extra_id_1>" TYPE_INSTRUCTION = { 'TEXT_TO_VALUE': "", 'VALUE_TO_TEXT': '', } def _mask_targets( target, tokenized_lens, speakers, header_len, s_ids, tokenizer, mask_role, gtype, extra_id_2_token_id, new_line_token_id, ): """ This function masks the tokens so the loss is computed only on the non-masked role's responses. For 'TEXT_TO_VALUE' type, the loss is computed on the value attributes. Args: target (Tensor): input ids tokenized_lens (List[int]): array of lengths of each turns speakers (List[str]): array of speakers of each turns header_len (int): the system prompt length s_ids (List[Tensor]): array of tokenized ids of each turns tokenizer (TokenizerSpec): tokenizer object mask_role (str): the speaker id to be masked from loss computation gtype (str): either 'TEXT_TO_VALUE' or 'VALUE_TO_TEXT' extra_id_2_token_id (int): <extra_id_2> token id new_line_token_id (int): new line token id """ cur_idx = header_len tgt_len = target.shape[0] for i, (tokenized_len, speaker, s_id) in enumerate(zip(tokenized_lens, speakers, s_ids)): # note, sentence piece will add extra empty token in front. has to compute the diff id1 = tokenizer.text_to_ids("<extra_id_1>") id2 = tokenizer.text_to_ids("<extra_id_1>" + TURN_TOKEN + speaker + END_NAME_SIGNAL) skip_name_len = len(id2) - len(id1) if extra_id_2_token_id is None: raise ValueError("extra_id_2 is not in the vocabulary") if (s_id == extra_id_2_token_id).any().item(): if gtype == 'VALUE_TO_TEXT': # if contains the token <extra_id_2> assert skip_name_len == torch.where((s_id == extra_id_2_token_id))[0].item() # find new line token id 14 more_skip_len = torch.where((s_id[skip_name_len:] == new_line_token_id))[0][0].item() + 1 skip_name_len += more_skip_len elif gtype == 'TEXT_TO_VALUE': skip_name_len = torch.where((s_id == extra_id_2_token_id))[0].item() + 1 if cur_idx >= tgt_len: break elif cur_idx + tokenized_len < tgt_len: # Check whether the mask is applied to the correct position, the first token is turn token: <extra_id_1> # s_id[2:] skips the artifact empty token and the turn token # target[cur_idx + 1:cur_idx + tokenized_len] skip the turn token if not torch.equal(target[cur_idx + 1 : cur_idx + tokenized_len], s_id[1:]): logging.warning("a sentence mismatches the corresponding piece " "in the conversation") if i == 0 and (gtype == 'VALUE_TO_TEXT' or gtype is None): # mask the first turn completely to provide at least one turn as context target[cur_idx : cur_idx + tokenized_len] = IGNORE_INDEX elif speaker == mask_role and i == 1 and gtype == 'TEXT_TO_VALUE': # leave the first human tag unmasked target[cur_idx + 1 : cur_idx + tokenized_len] = IGNORE_INDEX elif speaker == mask_role and (i > 1): # leave the first human tag unmasked target[cur_idx + 1 : cur_idx + tokenized_len] = IGNORE_INDEX elif speaker == mask_role and (i <= 1): # mask out everything in the second turn target[cur_idx : cur_idx + tokenized_len] = IGNORE_INDEX else: # mask up to the name end, need to remove one as skip name has an extra artifact empty token target[cur_idx : cur_idx + skip_name_len] = IGNORE_INDEX cur_idx += tokenized_len def cannonical_form_formater(cannoical_form): return f'<extra_id_2>{cannoical_form}\n' def response_value_formater(label): if isinstance(label, str): return '<extra_id_2>' + label + '\n' elif label is None: return '' else: raise ValueError(f'Unknown label type {type(label)}, only str type is supported') def _add_speaker_and_signal(header, source, mask_role, gtype): """Add speaker and start/end signal on each round.""" BEGIN_SIGNAL = "" conversation = header for i, sentence in enumerate(source): sentence_from = sentence["from"] role_token = TURN_TOKEN if gtype is None: sentence["value"] = ( BEGIN_SIGNAL + role_token + sentence_from + END_NAME_SIGNAL + sentence["value"] + END_SIGNAL ) elif gtype == "VALUE_TO_TEXT": sentence["value"] = ( BEGIN_SIGNAL + role_token + sentence_from + END_NAME_SIGNAL + (response_value_formater(sentence['label']) if 'label' in sentence else '') + sentence["value"] + END_SIGNAL ) elif gtype == "TEXT_TO_VALUE": sentence["value"] = ( BEGIN_SIGNAL + role_token + sentence_from + END_NAME_SIGNAL + sentence["value"] + END_SIGNAL + (response_value_formater(sentence['label']) if 'label' in sentence else '') ) else: raise ValueError( f"source type {gtype} not supported, only 'VALUE_TO_TEXT' and 'TEXT_TO_VALUE' are supported" ) conversation += sentence["value"] # if the last turn is not masked, add next token start token to the end, which will be included for loss calculation if sentence_from != mask_role and i == len(source) - 1: conversation += TURN_TOKEN return conversation def preprocess(source: dict, tokenizer: TokenizerSpec, extra_id_2_token_id: int, new_line_token_id: int): """ Given a conversation list. This transform: 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; 2. Concatenate conversations together; 3. Tokenize the concatenated conversation; 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. """ data_type = None if 'type' in source: data_type = source['type'] assert data_type in TYPE_INSTRUCTION, f"source type {data_type} not supported" # add end signal and concatenate together conversation = source['system'] if data_type is not None: if TYPE_INSTRUCTION[data_type] != '': conversation = conversation + '\n' + TYPE_INSTRUCTION[data_type] mask_role = source.get('mask', 'User') header = f"{SYSTEM_TOKEN}{conversation}" conversation = _add_speaker_and_signal(header, source['conversations'], mask_role, data_type) # tokenize conversations input_ids = tokenizer.text_to_ids(conversation) target = copy.deepcopy(input_ids) header_len = len(tokenizer.text_to_ids(header)) ids = [] tokenized_lens = [] for s in source['conversations']: if isinstance(tokenizer, SentencePieceTokenizer): tokenized_sentence = tokenizer.text_to_ids(s["value"]) ids.append(torch.tensor(tokenized_sentence)[1:]) # remove one token as it adds an empty token in front tokenized_lens.append(len(tokenized_sentence) - 1) else: tokenized_sentence = tokenizer.text_to_ids(s["value"]) ids.append(torch.tensor(tokenized_sentence)) # remove one token as it adds an empty token in front tokenized_lens.append(len(tokenized_sentence)) speakers = [sentence["from"] for sentence in source['conversations']] assert mask_role in speakers, "mask role not in the conversation" target = torch.LongTensor(target) # not going to train on the header target[:header_len] = IGNORE_INDEX input_ids = torch.LongTensor(input_ids) _mask_targets( target, tokenized_lens, speakers, header_len, ids, tokenizer, mask_role, data_type, extra_id_2_token_id, new_line_token_id, ) mask = (target != IGNORE_INDEX).bool() assert mask.sum().item() != 0, "mask is empty" # Choose the last conversation as answer other history are context last_ignore_index_pos = torch.nonzero(target == IGNORE_INDEX)[-1].item() + 1 context_ids = input_ids[:last_ignore_index_pos] answer_ids = input_ids[last_ignore_index_pos:] return dict(input_ids=input_ids, mask=mask, context_ids=context_ids, answer_ids=answer_ids) def _check_token_in_vocab(tokenizer, token): ids = tokenizer.text_to_ids(token) if isinstance(tokenizer, SentencePieceTokenizer): return len(ids) == 2 else: return len(ids) == 1 class GPTSFTChatDataset(GPTSFTDataset): def _maybe_validate_prompt_template(self): pass def _build_samples_mapping(self): super()._build_samples_mapping() assert hasattr(self.tokenizer, "vocab"), "tokenizer should have vocab property, not supported" assert _check_token_in_vocab( self.tokenizer, '<extra_id_0>' ), "<extra_id_0> not in the tokenizer vocab. not supported" assert _check_token_in_vocab( self.tokenizer, '<extra_id_1>' ), "<extra_id_1> not in the tokenizer vocab. not supported" # calcuilate <extra_id_2> id value if _check_token_in_vocab(self.tokenizer, '<extra_id_2>'): ids_1 = self.tokenizer.text_to_ids('<extra_id_1><extra_id_2>') ids_2 = self.tokenizer.text_to_ids('<extra_id_1>') self.extra_id_2_token_id = ids_1[len(ids_2) :][0] else: self.extra_id_2_token_id = None ids_1 = self.tokenizer.text_to_ids('<extra_id_1>\n') ids_2 = self.tokenizer.text_to_ids('<extra_id_1>') self.new_line_token_id = ids_1[len(ids_2) :][0] def _process_example(self, example): """ Create an example by concatenating text and answer. Truncation is carried out when needed, but it is performed only on the prompt side. BOS, EOS, and SEP, are added if specified. """ result = preprocess(example, self.tokenizer, self.extra_id_2_token_id, self.new_line_token_id) # store metadata in dataset, in case user may have keys required in the prediction json files metadata = {k: v for k, v in example.items() if k not in ['conversations']} result['metadata'] = metadata return result def collate_fn(self, batch): input_ids = [item['input_ids'][:-1].tolist() for item in batch] labels = [item['input_ids'][1:].tolist() for item in batch] contexts = [item['context_ids'].tolist() for item in batch] answers = [item['answer_ids'].tolist() for item in batch] loss_mask = [item['mask'][1:].tolist() for item in batch] metadata = [item['metadata'] for item in batch] max_length = max(max([len(x) for x in input_ids]), max([len(x) for x in contexts]) + self.tokens_to_generate) if max_length > self.max_seq_length: # truncate the sequences if it is longer than max_seq_length input_ids = [x[: self.max_seq_length] for x in input_ids] labels = [x[: self.max_seq_length] for x in labels] loss_mask = [x[: self.max_seq_length] for x in loss_mask] contexts = [x[: self.max_seq_length] for x in contexts] # increase max length to nearest multiple of 4 or 8 if self.pad_to_max_length: max_length = self.max_seq_length else: max_length = min(self.max_seq_length, self._ceil_to_nearest(max_length, 8)) assert max_length <= self.max_seq_length attention_mask = [self._create_attention_mask(max_length) for _ in batch] attention_mask = torch.stack(attention_mask) position_ids = [list(range(max_length)) for _ in batch] position_ids = torch.LongTensor(position_ids) input_ids = torch.LongTensor( self._collate_item(input_ids, max_length=max_length, pad_id=self.tokenizer.eos_id) ) labels = torch.LongTensor(self._collate_item(labels, max_length=max_length, pad_id=self.tokenizer.eos_id)) loss_mask = torch.LongTensor(self._collate_item(loss_mask, max_length=max_length, pad_id=0)) context_lengths = torch.LongTensor([len(x) for x in contexts]) contexts = torch.LongTensor(self._collate_item(contexts, max_length=max_length, pad_id=self.tokenizer.eos_id)) answers = torch.LongTensor(self._collate_item(answers, max_length=max_length, pad_id=self.tokenizer.eos_id)) processed_batch = { 'tokens': input_ids, 'labels': labels, 'attention_mask': attention_mask, 'loss_mask': loss_mask, 'position_ids': position_ids, 'contexts': contexts, 'context_lengths': context_lengths, 'answers': answers, 'metadata': metadata, } return processed_batch
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/gpt_sft_chat_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GPT style dataset.""" import os import time import numpy as np import torch from omegaconf.dictconfig import DictConfig from nemo.collections.nlp.data.language_modeling.megatron.base_dataset_utils import ( get_datasets_weights_and_num_samples, get_train_valid_test_split_, ) from nemo.collections.nlp.data.language_modeling.megatron.blendable_dataset import BlendableDataset from nemo.collections.nlp.data.language_modeling.megatron.indexed_dataset import deallocate_indexed_dataset_memory from nemo.collections.nlp.data.language_modeling.megatron.indexed_dataset import make_dataset as make_indexed_dataset from nemo.core import Dataset from nemo.utils import logging try: from megatron.core import parallel_state HAVE_MEGATRON_CORE = True except (ImportError, ModuleNotFoundError): HAVE_MEGATRON_CORE = False def build_dataset(cfg, trainer, data_prefix, data_impl, num_samples, seq_length, seed, skip_warmup, tokenizer, name): def _build_dataset(current_data_prefix, current_num_samples): delay_data_mmap = cfg.data.get('delay_data_mmap', False) indexed_dataset = get_indexed_dataset_(current_data_prefix, data_impl, skip_warmup, delay_data_mmap) total_num_of_documents = indexed_dataset.sizes.shape[0] # Print stats about the splits. logging.info(' > dataset split:') logging.info(' Total {} documents is : {} '.format(name, total_num_of_documents)) drop_last = True if name == "valid": drop_last = cfg.data.get("validation_drop_last", True) dataset = GPTDataset( cfg, trainer, tokenizer, name, current_data_prefix, np.arange(start=0, stop=total_num_of_documents, step=1, dtype=np.int32), indexed_dataset, current_num_samples, seq_length, seed, drop_last=drop_last, ) return dataset if len(data_prefix) == 1: return _build_dataset(data_prefix[0], num_samples) else: output = get_datasets_weights_and_num_samples(data_prefix, num_samples) prefixes, weights, datasets_num_samples = output datasets = [] for i in range(len(prefixes)): dataset = _build_dataset(prefixes[i], datasets_num_samples[i]) datasets.append(dataset) return BlendableDataset(datasets, weights, num_samples) def build_train_valid_test_datasets( cfg, trainer, data_prefix, data_impl, splits_string, train_valid_test_num_samples, seq_length, seed, skip_warmup, tokenizer, ): if data_impl in ['mock']: logging.info('Initializing mock GPT dataset for train, validate, and test') if len(data_prefix) != 0: # Mock data will be generated instead of loading files. logging.warning(f"Requested data_impl={data_impl}, so ignoring data_prefix setting: {data_prefix}") if tokenizer is None: # Vocabulary size is inferred from tokenizer. raise ValueError("Tokenizer is required for a mock GPT dataset") train_ds = MockGPTDataset(cfg, tokenizer, "train", int(train_valid_test_num_samples[0]), seq_length, seed,) valid_ds = MockGPTDataset(cfg, tokenizer, "valid", int(train_valid_test_num_samples[1]), seq_length, seed,) test_ds = MockGPTDataset(cfg, tokenizer, "test", int(train_valid_test_num_samples[2]), seq_length, seed,) return train_ds, valid_ds, test_ds if isinstance(data_prefix, DictConfig): assert ( data_prefix.get('train') is not None and data_prefix.get('test') is not None and data_prefix.get('validation') is not None ), f"Data prefix dictionary should have train, test and validation keys. data_prefix currently has only {data_prefix.keys()}" if cfg.data.splits_string is not None: logging.warning(cfg.data.splits_string + " ignored since data prefix is of type dictionary.") train_ds = build_dataset( cfg, trainer, data_prefix["train"], data_impl, int(train_valid_test_num_samples[0]), seq_length, seed, skip_warmup, tokenizer, "train", ) validation_ds = build_dataset( cfg, trainer, data_prefix["validation"], data_impl, int(train_valid_test_num_samples[1]), seq_length, seed, skip_warmup, tokenizer, "valid", ) test_ds = build_dataset( cfg, trainer, data_prefix["test"], data_impl, int(train_valid_test_num_samples[2]), seq_length, seed, skip_warmup, tokenizer, "test", ) return train_ds, validation_ds, test_ds else: # Single dataset. if len(data_prefix) == 1: return _build_train_valid_test_datasets( cfg, trainer, data_prefix[0], data_impl, splits_string, train_valid_test_num_samples, seq_length, seed, skip_warmup, tokenizer, ) # Blending dataset. # Parse the values. output = get_datasets_weights_and_num_samples(data_prefix, train_valid_test_num_samples) prefixes, weights, datasets_train_valid_test_num_samples = output # Build individual datasets. train_datasets = [] valid_datasets = [] test_datasets = [] for i in range(len(prefixes)): train_ds, valid_ds, test_ds = _build_train_valid_test_datasets( cfg, trainer, prefixes[i], data_impl, splits_string, datasets_train_valid_test_num_samples[i], seq_length, seed, skip_warmup, tokenizer, ) if train_ds: train_datasets.append(train_ds) if valid_ds: valid_datasets.append(valid_ds) if test_ds: test_datasets.append(test_ds) train_n, valid_n, test_n = map(sum, zip(*datasets_train_valid_test_num_samples)) # Blend. blending_train_dataset = None if train_datasets: blending_train_dataset = BlendableDataset(train_datasets, weights, train_n) blending_valid_dataset = None if valid_datasets: blending_valid_dataset = BlendableDataset(valid_datasets, weights, valid_n) blending_test_dataset = None if test_datasets: blending_test_dataset = BlendableDataset(test_datasets, weights, test_n) return (blending_train_dataset, blending_valid_dataset, blending_test_dataset) def _build_train_valid_test_datasets( cfg, trainer, data_prefix, data_impl, splits_string, train_valid_test_num_samples, seq_length, seed, skip_warmup, tokenizer, ): """Build train, valid, and test datasets.""" # Indexed dataset. delay_data_mmap = cfg.data.get('delay_data_mmap', False) indexed_dataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup, delay_data_mmap) total_num_of_documents = indexed_dataset.sizes.shape[0] splits = get_train_valid_test_split_(splits_string, total_num_of_documents) # Print stats about the splits. logging.info(' > dataset split:') def print_split_stats(name, index): logging.info(' {}:'.format(name)) logging.info( ' document indices in [{}, {}) total of {} ' 'documents'.format(splits[index], splits[index + 1], splits[index + 1] - splits[index]) ) print_split_stats('train', 0) print_split_stats('validation', 1) print_split_stats('test', 2) def build_dataset(index, name): dataset = None if splits[index + 1] > splits[index]: documents = np.arange(start=splits[index], stop=splits[index + 1], step=1, dtype=np.int32) drop_last = True if name == "valid": drop_last = cfg.data.get("validation_drop_last", True) dataset = GPTDataset( cfg, trainer, tokenizer, name, data_prefix, documents, indexed_dataset, train_valid_test_num_samples[index], seq_length, seed, drop_last=drop_last, ) return dataset train_dataset = build_dataset(0, 'train') valid_dataset = build_dataset(1, 'valid') test_dataset = build_dataset(2, 'test') return (train_dataset, valid_dataset, test_dataset) def get_indexed_dataset_(data_prefix, data_impl, skip_warmup, delay_data_mmap=False): """Build indexed dataset.""" logging.info(' > building dataset index ...') start_time = time.time() indexed_dataset = make_indexed_dataset(data_prefix, data_impl, skip_warmup, delay_data_mmap=delay_data_mmap) logging.info(' > finished creating indexed dataset in {:4f} ' 'seconds'.format(time.time() - start_time)) logging.info(' number of documents: {}'.format(indexed_dataset.sizes.shape[0])) return indexed_dataset class GPTDataset(Dataset): def __init__( self, cfg, trainer, tokenizer, name, data_prefix, documents, indexed_dataset, num_samples, seq_length, seed, drop_last=True, ): if not HAVE_MEGATRON_CORE: raise ImportError( "megatron-core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) super().__init__() self.name = name self.indexed_dataset = indexed_dataset self.drop_last = drop_last self.seq_length = seq_length # Checks assert np.min(documents) >= 0 assert np.max(documents) < indexed_dataset.sizes.shape[0] self.reset_position_ids = cfg.data.get('reset_position_ids', False) self.reset_attention_mask = cfg.data.get('reset_attention_mask', False) self.eod_mask_loss = cfg.data.get('eod_mask_loss', False) self.create_inputs = any([self.reset_position_ids, self.reset_attention_mask, self.eod_mask_loss]) self.cached_inputs = False self.eos_id = tokenizer.eos_id self.no_seqlen_plus_one_input_tokens = cfg.data.get('no_seqlen_plus_one_input_tokens', False) self.add_extra_token = 1 if self.no_seqlen_plus_one_input_tokens: self.add_extra_token = 0 self.shuffle_documents = cfg.data.get('shuffle_documents', True) self.exchange_indices_distributed = cfg.data.get('exchange_indices_distributed', False) # save index mappings to a configurable dir self.index_mapping_dir = cfg.data.get('index_mapping_dir', None) # create index_mapping_dir on rank 0 if torch.distributed.is_available() and torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: if self.index_mapping_dir is not None and not os.path.isdir(self.index_mapping_dir): os.makedirs(self.index_mapping_dir) torch.distributed.barrier() # Build index mappings. self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings( self.name, data_prefix, documents, self.indexed_dataset.sizes, num_samples, seq_length, seed, index_mapping_dir=self.index_mapping_dir, drop_last=drop_last, add_extra_token=self.add_extra_token, shuffle_documents=self.shuffle_documents, exchange_indices_distributed=self.exchange_indices_distributed, ) deallocate_indexed_dataset_memory(self.indexed_dataset) def create_data_mmap(self): self.indexed_dataset.create_data_mmap() def __len__(self): # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) return self.sample_idx.shape[0] - 1 def _get_text(self, idx: int) -> np.ndarray: # Get the shuffled index. idx = self.shuffle_idx[idx] # Start and end documents and offsets. doc_index_f = self.sample_idx[idx][0] doc_index_l = self.sample_idx[idx + 1][0] offset_f = self.sample_idx[idx][1] offset_l = self.sample_idx[idx + 1][1] # If we are within the same document, just extract the chunk. if doc_index_f == doc_index_l: sample = self.indexed_dataset.get( self.doc_idx[doc_index_f], offset=offset_f, length=offset_l - offset_f + self.add_extra_token ) else: # Otherwise, get the rest of the initial document. sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f], offset=offset_f)] # Loop over all in between documents and add the entire document. for i in range(doc_index_f + 1, doc_index_l): sample_list.append(self.indexed_dataset.get(self.doc_idx[i])) # And finally add the relevant portion of last document. sample_list.append( self.indexed_dataset.get(self.doc_idx[doc_index_l], length=offset_l + self.add_extra_token) ) sample = np.concatenate(sample_list) if len(sample) != (self.seq_length + self.add_extra_token): logging.info( F' > WARNING: Got sample of length: {len(sample)} for sequence length={self.seq_length+self.add_extra_token}, padding the sample to match sequence length' ) sample = np.array(sample, dtype=np.int64) sample = np.pad( sample, (0, self.seq_length + self.add_extra_token - len(sample)), mode='constant', constant_values=-1 ) return sample.astype(np.int64) def __getitem__(self, idx): text = torch.from_numpy(self._get_text(idx)) if self.add_extra_token: tokens = text[:-1].contiguous() labels = text[1:].contiguous() else: tokens = text labels = torch.roll(text, shifts=-1, dims=0) labels[-1] = -1 if self.create_inputs or not self.cached_inputs: attention_mask, loss_mask, position_ids = _create_ltor_masks_and_position_ids( tokens, self.eos_id, self.reset_position_ids, self.reset_attention_mask, self.eod_mask_loss, ) if not self.create_inputs: self.cached_attention_mask = attention_mask self.cached_loss_mask = loss_mask self.cached_position_ids = position_ids self.cached_inputs = True else: attention_mask = self.cached_attention_mask loss_mask = self.cached_loss_mask position_ids = self.cached_position_ids loss_mask[labels == -1] = 0.0 tokens[tokens == -1] = 0 labels[labels == -1] = 0 # Negative index comes when we pad the last batch in MegatronPretrainingBatchSampler # We make the loss_mask zero to mask out loss from these samples if idx < 0: logging.debug('Got negative index. Masking loss from this sample') loss_mask = torch.zeros_like(loss_mask) return { 'tokens': tokens, 'labels': labels, 'attention_mask': attention_mask, 'loss_mask': loss_mask, 'position_ids': position_ids, } class MockGPTDataset(Dataset): def __init__( self, cfg, tokenizer, name, num_samples, seq_length, seed, ): if not HAVE_MEGATRON_CORE: raise ImportError( "Megatron core was not found. Please see the NeMo README for installation instructions: https://github.com/NVIDIA/NeMo#megatron-gpt." ) super().__init__() self.name = name self.seq_length = seq_length self.vocab_size = tokenizer.vocab_size self.length = num_samples self.seed = seed self.attention_mask = torch.tril(torch.ones((self.seq_length, self.seq_length))).unsqueeze(0) self.attention_mask = self.attention_mask < 0.5 self.loss_mask = torch.ones(self.seq_length, dtype=torch.float) self.position_ids = torch.arange(self.seq_length, dtype=torch.int64) def __len__(self): return self.length def _get_text(self, idx: int) -> np.ndarray: np_gen = np.random.default_rng(seed=(self.seed + idx)) return np_gen.integers(self.vocab_size, size=[self.seq_length], dtype=np.int64) def __getitem__(self, idx): # Generate data of the expected size and datatype (based on GPTDataset). np_gen = np.random.default_rng(seed=(self.seed + idx)) tokens = torch.from_numpy(np_gen.integers(self.vocab_size, size=[self.seq_length], dtype=np.int64)) labels = torch.from_numpy(np_gen.integers(self.vocab_size, size=[self.seq_length], dtype=np.int64)) return { 'tokens': tokens, 'labels': labels, 'attention_mask': self.attention_mask, 'loss_mask': self.loss_mask, 'position_ids': self.position_ids, } @torch.no_grad() def _create_ltor_masks_and_position_ids( tokens: torch.Tensor, eod_token: int, reset_position_ids: bool, reset_attention_mask: bool, eod_mask_loss: bool, ): """Create `attention_mask`, `loss_mask`, and `position_ids`. This function is modified :func:`get_ltor_masks_and_position_ids` in nemo/collections/nlp/modules/common/megatron/utils.py: `get_ltor_masks_and_position_ids` assumes a microbatch of ``tokens``, i.e. 2D tensor while this function assumes ``tokens`` to be 1D tensor. Args: tokens: A 1D tensor that holds the indices of tokens. eod_token: reset_position_ids: reset_attention_mask: eod_mask_loss """ assert tokens.ndim == 1 seq_length = tokens.numel() # `attention_mask` has the shape of [1, seq_length, seq_length] attention_mask = torch.tril(torch.ones((seq_length, seq_length))).unsqueeze(0) loss_mask = torch.ones(seq_length, dtype=torch.float) if eod_mask_loss: loss_mask[tokens == eod_token] = 0.0 position_ids = torch.arange(seq_length, dtype=torch.int64) if reset_position_ids: position_ids = position_ids.clone() if reset_position_ids or reset_attention_mask: # Find indices where EOD token is. eod_index = position_ids[tokens[b] == eod_token] # Detach indices from positions if going to modify positions. if reset_position_ids: eod_index = eod_index.clone() prev_index = 0 for j in range(eod_index.numel()): i = eod_index[j] if reset_attention_mask: attention_mask[0, (i + 1) :, : (i + 1)] = 0 if reset_position_ids: position_ids[(i + 1) :] -= i + 1 - prev_index prev_index = i + 1 # Convert attention mask to binary. attention_mask = attention_mask < 0.5 return attention_mask, loss_mask, position_ids def _build_index_mappings( name, data_prefix, documents, sizes, num_samples, seq_length, seed, index_mapping_dir: str = None, drop_last: bool = True, add_extra_token: int = 1, shuffle_documents: bool = True, exchange_indices_distributed: bool = False, ): """Build doc-idx, sample-idx, and shuffle-idx. doc-idx: is an array (ordered) of documents to be used in training. sample-idx: is the start document index and document offset for each training sample. shuffle-idx: maps the sample index into a random index into sample-idx. """ # Number of tokens in each epoch and number of required epochs. tokens_per_epoch = _num_tokens(documents, sizes) num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples, add_extra_token) # rng state np_rng = np.random.RandomState(seed=seed) # Filename of the index mappings. if index_mapping_dir is not None: _filename = os.path.join(index_mapping_dir, os.path.basename(data_prefix)) else: _filename = data_prefix _filename += '_{}_indexmap'.format(name) _filename += '_{}ns'.format(num_samples) _filename += '_{}sl'.format(seq_length) _filename += '_{}s'.format(seed) doc_idx_filename = _filename + '_doc_idx.npy' sample_idx_filename = _filename + '_sample_idx.npy' shuffle_idx_filename = _filename + '_shuffle_idx.npy' # Build the indexed mapping if not exist. if torch.distributed.get_rank() == 0: using_cached_indices = True if ( (not os.path.isfile(doc_idx_filename)) or (not os.path.isfile(sample_idx_filename)) or (not os.path.isfile(shuffle_idx_filename)) ): using_cached_indices = False logging.info(' > WARNING: could not find index map files, building ' 'the indices on rank 0 ...') # For the last epoch, decide whether include the entire epoch # in the global shuffle or not. # If we need only one epoch, then separating last epoch does # not mean anything. if num_epochs == 1: separate_last_epoch = False print(' > only one epoch required, setting ' 'separate_last_epoch to False', flush=True) else: # Get the number of samples for the last epoch num_samples_from_epochs_minus_one = ( (num_epochs - 1) * tokens_per_epoch - add_extra_token ) // seq_length last_epoch_num_samples = num_samples - num_samples_from_epochs_minus_one assert last_epoch_num_samples >= 0, 'last epoch number of samples should be non-negative.' num_samples_per_epoch = (tokens_per_epoch - add_extra_token) // seq_length assert last_epoch_num_samples <= ( num_samples_per_epoch + 1 ), 'last epoch number of samples exceeded max value.' # If we have less than 80% of the samples for the last epoch, # seperate out the epoch and treat it differently. # Note: the 80% number is just based on common sense and can # be adjusted if needed. separate_last_epoch = last_epoch_num_samples < int(0.80 * num_samples_per_epoch) if separate_last_epoch: string = ( ' > last epoch number of samples ({}) is smaller ' 'than 80% of number of samples per epoch ({}), ' 'setting separate_last_epoch to True' ) else: string = ( ' > last epoch number of samples ({}) is larger ' 'than 80% of number of samples per epoch ({}), ' 'setting separate_last_epoch to False' ) print(string.format(last_epoch_num_samples, num_samples_per_epoch), flush=True) # doc-idx. start_time = time.time() doc_idx = _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch, shuffle_documents) np.save(doc_idx_filename, doc_idx, allow_pickle=True) logging.info( ' > elasped time to build and save doc-idx mapping ' '(seconds): {:4f}'.format(time.time() - start_time) ) # sample-idx. start_time = time.time() # Use C++ implementation for speed. # First compile and then import. assert doc_idx.dtype == np.int32 assert sizes.dtype == np.int32 try: from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import compile_helper compile_helper() from nemo.collections.nlp.data.language_modeling.megatron import helpers except ImportError: raise ImportError( f'Could not compile megatron dataset C++ helper functions and therefore cannot import helpers python file.' ) sample_idx = helpers.build_sample_idx( sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch, drop_last, add_extra_token ) # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length, # num_epochs, tokens_per_epoch, drop_last, add_extra_token) np.save(sample_idx_filename, sample_idx, allow_pickle=True) logging.info( ' > elasped time to build and save sample-idx mapping ' '(seconds): {:4f}'.format(time.time() - start_time) ) # shuffle-idx. start_time = time.time() # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) if separate_last_epoch: num_samples_ = num_samples_from_epochs_minus_one else: num_samples_ = sample_idx.shape[0] - 1 shuffle_idx = _build_shuffle_idx(num_samples_, sample_idx.shape[0] - 1, np_rng) np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True) logging.info( ' > elasped time to build and save shuffle-idx mapping' ' (seconds): {:4f}'.format(time.time() - start_time) ) torch.distributed.barrier() counts = torch.cuda.LongTensor([1]) torch.distributed.all_reduce(counts, group=parallel_state.get_data_parallel_group()) torch.distributed.all_reduce(counts, group=parallel_state.get_pipeline_model_parallel_group()) assert counts[0].item() == ( torch.distributed.get_world_size() // torch.distributed.get_world_size(group=parallel_state.get_tensor_model_parallel_group()) ) if not exchange_indices_distributed or (torch.distributed.get_rank() == 0 and using_cached_indices): # Load mappings. start_time = time.time() logging.info(' > loading doc-idx mapping from {}'.format(doc_idx_filename)) doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r') logging.info(' > loading sample-idx mapping from {}'.format(sample_idx_filename)) sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r') logging.info(' > loading shuffle-idx mapping from {}'.format(shuffle_idx_filename)) shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r') logging.info(' loaded indexed file in {:3.3f} seconds'.format(time.time() - start_time)) logging.info(' total number of samples: {}'.format(sample_idx.shape[0])) logging.info(' total number of epochs: {}'.format(num_epochs)) if exchange_indices_distributed: if torch.distributed.get_rank() == 0: indices = [(doc_idx, sample_idx, shuffle_idx)] else: indices = [None] torch.distributed.broadcast_object_list(indices) doc_idx, sample_idx, shuffle_idx = indices[0] return doc_idx, sample_idx, shuffle_idx def _num_tokens(documents, sizes): """Total number of tokens in the dataset.""" return np.sum(sizes[documents]) def _num_epochs(tokens_per_epoch, seq_length, num_samples, add_extra_token=1): """Based on number of samples and sequence lenght, calculate how many epochs will be needed.""" num_epochs = 0 total_tokens = 0 while True: num_epochs += 1 total_tokens += tokens_per_epoch # -1 is because we need to retrieve seq_length + 1 token each time # but the last token will overlap with the first token of the next # sample except for the last sample. if ((total_tokens - add_extra_token) // seq_length) >= num_samples: return num_epochs def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch, shuffle=True): """Build an array with length = number-of-epochs * number-of-dcuments. Each index is mapped to a corresponding document.""" if not separate_last_epoch or num_epochs == 1: doc_idx = np.mgrid[0:num_epochs, 0 : len(documents)][1] doc_idx[:] = documents doc_idx = doc_idx.reshape(-1) doc_idx = doc_idx.astype(np.int32) if shuffle: np_rng.shuffle(doc_idx) else: logging.info('Document shuffling disabled') return doc_idx doc_idx_first = _build_doc_idx(documents, num_epochs - 1, np_rng, False, shuffle) doc_idx_last = _build_doc_idx(documents, 1, np_rng, False, shuffle) return np.concatenate((doc_idx_first, doc_idx_last)) def _build_sample_idx(sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch, drop_last=True, add_extra_token=1): """Sample index mapping is a 2D array with sizes [number-of-samples + 1, 2] where [..., 0] contains the index into `doc_idx` and [..., 1] is the starting offset in that document.""" # Total number of samples. For -1 see comments in `_num_epochs`. if not drop_last: num_samples = -(-(num_epochs * tokens_per_epoch - add_extra_token) // seq_length) else: num_samples = (num_epochs * tokens_per_epoch - add_extra_token) // seq_length sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32) # Index into sample_idx. sample_index = 0 # Index into doc_idx. doc_idx_index = 0 # Begining offset for each document. doc_offset = 0 # Start with first document and no offset. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 while sample_index <= num_samples: # Start with a fresh sequence. remaining_seq_length = seq_length + add_extra_token while remaining_seq_length != 0: # Get the document length. doc_id = doc_idx[doc_idx_index] doc_length = sizes[doc_id] - doc_offset # And add it to the current sequence. remaining_seq_length -= doc_length # If we have more than a full sequence, adjust offset and set # remaining length to zero so we return from the while loop. # Note that -1 here is for the same reason we have -1 in # `_num_epochs` calculations. if remaining_seq_length <= 0: doc_offset += remaining_seq_length + doc_length - add_extra_token remaining_seq_length = 0 else: # Otherwise, start from the begining of the next document. if doc_idx_index == (len(doc_idx) - 1): assert ( sample_index == num_samples ), F"sample_index={sample_index} and num_samples={num_samples} should be the same" doc_offset = sizes[doc_idx[doc_idx_index]] - add_extra_token break doc_idx_index += 1 doc_offset = 0 # Record the sequence. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 return sample_idx def _build_shuffle_idx(num_samples, total_size, np_rng): """Build the range [0, size) and shuffle.""" print( ' > building shuffle index with split [0, {}) and [{}, {}) ' '...'.format(num_samples, num_samples, total_size), flush=True, ) dtype_ = np.uint32 if total_size >= (np.iinfo(np.uint32).max - 1): dtype_ = np.int64 shuffle_idx_first = np.arange(start=0, stop=num_samples, step=1, dtype=dtype_) np_rng.shuffle(shuffle_idx_first) if num_samples == total_size: return shuffle_idx_first shuffle_idx_last = np.arange(start=num_samples, stop=total_size, step=1, dtype=dtype_) np_rng.shuffle(shuffle_idx_last) return np.concatenate((shuffle_idx_first, shuffle_idx_last))
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/gpt_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XLM-Style datasets""" from typing import Dict, List import numpy as np from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec from nemo.collections.nlp.data.common.sequence_to_sequence_dataset import ( BinarizedMemmapSequenceToSequenceDataset, TextMemmapSequenceToSequenceDataset, ) from nemo.collections.nlp.data.language_modeling.megatron.bert_dataset import ( build_training_sample as build_training_sample_bert, ) from nemo.collections.nlp.data.language_modeling.megatron.length_distribution_type import LengthDistribution from nemo.collections.nlp.data.language_modeling.megatron.t5_dataset import T5Dataset from nemo.collections.nlp.data.language_modeling.megatron.ul2_dataset import UL2Dataset class CrossLingualBERTDataset(BinarizedMemmapSequenceToSequenceDataset): """Cross-lingual BERT dataset similar to the translation-language modeling objective in the XLM paper (https://arxiv.org/abs/1901.07291)""" def __init__( self, src_dataset_prefix: str, tgt_dataset_prefix: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, max_src_seq_length: int, max_tgt_seq_length: int, seed: int = 1234, max_num_samples: int = None, masked_lm_prob: float = 0.15, ): super().__init__( src_dataset_prefix=src_dataset_prefix, tgt_dataset_prefix=tgt_dataset_prefix, src_tokenizer=src_tokenizer, tgt_tokenizer=tgt_tokenizer, max_src_seq_length=max_src_seq_length, max_tgt_seq_length=max_tgt_seq_length, seed=seed, max_num_samples=max_num_samples, ) assert src_tokenizer == tgt_tokenizer # Vocab stuff. self.vocab = src_tokenizer.vocab self.vocab_id_list = list(range(self.src_tokenizer.original_vocab_size)) self.vocab_id_to_token_dict = {idx: token for idx, token in enumerate(self.vocab)} self.cls_id = src_tokenizer.cls_id self.sep_id = src_tokenizer.sep_id self.mask_id = src_tokenizer.mask_id self.pad_id = src_tokenizer.pad_id self.bos_id = src_tokenizer.bos_id self.eos_id = src_tokenizer.eos_id self.max_seq_length = max_src_seq_length + max_tgt_seq_length self.masked_lm_prob = masked_lm_prob def __getitem__(self, idx): src, tgt = super()._get_sample(idx) if len(src) > self.max_src_seq_length: src = src[: self.max_src_seq_length] if len(tgt) > self.max_tgt_seq_length - 1: # -1 here to account for the <sep> token that gets added. tgt = tgt[: self.max_tgt_seq_length] np_rng = np.random.RandomState(seed=((self.seed + idx) % 2 ** 32)) # Potentially swap src, tgt with a 50% chance to avoid learning associations based on position in the sequence. swap_src_tgt = np_rng.randint(0, 2) if swap_src_tgt == 0: sample = [np.concatenate((src, [self.sep_id], tgt))] elif swap_src_tgt == 1: sample = [np.concatenate((tgt, [self.sep_id], src))] return build_training_sample_bert( sample=sample, target_seq_length=sample[0].shape[0], max_seq_length=self.max_seq_length, # needed for padding vocab_id_list=self.vocab_id_list, vocab_id_to_token_dict=self.vocab_id_to_token_dict, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=self.mask_id, pad_id=self.pad_id, masked_lm_prob=self.masked_lm_prob, np_rng=np_rng, binary_head=False, whole_word_masking=False, skip_masking_id=self.sep_id, ) # Skip the parent collate function, since we don't need it for this dataset. def collate_fn(self, batch): return batch class CrossLingualMakedSequenceToSequenceDataset(BinarizedMemmapSequenceToSequenceDataset): def __init__( self, src_dataset_prefix: str, tgt_dataset_prefix: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, max_src_seq_length: int, max_tgt_seq_length: int, max_seq_length_dec: int, seed: int = 1234, max_num_samples: int = None, masked_lm_prob: float = 0.15, extreme_masked_lm_prob: float = 0.5, max_ngram_size: int = 10, mean_ngram_size: int = None, min_ngram_size: int = 1, extreme_max_ngram_size: int = 128, extreme_mean_ngram_size: int = 64, extreme_min_ngram_size: int = 32, extreme_ngram_span_length_distribution: LengthDistribution = LengthDistribution.truncated_normal, geometric_dist: bool = True, permutation: bool = False, favor_long_ngrams: bool = False, masking_type: str = "t5", ): super().__init__( src_dataset_prefix=src_dataset_prefix, tgt_dataset_prefix=tgt_dataset_prefix, src_tokenizer=src_tokenizer, tgt_tokenizer=tgt_tokenizer, max_src_seq_length=max_src_seq_length, max_tgt_seq_length=max_tgt_seq_length, seed=seed, max_num_samples=max_num_samples, ) self.max_seq_length_dec = max_seq_length_dec self.max_ngram_size = max_ngram_size self.mean_ngram_size = mean_ngram_size self.min_ngram_size = min_ngram_size self.geometric_dist = geometric_dist self.permutation = permutation self.favor_long_ngrams = favor_long_ngrams self.extreme_masked_lm_prob = extreme_masked_lm_prob self.extreme_max_ngram_size = extreme_max_ngram_size self.extreme_mean_ngram_size = extreme_mean_ngram_size self.extreme_min_ngram_size = extreme_min_ngram_size self.extreme_ngram_span_length_distribution = extreme_ngram_span_length_distribution self.masking_type = masking_type assert src_tokenizer == tgt_tokenizer # Vocab stuff. self.vocab_id_list = src_tokenizer.vocab self.vocab_id_to_token_dict = {idx: token for idx, token in enumerate(self.vocab_id_list)} self.cls_id = src_tokenizer.cls_id self.sep_id = src_tokenizer.sep_id self.mask_id = src_tokenizer.mask_id self.pad_id = src_tokenizer.pad_id self.bos_id = src_tokenizer.bos_id self.eos_id = src_tokenizer.eos_id self.max_seq_length = max_src_seq_length + max_tgt_seq_length self.masked_lm_prob = masked_lm_prob self.tokenizer_type = T5Dataset._determine_tokenizer_type(src_tokenizer, whole_word_masking=False) self._build() def _build(self): """ Class-specific build method to be overridden by child classes. """ self.sentinel_tokens = self.src_tokenizer.additional_special_tokens_ids assert len(self.sentinel_tokens) > 0 def __getitem__(self, idx): src, tgt = super()._get_sample(idx) if len(src) > self.max_src_seq_length: src = src[: self.max_src_seq_length] if len(tgt) > self.max_tgt_seq_length - 1: # -1 here to account for the <sep> token that gets added. tgt = tgt[: self.max_tgt_seq_length] np_rng = np.random.RandomState(seed=(self.seed + idx)) return CrossLingualMakedSequenceToSequenceDataset.get_example( src=src, tgt=tgt, max_seq_length=self.max_seq_length, max_seq_length_dec=self.max_seq_length_dec, masked_lm_prob=self.masked_lm_prob, vocab_id_list=self.vocab_id_list, vocab_id_to_token_dict=self.vocab_id_to_token_dict, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=self.mask_id, bos_id=self.bos_id, eos_id=self.eos_id, pad_id=self.pad_id, sentinel_tokens=self.sentinel_tokens, max_ngram_size=self.max_ngram_size, np_rng=np_rng, mean_ngram_size=self.mean_ngram_size, min_ngram_size=self.min_ngram_size, extreme_masked_lm_prob=self.extreme_masked_lm_prob, extreme_max_ngram_size=self.extreme_max_ngram_size, extreme_mean_ngram_size=self.extreme_mean_ngram_size, extreme_min_ngram_size=self.extreme_min_ngram_size, extreme_ngram_span_length_distribution=self.extreme_ngram_span_length_distribution, favor_long_ngrams=self.favor_long_ngrams, permutation=self.permutation, geometric_dist=self.geometric_dist, tokenizer_type=self.tokenizer_type, masking_type=self.masking_type, ) # Skip the parent collate function, since we don't need it for this dataset. def collate_fn(self, batch): return batch class BinarizedMemmapCrossLingualMLMAndTranslationDataset(BinarizedMemmapSequenceToSequenceDataset): def __init__( self, src_dataset_prefix: str, tgt_dataset_prefix: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, src_language: str, tgt_language: str, max_src_seq_length: int, max_tgt_seq_length: int, max_seq_length_dec: int, seed: int = 1234, max_num_samples: int = None, masked_lm_prob: float = 0.15, extreme_masked_lm_prob: float = 0.5, max_ngram_size: int = 10, mean_ngram_size: int = None, min_ngram_size: int = 1, extreme_max_ngram_size: int = 128, extreme_mean_ngram_size: int = 64, extreme_min_ngram_size: int = 32, extreme_ngram_span_length_distribution: LengthDistribution = LengthDistribution.truncated_normal, prefix_lm_pivot_mean: float = 0.25, # This is represented as a percentage of the total length. geometric_dist: bool = True, permutation: bool = False, favor_long_ngrams: bool = False, sampling_ratios: Dict[str, float] = {"x-masking": 0.25, "r-masking": 0.25, "s-masking": 0.25, "nmt": 0.25}, sentinel_tokens: List[int] = None, ): super().__init__( src_dataset_prefix=src_dataset_prefix, tgt_dataset_prefix=tgt_dataset_prefix, src_tokenizer=src_tokenizer, tgt_tokenizer=tgt_tokenizer, max_src_seq_length=max_src_seq_length - 1, # -1 here to account for <sep> tokens and special prefix tokens to the encoder like <extra_id_x>, <extra_id_r>, etc. max_tgt_seq_length=max_tgt_seq_length - 1, # -1 here to account for <sep> tokens and special prefix tokens to the encoder like <extra_id_x>, <extra_id_r>, etc. seed=seed, max_num_samples=max_num_samples, add_bos_to_enc=False, add_eos_to_enc=False, ) self.max_seq_length_dec = max_seq_length_dec self.max_ngram_size = max_ngram_size self.mean_ngram_size = mean_ngram_size self.min_ngram_size = min_ngram_size self.geometric_dist = geometric_dist self.permutation = permutation self.favor_long_ngrams = favor_long_ngrams self.extreme_masked_lm_prob = extreme_masked_lm_prob self.extreme_max_ngram_size = extreme_max_ngram_size self.extreme_mean_ngram_size = extreme_mean_ngram_size self.extreme_min_ngram_size = extreme_min_ngram_size self.extreme_ngram_span_length_distribution = extreme_ngram_span_length_distribution self.prefix_lm_pivot_mean = prefix_lm_pivot_mean self.sampling_ratios = sampling_ratios self.src_language = src_language self.tgt_language = tgt_language # Vocab stuff. self.vocab_id_list = src_tokenizer.vocab self.vocab_id_to_token_dict = {idx: token for idx, token in enumerate(self.vocab_id_list)} self.cls_id = src_tokenizer.cls_id self.sep_id = src_tokenizer.sep_id self.mask_id = src_tokenizer.mask_id self.pad_id = src_tokenizer.pad_id self.bos_id = src_tokenizer.bos_id self.eos_id = src_tokenizer.eos_id self.max_seq_length = max_src_seq_length + max_tgt_seq_length - 1 self.masked_lm_prob = masked_lm_prob self.sentinel_tokens = sentinel_tokens self.tokenizer_type = T5Dataset._determine_tokenizer_type(src_tokenizer, whole_word_masking=False) self._build() def _build(self): """ Class-specific build method to be overridden by child classes. """ if self.sentinel_tokens is None: self.sentinel_tokens = self.src_tokenizer.additional_special_tokens_ids assert len(self.sentinel_tokens) > 0 @classmethod def create_sample( cls, np_rng: np.random.RandomState, src: List[int], tgt: List[int], sampling_ratios: Dict[str, float], max_src_seq_length: int, max_tgt_seq_length: int, max_seq_length: int, max_seq_length_dec: int, src_language: str, tgt_language: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, sep_id: int, masked_lm_prob: float, extreme_masked_lm_prob: float, max_ngram_size: int, min_ngram_size: int, mean_ngram_size: int, extreme_max_ngram_size: int, extreme_min_ngram_size: int, extreme_mean_ngram_size: int, extreme_ngram_span_length_distribution: LengthDistribution, sentinel_tokens: List[int], prefix_lm_pivot_mean: float, vocab_id_list: List[int], vocab_id_to_token_dict: Dict[int, str], favor_long_ngrams: bool = False, permutation: bool = False, geometric_dist: bool = True, tokenizer_type: str = "wordpiece", ): # Determine which task to perform - NMT/T5/UL2 based on sampling ratios. task = np_rng.choice(list(sampling_ratios.keys()), p=list(sampling_ratios.values())) # Potentially swap src, tgt with a 50% chance to avoid learning associations based on position in the sequence. swap_src_tgt = np_rng.randint(0, 2) if len(src) > max_src_seq_length: src = src[:max_src_seq_length] # Tasks that are not NMT have a <sep> token so we need to account for this in the length, hence we truncate tgt to max_tgt_seq_length - 1. max_tgt_seq_length = max_tgt_seq_length - 1 if task != "nmt" else max_tgt_seq_length if len(tgt) > max_tgt_seq_length: tgt = tgt[:max_tgt_seq_length] if task == "nmt": # If src/tgt are swapped, also swap the prepend language token ID. if swap_src_tgt == 1: src, tgt = tgt, src prepend_id = f"<{src_language}>" else: prepend_id = f"<{tgt_language}>" text_dec = np.concatenate([[tgt_tokenizer.bos_id], tgt]) labels = np.concatenate([tgt, [tgt_tokenizer.eos_id]]) nmt_sample = {'text_enc': src, 'text_dec': text_dec, 'labels': labels} return UL2Dataset._prepend_mask_type_token(src_tokenizer, nmt_sample, prepend_id) if swap_src_tgt == 0: sample = [np.concatenate((src, [sep_id], tgt))] elif swap_src_tgt == 1: sample = [np.concatenate((tgt, [sep_id], src))] if task == "x-masking": return UL2Dataset.get_x_masking_training_sample( sample=sample, tokenizer=src_tokenizer, np_rng=np_rng, target_seq_length=sample[0].shape[0], max_seq_length=max_seq_length, # -1 to account for the <extra_id_x> token that gets added after the sample is created. max_seq_length_dec=max_seq_length_dec, masked_lm_prob=masked_lm_prob, extreme_masked_lm_prob=extreme_masked_lm_prob, max_ngram_size=max_ngram_size, min_ngram_size=min_ngram_size, mean_ngram_size=mean_ngram_size, extreme_max_ngram_size=extreme_max_ngram_size, extreme_min_ngram_size=extreme_min_ngram_size, extreme_mean_ngram_size=extreme_mean_ngram_size, extreme_ngram_span_length_distribution=extreme_ngram_span_length_distribution, sentinel_tokens=sentinel_tokens, skip_masking_id=sep_id, ) elif task == "s-masking": return UL2Dataset.get_s_masking_training_sample( sample=sample, np_rng=np_rng, max_seq_length_encoder=max_seq_length, # -1 to account for the <extra_id_s> token that gets added after the sample is created. max_seq_length_decoder=max_seq_length_dec, tokenizer=src_tokenizer, prefix_lm_pivot_mean=prefix_lm_pivot_mean, pivot_distribution=extreme_ngram_span_length_distribution, add_eos=True, # Most sentences are < max length in cross-lingual data, so we add an EOS to indicate to the model to stop. ) elif task == "r-masking": return UL2Dataset.get_r_masking_training_sample( sample=sample, tokenizer=src_tokenizer, np_rng=np_rng, target_seq_length=sample[0].shape[0], max_seq_length=max_seq_length, # -1 to account for the <extra_id_r> token that gets added after the sample is created. max_seq_length_dec=max_seq_length_dec, masked_lm_prob=masked_lm_prob, vocab_id_list=vocab_id_list, vocab_id_to_token_dict=vocab_id_to_token_dict, max_ngram_size=max_ngram_size, mean_ngram_size=mean_ngram_size, whole_word_masking=False, favor_long_ngrams=favor_long_ngrams, permutation=permutation, geometric_dist=geometric_dist, tokenizer_type=tokenizer_type, sentinel_tokens=sentinel_tokens, skip_masking_id=sep_id, ) def __getitem__(self, idx): np_rng = np.random.RandomState(seed=(self.seed + idx)) src, tgt = super()._get_sample(idx) return BinarizedMemmapCrossLingualMLMAndTranslationDataset.create_sample( np_rng=np_rng, src=src, tgt=tgt, sampling_ratios=self.sampling_ratios, max_src_seq_length=self.max_src_seq_length, max_tgt_seq_length=self.max_tgt_seq_length, max_seq_length=self.max_seq_length, max_seq_length_dec=self.max_seq_length_dec, src_language=self.src_language, tgt_language=self.tgt_language, src_tokenizer=self.src_tokenizer, tgt_tokenizer=self.tgt_tokenizer, sep_id=self.sep_id, masked_lm_prob=self.masked_lm_prob, extreme_masked_lm_prob=self.extreme_masked_lm_prob, max_ngram_size=self.max_ngram_size, min_ngram_size=self.min_ngram_size, mean_ngram_size=self.mean_ngram_size, extreme_max_ngram_size=self.extreme_max_ngram_size, extreme_min_ngram_size=self.extreme_min_ngram_size, extreme_mean_ngram_size=self.extreme_mean_ngram_size, extreme_ngram_span_length_distribution=self.extreme_ngram_span_length_distribution, sentinel_tokens=self.sentinel_tokens, prefix_lm_pivot_mean=self.prefix_lm_pivot_mean, vocab_id_list=self.vocab_id_list, vocab_id_to_token_dict=self.vocab_id_to_token_dict, favor_long_ngrams=self.favor_long_ngrams, permutation=self.permutation, geometric_dist=self.geometric_dist, tokenizer_type=self.tokenizer_type, ) # NOTE: We want the parent's collate_fn to be used here since NMT examples are not padded even though the other task are. class TextMemmapCrossLingualMLMAndTranslationDataset(TextMemmapSequenceToSequenceDataset): def __init__( self, src_file_name: str, tgt_file_name: str, src_tokenizer: TokenizerSpec, tgt_tokenizer: TokenizerSpec, src_language: str, tgt_language: str, max_src_seq_length: int, max_tgt_seq_length: int, max_seq_length_dec: int, seed: int = 1234, max_num_samples: int = None, masked_lm_prob: float = 0.15, extreme_masked_lm_prob: float = 0.5, max_ngram_size: int = 10, mean_ngram_size: int = None, min_ngram_size: int = 1, extreme_max_ngram_size: int = 128, extreme_mean_ngram_size: int = 64, extreme_min_ngram_size: int = 32, extreme_ngram_span_length_distribution: LengthDistribution = LengthDistribution.truncated_normal, prefix_lm_pivot_mean: float = 0.25, # This is represented as a percentage of the total length. geometric_dist: bool = True, permutation: bool = False, favor_long_ngrams: bool = False, sampling_ratios: Dict[str, float] = {"x-masking": 0.25, "r-masking": 0.25, "s-masking": 0.25, "nmt": 0.25}, sentinel_tokens: List[int] = None, ): super().__init__( src_file_name=src_file_name, tgt_file_name=tgt_file_name, src_tokenizer=src_tokenizer, tgt_tokenizer=tgt_tokenizer, max_src_seq_length=max_src_seq_length - 1, # -1 here to account for <sep> tokens and special prefix tokens to the encoder like <extra_id_x>, <extra_id_r>, etc. max_tgt_seq_length=max_tgt_seq_length - 1, # -1 here to account for <sep> tokens and special prefix tokens to the encoder like <extra_id_x>, <extra_id_r>, etc. seed=seed, max_num_samples=max_num_samples, add_bos_to_enc=False, add_eos_to_enc=False, ) self.max_seq_length_dec = max_seq_length_dec self.max_ngram_size = max_ngram_size self.mean_ngram_size = mean_ngram_size self.min_ngram_size = min_ngram_size self.geometric_dist = geometric_dist self.permutation = permutation self.favor_long_ngrams = favor_long_ngrams self.extreme_masked_lm_prob = extreme_masked_lm_prob self.extreme_max_ngram_size = extreme_max_ngram_size self.extreme_mean_ngram_size = extreme_mean_ngram_size self.extreme_min_ngram_size = extreme_min_ngram_size self.extreme_ngram_span_length_distribution = extreme_ngram_span_length_distribution self.prefix_lm_pivot_mean = prefix_lm_pivot_mean self.sampling_ratios = sampling_ratios self.src_language = src_language self.tgt_language = tgt_language # Vocab stuff. self.vocab_id_list = src_tokenizer.vocab self.vocab_id_to_token_dict = {idx: token for idx, token in enumerate(self.vocab_id_list)} self.cls_id = src_tokenizer.cls_id self.sep_id = src_tokenizer.sep_id self.mask_id = src_tokenizer.mask_id self.pad_id = src_tokenizer.pad_id self.bos_id = src_tokenizer.bos_id self.eos_id = src_tokenizer.eos_id self.max_seq_length = max_src_seq_length + max_tgt_seq_length - 1 self.masked_lm_prob = masked_lm_prob self.sentinel_tokens = sentinel_tokens self.tokenizer_type = T5Dataset._determine_tokenizer_type(src_tokenizer, whole_word_masking=False) self._build() def _build(self): """ Class-specific build method to be overridden by child classes. """ if self.sentinel_tokens is None: self.sentinel_tokens = self.src_tokenizer.additional_special_tokens_ids assert len(self.sentinel_tokens) > 0 def __getitem__(self, idx): np_rng = np.random.RandomState(seed=(self.seed + idx)) src, tgt = super()._get_sample(idx) return BinarizedMemmapCrossLingualMLMAndTranslationDataset.create_sample( np_rng=np_rng, src=src, tgt=tgt, sampling_ratios=self.sampling_ratios, max_src_seq_length=self.max_src_seq_length, max_tgt_seq_length=self.max_tgt_seq_length, max_seq_length=self.max_seq_length, max_seq_length_dec=self.max_seq_length_dec, src_language=self.src_language, tgt_language=self.tgt_language, src_tokenizer=self.src_tokenizer, tgt_tokenizer=self.tgt_tokenizer, sep_id=self.sep_id, masked_lm_prob=self.masked_lm_prob, extreme_masked_lm_prob=self.extreme_masked_lm_prob, max_ngram_size=self.max_ngram_size, min_ngram_size=self.min_ngram_size, mean_ngram_size=self.mean_ngram_size, extreme_max_ngram_size=self.extreme_max_ngram_size, extreme_min_ngram_size=self.extreme_min_ngram_size, extreme_mean_ngram_size=self.extreme_mean_ngram_size, extreme_ngram_span_length_distribution=self.extreme_ngram_span_length_distribution, sentinel_tokens=self.sentinel_tokens, prefix_lm_pivot_mean=self.prefix_lm_pivot_mean, vocab_id_list=self.vocab_id_list, vocab_id_to_token_dict=self.vocab_id_to_token_dict, favor_long_ngrams=self.favor_long_ngrams, permutation=self.permutation, geometric_dist=self.geometric_dist, tokenizer_type=self.tokenizer_type, ) # NOTE: We want the parent's collate_fn to be used here since NMT examples are not padded even though the other task are.
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/xlm_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List import torch from torch.utils.data.dataset import Dataset class GPTRequestDataset(Dataset): """ Args: requests: List of prompts tokenizer: model tokenizer tokens_to_generate: int value denoting amount of tokens model should generate compute_logprobs: bool value denoting if model should generate tokens or compute logprobs Returns: data: class object {'data': tokens, 'tokens_to_generate': tokens_to_generate, 'compute_logprobs': compute_logprobs} * data: List of token's ids in respect to prompts * tokens_to_generate: int value denoting amount of tokens model should generate * compute_logprobs: bool value denoting if model should generate tokens or compute logprobs """ def __init__(self, requests: List, tokenizer, tokens_to_generate: int, compute_logprobs: bool) -> None: super().__init__() self.requests = requests self.tokenizer = tokenizer self.tokens_to_generate = tokens_to_generate self.compute_logprobs = compute_logprobs self.tokens = [] self.prompt_tags = [] # tokenize prompt for request in self.requests: if type(request) == dict: prompt_tag = request['prompt_tag'] self.prompt_tags.append(prompt_tag) text = request['text'] else: text = request self.tokens.append(torch.tensor(self.tokenizer.text_to_ids(text))) if self.prompt_tags: self.data = { 'prompt_tags': self.prompt_tags, 'data': self.tokens, 'tokens_to_generate': self.tokens_to_generate, 'compute_logprobs': self.compute_logprobs, } else: self.data = { 'data': self.tokens, 'tokens_to_generate': self.tokens_to_generate, 'compute_logprobs': self.compute_logprobs, } def __len__(self): return 1 def __getitem__(self, index): return self.data class T5RequestDataset(Dataset): def __init__(self, request: Dict, tokenizer) -> None: super().__init__() self.request = request self.tokenizer = tokenizer self.add_eos_to_encoder_input = self.request['add_eos_to_encoder_input'] # tokenize prompt self.request['tokenized_prompt'] = ' '.join(self.tokenizer.text_to_tokens(request['prompt'])) tokens = self.tokenizer.text_to_ids(request['prompt']) self.request['tokens'] = torch.tensor(tokens) self.mask_prompt(self.request['prompt']) def mask_prompt(self, sample): sample = sample.split() sentinel_idx = 0 for i, word in enumerate(sample): if word == '<mask>': sample[i] = f'<extra_id_{sentinel_idx}>' sentinel_idx += 1 sample = ' '.join(sample) sample = self.tokenizer.text_to_ids(sample) if self.add_eos_to_encoder_input: sample = sample + [self.tokenizer.eos_id] sample = torch.LongTensor(sample) self.request['masked_sample'] = sample def __len__(self): return 1 def __getitem__(self, index): return self.request
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/request_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataloaders.""" import abc from itertools import chain from typing import Optional import torch from nemo.utils import logging class BaseMegatronSampler: def __init__( self, total_samples: int, consumed_samples: int, micro_batch_size: int, data_parallel_rank: int, data_parallel_size: int, drop_last: bool = True, global_batch_size: Optional[int] = None, rampup_batch_size: Optional[list] = None, pad_samples_to_global_batch_size: Optional[bool] = False, ) -> None: # Sanity checks. if total_samples <= 0: raise RuntimeError("no sample to consume: {}".format(total_samples)) if consumed_samples >= total_samples: raise RuntimeError("no samples left to consume: {}, {}".format(consumed_samples, total_samples)) if micro_batch_size <= 0: raise RuntimeError(f"micro_batch_size size must be greater than 0, but {micro_batch_size}") if data_parallel_size <= 0: raise RuntimeError(f"data parallel size must be greater than 0, but {data_parallel_size}") if data_parallel_rank >= data_parallel_size: raise RuntimeError( "data_parallel_rank should be smaller than data size, but {} >= {}".format( data_parallel_rank, data_parallel_size ) ) if global_batch_size is not None and rampup_batch_size is None: if global_batch_size % (micro_batch_size * data_parallel_size) != 0: raise RuntimeError( f"`global_batch_size` ({global_batch_size}) is not divisible by " f"`micro_batch_size ({micro_batch_size}) x data_parallel_size " f"({data_parallel_size})`" ) if pad_samples_to_global_batch_size and global_batch_size is None: raise RuntimeError( f"`pad_samples_to_global_batch_size` can be `True` only when " f"`global_batch_size` is set to an integer value" ) # Keep a copy of input params for later use. self.total_samples = total_samples self.consumed_samples = consumed_samples self.micro_batch_size = micro_batch_size self.data_parallel_rank = data_parallel_rank self.micro_batch_times_data_parallel_size = self.micro_batch_size * data_parallel_size self.drop_last = drop_last self.global_batch_size = global_batch_size self.pad_samples_to_global_batch_size = pad_samples_to_global_batch_size logging.info( f'Instantiating MegatronPretrainingSampler with total_samples: {total_samples} and consumed_samples: {consumed_samples}' ) def __len__(self): num_available_samples: int = self.total_samples - self.consumed_samples if self.global_batch_size is not None: if self.drop_last: return num_available_samples // self.global_batch_size else: return (num_available_samples + self.global_batch_size - 1) // self.global_batch_size else: return (num_available_samples - 1) // self.micro_batch_times_data_parallel_size + 1 @abc.abstractmethod def __iter__(self): ... class MegatronPretrainingSampler(BaseMegatronSampler): def get_start_end_idx(self): start_idx = self.data_parallel_rank * self.micro_batch_size end_idx = start_idx + self.micro_batch_size return start_idx, end_idx def __iter__(self): batch = [] # Last batch will be dropped if drop_last is not set False indices = range(self.consumed_samples, self.total_samples) if (not self.drop_last) and self.pad_samples_to_global_batch_size: pad_samples_num = -len(indices) % self.global_batch_size pad_indices = range(-1, -pad_samples_num - 1, -1) indices = chain(indices, pad_indices) for idx in indices: batch.append(idx) if len(batch) == self.micro_batch_times_data_parallel_size: start_idx, end_idx = self.get_start_end_idx() yield batch[start_idx:end_idx] batch = [] # Check the last partial batch and see drop_last is set if len(batch) > 0 and not self.drop_last: assert ( not self.pad_samples_to_global_batch_size ), 'with pad_samples_to_global_batch_size all batches should be complete' start_idx, end_idx = self.get_start_end_idx() yield batch[start_idx:end_idx] class MegatronPretrainingRandomSampler(BaseMegatronSampler): def __init__( self, total_samples: int, consumed_samples: int, micro_batch_size: int, data_parallel_rank: int, data_parallel_size: int, drop_last: bool = True, global_batch_size: Optional[int] = None, pad_samples_to_global_batch_size: Optional[bool] = False, ) -> None: super().__init__( total_samples=total_samples, consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, data_parallel_rank=data_parallel_rank, data_parallel_size=data_parallel_size, drop_last=drop_last, global_batch_size=global_batch_size, pad_samples_to_global_batch_size=pad_samples_to_global_batch_size, ) assert ( pad_samples_to_global_batch_size == False ), "`MegatronPretrainingRandomSampler` does not support sample padding" self.last_batch_size = self.total_samples % self.micro_batch_times_data_parallel_size def __iter__(self): active_total_samples = self.total_samples - self.last_batch_size self.epoch = self.consumed_samples // active_total_samples current_epoch_samples = self.consumed_samples % active_total_samples assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0 # data sharding and random sampling bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) * self.micro_batch_size bucket_offset = current_epoch_samples // self.data_parallel_size start_idx = self.data_parallel_rank * bucket_size g = torch.Generator() g.manual_seed(self.epoch) random_idx = torch.randperm(bucket_size, generator=g).tolist() idx_range = [start_idx + x for x in random_idx[bucket_offset:]] batch = [] # Last batch if not complete will be dropped. for idx in idx_range: batch.append(idx) if len(batch) == self.micro_batch_size: self.consumed_samples += self.micro_batch_times_data_parallel_size yield batch batch = [] # Check the last partial batch and see drop_last is set if len(batch) > 0 and not self.drop_last: yield batch
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/data_samplers.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.nlp.data.language_modeling.megatron.bert_dataset import BertDataset from nemo.collections.nlp.data.language_modeling.megatron.gpt_dataset import GPTDataset from nemo.collections.nlp.data.language_modeling.megatron.gpt_prompt_learning_dataset import GPTPromptLearningDataset from nemo.collections.nlp.data.language_modeling.megatron.indexed_dataset import IndexedDataset, MMapIndexedDataset from nemo.collections.nlp.data.language_modeling.megatron.t5_dataset import T5Dataset
NeMo-main
nemo/collections/nlp/data/language_modeling/megatron/__init__.py