python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import Tacotron2Model from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager # hydra_runner is a thin NeMo wrapper around Hydra # It looks for a config named tacotron2.yaml inside the conf folder # Hydra parses the yaml and returns it as a Omegaconf DictConfig @hydra_runner(config_path="conf", config_name="tacotron2") def main(cfg): # Define the Lightning trainer trainer = pl.Trainer(**cfg.trainer) # exp_manager is a NeMo construct that helps with logging and checkpointing exp_manager(trainer, cfg.get("exp_manager", None)) # Define the Tacotron 2 model, this will construct the model as well as # define the training and validation dataloaders model = Tacotron2Model(cfg=cfg.model, trainer=trainer) # Let's add a few more callbacks lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) # Call lightning trainer's fit() to train the model trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/tacotron2.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import ssl_tts from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="ssl_tts_22050") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = ssl_tts.SSLDisentangler(cfg=cfg.model, trainer=trainer) model.maybe_init_from_pretrained_checkpoint(cfg=cfg) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/ssl_tts.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import UnivNetModel from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf/univnet", config_name="univnet") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = UnivNetModel(cfg=cfg.model, trainer=trainer) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/univnet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import FastPitchModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="fastpitch_align_44100") def main(cfg): if hasattr(cfg.model.optim, 'sched'): logging.warning("You are using an optimizer scheduler while finetuning. Are you sure this is intended?") if cfg.model.optim.lr > 1e-3 or cfg.model.optim.lr < 1e-5: logging.warning("The recommended learning rate for finetuning is 2e-4") trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = FastPitchModel(cfg=cfg.model, trainer=trainer) model.maybe_init_from_pretrained_checkpoint(cfg=cfg) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/fastpitch_finetune.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import Tacotron2Model from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager # hydra_runner is a thin NeMo wrapper around Hydra # It looks for a config named tacotron2.yaml inside the conf folder # Hydra parses the yaml and returns it as a Omegaconf DictConfig @hydra_runner(config_path="conf", config_name="tacotron2_44100") def main(cfg): # Define the Lightning trainer trainer = pl.Trainer(**cfg.trainer) # exp_manager is a NeMo construct that helps with logging and checkpointing exp_manager(trainer, cfg.get("exp_manager", None)) # Define the Tacotron 2 model, this will construct the model as well as # define the training and validation dataloaders model = Tacotron2Model(cfg=cfg.model, trainer=trainer) model.maybe_init_from_pretrained_checkpoint(cfg=cfg) # Let's add a few more callbacks lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) # Call lightning trainer's fit() to train the model trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/tacotron2_finetune.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import MixerTTSModel from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path='conf', config_name='mixer-tts') def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get('exp_manager', None)) model = MixerTTSModel(cfg=cfg.model, trainer=trainer) trainer.callbacks.extend([pl.callbacks.LearningRateMonitor(), LogEpochTimeCallback()]) # noqa trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/mixer_tts.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.tts.models import HifiGanModel from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf/hifigan", config_name="hifigan") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = HifiGanModel(cfg=cfg.model, trainer=trainer) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/hifigan.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from dataclasses import is_dataclass import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf, open_dict from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import FastPitchModel from nemo.core import adapter_mixins from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager def update_model_config_to_support_adapter(config) -> DictConfig: with open_dict(config): enc_adapter_metadata = adapter_mixins.get_registered_adapter(config.input_fft._target_) if enc_adapter_metadata is not None: config.input_fft._target_ = enc_adapter_metadata.adapter_class_path dec_adapter_metadata = adapter_mixins.get_registered_adapter(config.output_fft._target_) if dec_adapter_metadata is not None: config.output_fft._target_ = dec_adapter_metadata.adapter_class_path pitch_predictor_adapter_metadata = adapter_mixins.get_registered_adapter(config.pitch_predictor._target_) if pitch_predictor_adapter_metadata is not None: config.pitch_predictor._target_ = pitch_predictor_adapter_metadata.adapter_class_path duration_predictor_adapter_metadata = adapter_mixins.get_registered_adapter(config.duration_predictor._target_) if duration_predictor_adapter_metadata is not None: config.duration_predictor._target_ = duration_predictor_adapter_metadata.adapter_class_path aligner_adapter_metadata = adapter_mixins.get_registered_adapter(config.alignment_module._target_) if aligner_adapter_metadata is not None: config.alignment_module._target_ = aligner_adapter_metadata.adapter_class_path return config def add_global_adapter_cfg(model, global_adapter_cfg): # Convert to DictConfig from dict or Dataclass if is_dataclass(global_adapter_cfg): global_adapter_cfg = OmegaConf.structured(global_adapter_cfg) if not isinstance(global_adapter_cfg, DictConfig): global_adapter_cfg = DictConfig(global_adapter_cfg) # Update the model.cfg with information about the new adapter global cfg with open_dict(global_adapter_cfg), open_dict(model.cfg): if 'adapters' not in model.cfg: model.cfg.adapters = OmegaConf.create({}) # Add the global config for adapters to the model's internal config model.cfg.adapters[model.adapter_global_cfg_key] = global_adapter_cfg # Update all adapter modules (that already exist) with this global adapter config model.update_adapter_cfg(model.cfg.adapters) @hydra_runner(config_path="conf", config_name="fastpitch_align_44100_adapter") def main(cfg): if hasattr(cfg.model.optim, 'sched'): logging.warning("You are using an optimizer scheduler while finetuning. Are you sure this is intended?") if cfg.model.optim.lr > 1e-3 or cfg.model.optim.lr < 1e-5: logging.warning("The recommended learning rate for finetuning is 2e-4") trainer = pl.Trainer(**cfg.trainer) exp_log_dir = exp_manager(trainer, cfg.get("exp_manager", None)) # Initialize FastPitchModel model = FastPitchModel(cfg=update_model_config_to_support_adapter(cfg.model), trainer=trainer) model.maybe_init_from_pretrained_checkpoint(cfg=cfg) # Extract adapter parameters with open_dict(cfg.model.adapter): # Extract the name of the adapter (must be given for training) adapter_name = cfg.model.adapter.pop("adapter_name", "adapter") # Extract the name of the modules where adapters need to be added (must be given for training) adapter_module_name = cfg.model.adapter.pop("adapter_module_name", None) # Name of the adapter checkpoint which will be saved after training adapter_state_dict_name = cfg.model.adapter.pop("adapter_state_dict_name", None) # augment adapter name with module name, if not provided by user if adapter_module_name is not None and ':' not in adapter_name: adapter_name = f'{adapter_module_name}:{adapter_name}' # Extract the global adapter config, if provided adapter_global_cfg = cfg.model.adapter.pop(model.adapter_global_cfg_key, None) # Freeze model model.freeze() # Setup adapters if adapter_global_cfg is not None: add_global_adapter_cfg(model, adapter_global_cfg) if cfg.model.get("unfreeze_aligner", False): for name, param in model.fastpitch.aligner.named_parameters(): param.requires_grad = True if cfg.model.get("unfreeze_duration_predictor", False): for name, param in model.fastpitch.duration_predictor.named_parameters(): param.requires_grad = True if cfg.model.get("unfreeze_pitch_predictor", False): for name, param in model.fastpitch.pitch_predictor.named_parameters(): param.requires_grad = True # Add adapters model.add_adapter(name=adapter_name, cfg=cfg.model.adapter) assert model.is_adapter_available() # enable adapters model.set_enabled_adapters(enabled=False) model.set_enabled_adapters(adapter_name, enabled=True) # Set model to training mode. model = model.train() # Then, Unfreeze just the adapter weights that were enabled above (no part of model) model.unfreeze_enabled_adapters() # summarize the model model.summarize() lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(model) # Save the adapter state dict after training has completed if adapter_state_dict_name is not None: state_path = exp_log_dir if exp_log_dir is not None else os.getcwd() ckpt_path = os.path.join(state_path, "checkpoints") if os.path.exists(ckpt_path): state_path = ckpt_path # Save the adapter modules in a seperate file model.save_adapters(os.path.join(state_path, adapter_state_dict_name)) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/fastpitch_finetune_adapters.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import fastpitch_ssl, hifigan from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="fastpitch_ssl") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) vocoder = hifigan.HifiGanModel.load_from_checkpoint(cfg.hifi_ckpt_path).cpu() vocoder.eval() model = fastpitch_ssl.FastPitchModel_SSL(cfg=cfg.model, trainer=trainer, vocoder=vocoder) if cfg.get("finetune", False): model.maybe_init_from_pretrained_checkpoint(cfg=cfg) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/fastpitch_ssl.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.tts.models import HifiGanModel from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf/hifigan", config_name="hifigan_44100") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = HifiGanModel(cfg=cfg.model, trainer=trainer) model.maybe_init_from_pretrained_checkpoint(cfg=cfg) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/hifigan_finetune.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.tts.models.vits import VitsModel from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="vits") def main(cfg): trainer = pl.Trainer(use_distributed_sampler=False, **cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = VitsModel(cfg=cfg.model, trainer=trainer) trainer.callbacks.extend([pl.callbacks.LearningRateMonitor()]) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/vits.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models import WaveGlowModel from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="waveglow") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = WaveGlowModel(cfg=cfg.model, trainer=trainer) epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([epoch_time_logger]) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/waveglow.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.tts.models import SpectrogramEnhancerModel from nemo.core.config import hydra_runner from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="spectrogram-enhancer") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg=cfg.get("exp_manager", None)) model = SpectrogramEnhancerModel(cfg=cfg.model, trainer=trainer) lr_logger = pl.callbacks.LearningRateMonitor() trainer.callbacks.extend([lr_logger]) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/spectrogram_enhancer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from omegaconf import OmegaConf from nemo.collections.tts.models import AudioCodecModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf/audio_codec", config_name="audio_codec") def main(cfg): logging.info('\nConfig Params:\n%s', OmegaConf.to_yaml(cfg, resolve=True)) trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = AudioCodecModel(cfg=cfg.model, trainer=trainer) trainer.fit(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/audio_codec.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import re import librosa import soundfile as sf import torch from nemo.collections.tts.models import AlignerModel from nemo.collections.tts.parts.utils.tts_dataset_utils import general_padding """ G2P disambiguation using an Aligner model's input embedding distances. Does not handle OOV and leaves them as graphemes. The output will have each token's phonemes (or graphemes) bracketed, e.g. <\"><M AH1 L ER0><, ><M AH1 L ER0><, ><HH IY1 Z>< ><DH AH0>< ><M AE1 N><.\"> Example: python aligner_heteronym_disambiguation.py \ --model=<model_path> \ --manifest=<manifest_path> \ --out=<output_json_path> \ --confidence=0.02 \ --verbose """ def get_args(): """Retrieve arguments for disambiguation. """ parser = argparse.ArgumentParser("G2P disambiguation using Aligner input embedding distances.") # TODO(jocelynh): Make this required=False with default download from NGC once ckpt uploaded parser.add_argument('--model', required=True, type=str, help="Path to Aligner model checkpoint (.nemo file).") parser.add_argument( '--manifest', required=True, type=str, help="Path to data manifest. Each entry should contain the path to the audio file as well as the text in graphemes.", ) parser.add_argument( '--out', required=True, type=str, help="Path to output file where disambiguations will be written." ) parser.add_argument( '--sr', required=False, default=22050, type=int, help="Target sample rate to load the dataset. Should match what the model was trained on.", ) parser.add_argument( '--heteronyms', required=False, type=str, default='../../scripts/tts_dataset_files/heteronyms-052722', help="Heteronyms file to specify which words should be disambiguated. All others will use default pron.", ) parser.add_argument( '--confidence', required=False, type=float, default=0.0, help="Confidence threshold to keep a disambiguation." ) parser.add_argument( '--verbose', action='store_true', help="If set to True, logs scores for each disambiguated word in disambiguation_logs.txt.", ) args = parser.parse_args() return args def load_and_prepare_audio(aligner, audio_path, target_sr, device): """Loads and resamples audio to target sample rate (if necessary), and preprocesses for Aligner input. """ # Load audio and get length for preprocessing audio_data, orig_sr = sf.read(audio_path) if orig_sr != target_sr: audio_data = librosa.core.resample(audio_data, orig_sr=orig_sr, target_sr=target_sr) audio = torch.tensor(audio_data, dtype=torch.float, device=device).unsqueeze(0) audio_len = torch.tensor(audio_data.shape[0], device=device).long().unsqueeze(0) # Generate spectrogram spec, spec_len = aligner.preprocessor(input_signal=audio, length=audio_len) return spec, spec_len def disambiguate_candidates(aligner, text, spec, spec_len, confidence, device, heteronyms, log_file=None): """Retrieves and disambiguate all candidate sentences for disambiguation of a given some text. Assumes that the max number of candidates per word is a reasonable batch size. Note: This could be sped up if multiple words' candidates were batched, but this is conceptually easier. """ # Grab original G2P result aligner_g2p = aligner.tokenizer.g2p base_g2p = aligner_g2p(text) # Tokenize text words = [word for word, _ in aligner_g2p.word_tokenize_func(text)] ### Loop Through Words ### result_g2p = [] word_start_idx = 0 has_heteronym = False for word in words: # Retrieve the length of the word in the default G2P conversion g2p_default_len = len(aligner_g2p(word)) # Check if word needs to be disambiguated if word in heteronyms: has_heteronym = True # Add candidate for each ambiguous pronunciation word_candidates = [] candidate_prons_and_lengths = [] for pron in aligner_g2p.phoneme_dict[word]: # Replace graphemes in the base G2P result with the current variant candidate = base_g2p[:word_start_idx] + pron + base_g2p[word_start_idx + g2p_default_len :] candidate_tokens = aligner.tokenizer.encode_from_g2p(candidate) word_candidates.append(candidate_tokens) candidate_prons_and_lengths.append((pron, len(pron))) ### Inference ### num_candidates = len(word_candidates) # If only one candidate, just convert and continue if num_candidates == 1: has_heteronym = False result_g2p.append(f"<{' '.join(candidate_prons_and_lengths[0][0])}>") word_start_idx += g2p_default_len continue text_len = [len(toks) for toks in word_candidates] text_len_in = torch.tensor(text_len, device=device).long() # Have to pad text tokens in case different pronunciations have different lengths max_text_len = max(text_len) text_stack = [] for i in range(num_candidates): padded_tokens = general_padding( torch.tensor(word_candidates[i], device=device).long(), text_len[i], max_text_len ) text_stack.append(padded_tokens) text_in = torch.stack(text_stack) # Repeat spectrogram and spec_len tensors to match batch size spec_in = spec.repeat([num_candidates, 1, 1]) spec_len_in = spec_len.repeat([num_candidates]) with torch.no_grad(): soft_attn, _ = aligner(spec=spec_in, spec_len=spec_len_in, text=text_in, text_len=text_len_in) # Need embedding distances and duration preds to calculate mean distance for just the one word text_embeddings = aligner.embed(text_in).transpose(1, 2) l2_dists = aligner.alignment_encoder.get_dist(keys=text_embeddings, queries=spec_in).sqrt() durations = aligner.alignment_encoder.get_durations(soft_attn, text_len_in, spec_len_in).int() # Retrieve average embedding distances min_dist = float('inf') max_dist = 0.0 best_candidate = None for i in range(num_candidates): candidate_mean_dist = aligner.alignment_encoder.get_mean_distance_for_word( l2_dists=l2_dists[i], durs=durations[i], start_token=word_start_idx + (1 if aligner.tokenizer.pad_with_space else 0), num_tokens=candidate_prons_and_lengths[i][1], ) if log_file: log_file.write(f"{candidate_prons_and_lengths[i][0]} -- {candidate_mean_dist}\n") if candidate_mean_dist < min_dist: min_dist = candidate_mean_dist best_candidate = candidate_prons_and_lengths[i][0] if candidate_mean_dist > max_dist: max_dist = candidate_mean_dist # Calculate confidence score. If below threshold, skip and use graphemes. disamb_conf = (max_dist - min_dist) / ((max_dist + min_dist) / 2.0) if disamb_conf < confidence: if log_file: log_file.write(f"Below confidence threshold: {best_candidate} ({disamb_conf})\n") has_heteronym = False result_g2p.append(f"<{' '.join(aligner_g2p(word))}>") word_start_idx += g2p_default_len continue # Otherwise, can write disambiguated word if log_file: log_file.write(f"best candidate: {best_candidate} (confidence: {disamb_conf})\n") result_g2p.append(f"<{' '.join(best_candidate)}>") else: if re.search("[a-zA-Z]", word) is None: # Punctuation or space result_g2p.append(f"<{word}>") elif word in aligner_g2p.phoneme_dict: # Take default pronunciation for everything else in the dictionary result_g2p.append(f"<{' '.join(aligner_g2p.phoneme_dict[word][0])}>") else: # OOV result_g2p.append(f"<{' '.join(aligner_g2p(word))}>") # Advance to phoneme index of next word word_start_idx += g2p_default_len if log_file and has_heteronym: log_file.write(f"{text}\n") log_file.write(f"===\n{''.join(result_g2p)}\n===\n") log_file.write(f"===============================\n") return result_g2p, has_heteronym def disambiguate_dataset( aligner, manifest_path, out_path, sr, heteronyms, confidence, device, verbose, heteronyms_only=True ): """Disambiguates the phonemes for all words with ambiguous pronunciations in the given manifest. """ log_file = open('disambiguation_logs.txt', 'w') if verbose else None with open(out_path, 'w') as f_out: with open(manifest_path, 'r') as f_in: count = 0 for line in f_in: # Retrieve entry and base G2P conversion for full text entry = json.loads(line) # Set punct_post_process=True in order to preserve words with apostrophes text = aligner.normalizer.normalize(entry['text'], punct_post_process=True) text = aligner.tokenizer.text_preprocessing_func(text) # Load and preprocess audio audio_path = entry['audio_filepath'] spec, spec_len = load_and_prepare_audio(aligner, audio_path, sr, device) # Get pronunciation candidates and disambiguate disambiguated_text, has_heteronym = disambiguate_candidates( aligner, text, spec, spec_len, confidence, device, heteronyms, log_file ) # Skip writing entry if user only wants samples with heteronyms if heteronyms_only and not has_heteronym: continue # Save entry with disambiguation entry['disambiguated_text'] = ''.join(disambiguated_text) f_out.write(f"{json.dumps(entry)}\n") count += 1 if count % 100 == 0: print(f"Finished {count} entries.") print(f"Finished all entries, with a total of {count}.") if log_file: log_file.close() def main(): args = get_args() # Check file paths from arguments if not os.path.exists(args.model): print("Could not find model checkpoint file: ", args.model) if not os.path.exists(args.manifest): print("Could not find data manifest file: ", args.manifest) if os.path.exists(args.out): print("Output file already exists: ", args.out) overwrite = input("Is it okay to overwrite it? (Y/N): ") if overwrite.lower() != 'y': print("Not overwriting output file, quitting.") quit() if not os.path.exists(args.heteronyms): print("Could not find heteronyms list: ", args.heteronyms) # Read heteronyms list, one per line heteronyms = set() with open(args.heteronyms, 'r') as f_het: for line in f_het: heteronyms.add(line.strip().lower()) # Load model print("Restoring Aligner model from checkpoint...") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") aligner = AlignerModel.restore_from(args.model, map_location=device) # Disambiguation print("Beginning disambiguation...") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") disambiguate_dataset(aligner, args.manifest, args.out, args.sr, heteronyms, args.confidence, device, args.verbose) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/aligner_heteronym_disambiguation.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used as a CI test and shows how to chain TTS and ASR models """ from argparse import ArgumentParser from math import ceil from pathlib import Path import librosa import soundfile import torch from nemo.collections.asr.metrics.wer import word_error_rate from nemo.collections.asr.models import EncDecCTCModel from nemo.collections.common.parts.preprocessing import parsers from nemo.collections.tts.models.base import SpectrogramGenerator, Vocoder from nemo.utils import logging LIST_OF_TEST_STRINGS = [ "Hey, this is a test of the speech synthesis system.", "roupell received the announcement with a cheerful countenance.", "with thirteen dollars, eighty-seven cents when considerably greater resources were available to him.", "Two other witnesses were able to offer partial descriptions of a man they saw in the southeast corner window.", "'just to steady their legs a little' in other words, to add his weight to that of the hanging bodies.", "The discussion above has already set forth examples of his expression of hatred for the United States.", "At two:thirty-eight p.m., Eastern Standard Time, Lyndon Baines Johnson took the oath of office as the thirty-sixth President of the United States.", "or, quote, other high government officials in the nature of a complaint coupled with an expressed or implied determination to use a means.", "As for my return entrance visa please consider it separately. End quote.", "it appears that Marina Oswald also complained that her husband was not able to provide more material things for her.", "appeared in The Dallas Times Herald on November fifteen, nineteen sixty-three.", "The only exit from the office in the direction Oswald was moving was through the door to the front stairway.", ] def main(): parser = ArgumentParser() parser.add_argument( "--asr_model", type=str, default="QuartzNet15x5Base-En", choices=[x.pretrained_model_name for x in EncDecCTCModel.list_available_models()], ) parser.add_argument( "--tts_model_spec", type=str, default="tts_en_tacotron2", choices=[x.pretrained_model_name for x in SpectrogramGenerator.list_available_models()], ) parser.add_argument( "--tts_model_vocoder", type=str, default="tts_en_waveglow_88m", choices=[x.pretrained_model_name for x in Vocoder.list_available_models()], ) parser.add_argument("--wer_tolerance", type=float, default=1.0, help="used by test") parser.add_argument("--trim", action="store_true") parser.add_argument("--debug", action="store_true") args = parser.parse_args() torch.set_grad_enabled(False) if args.debug: logging.set_verbosity(logging.DEBUG) logging.info(f"Using NGC cloud ASR model {args.asr_model}") asr_model = EncDecCTCModel.from_pretrained(model_name=args.asr_model) logging.info(f"Using NGC cloud TTS Spectrogram Generator model {args.tts_model_spec}") tts_model_spec = SpectrogramGenerator.from_pretrained(model_name=args.tts_model_spec) logging.info(f"Using NGC cloud TTS Vocoder model {args.tts_model_vocoder}") tts_model_vocoder = Vocoder.from_pretrained(model_name=args.tts_model_vocoder) models = [asr_model, tts_model_spec, tts_model_vocoder] if torch.cuda.is_available(): for i, m in enumerate(models): models[i] = m.cuda() for m in models: m.eval() asr_model, tts_model_spec, tts_model_vocoder = models parser = parsers.make_parser( labels=asr_model.decoder.vocabulary, name="en", unk_id=-1, blank_id=-1, do_normalize=True, ) labels_map = dict([(i, asr_model.decoder.vocabulary[i]) for i in range(len(asr_model.decoder.vocabulary))]) tts_input = [] asr_references = [] longest_tts_input = 0 for test_str in LIST_OF_TEST_STRINGS: tts_parsed_input = tts_model_spec.parse(test_str) if len(tts_parsed_input[0]) > longest_tts_input: longest_tts_input = len(tts_parsed_input[0]) tts_input.append(tts_parsed_input.squeeze()) asr_parsed = parser(test_str) asr_parsed = ''.join([labels_map[c] for c in asr_parsed]) asr_references.append(asr_parsed) # Pad TTS Inputs for i, text in enumerate(tts_input): pad = (0, longest_tts_input - len(text)) tts_input[i] = torch.nn.functional.pad(text, pad, value=68) logging.debug(tts_input) # Do TTS tts_input = torch.stack(tts_input) if torch.cuda.is_available(): tts_input = tts_input.cuda() specs = tts_model_spec.generate_spectrogram(tokens=tts_input) audio = [] step = ceil(len(specs) / 4) for i in range(4): audio.append(tts_model_vocoder.convert_spectrogram_to_audio(spec=specs[i * step : i * step + step])) audio = [item for sublist in audio for item in sublist] audio_file_paths = [] # Save audio logging.debug(f"args.trim: {args.trim}") for i, aud in enumerate(audio): aud = aud.cpu().numpy() if args.trim: aud = librosa.effects.trim(aud, top_db=40)[0] soundfile.write(f"{i}.wav", aud, samplerate=22050) audio_file_paths.append(str(Path(f"{i}.wav"))) # Do ASR hypotheses = asr_model.transcribe(audio_file_paths) for i, _ in enumerate(hypotheses): logging.debug(f"{i}") logging.debug(f"ref:'{asr_references[i]}'") logging.debug(f"hyp:'{hypotheses[i]}'") wer_value = word_error_rate(hypotheses=hypotheses, references=asr_references) if wer_value > args.wer_tolerance: raise ValueError(f"Got WER of {wer_value}. It was higher than {args.wer_tolerance}") logging.info(f'Got WER of {wer_value}. Tolerance was {args.wer_tolerance}') if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/test_tts_infer.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from dataclasses import dataclass, is_dataclass from typing import Optional import pytorch_lightning as pl import torch from omegaconf import OmegaConf from utils import get_metrics from nemo.collections.tts.models.base import G2PModel from nemo.core.config import hydra_runner from nemo.utils import logging """ python g2p_inference.py \ pretrained_model=<Path to .nemo file or pretrained model name for G2PModel from list_available_models()>" \ manifest_filepath="<Path to .json manifest>" \ output_file="<Path to .json manifest to save prediction>" \ batch_size=32 \ num_workers=4 \ pred_field=pred_text """ @dataclass class TranscriptionConfig: # Required configs pretrained_model: str # Path to a .nemo file or Name of a pretrained model manifest_filepath: str # Path to .json manifest file phoneme_field: Optional[ str ] = None # name of the field in manifest_filepath for ground truth phonemes, default during training "text" grapheme_field: Optional[str] = "text_graphemes" # name of the field in manifest_filepath for input grapheme text # General configs output_file: Optional[ str ] = None # Path to .json manifest file to save predictions, will be saved in "target_field" pred_field: Optional[str] = "pred_text" # name of the field in the output_file to save predictions batch_size: int = 32 # Batch size to use for inference num_workers: int = 0 # Number of workers to use for DataLoader during inference # Config for heteronyms correction pretrained_heteronyms_model: Optional[ str ] = None # Path to a .nemo file or a Name of a pretrained model to disambiguate heteronyms (Optional) @hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig) def main(cfg: TranscriptionConfig) -> TranscriptionConfig: logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') if is_dataclass(cfg): cfg = OmegaConf.structured(cfg) if not cfg.pretrained_model: raise ValueError( 'To run evaluation and inference script a pre-trained model or .nemo file must be provided.' f'Choose from {G2PModel.list_available_models()} or "pretrained_model"="your_model.nemo"' ) logging.info( 'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \ no DDP to obtain accurate results' ) # setup GPU if torch.cuda.is_available(): device = [0] # use 0th CUDA device accelerator = 'gpu' else: device = 1 accelerator = 'cpu' map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu') trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False) if os.path.exists(cfg.pretrained_model): model = G2PModel.restore_from(cfg.pretrained_model, map_location=map_location) elif cfg.pretrained_model in G2PModel.get_available_model_names(): model = G2PModel.from_pretrained(cfg.pretrained_model, map_location=map_location) else: raise ValueError( f'Provide path to the pre-trained .nemo checkpoint or choose from {G2PModel.list_available_models()}' ) model._cfg.max_source_len = 512 model.set_trainer(trainer) model = model.eval() if cfg.output_file is None: cfg.output_file = cfg.manifest_filepath.replace(".json", "_phonemes.json") with torch.no_grad(): model.convert_graphemes_to_phonemes( manifest_filepath=cfg.manifest_filepath, output_manifest_filepath=cfg.output_file, grapheme_field=cfg.grapheme_field, batch_size=cfg.batch_size, num_workers=cfg.num_workers, pred_field=cfg.pred_field, ) print(f"IPA predictions saved in {cfg.output_file}") if cfg.phoneme_field is not None: get_metrics(cfg.output_file, phoneme_field=cfg.phoneme_field, grapheme_field=cfg.grapheme_field) if __name__ == '__main__': main()
NeMo-main
examples/tts/g2p/g2p_inference.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from dataclasses import dataclass, is_dataclass from typing import Optional import pytorch_lightning as pl import torch from omegaconf import OmegaConf from nemo.collections.tts.g2p.models.heteronym_classification import HeteronymClassificationModel from nemo.core.config import hydra_runner from nemo.utils import logging """ This script runs inference with HeteronymClassificationModel If the input manifest contains target "word_id", evaluation will be also performed. To prepare dataset, see NeMo/scripts/dataset_processing/g2p/export_wikihomograph_data_to_manifest.py Inference form manifest: python g2p_heteronym_classification_inference.py \ manifest="<Path to .json manifest>" \ pretrained_model="<Path to .nemo file or pretrained model name from list_available_models()>" \ output_manifest="<Path to .json manifest to save prediction>" \ wordid_to_phonemes_file="<Path to a file with mapping from wordid predicted by the model to phonemes>" Interactive inference: python g2p_heteronym_classification_inference.py \ pretrained_model="<Path to .nemo file or pretrained model name from list_available_models()>" \ wordid_to_phonemes_file="<Path to a file with mapping from wordid predicted by the model to phonemes>" # Optional """ @dataclass class TranscriptionConfig: # Required configs pretrained_model: str # Path to a .nemo file or Name of a pretrained model # path to .json manifest inference, if not provided, interactive mode will be enabled manifest: Optional[str] = None # Path to .json manifest output_manifest: Optional[ str ] = "predictions.json" # Path to .json manifest to save prediction, will be saved in "pred_text" field grapheme_field: str = "text_graphemes" # name of the field in .json manifest for input grapheme text # mapping from wordid predicted by the model to phonemes, e.g., # "../../../scripts/tts_dataset_files/wordid_to_ipa-0.7b_nv22.10.tsv" wordid_to_phonemes_file: Optional[str] = None # if "word_id" targets are present in the manifest, evaluation will be performed and errors will be saved in errors_file errors_file: Optional[str] = None # path to a file to save prediction errors batch_size: int = 32 num_workers: int = 0 @hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig) def main(cfg): logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') if is_dataclass(cfg): cfg = OmegaConf.structured(cfg) if not cfg.pretrained_model: raise ValueError( 'To run evaluation and inference script a pre-trained model or .nemo file must be provided.' f'Choose from {HeteronymClassificationModel.list_available_models()} or "pretrained_model"="your_model.nemo"' ) logging.info( 'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \ no DDP to obtain accurate results' ) # setup GPU if torch.cuda.is_available(): device = [0] # use 0th CUDA device accelerator = 'gpu' else: device = 1 accelerator = 'cpu' map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu') trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False) if os.path.exists(cfg.pretrained_model): model = HeteronymClassificationModel.restore_from(cfg.pretrained_model, map_location=map_location) elif cfg.pretrained_model in HeteronymClassificationModel.get_available_model_names(): model = HeteronymClassificationModel.from_pretrained(cfg.pretrained_model, map_location=map_location) else: raise ValueError( f'Provide path to the pre-trained .nemo checkpoint or choose from {HeteronymClassificationModel.list_available_models()}' ) model.set_trainer(trainer) model = model.eval() logging.info(f'Config Params: {model._cfg}') if cfg.manifest is not None: if not os.path.exists(cfg.manifest): raise ValueError(f"{cfg.manifest} not found.") with torch.no_grad(): model.disambiguate_manifest( manifest=cfg.manifest, output_manifest=cfg.output_manifest, grapheme_field=cfg.grapheme_field, batch_size=cfg.batch_size, num_workers=cfg.num_workers, ) # save predictions to a file if cfg.errors_file is None: cfg.errors_file = cfg.output_manifest.replace(".json", "_errors.txt") save_errors = True correct = 0 total = 0 with open(cfg.output_manifest, "r", encoding="utf-8") as f_preds, open( cfg.errors_file, "w", encoding="utf-8" ) as f_errors: for line in f_preds: line = json.loads(line) predictions = line["pred_wordid"] # run evaluation if target word_id is available in the input manifest if "word_id" in line: targets = line["word_id"] if isinstance(targets, str): targets = [targets] for idx, target_ in enumerate(targets): total += 1 if idx >= len(predictions) or target_ != predictions[idx]: f_errors.write(f"INPUT: {line[cfg.grapheme_field]}\n") f_errors.write(f"PRED : {predictions[idx]} -- GT: {target_}\n") f_errors.write("===========================\n") else: correct += 1 else: save_errors = False if save_errors: logging.info(f"Accuracy: {round(correct / total * 100, 2)}% ({total - correct} errors out of {total})") logging.info(f"Errors saved at {cfg.errors_file}") else: logging.info("No 'word_id' values found, skipping evaluation.") if os.path.exists(cfg.errors_file): os.remove(cfg.errors_file) else: print('Entering interactive mode.') done = False while not done: print('Type "STOP" to exit.') test_input = input('Input a test input:') if test_input == "STOP": done = True if not done: with torch.no_grad(): _, sentences = model.disambiguate( sentences=[test_input], batch_size=1, num_workers=cfg.num_workers, wordid_to_phonemes_file=cfg.wordid_to_phonemes_file, ) print(sentences[0]) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/g2p/g2p_heteronym_classification_inference.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl import torch from utils import get_model from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models.base import G2PModel from nemo.core.config import hydra_runner from nemo.utils import logging, model_utils from nemo.utils.exp_manager import exp_manager """ This script supports training of G2PModels (for T5G2PModel use g2p_t5.yaml, for CTCG2PModel use either g2p_conformer.yaml or g2p_t5_ctc.yaml) # Training T5G2PModel and evaluation at the end of training: python examples/text_processing/g2p/g2p_train_and_evaluate.py \ # (Optional: --config-path=<Path to dir of configs> --config-name=<name of config without .yaml>) \ model.train_ds.manifest_filepath="<Path to manifest file>" \ model.validation_ds.manifest_filepath="<Path to manifest file>" \ model.test_ds.manifest_filepath="<Path to manifest file>" \ trainer.devices=1 \ do_training=True \ do_testing=True Example of the config file: NeMo/examples/tts/g2p/conf/g2p_t5.yaml # Training Conformer-G2P Model and evaluation at the end of training: python examples/text_processing/g2p/g2p_train_and_evaluate.py \ # (Optional: --config-path=<Path to dir of configs> --config-name=<name of config without .yaml>) \ model.train_ds.manifest_filepath="<Path to manifest file>" \ model.validation_ds.manifest_filepath="<Path to manifest file>" \ model.test_ds.manifest_filepath="<Path to manifest file>" \ model.tokenizer.dir=<Path to pretrained tokenizer> \ trainer.devices=1 \ do_training=True \ do_testing=True Example of the config file: NeMo/examples/text_processing/g2p/conf/g2p_conformer_ctc.yaml # Run evaluation of the pretrained model: python examples/text_processing/g2p/g2p_train_and_evaluate.py \ # (Optional: --config-path=<Path to dir of configs> --config-name=<name of config without .yaml>) \ pretrained_model="<Path to .nemo file or pretrained model name from list_available_models()>" \ model.test_ds.manifest_filepath="<Path to manifest file>" \ trainer.devices=1 \ do_training=False \ do_testing=True """ @hydra_runner(config_path="conf", config_name="g2p_t5") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) g2p_model = None if cfg.do_training: g2p_model = get_model(cfg, trainer) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(g2p_model) if cfg.do_testing: logging.info( 'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \ no DDP to obtain accurate results' ) # setup GPU if torch.cuda.is_available(): device = [0] # use 0th CUDA device accelerator = 'gpu' else: device = 1 accelerator = 'cpu' map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu') trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False) if g2p_model is None: if os.path.exists(cfg.pretrained_model): # restore g2p_model from .nemo file path model_cfg = G2PModel.restore_from(restore_path=cfg.pretrained_model, return_config=True) classpath = model_cfg.target # original class path imported_class = model_utils.import_class_by_path(classpath) logging.info(f"Restoring g2p_model : {imported_class.__name__}") g2p_model = imported_class.restore_from(restore_path=cfg.pretrained_model, map_location=map_location) model_name = os.path.splitext(os.path.basename(cfg.pretrained_model))[0] logging.info(f"Restored {model_name} g2p_model from {cfg.pretrained_model}.") elif cfg.pretrained_model in G2PModel.get_available_model_names(): # restore g2p_model by name g2p_model = G2PModel.from_pretrained(cfg.pretrained_model, map_location=map_location) else: raise ValueError( f'Provide path to the pre-trained .nemo checkpoint or choose from {G2PModel.list_available_models()}' ) if hasattr(cfg.model, "test_ds") and cfg.model.test_ds.manifest_filepath is not None: g2p_model.setup_multiple_test_data(cfg.model.test_ds) if g2p_model.prepare_test(trainer): trainer.test(g2p_model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/g2p/g2p_train_and_evaluate.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from nemo.collections.asr.metrics.wer import word_error_rate from nemo.collections.tts.g2p.models.ctc import CTCG2PModel from nemo.collections.tts.g2p.models.t5 import T5G2PModel from nemo.utils import logging def get_model(cfg, trainer): """ Get model instance Args: cfg: model's config file trainer: trainer Return: G2PModel instance """ if "CTC" in cfg.name: model = CTCG2PModel(cfg=cfg.model, trainer=trainer) elif cfg.name == "T5G2P": model = T5G2PModel(cfg=cfg.model, trainer=trainer) else: raise ValueError(f"{cfg.name} is not supported. Choose from [G2P-Conformer-CTC, T5G2P]") return model def get_metrics(manifest: str, pred_field="pred_text", phoneme_field="text", grapheme_field="text_graphemes"): """ Calculates WER and PER metrics (for duplicated grapheme entries with multiple reference values, the best matching prediction will be used for evaluation.) Args: manifest: Path to .json manifest file pred_field: name of the field in the output_file to save predictions phoneme_field: name of the field in manifest_filepath for ground truth phonemes grapheme_field: name of the field in manifest_filepath for input grapheme text Returns: WER and PER values """ all_preds = [] all_references = [] all_graphemes = {} with open(manifest, "r") as f: for i, line in enumerate(f): line = json.loads(line) all_preds.append(line[pred_field]) all_references.append(line[phoneme_field]) if line[grapheme_field] not in all_graphemes: all_graphemes[line[grapheme_field]] = [] all_graphemes[line[grapheme_field]].append(i) # collect all examples with multiple phoneme options and same grapheme form, choose the one with min PER all_graphemes = {k: v for k, v in all_graphemes.items() if len(v) > 1} lines_to_drop = [] for phon_amb_indices in all_graphemes.values(): refs, preds = [], [] for phon_amb_indices_ in phon_amb_indices: refs.append(all_references[phon_amb_indices_]) preds.append(all_preds[phon_amb_indices_]) pers = [] for ref_, pred_ in zip(refs, preds): pers.append(word_error_rate(hypotheses=[pred_], references=[ref_], use_cer=True)) min_idx = pers.index(min(pers)) phon_amb_indices.pop(min_idx) lines_to_drop.extend(phon_amb_indices) # drop duplicated examples, only keep with min PER all_preds = [x for i, x in enumerate(all_preds) if i not in lines_to_drop] all_references = [x for i, x in enumerate(all_references) if i not in lines_to_drop] wer = word_error_rate(hypotheses=all_preds, references=all_references) per = word_error_rate(hypotheses=all_preds, references=all_references, use_cer=True) logging.info(f"{manifest}: PER: {per * 100:.2f}%, WER: {wer * 100:.2f}%, lines: {len(all_references)}") return wer, per
NeMo-main
examples/tts/g2p/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl import torch from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.g2p.models.heteronym_classification import HeteronymClassificationModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager """ This script runs training and evaluation of HeteronymClassificationModel To prepare dataset, see NeMo/scripts/dataset_processing/g2p/export_wikihomograph_data_to_manifest.py To run training: python g2p_heteronym_classification_train_and_evaluate.py \ train_manifest=<Path to train manifest file>" \ validation_manifest=<Path to validation manifest file>" \ model.wordids="<Path to wordids.tsv file>" \ do_training=True To run training and testing (once the training is complete): python g2p_heteronym_classification_train_and_evaluate.py \ train_manifest=<Path to train manifest file>" \ validation_manifest=<Path to validation manifest file>" \ model.test_ds.dataset.manifest=<Path to test manifest file>" \ model.wordids="<Path to wordids.tsv file>" \ do_training=True \ do_testing=True To run testing: python g2p_heteronym_classification_train_and_evaluate.py \ do_training=False \ do_testing=True \ model.test_ds.dataset.manifest=<Path to test manifest file>" \ pretrained_model=<Path to pretrained .nemo model or from list_available_models()> See https://github.com/google-research-datasets/WikipediaHomographData/blob/master/data/wordids.tsv for wordids file format example See https://github.com/NVIDIA/NeMo/blob/main/scripts/dataset_processing/g2p/export_wikihomograph_data_to_manifest.py on how to convert WikiHomograph data for HeteronymClassificationModel training/evaluation """ @hydra_runner(config_path="conf", config_name="g2p_heteronym_classification.yaml") def main(cfg): # PTL 2.0 has find_unused_parameters as False by default, so its required to set it to True # when there are unused parameters like in this model if cfg.trainer.strategy == 'ddp': cfg.trainer.strategy = "ddp_find_unused_parameters_true" trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = None if cfg.do_training: model = HeteronymClassificationModel(cfg=cfg.model, trainer=trainer) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(model) logging.info("Training is complete") if cfg.do_testing: logging.info( 'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU and \ no DDP to obtain accurate results' ) # setup GPU if torch.cuda.is_available(): device = [0] # use 0th CUDA device accelerator = 'gpu' else: device = 1 accelerator = 'cpu' map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu') trainer = pl.Trainer(devices=device, accelerator=accelerator, logger=False, enable_checkpointing=False) if model is None: if os.path.exists(cfg.pretrained_model): # restore model from .nemo file path model = HeteronymClassificationModel.restore_from(restore_path=cfg.pretrained_model) elif cfg.pretrained_model in HeteronymClassificationModel.get_available_model_names(): # restore model by name model = HeteronymClassificationModel.from_pretrained(cfg.pretrained_model, map_location=map_location) else: raise ValueError( f'Provide path to the pre-trained .nemo checkpoint or choose from {HeteronymClassificationModel.list_available_models()}' ) if hasattr(cfg.model, "test_ds") and cfg.model.test_ds.dataset.manifest is not None: model.setup_test_data(cfg.model.test_ds) trainer.test(model) else: logging.info("test_ds not found, skipping evaluation") if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/tts/g2p/g2p_heteronym_classification_train_and_evaluate.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import ZeroShotIntentModel from nemo.core.config import hydra_runner from nemo.utils import logging @hydra_runner(config_path="conf", config_name="zero_shot_intent_config") def main(cfg: DictConfig) -> None: logging.info(f'Config Params:\n {OmegaConf.to_yaml(cfg)}') # initialize the model using the config file if cfg.pretrained_model and os.path.exists(cfg.pretrained_model): model = ZeroShotIntentModel.restore_from(cfg.pretrained_model, strict=False) else: raise ValueError('Provide path to the pre-trained .nemo checkpoint') # predicting an intent of a query queries = [ "I'd like a veggie burger and fries", "Turn off the lights in the living room", ] candidate_labels = ['Food order', 'Play music', 'Request for directions', 'Change lighting', 'Calendar query'] predictions = model.predict(queries, candidate_labels, batch_size=4, multi_label=True) logging.info('The prediction results of some sample queries with the trained model:') for query in predictions: logging.info(json.dumps(query, indent=4)) logging.info("Inference finished!") if __name__ == '__main__': main()
NeMo-main
examples/nlp/zero_shot_intent_recognition/zero_shot_intent_infer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import ZeroShotIntentModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="zero_shot_intent_config") def main(cfg: DictConfig) -> None: logging.info(f'Config Params:\n {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) # initialize the model using the config file model = ZeroShotIntentModel(cfg.model, trainer=trainer) # training logging.info("================================================================================================") logging.info('Starting training...') trainer.fit(model) logging.info('Training finished!') if cfg.model.nemo_path: model.save_to(cfg.model.nemo_path) if __name__ == '__main__': main()
NeMo-main
examples/nlp/zero_shot_intent_recognition/zero_shot_intent_train.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle as pkl import random from argparse import ArgumentParser import h5py import numpy as np import torch from omegaconf import DictConfig, OmegaConf from sklearn.decomposition import PCA from tqdm import tqdm from nemo.collections.nlp.models import EntityLinkingModel from nemo.utils import logging try: import faiss except ModuleNotFoundError: logging.warning("Faiss is required for building the index. Please install faiss-gpu") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def build_index(cfg: DictConfig, model: object): """ Builds faiss index from index dataset specified in the config. Args: cfg (DictConfig): Config file specifying index parameters model (object): Encoder model """ # Get index dataset embeddings # PCA model exists and index embeddings have already been PCAed, no need to re-extract/PCA them if cfg.apply_pca and os.path.isfile(cfg.pca.pca_save_name) and os.path.isfile(cfg.pca_embeddings_save_name): logging.info("Loading reduced dimensionality embeddings") embeddings = h5py.File(cfg.pca_embeddings_save_name, "r") embeddings = embeddings[cfg.index_ds.name][:] elif os.path.isfile(cfg.embedding_save_name): logging.info("Loading previously extracted index dataset embeddings") embeddings = h5py.File(cfg.embedding_save_name, "r") embeddings = embeddings[cfg.index_ds.name][:] else: logging.info("Encoding index dataset, this may take a while") index_dataloader = model.setup_dataloader(cfg.index_ds, is_index_data=True) embeddings, concept_ids = get_index_embeddings(cfg, index_dataloader, model) # Create pca model to reduce dimensionality of index dataset and decrease memory footprint if cfg.apply_pca: # Need to train PCA model and apply PCA transformation with newly trained model if not os.path.isfile(cfg.pca.pca_save_name): logging.info("Fitting PCA model for embedding dimensionality reduction") pca_train_set = random.sample(list(embeddings), k=int(len(embeddings) * cfg.pca.sample_fraction)) pca = PCA(n_components=cfg.pca.output_dim) pca.fit(pca_train_set) pkl.dump(pca, open(cfg.pca.pca_save_name, "wb")) embeddings = reduce_embedding_dim(pca, embeddings, cfg) # PCA model already trained, just need to reduce dimensionality of all embeddings elif not os.path.isfile(cfg.pca_embeddings_save_name): pca = pkl.load(open(cfg.pca.pca_save_name, "rb")) embeddings = reduce_embedding_dim(pca, embeddings, cfg) # Build faiss index from embeddings logging.info(f"Training index with embedding dim size {cfg.dims} using {faiss.get_num_gpus()} gpus") quantizer = faiss.IndexFlatL2(cfg.dims) index = faiss.IndexIVFFlat(quantizer, cfg.dims, cfg.nlist) index = faiss.index_cpu_to_all_gpus(index) index.train(embeddings) logging.info("Adding dataset embeddings to index") for i in tqdm(range(0, embeddings.shape[0], cfg.index_batch_size)): index.add(embeddings[i : i + cfg.index_batch_size]) logging.info("Saving index") faiss.write_index(faiss.index_gpu_to_cpu(index), cfg.index_save_name) logging.info("Index built and saved") def reduce_embedding_dim(pca, embeddings, cfg): """Apply PCA transformation to index dataset embeddings""" logging.info("Applying PCA transformation to entire index dataset") embeddings = np.array(pca.transform(embeddings), dtype=np.float32) emb_file = h5py.File(cfg.pca_embeddings_save_name, "w") emb_file.create_dataset(cfg.index_ds.name, data=embeddings) emb_file.close() return embeddings def get_index_embeddings(cfg: DictConfig, dataloader: object, model: object): """Use entity linking encoder to get embeddings for full index dataset""" embeddings = [] concept_ids = [] with torch.no_grad(): for batch in tqdm(dataloader): input_ids, token_type_ids, input_mask, batch_concept_ids = batch input_ids = input_ids.to(device) token_type_ids = token_type_ids.to(device) input_mask = input_mask.to(device) batch_embeddings = model.forward( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=input_mask ) embeddings.extend(batch_embeddings.detach().cpu().numpy()) concept_ids.extend(batch_concept_ids.numpy()) emb_file = h5py.File(cfg.embedding_save_name, "w") emb_file.create_dataset(cfg.index_ds.name, data=embeddings) emb_file.close() pkl.dump(concept_ids, open(cfg.concept_id_save_name, "wb")) return embeddings, concept_ids def load_model(cfg: DictConfig, restore: bool): """ Loads encoder model. Args: cfg: Config file specifying model parameters restore: Whether to restore model weights trained by the user. Otherwise will load weights used before self alignment pretraining. """ if restore: model = EntityLinkingModel.restore_from(cfg.nemo_path) else: cfg.train_ds = None cfg.validation_ds = None cfg.test_ds = None model = EntityLinkingModel(cfg) model = model.to(device) return model def main(cfg: DictConfig, restore: bool): """ Builds new index if one hasn't been built yet. Args: cfg: Config file specifying index parameters restore: Whether to restore model weights trained by the user. Otherwise will load weights used before self alignment pretraining. """ logging.info("Loading entity linking encoder model") model = load_model(cfg.model, restore) if not os.path.isfile(cfg.index.index_save_name) or ( cfg.apply_pca and not os.path.isfile(cfg.index.pca.pca_save_name) ): logging.info("Building index") build_index(cfg.index, model) else: logging.info("Index and pca model (if required) already exists. Skipping build index step.") if not os.path.isfile(cfg.index.idx_to_id): logging.info("Mapping entity index postions to ids") map_idx_to_ids(cfg.index) else: logging.info("Map from concept index to id already exists. Skipping mapping step.") if __name__ == '__main__': parser = ArgumentParser() parser.add_argument( "--restore", action="store_true", help="Whether to restore encoder model weights from nemo path" ) parser.add_argument("--project_dir", required=False, type=str, default=".") parser.add_argument("--cfg", required=False, type=str, default="./conf/umls_medical_entity_linking_config.yaml") args = parser.parse_args() cfg = OmegaConf.load(args.cfg) cfg.project_dir = args.project_dir main(cfg, args.restore)
NeMo-main
examples/nlp/entity_linking/build_index.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Please see tutorial at Nemo/tutorials/nlp/Entity_Linking_Medical.ipynb for # more information on entity linking and self alignment pretraining. from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from nemo.collections.nlp.models import EntityLinkingModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="umls_medical_entity_linking_config.yaml") def main(cfg: DictConfig) -> None: # PTL 2.0 has find_unused_parameters as False by default, so its required to set it to True # when there are unused parameters here if cfg.trainer.strategy == 'ddp': cfg.trainer.strategy = "ddp_find_unused_parameters_true" logging.info(f"\nConfig Params:\n{OmegaConf.to_yaml(cfg)}") trainer = Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) logging.info(f"Loading weights from pretrained model {cfg.model.language_model.pretrained_model_name}") model = EntityLinkingModel(cfg=cfg.model, trainer=trainer) logging.info("===========================================================================================") logging.info('Starting training...') trainer.fit(model) logging.info('Training finished!') logging.info("===========================================================================================") if cfg.model.nemo_path: # '.nemo' file contains the last checkpoint and the params to initialize the model model.save_to(cfg.model.nemo_path) logging.info(f'Model is saved into `.nemo` file: {cfg.model.nemo_path}') if __name__ == '__main__': main()
NeMo-main
examples/nlp/entity_linking/self_alignment_pretraining.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle as pkl from argparse import ArgumentParser from collections import OrderedDict from typing import Dict import numpy as np import torch from build_index import load_model from omegaconf import DictConfig, OmegaConf from nemo.utils import logging try: import faiss except ModuleNotFoundError: logging.warning("Faiss is required for building the index. Please install faiss-gpu") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def get_query_embedding(query, model): """Use entity linking encoder to get embedding for index query""" model_input = model.tokenizer( query, add_special_tokens=True, padding=True, truncation=True, max_length=512, return_token_type_ids=True, return_attention_mask=True, ) query_emb = model.forward( input_ids=torch.LongTensor([model_input["input_ids"]]).to(device), token_type_ids=torch.LongTensor([model_input["token_type_ids"]]).to(device), attention_mask=torch.LongTensor([model_input["attention_mask"]]).to(device), ) return query_emb def query_index( query: str, cfg: DictConfig, model: object, index: object, pca: object, idx2id: dict, id2string: dict, ) -> Dict: """ Query the nearest neighbor index of entities to find the concepts in the index dataset that are most similar to the query. Args: query (str): entity to look up in the index cfg (DictConfig): config object to specifiy query parameters model (EntityLinkingModel): entity linking encoder model index (object): faiss index pca (object): sklearn pca transformation to be applied to queries idx2id (dict): dictionary mapping unique concept dataset index to its CUI id2string (dict): dictionary mapping each unqiue CUI to a representative english description of the concept Returns: A dictionary with the concept ids of the index's most similar entities as the keys and a tuple containing the string representation of that concept and its cosine similarity to the query as the values. """ query_emb = get_query_embedding(query, model).detach().cpu().numpy() if cfg.apply_pca: query_emb = pca.transform(query_emb) dist, neighbors = index.search(query_emb.astype(np.float32), cfg.query_num_factor * cfg.top_n) dist, neighbors = dist[0], neighbors[0] unique_ids = OrderedDict() neighbor_idx = 0 # Many of nearest neighbors could map to the same concept id, their idx is their unique identifier while len(unique_ids) < cfg.top_n and neighbor_idx < len(neighbors): concept_id_idx = neighbors[neighbor_idx] concept_id = idx2id[concept_id_idx] # Only want one instance of each unique concept if concept_id not in unique_ids: concept = id2string[concept_id] unique_ids[concept_id] = (concept, 1 - dist[neighbor_idx]) neighbor_idx += 1 unique_ids = dict(unique_ids) return unique_ids def main(cfg: DictConfig, restore: bool): """ Loads faiss index and allows commandline queries to the index. Builds new index if one hasn't been built yet. Args: cfg: Config file specifying index parameters restore: Whether to restore model weights trained by the user. Otherwise will load weights used before self alignment pretraining. """ if not os.path.isfile(cfg.index.index_save_name) or ( cfg.apply_pca and not os.path.isfile(cfg.index.pca.pca_save_name) or not os.path.isfile(cfg.index.idx_to_id) ): logging.warning("Either no index and/or no mapping from entity idx to ids exists. Please run `build_index.py`") return logging.info("Loading entity linking encoder model") model = load_model(cfg.model, restore) logging.info("Loading index and associated files") index = faiss.read_index(cfg.index.index_save_name) idx2id = pkl.load(open(cfg.index.idx_to_id, "rb")) id2string = pkl.load(open(cfg.index.id_to_string, "rb")) # Should be created during dataset prep if cfg.index.apply_pca: pca = pkl.load(open(cfg.index.pca.pca_save_name, "rb")) while True: query = input("enter index query: ") output = query_index(query, cfg.top_n, cfg.index, model, index, pca, idx2id, id2string) if query == "exit": break for concept_id in output: concept_details = output[concept_id] concept_id = "C" + str(concept_id).zfill(7) print(concept_id, concept_details) print("----------------\n") if __name__ == '__main__': parser = ArgumentParser() parser.add_argument( "--restore", action="store_true", help="Whether to restore encoder model weights from nemo path" ) parser.add_argument("--project_dir", required=False, type=str, default=".") parser.add_argument("--cfg", required=False, type=str, default="./conf/umls_medical_entity_linking_config.yaml") args = parser.parse_args() cfg = OmegaConf.load(args.cfg) cfg.project_dir = args.project_dir main(cfg, args.restore)
NeMo-main
examples/nlp/entity_linking/query_index.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import pickle as pkl import random from argparse import ArgumentParser import pandas as pd from omegaconf import OmegaConf from tqdm import tqdm # Info on these headers can be found here on the UMLS website https://www.ncbi.nlm.nih.gov/books/NBK9685/ # section 3.3.4 Table 1 HEADERS = [ 'CUI', 'LAT', 'TS', 'LUI', 'STT', 'SUI', 'ISPREF', 'AUI', 'SAUI', 'SCUI', 'SDUI', 'SAB', 'TTY', 'CODE', 'STR', 'SRL', 'SUPPRESS', 'CVF', ] def process_umls_training_dataset(data_path, train_save_name, val_save_name, max_pairs, train_split, headers): """ Generates and saves UMLS self alignment pretraining train and validation data. Takes the raw .RRF UMLS data file and creates different pair combinations for entities with the same CUI. Each row in the output will be formatted as 'CUI EntitySynonym1 EntitySynonym2' with each item in a row separated by tabs. Saves two .tsv output files, one for the train split and one for the validation split. Only data marked as English is added to the train and val splits. Arguments: data_path (str): path to MRCONSO.RRF UMLS data file train_save_name (str): path to where training data will be saved val_save_name (str): path to where validation data will be saved max_pairs (int): max number of pairs for any one CUI added to the train or validation splits train_split (float): precentage of raw data to be added to train set split headers (list): column lables within MRCONSO.RRF """ print("Loading training data file...") df = pd.read_table(data_path, names=headers, index_col=False, delimiter='|') train_file = open(train_save_name, 'w') val_file = open(val_save_name, 'w') cui = df["CUI"].iloc[0] names = [] random.seed(2021) for idx in tqdm(range(len(df))): # Address incorrectly formatted data if type(df["STR"].iloc[idx]) != str or "|" in df["STR"].iloc[idx]: continue # Collect all english concept strings matching the current CUI if df["CUI"].iloc[idx] == cui and df["LAT"].iloc[idx] == "ENG": concept_string = df["STR"].iloc[idx] names.append(concept_string) else: # Pair off concept synonyms to make training and val sets pairs = list(itertools.combinations(names, 2)) if len(pairs) == 0: # Not enough concepts gathered to make a pair cui = df["CUI"].iloc[idx] names = [df["STR"].iloc[idx]] continue # Removing leading C to convert label string to int cui = int(cui[1:]) random.shuffle(pairs) # Keep up to max pairs number pairs for any one concept for pair in pairs[:max_pairs]: # Want concepts in train and val splits to be randomly selected and mutually exclusive add_to_train = random.random() if add_to_train <= train_split: train_file.write(f'{cui}\t{pair[0]}\t{pair[1]}\n') else: val_file.write(f'{cui}\t{pair[0]}\t{pair[1]}\n') # Switch to next concept cui = df["CUI"].iloc[idx] names = [df["STR"].iloc[idx]] train_file.close() val_file.close() print("Finished making training and validation data") def process_umls_index_dataset(data_path, data_savename, id2string_savename, headers): """ Generates data file needed to build a UMLS index and a hash table mapping each CUI to one canonical concept string. Takes the raw .RRF data file and saves a .tsv indec concept file as well as the a .pkl file of cui to concept string mappings. Only data marked as English is added to the index data file. Arguments: data_path (str): path to MRCONSO.RRF UMLS data file data_savename (str): path to where .tsv index data will be saved id2string_savename (str): path to where .pkl cui to string mapping will be saved headers (list): column lables within MRCONSO.RRF """ print("Loading index data file...") df = pd.read_table(data_path, names=headers, index_col=False, delimiter='|') id2string = {} with open(data_savename, "w") as outfile: for idx, row in tqdm(df.iterrows(), total=df.shape[0]): # Address incorrectly formatted data if type(row["STR"]) != str or "|" in row["STR"]: continue cui = row["CUI"] sent = row["STR"] # Removing leading C to convert label string to int cui = int(cui[1:]) # Only keeping english concepts if row["LAT"] == "ENG": outfile.write(f'{cui}\t{sent}\n') # Matching each cui to one canonical string represention if cui not in id2string and ":" not in sent: id2string[cui] = sent outfile.close() pkl.dump(id2string, open(id2string_savename, "wb")) print("Finished saving index data and id to concept mapping") if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("--index", action="store_true", help="Whether to process data for building an index") parser.add_argument("--project_dir", required=False, type=str, default=".") parser.add_argument("--cfg", required=False, type=str, default="conf/umls_medical_entity_linking_config.yaml") parser.add_argument( "--max_pairs", required=False, type=int, default=50, help="Max number of train pairs for a single concepts" ) parser.add_argument( "--train_split", required=False, type=float, default=0.99, help="Precentage of data to add to train set" ) args = parser.parse_args() cfg = OmegaConf.load(args.cfg) cfg.project_dir = args.project_dir if args.index: process_umls_index_dataset(cfg.index.raw_data, cfg.index.index_ds.data_file, cfg.index.id_to_string, HEADERS) else: process_umls_training_dataset( cfg.model.raw_data, cfg.model.train_ds.data_file, cfg.model.validation_ds.data_file, args.max_pairs, args.train_split, HEADERS, )
NeMo-main
examples/nlp/entity_linking/data/umls_dataset_processing.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models.question_answering.qa_bert_model import BERTQAModel from nemo.collections.nlp.models.question_answering.qa_gpt_model import GPTQAModel from nemo.collections.nlp.models.question_answering.qa_s2s_model import S2SQAModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="qa_conf") def main(cfg: DictConfig) -> None: pl.seed_everything(42) logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_dir = exp_manager(trainer, cfg.get("exp_manager", None)) if "bert" in cfg.model.language_model.pretrained_model_name.lower(): model_class = BERTQAModel elif "gpt" in cfg.model.language_model.pretrained_model_name.lower(): model_class = GPTQAModel elif ( "bart" in cfg.model.language_model.pretrained_model_name.lower() or "t5" in cfg.model.language_model.pretrained_model_name.lower() ): model_class = S2SQAModel if cfg.pretrained_model or (cfg.model.nemo_path and os.path.exists(cfg.model.nemo_path)): if cfg.pretrained_model: logging.info(f'Loading pretrained model {cfg.pretrained_model}') model = model_class.from_pretrained(cfg.pretrained_model) else: logging.info(f'Restoring model from {cfg.model.nemo_path}') model = model_class.restore_from(cfg.model.nemo_path) if cfg.do_training: model.setup_training_data(train_data_config=cfg.model.train_ds) model.setup_multiple_validation_data(val_data_config=cfg.model.validation_ds) else: logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') model = model_class(cfg.model, trainer=trainer) if cfg.do_training: trainer.fit(model) if cfg.model.nemo_path: model.save_to(cfg.model.nemo_path) if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.file is not None: eval_device = [cfg.trainer.devices[0]] if isinstance(cfg.trainer.devices, list) else 1 trainer = pl.Trainer(devices=eval_device, accelerator=cfg.trainer.accelerator, precision=16) model.setup_test_data(test_data_config=cfg.model.test_ds) trainer.test(model) # specifiy .json file to dump predictions. e.g. os.path.join(exp_dir, "output_nbest_file.json") output_nbest_file = None # specifiy .json file to dump predictions. e.g. os.path.join(exp_dir, "output_prediction_file.json") output_prediction_file = None inference_samples = 5 # for test purposes. To use entire inference dataset set to -1 all_preds, all_nbest = model.inference( cfg.model.test_ds.file, output_prediction_file=output_prediction_file, output_nbest_file=output_nbest_file, num_samples=inference_samples, ) for question_id in all_preds: print(all_preds[question_id]) if __name__ == "__main__": main()
NeMo-main
examples/nlp/question_answering/question_answering.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json from ast import literal_eval from tqdm import tqdm def load_json(filepath): with open(filepath, "r") as f: data = json.load(f) return data def dump_json(filepath, data): with open(filepath, "w") as f: json.dump(data, f) def get_context_from_passages(passages, keep_only_relevant_passages): contexts = [] if keep_only_relevant_passages: for passage in passages: if passage["is_selected"] == 1: contexts.append(passage["passage_text"]) else: contexts = [passage["passage_text"] for passage in passages] return " ".join(contexts) def format_answers_into_squad_format(answers): is_impossible = True if "No Answer Present." in answers else False if is_impossible: answers = [] else: answers = [{"text": ans, "answer_start": -1} for ans in answers] return answers def convert_msmarco_to_squad_format(msmarco_data, args): ids = list(msmarco_data["query"]) squad_data = {"data": [{"title": "MSMARCO", "paragraphs": []}], "version": "v2.1"} for index, _id in enumerate(tqdm(ids)): context = get_context_from_passages(msmarco_data["passages"][_id], args.keep_only_relevant_passages) if not context: continue query = msmarco_data["query"][_id] # use well formed answers if present, else use the 'answers' field well_formed_answers = msmarco_data['wellFormedAnswers'][_id] well_formed_answers = ( well_formed_answers if isinstance(well_formed_answers, list) else literal_eval(well_formed_answers) ) answers = well_formed_answers if well_formed_answers else msmarco_data["answers"][_id] answers = format_answers_into_squad_format(answers) if args.exclude_negative_samples and (not answers): continue squad_data["data"][0]["paragraphs"].append( { "context": context, "qas": [ {"id": index, "question": query, "answers": answers, "is_impossible": False if answers else True,} ], } ) return squad_data def main(): parser = argparse.ArgumentParser() parser.add_argument("--msmarco_train_input_filepath", default=None, type=str, required=True) parser.add_argument("--msmarco_dev_input_filepath", default=None, type=str, required=True) parser.add_argument("--converted_train_save_path", default=None, type=str, required=True) parser.add_argument("--converted_dev_save_path", default=None, type=str, required=True) parser.add_argument( "--exclude_negative_samples", default=False, type=bool, help="whether to keep No Answer samples in the dataset", required=False, ) parser.add_argument( "--keep_only_relevant_passages", default=False, type=bool, help="if True, will only use passages with is_selected=True for context", required=False, ) args = parser.parse_args() print("converting MS-MARCO train dataset...") msmarco_train_data = load_json(args.msmarco_train_input_filepath) squad_train_data = convert_msmarco_to_squad_format(msmarco_train_data, args) dump_json(args.converted_train_save_path, squad_train_data) print("converting MS-MARCO dev dataset...") msmarco_dev_data = load_json(args.msmarco_dev_input_filepath) squad_dev_data = convert_msmarco_to_squad_format(msmarco_dev_data, args) dump_json(args.converted_dev_save_path, squad_dev_data) if __name__ == "__main__": """ Please agree to the Terms of Use at: https://microsoft.github.io/msmarco/ Download data at: https://msmarco.blob.core.windows.net/msmarco/train_v2.1.json.gz https://msmarco.blob.core.windows.net/msmarco/dev_v2.1.json.gz Example usage: python convert_msmarco_to_squad_format.py \ --msmarco_train_input_filepath=/path/to/msmarco_train_v2.1.json \ --msmarco_dev_input_filepath=/path/to/msmarco_dev_v2.1.json \ --converted_train_save_path=/path/to/msmarco_squad_format_train.json \ --converted_dev_save_path=/path/to/msmarco_squad_format_dev.json \ --exclude_negative_samples=False \ --keep_only_relevant_passages=False """ main()
NeMo-main
examples/nlp/question_answering/convert_msmarco_to_squad_format.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import urllib.request from nemo.utils import logging class SquadDownloader: def __init__(self, save_path): self.save_path = save_path + '/squad' if not os.path.exists(self.save_path): os.makedirs(self.save_path) if not os.path.exists(self.save_path + '/v1.1'): os.makedirs(self.save_path + '/v1.1') if not os.path.exists(self.save_path + '/v2.0'): os.makedirs(self.save_path + '/v2.0') self.download_urls = { 'https://rajpurkar.github.io/SQuAD-explorer' '/dataset/train-v1.1.json': 'v1.1/train-v1.1.json', 'https://rajpurkar.github.io/SQuAD-explorer' '/dataset/dev-v1.1.json': 'v1.1/dev-v1.1.json', 'https://rajpurkar.github.io/SQuAD-explorer' '/dataset/train-v2.0.json': 'v2.0/train-v2.0.json', 'https://rajpurkar.github.io/SQuAD-explorer' '/dataset/dev-v2.0.json': 'v2.0/dev-v2.0.json', } def download(self): for item in self.download_urls: url = item file = self.download_urls[item] logging.info('Downloading: %s', url) if os.path.isfile(self.save_path + '/' + file): logging.info('** Download file already exists, skipping download') else: response = urllib.request.urlopen(url) with open(self.save_path + '/' + file, "wb") as handle: handle.write(response.read()) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Download Squad') parser.add_argument( '--destDir', type=str, required=False, help='directory to store data', default=os.path.split(os.path.abspath(__file__))[0], ) args = parser.parse_args() logging.info(args.destDir) squad_dl = SquadDownloader(args.destDir) squad_dl.download()
NeMo-main
examples/nlp/question_answering/get_squad.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import IntentSlotClassificationModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="intent_slot_classification_config") def main(cfg: DictConfig) -> None: logging.info(f'Config Params:\n {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) # initialize the model using the config file model = IntentSlotClassificationModel(cfg.model, trainer=trainer) # training logging.info("================================================================================================") logging.info('Starting training...') trainer.fit(model) logging.info('Training finished!') # Stop further testing as fast_dev_run does not save checkpoints if trainer.fast_dev_run: return # after model training is done, you can load the model from the saved checkpoint # and evaluate it on a data file or on given queries. logging.info("================================================================================================") logging.info("Starting the testing of the trained model on test set...") logging.info("We will load the latest model saved checkpoint from the training...") # for evaluation and inference you can load the previously trained model saved in .nemo file # like this in your code, but we will just reuse the trained model here # eval_model = IntentSlotClassificationModel.restore_from(restore_path=checkpoint_path) eval_model = model # we will setup testing data reusing the same config (test section) eval_model.update_data_dir_for_testing(data_dir=cfg.model.data_dir) eval_model.setup_test_data(test_data_config=cfg.model.test_ds) trainer.test(model=eval_model, ckpt_path=None, verbose=False) logging.info("Testing finished!") # run an inference on a few examples logging.info("======================================================================================") logging.info("Evaluate the model on the given queries...") # this will work well if you train the model on Assistant dataset # for your own dataset change the examples appropriately queries = [ 'set alarm for seven thirty am', 'lower volume by fifty percent', 'what is my schedule for tomorrow', ] pred_intents, pred_slots = eval_model.predict_from_examples(queries, cfg.model.test_ds) logging.info('The prediction results of some sample queries with the trained model:') for query, intent, slots in zip(queries, pred_intents, pred_slots): logging.info(f'Query : {query}') logging.info(f'Predicted Intent: {intent}') logging.info(f'Predicted Slots: {slots}') logging.info("Inference finished!") if __name__ == '__main__': main()
NeMo-main
examples/nlp/intent_slot_classification/intent_slot_classification.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Sample command to run the script: python multi_label_intent_slot_classification.py \ model.data_dir=/home/user/multiatis \ model.validation_ds.prefix=dev \ model.test_ds.prefix=dev \ trainer.gpus=[0] \ +trainer.fast_dev_run=true \ exp_manager.exp_dir=checkpoints fast_dev_run=false will save checkpoints for the model """ import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import MultiLabelIntentSlotClassificationModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="multi_label_intent_slot_classification_config") def main(cfg: DictConfig) -> None: logging.info(f'Config Params:\n {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) # initialize the model using the config file model = MultiLabelIntentSlotClassificationModel(cfg.model, trainer=trainer) # training logging.info("================================================================================================") logging.info('Starting training...') trainer.fit(model) logging.info('Training finished!') # Stop further testing as fast_dev_run does not save checkpoints if trainer.fast_dev_run: return # after model training is done, you can load the model from the saved checkpoint # and evaluate it on a data file or on given queries. logging.info("================================================================================================") logging.info("Starting the testing of the trained model on test set...") logging.info("We will load the latest model saved checkpoint from the training...") # for evaluation and inference you can load the previously trained model saved in .nemo file # like this in your code, but we will just reuse the trained model here # eval_model = MultiLabelIntentSlotClassificationModel.restore_from(restore_path=checkpoint_path) eval_model = model # we will setup testing data reusing the same config (test section) eval_model.update_data_dir_for_testing(data_dir=cfg.model.data_dir) eval_model.setup_test_data(test_data_config=cfg.model.test_ds) trainer.test(model=eval_model, ckpt_path=None, verbose=False) logging.info("Testing finished!") # Optimize Threshold eval_model.optimize_threshold(cfg.model.test_ds, 'dev') # run an inference on a few examples logging.info("======================================================================================") logging.info("Evaluate the model on the given queries...") # this will work well if you train the model on ATIS dataset # for your own dataset change the examples appropriately queries = [ 'i would like to find a flight from charlotte to las vegas that makes a stop in st. louis', 'on april first i need a ticket from tacoma to san jose departing before 7 am', 'how much is the limousine service in boston', ] # We use the optimized threshold for predictions pred_intents, pred_slots, pred_list = eval_model.predict_from_examples(queries, cfg.model.test_ds) logging.info('The prediction results of some sample queries with the trained model:') for query, intent, slots in zip(queries, pred_intents, pred_slots): logging.info(f'Query : {query}') logging.info(f'Predicted Intents: {intent}') logging.info(f'Predicted Slots: {slots}') logging.info("Inference finished!") if __name__ == '__main__': main()
NeMo-main
examples/nlp/intent_slot_classification/multi_label_intent_slot_classification.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script converts checkpoint .ckpt to .nemo file. This script uses the `examples/nlp/spellchecking_asr_customization/conf/spellchecking_asr_customization_config.yaml` config file by default. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. """ from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import SpellcheckingAsrCustomizationModel from nemo.core.config import hydra_runner from nemo.utils import logging @hydra_runner(config_path="conf", config_name="spellchecking_asr_customization_config") def main(cfg: DictConfig) -> None: logging.debug(f'Config Params: {OmegaConf.to_yaml(cfg)}') SpellcheckingAsrCustomizationModel.load_from_checkpoint(cfg.checkpoint_path).save_to(cfg.target_nemo_path) if __name__ == "__main__": main()
NeMo-main
examples/nlp/spellchecking_asr_customization/checkpoint_to_nemo.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to train SpellMapper (SpellcheckingAsrCustomizationModel). It uses the `examples/nlp/spellchecking_asr_customization/conf/spellchecking_asr_customization_config.yaml` config file by default. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. Probably it is worth looking at the example config file to see the list of parameters used for training. USAGE Example: See `examples/nlp/spellchecking_asr_customization/run_training.sh` for training on non-tarred data. and `examples/nlp/spellchecking_asr_customization/run_training_tarred.sh` for training on tarred data. One (non-tarred) training example should consist of 4 tab-separated columns: 1. text of ASR-hypothesis 2. texts of 10 candidates separated by semicolon 3. 1-based ids of correct candidates, or 0 if none 4. start/end coordinates of correct candidates (correspond to ids in third column) Example (in one line): a s t r o n o m e r s _ d i d i e _ s o m o n _ a n d _ t r i s t i a n _ g l l o d i d i e r _ s a u m o n;a s t r o n o m i e;t r i s t a n _ g u i l l o t;t r i s t e s s e;m o n a d e;c h r i s t i a n;a s t r o n o m e r;s o l o m o n;d i d i d i d i d i;m e r c y 1 3 CUSTOM 12 23;CUSTOM 28 41 """ from helpers import MODEL, instantiate_model_and_trainer from omegaconf import DictConfig, OmegaConf from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="spellchecking_asr_customization_config") def main(cfg: DictConfig) -> None: logging.info(f'Config Params: {OmegaConf.to_yaml(cfg)}') # Train the model if cfg.model.do_training: logging.info( "================================================================================================" ) logging.info('Start training...') trainer, model = instantiate_model_and_trainer(cfg, MODEL, True) spellchecking_exp_manager = cfg.get('exp_manager', None) exp_manager(trainer, spellchecking_exp_manager) trainer.fit(model) logging.info('Training finished!') if __name__ == '__main__': main()
NeMo-main
examples/nlp/spellchecking_asr_customization/spellchecking_asr_customization_train.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used to postprocess SpellMapper results and generate an updated nemo ASR manifest. See "examples/nlp/spellchecking_asr_customization/run_infer.sh" for the whole inference pipeline. """ from argparse import ArgumentParser from nemo.collections.nlp.data.spellchecking_asr_customization.utils import ( update_manifest_with_spellmapper_corrections, ) parser = ArgumentParser(description="Postprocess SpellMapper results and generate an updated nemo ASR manifest") parser.add_argument("--input_manifest", required=True, type=str, help="Path to input nemo ASR manifest") parser.add_argument( "--field_name", default="pred_text", type=str, help="Name of json field with original ASR hypothesis text" ) parser.add_argument( "--short2full_name", required=True, type=str, help="Path to input file with correspondence between sentence fragments and full sentences", ) parser.add_argument( "--spellmapper_results", required=True, type=str, help="Path to input file with SpellMapper inference results" ) parser.add_argument("--output_manifest", required=True, type=str, help="Path to output nemo ASR manifest") parser.add_argument("--min_prob", default=0.5, type=float, help="Threshold on replacement probability") parser.add_argument( "--use_dp", action="store_true", help="Whether to use additional replacement filtering by using dynamic programming", ) parser.add_argument( "--replace_hyphen_to_space", action="store_true", help="Whether to use space instead of hyphen in replaced fragments", ) parser.add_argument( "--ngram_mappings", type=str, required=True, help="File with ngram mappings, only needed if use_dp=true" ) parser.add_argument( "--min_dp_score_per_symbol", default=-1.5, type=float, help="Minimum dynamic programming sum score averaged by hypothesis length", ) args = parser.parse_args() update_manifest_with_spellmapper_corrections( input_manifest_name=args.input_manifest, short2full_name=args.short2full_name, output_manifest_name=args.output_manifest, spellmapper_results_name=args.spellmapper_results, min_prob=args.min_prob, replace_hyphen_to_space=args.replace_hyphen_to_space, field_name=args.field_name, use_dp=args.use_dp, ngram_mappings=args.ngram_mappings, min_dp_score_per_symbol=args.min_dp_score_per_symbol, ) print("Resulting manifest saved to: ", args.output_manifest)
NeMo-main
examples/nlp/spellchecking_asr_customization/postprocess_and_update_manifest.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to run inference with the SpellcheckingAsrCustomizationModel. An input line should consist of 4 tab-separated columns: 1. text of ASR-hypothesis 2. texts of 10 candidates separated by semicolon 3. 1-based ids of non-dummy candidates 4. approximate start/end coordinates of non-dummy candidates (correspond to ids in third column) Example input (in one line): t h e _ t a r a s i c _ o o r d a _ i s _ a _ p a r t _ o f _ t h e _ a o r t a _ l o c a t e d _ i n _ t h e _ t h o r a x h e p a t i c _ c i r r h o s i s;u r a c i l;c a r d i a c _ a r r e s t;w e a n;a p g a r;p s y c h o m o t o r;t h o r a x;t h o r a c i c _ a o r t a;a v f;b l o c k a d e d 1 2 6 7 8 9 10 CUSTOM 6 23;CUSTOM 4 10;CUSTOM 4 15;CUSTOM 56 62;CUSTOM 5 19;CUSTOM 28 31;CUSTOM 39 48 Each line in SpellMapper output is tab-separated and consists of 4 columns: 1. ASR-hypothesis (same as in input) 2. 10 candidates separated with semicolon (same as in input) 3. fragment predictions, separated with semicolon, each prediction is a tuple (start, end, candidate_id, probability) 4. letter predictions - candidate_id predicted for each letter (this is only for debug purposes) Example output (in one line): t h e _ t a r a s i c _ o o r d a _ i s _ a _ p a r t _ o f _ t h e _ a o r t a _ l o c a t e d _ i n _ t h e _ t h o r a x h e p a t i c _ c i r r h o s i s;u r a c i l;c a r d i a c _ a r r e s t;w e a n;a p g a r;p s y c h o m o t o r;t h o r a x;t h o r a c i c _ a o r t a;a v f;b l o c k a d e d 56 62 7 0.99998;4 20 8 0.95181;12 20 8 0.44829;4 17 8 0.99464;12 17 8 0.97645 8 8 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7 USAGE Example: 1. Train a model, or use a pretrained checkpoint. 2. Run on a single file: python nemo/examples/nlp/spellchecking_asr_customization/spellchecking_asr_customization_infer.py \ pretrained_model=${PRETRAINED_NEMO_CHECKPOINT} \ model.max_sequence_len=512 \ inference.from_file=input.txt \ inference.out_file=output.txt \ inference.batch_size=16 \ lang=en or on multiple files: python ${NEMO_PATH}/examples/nlp/spellchecking_asr_customization/spellchecking_asr_customization_infer.py \ pretrained_model=${PRETRAINED_NEMO_CHECKPOINT} \ model.max_sequence_len=512 \ +inference.from_filelist=filelist.txt \ +inference.output_folder=output_folder \ inference.batch_size=16 \ lang=en This script uses the `/examples/nlp/spellchecking_asr_customization/conf/spellchecking_asr_customization_config.yaml` config file by default. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. """ import os from helpers import MODEL, instantiate_model_and_trainer from omegaconf import DictConfig, OmegaConf from nemo.core.config import hydra_runner from nemo.utils import logging @hydra_runner(config_path="conf", config_name="spellchecking_asr_customization_config") def main(cfg: DictConfig) -> None: logging.debug(f'Config Params: {OmegaConf.to_yaml(cfg)}') if cfg.pretrained_model is None: raise ValueError("A pre-trained model should be provided.") _, model = instantiate_model_and_trainer(cfg, MODEL, False) if cfg.model.max_sequence_len != model.max_sequence_len: model.max_sequence_len = cfg.model.max_sequence_len model.builder._max_seq_length = cfg.model.max_sequence_len input_filenames = [] output_filenames = [] if "from_filelist" in cfg.inference and "output_folder" in cfg.inference: filelist_file = cfg.inference.from_filelist output_folder = cfg.inference.output_folder with open(filelist_file, "r", encoding="utf-8") as f: for line in f: path = line.strip() input_filenames.append(path) folder, name = os.path.split(path) output_filenames.append(os.path.join(output_folder, name)) else: text_file = cfg.inference.from_file logging.info(f"Running inference on {text_file}...") if not os.path.exists(text_file): raise ValueError(f"{text_file} not found.") input_filenames.append(text_file) output_filenames.append(cfg.inference.out_file) dataloader_cfg = { "batch_size": cfg.inference.get("batch_size", 8), "num_workers": cfg.inference.get("num_workers", 4), "pin_memory": cfg.inference.get("num_workers", False), } for input_filename, output_filename in zip(input_filenames, output_filenames): if not os.path.exists(input_filename): logging.info(f"Skip non-existing {input_filename}.") continue model.infer(dataloader_cfg, input_filename, output_filename) logging.info(f"Predictions saved to {output_filename}.") if __name__ == "__main__": main()
NeMo-main
examples/nlp/spellchecking_asr_customization/spellchecking_asr_customization_infer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to prepare input for SpellMapper inference from a nemo ASR manifest. It splits sentences to shorter fragments, runs candidate retrieval and generates input in the required format. It produces two output files: 1. File with correspondence between sentence fragments and full sentences. 2. File that will serve as input for SpellMapper inference. See "examples/nlp/spellchecking_asr_customization/run_infer.sh" for the whole inference pipeline. """ from argparse import ArgumentParser from nemo.collections.nlp.data.spellchecking_asr_customization.utils import ( extract_and_split_text_from_manifest, get_candidates, load_index, ) parser = ArgumentParser(description="Prepare input for SpellMapper inference from a nemo ASR manifest") parser.add_argument("--manifest", required=True, type=str, help="Path to input manifest file") parser.add_argument( "--custom_vocab_index", required=True, type=str, help="Path to input file with custom vocabulary index" ) parser.add_argument( "--big_sample", required=True, type=str, help="Path to input file with big sample of phrases to sample dummy candidates if there less than 10 are found by retrieval", ) parser.add_argument( "--short2full_name", required=True, type=str, help="Path to output file with correspondence between sentence fragments and full sentences", ) parser.add_argument( "--output_name", required=True, type=str, help="Path to output file that will serve as input for SpellMapper inference", ) parser.add_argument("--field_name", default="pred_text", type=str, help="Name of json field with ASR hypothesis text") parser.add_argument("--len_in_words", default=16, type=int, help="Maximum fragment length in words") parser.add_argument( "--step_in_words", default=8, type=int, help="Step in words for moving to next fragment. If less than len_in_words, fragments will intersect", ) args = parser.parse_args() # Split ASR hypotheses to shorter fragments, because SpellMapper can't handle arbitrarily long sequences. # The correspondence between short and original fragments is saved to a file and will be used at post-processing. extract_and_split_text_from_manifest( input_name=args.manifest, output_name=args.short2full_name, field_name=args.field_name, len_in_words=args.len_in_words, step_in_words=args.step_in_words, ) # Load index of custom vocabulary from file phrases, ngram2phrases = load_index(args.custom_vocab_index) # Load big sample of phrases to sample dummy candidates if there less than 10 are found by retrieval big_sample_of_phrases = set() with open(args.big_sample, "r", encoding="utf-8") as f: for line in f: phrase, freq = line.strip().split("\t") if int(freq) > 50: # do not want to use frequent phrases as dummy candidates continue if len(phrase) < 6 or len(phrase) > 15: # do not want to use too short or too long phrases as dummy candidates continue big_sample_of_phrases.add(phrase) big_sample_of_phrases = list(big_sample_of_phrases) # Generate input for SpellMapper inference out = open(args.output_name, "w", encoding="utf-8") with open(args.short2full_name, "r", encoding="utf-8") as f: for line in f: short_sent, _ = line.strip().split("\t") sent = "_".join(short_sent.split()) letters = list(sent) candidates = get_candidates(ngram2phrases, phrases, letters, big_sample_of_phrases) if len(candidates) == 0: continue if len(candidates) != 10: raise ValueError("expect 10 candidates, got: ", len(candidates)) # We add two columns with targets and span_info. # They have same format as during training, but start and end positions are APPROXIMATE, they will be adjusted when constructing BertExample. targets = [] span_info = [] for idx, c in enumerate(candidates): if c[1] == -1: continue targets.append(str(idx + 1)) # targets are 1-based start = c[1] # ensure that end is not outside sentence length (it can happen because c[2] is candidate length used as approximation) end = min(c[1] + c[2], len(letters)) span_info.append("CUSTOM " + str(start) + " " + str(end)) out.write( " ".join(letters) + "\t" + ";".join([x[0] for x in candidates]) + "\t" + " ".join(targets) + "\t" + ";".join(span_info) + "\n" ) out.close()
NeMo-main
examples/nlp/spellchecking_asr_customization/prepare_input_from_manifest.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used to create an index of custom vocabulary and save it to file. See "examples/nlp/spellchecking_asr_customization/run_infer.sh" for the whole inference pipeline. """ from argparse import ArgumentParser from nemo.collections.nlp.data.spellchecking_asr_customization.utils import get_index, load_ngram_mappings parser = ArgumentParser(description="Create an index of custom vocabulary and save it to file") parser.add_argument( "--input_name", required=True, type=str, help="Path to input file with custom vocabulary (plain text)" ) parser.add_argument( "--ngram_mappings", required=True, type=str, help="Path to input file with n-gram mapping vocabulary" ) parser.add_argument("--output_name", required=True, type=str, help="Path to output file with custom vocabulary index") parser.add_argument("--min_log_prob", default=-4.0, type=float, help="Threshold on log probability") parser.add_argument( "--max_phrases_per_ngram", default=500, type=int, help="Threshold on number of phrases that can be stored for one n-gram key in index. Keys with more phrases are discarded.", ) parser.add_argument( "--max_misspelled_freq", default=125000, type=int, help="Threshold on maximum frequency of misspelled n-gram" ) args = parser.parse_args() # Load custom vocabulary custom_phrases = set() with open(args.input_name, "r", encoding="utf-8") as f: for line in f: phrase = line.strip() custom_phrases.add(" ".join(list(phrase.replace(" ", "_")))) print("Size of customization vocabulary:", len(custom_phrases)) # Load n-gram mappings vocabulary ngram_mapping_vocab, ban_ngram = load_ngram_mappings(args.ngram_mappings, max_misspelled_freq=args.max_misspelled_freq) # Generate index of custom phrases phrases, ngram2phrases = get_index( custom_phrases, ngram_mapping_vocab, ban_ngram, min_log_prob=args.min_log_prob, max_phrases_per_ngram=args.max_phrases_per_ngram, ) # Save index to file with open(args.output_name, "w", encoding="utf-8") as out: for ngram in ngram2phrases: for phrase_id, begin, size, logprob in ngram2phrases[ngram]: phrase = phrases[phrase_id] out.write(ngram + "\t" + phrase + "\t" + str(begin) + "\t" + str(size) + "\t" + str(logprob) + "\n")
NeMo-main
examples/nlp/spellchecking_asr_customization/create_custom_vocab_index.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Tuple import pytorch_lightning as pl from omegaconf import DictConfig from nemo.collections.nlp.models import SpellcheckingAsrCustomizationModel from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector from nemo.utils import logging __all__ = ["MODEL", "MODEL_NAMES", "instantiate_model_and_trainer"] MODEL = "spellchecking" MODEL_NAMES = [MODEL] def instantiate_model_and_trainer( cfg: DictConfig, model_name: str, do_training: bool ) -> Tuple[pl.Trainer, SpellcheckingAsrCustomizationModel]: """ Function for instantiating a model and a trainer Args: cfg: The config used to instantiate the model and the trainer. model_name: A str indicates the model direction, currently only 'itn'. do_training: A boolean flag indicates whether the model will be trained or evaluated. Returns: trainer: A PyTorch Lightning trainer model: A SpellcheckingAsrCustomizationModel """ if model_name not in MODEL_NAMES: raise ValueError(f"{model_name} is unknown model type") # Get configs for the corresponding models trainer_cfg = cfg.get("trainer") model_cfg = cfg.get("model") pretrained_cfg = cfg.get("pretrained_model", None) trainer = pl.Trainer(**trainer_cfg) if not pretrained_cfg: logging.info(f"Initializing {model_name} model") if model_name == MODEL: model = SpellcheckingAsrCustomizationModel(model_cfg, trainer=trainer) else: raise ValueError(f"{model_name} is unknown model type") elif os.path.exists(pretrained_cfg): logging.info(f"Restoring pretrained {model_name} model from {pretrained_cfg}") save_restore_connector = NLPSaveRestoreConnector() model = SpellcheckingAsrCustomizationModel.restore_from( pretrained_cfg, save_restore_connector=save_restore_connector ) else: logging.info(f"Loading pretrained model {pretrained_cfg}") if model_name == MODEL: if pretrained_cfg not in SpellcheckingAsrCustomizationModel.get_available_model_names(): raise ( ValueError( f"{pretrained_cfg} not in the list of available Tagger models." f"Select from {SpellcheckingAsrCustomizationModel.list_available_models()}" ) ) model = SpellcheckingAsrCustomizationModel.from_pretrained(pretrained_cfg) else: raise ValueError(f"{model_name} is unknown model type") # Setup train and validation data if do_training: model.setup_training_data(train_data_config=cfg.data.train_ds) model.setup_validation_data(val_data_config=cfg.data.validation_ds) logging.info(f"Model {model_name} -- Device {model.device}") return trainer, model
NeMo-main
examples/nlp/spellchecking_asr_customization/helpers.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used to create a tarred dataset for SpellcheckingAsrCustomizationModel. This script uses the `/examples/nlp/spellchecking_asr_customization/conf/spellchecking_asr_customization_config.yaml` config file by default. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. Probably it is worth looking at the example config file to see the list of parameters used for training. USAGE Example: 1. Obtain a processed dataset 2. Run: python ${NEMO_PATH}/examples/nlp/spellchecking_asr_customization/create_tarred_dataset.py \ lang=${LANG} \ data.train_ds.data_path=${DATA_PATH}/train.tsv \ model.language_model.pretrained_model_name=${LANGUAGE_MODEL} \ model.label_map=${DATA_PATH}/label_map.txt \ +output_tar_file=tarred/part1.tar \ +take_first_n_lines=100000 """ import pickle import tarfile from io import BytesIO from helpers import MODEL, instantiate_model_and_trainer from omegaconf import DictConfig, OmegaConf from nemo.core.config import hydra_runner from nemo.utils import logging @hydra_runner(config_path="conf", config_name="spellchecking_asr_customization_config") def main(cfg: DictConfig) -> None: logging.info(f'Config Params: {OmegaConf.to_yaml(cfg)}') logging.info("Start creating tar file from " + cfg.data.train_ds.data_path + " ...") _, model = instantiate_model_and_trainer( cfg, MODEL, True ) # instantiate model like for training because we may not have pretrained model dataset = model._train_dl.dataset archive = tarfile.open(cfg.output_tar_file, mode="w") max_lines = int(cfg.take_first_n_lines) for i in range(len(dataset)): if i >= max_lines: logging.info("Reached " + str(max_lines) + " examples") break ( input_ids, input_mask, segment_ids, input_ids_for_subwords, input_mask_for_subwords, segment_ids_for_subwords, character_pos_to_subword_pos, labels_mask, labels, spans, ) = dataset[i] # do not store masks as they are just arrays of 1 content = { "input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids, "input_ids_for_subwords": input_ids_for_subwords, "input_mask_for_subwords": input_mask_for_subwords, "segment_ids_for_subwords": segment_ids_for_subwords, "character_pos_to_subword_pos": character_pos_to_subword_pos, "labels_mask": labels_mask, "labels": labels, "spans": spans, } b = BytesIO() pickle.dump(content, b) b.seek(0) tarinfo = tarfile.TarInfo(name="example_" + str(i) + ".pkl") tarinfo.size = b.getbuffer().nbytes archive.addfile(tarinfo=tarinfo, fileobj=b) archive.close() logging.info("Tar file " + cfg.output_tar_file + " created!") if __name__ == '__main__': main()
NeMo-main
examples/nlp/spellchecking_asr_customization/create_tarred_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Given NMT model's .nemo file(s), this script can be used to translate text. USAGE Example: 1. Obtain text file in src language. You can use sacrebleu to obtain standard test sets like so: sacrebleu -t wmt14 -l de-en --echo src > wmt14-de-en.src 2. Translate: python nmt_transformer_infer.py --model=[Path to .nemo file(s)] --srctext=wmt14-de-en.src --tgtout=wmt14-de-en.pre """ import json from argparse import ArgumentParser import torch import nemo.collections.nlp as nemo_nlp from nemo.collections.nlp.modules.common.transformer import ( BeamSearchSequenceGenerator, BeamSearchSequenceGeneratorWithLanguageModel, EnsembleBeamSearchSequenceGenerator, ) from nemo.utils import logging def translate_text( models, args, src_text, tgt_text, tgt_text_all, src_texts, all_scores, all_timing, ensemble_generator ): if len(models) > 1: src_ids, src_mask = models[0].prepare_inference_batch(src_text) best_translations = ensemble_generator(src_ids, src_mask, return_beam_scores=args.write_scores) if args.write_scores: all_results, scores, best_translations = ( best_translations[0], best_translations[1], best_translations[2], ) scores = scores.view(-1).data.cpu().numpy().tolist() all_scores += scores src_texts += [item for item in src_text for i in range(args.beam_size)] all_results = models[0].ids_to_postprocessed_text( all_results, models[0].decoder_tokenizer, models[0].target_processor ) tgt_text_all += all_results best_translations = models[0].ids_to_postprocessed_text( best_translations, models[0].decoder_tokenizer, models[0].target_processor ) tgt_text += best_translations else: model = models[0] best_translations = model.translate( text=src_text, source_lang=args.source_lang, target_lang=args.target_lang, return_beam_scores=args.write_scores, log_timing=args.write_timing, ) if args.write_timing: *best_translations, timing_dict = best_translations all_timing.append(timing_dict) else: best_translations = (best_translations,) if args.write_scores: all_results, scores, best_translations = ( best_translations[0], best_translations[1], best_translations[2], ) all_scores += scores src_texts += [item for item in src_text for i in range(args.beam_size)] tgt_text_all += all_results else: best_translations = best_translations[0] tgt_text += best_translations print(f"Translated {len(tgt_text)} sentences") def main(): parser = ArgumentParser() parser.add_argument( "--model", type=str, required=True, help="Path to .nemo model file(s). If ensembling, provide comma separated paths to multiple models.", ) parser.add_argument("--srctext", type=str, required=True, help="Path to the file to translate.") parser.add_argument( "--tgtout", type=str, required=True, help="Path to the file where translations are to be written." ) parser.add_argument( "--batch_size", type=int, default=256, help="Number of sentences to batch together while translatiing." ) parser.add_argument("--beam_size", type=int, default=4, help="Beam size.") parser.add_argument( "--len_pen", type=float, default=0.6, help="Length Penalty. Ref: https://arxiv.org/abs/1609.08144" ) parser.add_argument( "--max_delta_length", type=int, default=5, help="Stop generating if target sequence length exceeds source length by this number.", ) parser.add_argument( "--target_lang", type=str, default=None, help="Target language identifier ex: en,de,fr,es etc. If both `--target_lang` and `--source_lang` are " "not set, then target language processing will be done the same way as during model training. If " "`--target_lang` parameter is not set but `--source_lang` parameter is set, then target language " "processing will not be performed. If `--target_lang` equals 'ignore', then target language processing " "will not be performed regardless of value of `--source_lang` parameter.", ) parser.add_argument( "--source_lang", type=str, default=None, help="Source language identifier ex: en,de,fr,es etc. If both `--target_lang` and `--source_lang` are " "not set, then source language processing will be done the same way as during model training. If " "`--source_lang` parameter is not set but `--target_lang` parameter is set, then source language " "processing will not be performed. If `--source_lang` equals 'ignore', then source language processing " "will not be performed regardless of value of `--target_lang` parameter.", ) parser.add_argument( "--write_scores", action="store_true", help="Whether to write a separate file with scores not including length penalties corresponding to each beam hypothesis (.score suffix)", ) parser.add_argument( "--write_timing", action="store_true", help="Whether to write a separate file with detailed timing info (.timing.json suffix)", ) # shallow fusion specific parameters parser.add_argument( "--lm_model", type=str, default=None, help="Optional path to an LM model that has the same tokenizer as NMT models for shallow fuison. Note: If using --write_scores, it will add LM scores as well.", ) parser.add_argument( "--fusion_coef", type=float, default=0.07, help="Weight assigned to LM scores during shallow fusion." ) args = parser.parse_args() torch.set_grad_enabled(False) logging.info("Attempting to initialize from .nemo file") models = [] for model_path in args.model.split(','): if not model_path.endswith('.nemo'): raise NotImplementedError(f"Only support .nemo files, but got: {model_path}") model = nemo_nlp.models.machine_translation.MTEncDecModel.restore_from(restore_path=model_path).eval() models.append(model) if (len(models) > 1) and (args.write_timing): raise RuntimeError("Cannot measure timing when more than 1 model is used") src_text = [] tgt_text = [] tgt_text_all = [] src_texts = [] all_scores = [] all_timing = [] if torch.cuda.is_available(): models = [model.cuda() for model in models] if args.lm_model is not None: lm_model = nemo_nlp.models.language_modeling.TransformerLMModel.restore_from(restore_path=args.lm_model).eval() else: lm_model = None if len(models) > 1: ensemble_generator = EnsembleBeamSearchSequenceGenerator( encoders=[model.encoder for model in models], embeddings=[model.decoder.embedding for model in models], decoders=[model.decoder.decoder for model in models], log_softmaxes=[model.log_softmax for model in models], max_sequence_length=512, beam_size=args.beam_size, bos=models[0].decoder_tokenizer.bos_id, pad=models[0].decoder_tokenizer.pad_id, eos=models[0].decoder_tokenizer.eos_id, len_pen=args.len_pen, max_delta_length=args.max_delta_length, language_model=lm_model, fusion_coef=args.fusion_coef, ) else: model = models[0] ensemble_generator = None if lm_model is not None: model.beam_search = BeamSearchSequenceGeneratorWithLanguageModel( embedding=model.decoder.embedding, decoder=model.decoder.decoder, log_softmax=model.log_softmax, bos=model.decoder_tokenizer.bos_id, pad=model.decoder_tokenizer.pad_id, eos=model.decoder_tokenizer.eos_id, language_model=lm_model, fusion_coef=args.fusion_coef, max_sequence_length=model.decoder.max_sequence_length, beam_size=args.beam_size, len_pen=args.len_pen, max_delta_length=args.max_delta_length, ) else: model.beam_search = BeamSearchSequenceGenerator( embedding=model.decoder.embedding, decoder=model.decoder.decoder, log_softmax=model.log_softmax, bos=model.decoder_tokenizer.bos_id, pad=model.decoder_tokenizer.pad_id, eos=model.decoder_tokenizer.eos_id, max_sequence_length=model.decoder.max_sequence_length, beam_size=args.beam_size, len_pen=args.len_pen, max_delta_length=args.max_delta_length, ) logging.info(f"Translating: {args.srctext}") with open(args.srctext, 'r') as src_f: for line in src_f: src_text.append(line.strip()) if len(src_text) == args.batch_size: # warmup when measuring timing if args.write_timing and (not all_timing): print("running a warmup batch") translate_text( models=models, args=args, src_text=src_text, tgt_text=[], tgt_text_all=[], src_texts=[], all_scores=[], all_timing=[], ensemble_generator=ensemble_generator, ) translate_text( models=models, args=args, src_text=src_text, tgt_text=tgt_text, tgt_text_all=tgt_text_all, src_texts=src_texts, all_scores=all_scores, all_timing=all_timing, ensemble_generator=ensemble_generator, ) src_text = [] if len(src_text) > 0: translate_text( models=models, args=args, src_text=src_text, tgt_text=tgt_text, tgt_text_all=tgt_text_all, src_texts=src_texts, all_scores=all_scores, all_timing=all_timing, ensemble_generator=ensemble_generator, ) with open(args.tgtout, 'w') as tgt_f: for line in tgt_text: tgt_f.write(line + "\n") if args.write_scores: with open(args.tgtout + '.score', 'w') as tgt_f_scores: for line, score, inp in zip(tgt_text_all, all_scores, src_texts): tgt_f_scores.write(inp + "\t" + line + "\t" + str(score) + "\n") if args.write_timing: # collect list of dicts to a dict of lists timing_dict = {} if len(all_timing): for k in all_timing[0].keys(): timing_dict[k] = [t[k] for t in all_timing] with open(args.tgtout + '.timing.json', 'w') as timing_fh: json.dump(timing_dict, timing_fh) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/nlp/machine_translation/nmt_transformer_infer.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from nemo.collections.nlp.data.machine_translation.preproc_mt_data import MTDataPreproc if __name__ == '__main__': parser = argparse.ArgumentParser(description='NMT dataset pre-processing') parser.add_argument( '--tokenizer_name', type=str, default='yttm', help='Supports yttm, sentencepiece and HuggingFace tokenizers', ) parser.add_argument('--tokenizer_model', type=str, default=None, help='Path to tokenizer model') parser.add_argument('--bpe_droput', type=float, default=0.0, help='BPE dropout to use') parser.add_argument('--clean', action="store_true", help='Whether to clean dataset based on length diff') parser.add_argument('--pkl_file_prefix', type=str, default='parallel', help='Prefix for tar and pickle files') parser.add_argument('--fname', type=str, required=True, help='Path to monolingual data file') parser.add_argument('--out_dir', type=str, required=True, help='Path to store dataloader and tokenizer models') parser.add_argument('--max_seq_length', type=int, default=512, help='Max Sequence Length') parser.add_argument('--min_seq_length', type=int, default=1, help='Min Sequence Length') parser.add_argument('--tokens_in_batch', type=int, default=16000, help='# Tokens per batch per GPU') parser.add_argument( '--lines_per_dataset_fragment', type=int, default=1000000, help='Number of lines to consider for bucketing and padding', ) parser.add_argument( '--num_batches_per_tarfile', type=int, default=1000, help='Number of batches (pickle files) within each tarfile', ) args = parser.parse_args() if not os.path.exists(args.out_dir): os.mkdir(args.out_dir) if args.tokenizer_name in ["yttm", "sentencepiece"] and not os.path.exists(args.tokenizer_model): assert FileNotFoundError("Could not find tokenizer model %s" % (args.tokenizer)) tokenizer_model = MTDataPreproc.get_monolingual_tokenizer( tokenizer_name=args.tokenizer_name, tokenizer_model=args.tokenizer_model, bpe_dropout=args.bpe_droput ) MTDataPreproc.preprocess_monolingual_dataset( clean=args.clean, fname=args.fname, out_dir=args.out_dir, tokenizer=tokenizer_model, max_seq_length=args.max_seq_length, min_seq_length=args.min_seq_length, tokens_in_batch=args.tokens_in_batch, lines_per_dataset_fragment=args.lines_per_dataset_fragment, num_batches_per_tarfile=args.num_batches_per_tarfile, pkl_file_prefix=args.pkl_file_prefix, global_rank=0, world_size=1, )
NeMo-main
examples/nlp/machine_translation/create_tarred_monolingual_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.multiprocessing as mp from omegaconf.omegaconf import OmegaConf, open_dict from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelSummary from pytorch_lightning.plugins.environments import TorchElasticEnvironment from pytorch_lightning.trainer.connectors.checkpoint_connector import _CheckpointConnector from nemo.collections.nlp.models.language_modeling.megatron_bart_model import MegatronBARTModel from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model from nemo.collections.nlp.models.machine_translation.megatron_nmt_model import MegatronNMTModel from nemo.collections.nlp.parts.nlp_overrides import ( GradScaler, MegatronHalfPrecisionPlugin, NLPDDPStrategy, NLPSaveRestoreConnector, PipelineMixedPrecisionPlugin, ) from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager mp.set_start_method("spawn", force=True) @hydra_runner(config_path="conf", config_name="aayn_base_megatron") def main(cfg) -> None: logging.info("\n\n************** Experiment configuration ***********") logging.info(f'\n{OmegaConf.to_yaml(cfg)}') megatron_amp_o2 = cfg.model.get('megatron_amp_O2', False) plugins = [] strategy = NLPDDPStrategy( no_ddp_communication_hook=True, gradient_as_bucket_view=cfg.model.gradient_as_bucket_view, find_unused_parameters=False, ) if cfg.trainer.precision in [16, '16', 'bf16', '16-mixed', 'bf16-mixed']: scaler = None if cfg.trainer.precision in [16, '16', '16-mixed']: scaler = GradScaler( init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32), growth_interval=cfg.model.get('native_amp_growth_interval', 1000), hysteresis=cfg.model.get('hysteresis', 2), ) # MixedPrecisionPlugin in PTL >= 2.0 requires precision to be 16-mixed or bf16-mixed plugin_precision = '16-mixed' else: plugin_precision = 'bf16-mixed' if megatron_amp_o2: plugins.append(MegatronHalfPrecisionPlugin(precision=plugin_precision, device='cuda', scaler=scaler)) else: plugins.append(PipelineMixedPrecisionPlugin(precision=plugin_precision, device='cuda', scaler=scaler)) if cfg.get('cluster_type', None) == 'BCP': plugins.append(TorchElasticEnvironment()) trainer = Trainer(plugins=plugins, strategy=strategy, **cfg.trainer, callbacks=[ModelSummary(max_depth=3)]) exp_manager(trainer, cfg.exp_manager) # update resume from checkpoint found by exp_manager if cfg.model.resume_from_checkpoint is not None: trainer.ckpt_path = cfg.model.resume_from_checkpoint logging.info(f'Resuming training from checkpoint: {trainer.ckpt_path}') trainer._checkpoint_connector = _CheckpointConnector(trainer) if hasattr(cfg.model, 'pretrained_model_path') and cfg.model.pretrained_model_path is not None: if not hasattr(cfg.model, 'pretrained_model_type'): raise ValueError(f"Pretrained model type must be in [T5, BART].") assert cfg.model.pretrained_model_type in ['T5', 'BART'] if cfg.model.pretrained_model_type == 'T5': pretrained_cfg = MegatronT5Model.restore_from( cfg.model.pretrained_model_path, trainer=trainer, return_config=True ) else: pretrained_cfg = MegatronBARTModel.restore_from( cfg.model.pretrained_model_path, trainer=trainer, return_config=True ) OmegaConf.set_struct(pretrained_cfg, True) with open_dict(pretrained_cfg): pretrained_cfg.masked_softmax_fusion = False # Set source and target language/multilingual pretrained_cfg.src_language = cfg.model.src_language pretrained_cfg.tgt_language = cfg.model.tgt_language pretrained_cfg.multilingual = cfg.model.multilingual pretrained_cfg.shared_tokenizer = True # Max generation delta pretrained_cfg.max_generation_delta = cfg.model.max_generation_delta # Set label smoothing pretrained_cfg.label_smoothing = cfg.model.label_smoothing # Set tokenizer paths: pretrained_cfg.encoder_tokenizer = pretrained_cfg.tokenizer pretrained_cfg.decoder_tokenizer = pretrained_cfg.tokenizer # Pre-trained models should use the legacy sentencepiece tokenizer ex: mT5 pretrained_cfg.encoder_tokenizer.sentencepiece_legacy = True pretrained_cfg.decoder_tokenizer.sentencepiece_legacy = True # Override dropout # Old pre-trained checkpoints do not have separate encoder/decoder configurations, so replicate the config to encoder/decoder. if not hasattr(pretrained_cfg, 'encoder'): assert not hasattr(pretrained_cfg, 'decoder') logging.warning( "No separate configuration for encoder, found in pretrained model, using encoder dropout settings everywhere." ) pretrained_cfg.hidden_dropout = cfg.model.encoder.hidden_dropout pretrained_cfg.attention_dropout = cfg.model.encoder.attention_dropout else: assert hasattr(pretrained_cfg, 'decoder') and hasattr(pretrained_cfg, 'encoder') pretrained_cfg.encoder.hidden_dropout = cfg.model.encoder.hidden_dropout pretrained_cfg.encoder.attention_dropout = cfg.model.encoder.attention_dropout pretrained_cfg.decoder.hidden_dropout = cfg.model.decoder.hidden_dropout pretrained_cfg.decoder.attention_dropout = cfg.model.decoder.attention_dropout # Override precision pretrained_cfg.precision = trainer.precision # Set above from trainer.precision # Override micro/global batch pretrained_cfg.micro_batch_size = cfg.model.micro_batch_size pretrained_cfg.global_batch_size = cfg.model.global_batch_size # O2 AMP pretrained_cfg.megatron_amp_O2 = cfg.model.get('megatron_amp_O2', False) # Override data and global/micro batch size. pretrained_cfg.train_ds = cfg.model.train_ds pretrained_cfg.train_ds.micro_batch_size = cfg.model.micro_batch_size pretrained_cfg.train_ds.global_batch_size = cfg.model.global_batch_size if hasattr(cfg.model, 'validation_ds'): pretrained_cfg.validation_ds = cfg.model.validation_ds else: raise AttributeError(f"No validation dataset found in config.") if hasattr(cfg.model, 'test_ds'): pretrained_cfg.test_ds = cfg.model.test_ds # Class target for the new class being restored. pretrained_cfg.target = ( "nemo.collections.nlp.models.machine_translation.megatron_nmt_model.MegatronNMTModel" ) # Optimizer overrides. pretrained_cfg.optim = cfg.model.optim model = MegatronNMTModel.restore_from( cfg.model.pretrained_model_path, trainer=trainer, override_config_path=pretrained_cfg, save_restore_connector=NLPSaveRestoreConnector(), ) else: model = MegatronNMTModel(cfg.model, trainer) trainer.fit(model) trainer.validate(model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/machine_translation/megatron_nmt_training.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from nemo.collections.nlp.data.machine_translation.preproc_mt_data import MTDataPreproc if __name__ == '__main__': parser = argparse.ArgumentParser(description='NMT dataset pre-processing') parser.add_argument('--shared_tokenizer', action="store_true", help='Whether to share encoder/decoder tokenizers') parser.add_argument('--clean', action="store_true", help='Whether to clean dataset based on length diff') parser.add_argument('--tar_file_prefix', type=str, default='parallel', help='Prefix for tar files') parser.add_argument('--src_fname', type=str, required=True, help='Path to the source file') parser.add_argument('--tgt_fname', type=str, required=True, help='Path to the target file') parser.add_argument('--out_dir', type=str, required=True, help='Path to store dataloader and tokenizer models') parser.add_argument('--encoder_model_name', type=str, default=None, help='For use with pretrained encoders') parser.add_argument( '--decoder_model_name', type=str, default=None, help='For use with pretrained decoders (not yet supported)' ) parser.add_argument( '--encoder_tokenizer_model', type=str, default='None', help='Path to pre-trained encoder tokenizer model' ) parser.add_argument( '--encoder_tokenizer_name', type=str, default='yttm', help='Encoder BPE Tokenizer Name, Options: [yttm, sentencepiece]', ) parser.add_argument('--encoder_tokenizer_vocab_size', type=int, default=32000, help='Encoder Vocab size after BPE') parser.add_argument( '--encoder_tokenizer_coverage', type=float, default=0.999, help='Encoder Character coverage for BPE' ) parser.add_argument('--encoder_tokenizer_bpe_dropout', type=float, default=0.1, help='Encoder BPE dropout prob') parser.add_argument( '--encoder_tokenizer_r2l', action="store_true", help='Whether to return encoded sequence from right to left' ) parser.add_argument( '--encoder_tokenizer_legacy', action="store_true", help='Whether to use legacy tokenizer implementation of sentencepiece', ) parser.add_argument( '--decoder_tokenizer_model', type=str, default='None', help='Path to pre-trained decoder tokenizer model' ) parser.add_argument( '--decoder_tokenizer_name', type=str, default='yttm', help='Encoder BPE Tokenizer Name, Options: [yttm, sentencepiece]', ) parser.add_argument('--decoder_tokenizer_vocab_size', type=int, default=32000, help='Encoder Vocab size after BPE') parser.add_argument( '--decoder_tokenizer_coverage', type=float, default=0.999, help='Encoder Character coverage for BPE' ) parser.add_argument('--decoder_tokenizer_bpe_dropout', type=float, default=0.1, help='Encoder BPE dropout prob') parser.add_argument( '--decoder_tokenizer_r2l', action="store_true", help='Whether to return encoded sequence from right to left' ) parser.add_argument( '--decoder_tokenizer_legacy', action="store_true", help='Whether to use legacy tokenizer implementation of sentencepiece', ) parser.add_argument('--max_seq_length', type=int, default=512, help='Max Sequence Length') parser.add_argument('--min_seq_length', type=int, default=1, help='Min Sequence Length') parser.add_argument('--tokens_in_batch', type=int, default=16000, help='# Tokens per batch per GPU') parser.add_argument('--coverage', type=float, default=0.999, help='BPE character coverage [0-1]') parser.add_argument( '--lines_per_dataset_fragment', type=int, default=1000000, help='Number of lines to consider for bucketing and padding', ) parser.add_argument( '--num_batches_per_tarfile', type=int, default=1000, help='Number of batches (pickle files) within each tarfile', ) parser.add_argument( '--n_preproc_jobs', type=int, default=-2, help='Number of processes to use for creating the tarred dataset.', ) parser.add_argument( '--byte_fallback', action="store_true", help='Whether to use byte fallback with sentencepiece for BPE tokenization.', ) parser.add_argument( '--split_digits', action="store_true", help='Whether to split digits while tokenizing with sentencepiece.' ) parser.add_argument( '--no_split_by_whitespace', action="store_true", help='If True, this will not respect whitepsaces while learning BPE merges.', ) args = parser.parse_args() if not os.path.exists(args.out_dir): os.mkdir(args.out_dir) if ( args.encoder_tokenizer_model != 'None' and args.decoder_tokenizer_model == 'None' or args.decoder_tokenizer_model != 'None' and args.encoder_tokenizer_model == 'None' ): if args.shared_tokenizer: raise ValueError( ''' If using a pre-trained shared tokenizer, both encoder and decoder tokenizers must be the same ''' ) else: raise ValueError('Both encoder and decoder pre-trained tokenizer models must be specified') if args.encoder_tokenizer_model == 'None' and args.decoder_tokenizer_model == 'None': encoder_tokenizer_model, decoder_tokenizer_model = MTDataPreproc.train_tokenizers( out_dir=args.out_dir, src_fname=args.src_fname, tgt_fname=args.tgt_fname, shared_tokenizer=args.shared_tokenizer, encoder_tokenizer_name=args.encoder_tokenizer_name, encoder_tokenizer_vocab_size=args.encoder_tokenizer_vocab_size, encoder_tokenizer_coverage=args.encoder_tokenizer_coverage, decoder_tokenizer_name=args.decoder_tokenizer_name, decoder_tokenizer_vocab_size=args.decoder_tokenizer_vocab_size, decoder_tokenizer_coverage=args.decoder_tokenizer_coverage, global_rank=0, byte_fallback=args.byte_fallback, split_digits=args.split_digits, split_by_whitespace=not args.no_split_by_whitespace, ) else: encoder_tokenizer_model, decoder_tokenizer_model = args.encoder_tokenizer_model, args.decoder_tokenizer_model encoder_tokenizer, decoder_tokenizer = MTDataPreproc.get_enc_dec_tokenizers( encoder_tokenizer_name=args.encoder_tokenizer_name, encoder_tokenizer_model=encoder_tokenizer_model, encoder_bpe_dropout=args.encoder_tokenizer_bpe_dropout, encoder_r2l=args.encoder_tokenizer_r2l, decoder_tokenizer_name=args.decoder_tokenizer_name, decoder_tokenizer_model=decoder_tokenizer_model, decoder_bpe_dropout=args.decoder_tokenizer_bpe_dropout, decoder_r2l=args.decoder_tokenizer_r2l, encoder_tokenizer_legacy=args.encoder_tokenizer_legacy, decoder_tokenizer_legacy=args.decoder_tokenizer_legacy, ) _, _ = MTDataPreproc.preprocess_parallel_dataset( clean=args.clean, src_fname=args.src_fname, tgt_fname=args.tgt_fname, out_dir=args.out_dir, encoder_tokenizer_name=args.encoder_tokenizer_name, encoder_model_name=args.encoder_model_name, encoder_tokenizer_model=encoder_tokenizer_model, encoder_bpe_dropout=args.encoder_tokenizer_bpe_dropout, encoder_tokenizer_r2l=args.encoder_tokenizer_r2l, decoder_tokenizer_name=args.decoder_tokenizer_name, decoder_model_name=args.decoder_model_name, decoder_tokenizer_model=decoder_tokenizer_model, decoder_tokenizer_r2l=args.decoder_tokenizer_r2l, decoder_bpe_dropout=args.decoder_tokenizer_bpe_dropout, max_seq_length=args.max_seq_length, min_seq_length=args.min_seq_length, tokens_in_batch=args.tokens_in_batch, lines_per_dataset_fragment=args.lines_per_dataset_fragment, num_batches_per_tarfile=args.num_batches_per_tarfile, tar_file_prefix=args.tar_file_prefix, global_rank=0, world_size=1, n_jobs=args.n_preproc_jobs, encoder_tokenizer_legacy=args.encoder_tokenizer_legacy, decoder_tokenizer_legacy=args.decoder_tokenizer_legacy, )
NeMo-main
examples/nlp/machine_translation/create_tarred_parallel_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script implemts Noisy Channel Reranking (NCR) - https://arxiv.org/abs/1908.05731 Given .nemo files for a, reverse model (target -> source) and transformer LM (target LM) NMT model's .nemo file, this script can be used to re-rank a forward model's (source -> target) beam candidates. This script can be used in two ways 1) Given the score file generated by `nmt_transformer_infer.py`, re-rank beam candidates and 2) Given NCR score file generated by 1), Re-rank beam candidates based only on cached scores in the ncr file. This is meant to tune NCR coeficients. Pre-requisite: Generating translations using `nmt_transformer_infer.py` 1. Obtain text file in src language. You can use sacrebleu to obtain standard test sets like so: sacrebleu -t wmt14 -l de-en --echo src > wmt14-de-en.src 2. Translate using `nmt_transformer_infer.py` with a large beam size.: python nmt_transformer_infer.py --model=[Path to .nemo file(s)] --srctext=wmt14-de-en.src --tgtout=wmt14-de-en.translations --beam_size 15 --write_scores USAGE Example (case 1): Re-rank beam candidates: python noisy_channel_reranking.py \ --reverse_model=[Path to .nemo file] \ --language_model=[Path to .nemo file] \ --srctext=wmt14-de-en.translations.scores \ --tgtout=wmt14-de-en.ncr.translations \ --forward_model_coef=1.0 \ --reverse_model_coef=0.7 \ --target_lm_coef=0.05 \ --write_scores \ USAGE Example (case 2): Re-rank beam candidates using cached score file only python noisy_channel_reranking.py \ --cached_score_file=wmt14-de-en.ncr.translations.scores \ --forward_model_coef=1.0 \ --reverse_model_coef=0.7 \ --target_lm_coef=0.05 \ --tgtout=wmt14-de-en.ncr.translations \ """ from argparse import ArgumentParser import numpy as np import torch import nemo.collections.nlp as nemo_nlp from nemo.utils import logging def score_fusion(args, forward_scores, rev_scores, lm_scores, src_lens, tgt_lens): """ Fuse forward, reverse and language model scores. """ fused_scores = [] for forward_score, rev_score, lm_score, src_len, tgt_len in zip( forward_scores, rev_scores, lm_scores, src_lens, tgt_lens ): score = 0 forward_score = forward_score / tgt_len if args.length_normalize_scores else forward_score score += args.forward_model_coef * forward_score rev_score = rev_score / src_len if args.length_normalize_scores else rev_score score += args.reverse_model_coef * rev_score lm_score = lm_score / tgt_len if args.length_normalize_scores else lm_score score += args.target_lm_coef * lm_score if args.len_pen is not None: score = score / (((5 + tgt_len) / 6) ** args.len_pen) fused_scores.append(score) return fused_scores def main(): parser = ArgumentParser() parser.add_argument( "--reverse_model", type=str, help="Path to .nemo model file(s). If ensembling, provide comma separated paths to multiple models.", ) parser.add_argument( "--language_model", type=str, help="Optional path to an LM model that has the same tokenizer as NMT models.", ) parser.add_argument( "--forward_model_coef", type=float, default=1.0, help="Weight assigned to the forward NMT model for re-ranking.", ) parser.add_argument( "--reverse_model_coef", type=float, default=0.7, help="Weight assigned to the reverse NMT model for re-ranking.", ) parser.add_argument( "--target_lm_coef", type=float, default=0.07, help="Weight assigned to the target LM model for re-ranking.", ) parser.add_argument( "--srctext", type=str, default=None, help="Path to a TSV file containing forward model scores of the format source \t beam_candidate_i \t forward_score", ) parser.add_argument( "--cached_score_file", type=str, default=None, help="Path to a TSV file containing cached scores for each beam candidate. Format source \t target \t forward_score \t reverse_score \t lm_score \t src_len \t tgt_len", ) parser.add_argument( "--tgtout", type=str, required=True, help="Path to the file where re-ranked translations are to be written." ) parser.add_argument( "--beam_size", type=int, default=4, help="Beam size with which forward model translations were generated. IMPORTANT: mismatch can lead to wrong results and an incorrect number of generated translations.", ) parser.add_argument( "--target_lang", type=str, default=None, help="Target language identifier ex: en,de,fr,es etc." ) parser.add_argument( "--source_lang", type=str, default=None, help="Source language identifier ex: en,de,fr,es etc." ) parser.add_argument( "--write_scores", action="store_true", help="Whether to write forward, reverse and lm scores to a file." ) parser.add_argument( "--length_normalize_scores", action="store_true", help="If true, it will divide forward, reverse and lm scores by the corresponding sequence length.", ) parser.add_argument( "--len_pen", type=float, default=None, help="Apply a length penalty based on target lengths to the final NCR score.", ) args = parser.parse_args() torch.set_grad_enabled(False) if args.cached_score_file is None: reverse_models = [] for model_path in args.reverse_model.split(','): if not model_path.endswith('.nemo'): raise NotImplementedError(f"Only support .nemo files, but got: {model_path}") model = nemo_nlp.models.machine_translation.MTEncDecModel.restore_from(restore_path=model_path).eval() model.eval_loss_fn.reduction = 'none' reverse_models.append(model) lm_model = nemo_nlp.models.language_modeling.TransformerLMModel.restore_from( restore_path=args.language_model ).eval() if args.srctext is not None and args.cached_score_file is not None: raise ValueError("Only one of --srctext or --cached_score_file must be provided.") if args.srctext is None and args.cached_score_file is None: raise ValueError("Neither --srctext nor --cached_score_file were provided.") if args.srctext is not None: logging.info(f"Re-ranking: {args.srctext}") else: logging.info(f"Re-ranking from cached score file only: {args.cached_score_file}") if args.cached_score_file is None: if torch.cuda.is_available(): reverse_models = [model.cuda() for model in reverse_models] lm_model = lm_model.cuda() src_text = [] tgt_text = [] all_reverse_scores = [] all_lm_scores = [] all_forward_scores = [] all_src_lens = [] all_tgt_lens = [] # Chceck args if re-ranking from cached score file. if args.cached_score_file is not None: if args.write_scores: raise ValueError("--write_scores cannot be provided with a cached score file.") if args.reverse_model is not None: raise ValueError( "--reverse_model cannot be provided with a cached score file since it assumes reverse scores already present in the cached file." ) if args.language_model is not None: raise ValueError( "--language_model cannot be provided with a cached score file since it assumes language model scores already present in the cached file." ) if args.srctext is not None: # Compute reverse scores and LM scores from the provided models since cached scores file is not provided. with open(args.srctext, 'r') as src_f: count = 0 for line in src_f: src_text.append(line.strip().split('\t')) if len(src_text) == args.beam_size: # Source and target sequences are flipped for the reverse direction model. src_texts = [item[1] for item in src_text] tgt_texts = [item[0] for item in src_text] src, src_mask = reverse_models[0].prepare_inference_batch(src_texts) tgt, tgt_mask = reverse_models[0].prepare_inference_batch(tgt_texts, target=True) src_lens = src_mask.sum(1).data.cpu().tolist() tgt_lens = tgt_mask.sum(1).data.cpu().tolist() forward_scores = [float(item[2]) for item in src_text] # Ensemble of reverse model scores. nmt_lls = [] for model in reverse_models: nmt_log_probs = model(src, src_mask, tgt[:, :-1], tgt_mask[:, :-1]) nmt_nll = model.eval_loss_fn(log_probs=nmt_log_probs, labels=tgt[:, 1:]) nmt_ll = nmt_nll.view(nmt_log_probs.size(0), nmt_log_probs.size(1)).sum(1) * -1.0 nmt_ll = nmt_ll.data.cpu().numpy().tolist() nmt_lls.append(nmt_ll) reverse_scores = np.stack(nmt_lls).mean(0) # LM scores. if lm_model is not None: # Compute LM score for the src of the reverse model. lm_log_probs = lm_model(src[:, :-1], src_mask[:, :-1]) lm_nll = model.eval_loss_fn(log_probs=lm_log_probs, labels=src[:, 1:]) lm_ll = lm_nll.view(lm_log_probs.size(0), lm_log_probs.size(1)).sum(1) * -1.0 lm_ll = lm_ll.data.cpu().numpy().tolist() else: lm_ll = None lm_scores = lm_ll all_reverse_scores.extend(reverse_scores) all_lm_scores.extend(lm_scores) all_forward_scores.extend(forward_scores) # Swapping source and target here back again since this is what gets written to the file. all_src_lens.extend(tgt_lens) all_tgt_lens.extend(src_lens) fused_scores = score_fusion(args, forward_scores, reverse_scores, lm_scores, src_lens, tgt_lens) tgt_text.append(src_texts[np.argmax(fused_scores)]) src_text = [] count += 1 print(f'Reranked {count} sentences') else: # Use reverse and LM scores from the cached scores file to re-rank. with open(args.cached_score_file, 'r') as src_f: count = 0 for line in src_f: src_text.append(line.strip().split('\t')) if len(src_text) == args.beam_size: if not all([len(item) == 7 for item in src_text]): raise IndexError( "All lines did not contain exactly 5 fields. Format - src_txt \t tgt_text \t forward_score \t reverse_score \t lm_score \t src_len \t tgt_len" ) src_texts = [item[0] for item in src_text] tgt_texts = [item[1] for item in src_text] forward_scores = [float(item[2]) for item in src_text] reverse_scores = [float(item[3]) for item in src_text] lm_scores = [float(item[4]) for item in src_text] src_lens = [float(item[5]) for item in src_text] tgt_lens = [float(item[6]) for item in src_text] fused_scores = score_fusion(args, forward_scores, reverse_scores, lm_scores, src_lens, tgt_lens) tgt_text.append(tgt_texts[np.argmax(fused_scores)]) src_text = [] count += 1 print(f'Reranked {count} sentences') with open(args.tgtout, 'w') as tgt_f: for line in tgt_text: tgt_f.write(line + "\n") # Write scores file if args.write_scores: with open(args.tgtout + '.scores', 'w') as tgt_f, open(args.srctext, 'r') as src_f: src_lines = [] for line in src_f: src_lines.append(line.strip().split('\t')) if not (len(all_reverse_scores) == len(all_lm_scores) == len(all_forward_scores) == len(src_lines)): raise ValueError( f"Length of scores files do not match. {len(all_reverse_scores)} != {len(all_lm_scores)} != {len(all_forward_scores)} != {len(src_lines)}. This is most likely because --beam_size is set incorrectly. This needs to be set to the same value that was used to generate translations." ) for f, r, lm, sl, tl, src in zip( all_forward_scores, all_reverse_scores, all_lm_scores, all_src_lens, all_tgt_lens, src_lines ): tgt_f.write( src[0] + '\t' + src[1] + '\t' + str(f) + '\t' + str(r) + '\t' + str(lm) + '\t' + str(sl) + '\t' + str(tl) + '\n' ) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/nlp/machine_translation/noisy_channel_reranking.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional from omegaconf import OmegaConf from omegaconf.omegaconf import MISSING from pytorch_lightning import Trainer from nemo.collections.nlp.models.machine_translation.mt_enc_dec_config import MTEncDecModelConfig from nemo.collections.nlp.models.machine_translation.mt_enc_dec_model import MTEncDecModel from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy from nemo.core.config import hydra_runner from nemo.core.config.modelPT import NemoConfig from nemo.core.config.pytorch_lightning import TrainerConfig from nemo.utils import logging from nemo.utils.config_utils import update_model_config from nemo.utils.exp_manager import ExpManagerConfig, exp_manager """ Usage: python enc_dec_nmt_finetune.py \ model_path=/raid/models/de_en_24x6.nemo \ trainer.devices=2 \ ~trainer.max_epochs \ +trainer.max_steps=4500 \ +trainer.val_check_interval=500 \ model.train_ds.tgt_file_name=/raid/data/train_lang_filtered.en \ model.train_ds.src_file_name=/raid/data/train_lang_filtered.de \ model.train_ds.tokens_in_batch=6000 \ model.validation_ds.tgt_file_name=/raid/data/2015.norm.tok.en \ model.validation_ds.src_file_name=/raid/data/2015.norm.tok.de \ model.validation_ds.tokens_in_batch=4000 \ model.test_ds.tgt_file_name=/raid/data/2015.en \ model.test_ds.src_file_name=/raid/data/2015.de \ +exp_manager.exp_dir=/raid/results/finetune-test \ +exp_manager.create_checkpoint_callback=True \ +exp_manager.checkpoint_callback_params.monitor=val_sacreBLEU \ +exp_manager.checkpoint_callback_params.mode=max \ +exp_manager.checkpoint_callback_params.save_best_model=true """ @dataclass class MTFineTuneConfig(NemoConfig): name: Optional[str] = 'MTEncDec' model_path: str = MISSING do_training: bool = True do_testing: bool = False model: MTEncDecModelConfig = MTEncDecModelConfig() trainer: Optional[TrainerConfig] = TrainerConfig() exp_manager: Optional[ExpManagerConfig] = ExpManagerConfig(name='MTEncDec', files_to_copy=[]) @hydra_runner(config_path="conf", config_name="aayn_finetune") def main(cfg: MTFineTuneConfig) -> None: # merge default config with user specified config default_cfg = MTFineTuneConfig() default_cfg.model = MTEncDecModel.restore_from(restore_path=cfg.model_path, return_config=True) del default_cfg.model.optim, default_cfg.model.train_ds, default_cfg.model.validation_ds, default_cfg.model.test_ds cfg = update_model_config(default_cfg, cfg, drop_missing_subconfigs=False) logging.info("\n\n************** Experiment configuration ***********") logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') # training is managed by PyTorch Lightning trainer_cfg = OmegaConf.to_container(cfg.trainer) trainer_cfg.pop('strategy', None) trainer = Trainer(strategy=NLPDDPStrategy(), **trainer_cfg) # experiment logs, checkpoints, and auto-resume are managed by exp_manager and PyTorch Lightning exp_manager(trainer, cfg.exp_manager) # everything needed to train translation models is encapsulated in the NeMo MTEncdDecModel mt_model = MTEncDecModel.restore_from(restore_path=cfg.model_path, override_config_path=cfg.model, trainer=trainer) mt_model.setup_training_data(cfg.model.train_ds) mt_model.setup_multiple_validation_data(val_data_config=cfg.model.validation_ds) logging.info("\n\n************** Model parameters and their sizes ***********") for name, param in mt_model.named_parameters(): print(name, param.size()) logging.info("***********************************************************\n\n") if cfg.do_training: trainer.fit(mt_model) if cfg.do_testing: mt_model.setup_multiple_test_data(test_data_config=cfg.model.test_ds) trainer.test(mt_model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/machine_translation/enc_dec_nmt_finetune.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Given NMT model's .nemo file(s), this script can be used to translate text. USAGE Example: 1. Obtain text file in src language. You can use sacrebleu to obtain standard test sets like so: sacrebleu -t wmt14 -l de-en --echo src > wmt14-de-en.src 2. Translate: python nmt_transformer_infer.py --model=[Path to .nemo file(s)] --srctext=wmt14-de-en.src --tgtout=wmt14-de-en.pre """ import os from omegaconf.omegaconf import OmegaConf, open_dict from pytorch_lightning.trainer.trainer import Trainer from nemo.collections.nlp.models.machine_translation.megatron_nmt_model import MegatronNMTModel from nemo.collections.nlp.modules.common.megatron.megatron_init import fake_initialize_model_parallel from nemo.collections.nlp.modules.common.megatron.utils import ApexGuardDefaults from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.app_state import AppState from nemo.utils.model_utils import inject_model_parallel_rank try: from apex.transformer.pipeline_parallel.utils import _reconfigure_microbatch_calculator HAVE_APEX = True except (ImportError, ModuleNotFoundError): ModelType = ApexGuardDefaults() HAVE_APEX = False @hydra_runner(config_path="conf", config_name="nmt_megatron_infer") def main(cfg) -> None: # trainer required for restoring model parallel models trainer = Trainer(strategy=NLPDDPStrategy(), **cfg.trainer) assert ( cfg.trainer.devices * cfg.trainer.num_nodes == cfg.tensor_model_parallel_size * cfg.pipeline_model_parallel_size ), "devices * num_nodes should equal tensor_model_parallel_size * pipeline_model_parallel_size" app_state = AppState() app_state.model_parallel_size = cfg.tensor_model_parallel_size * cfg.pipeline_model_parallel_size ( app_state.tensor_model_parallel_rank, app_state.pipeline_model_parallel_rank, app_state.model_parallel_size, app_state.data_parallel_size, app_state.pipeline_model_parallel_split_rank, app_state.virtual_pipeline_model_parallel_rank, ) = fake_initialize_model_parallel( world_size=app_state.model_parallel_size, rank=trainer.global_rank, tensor_model_parallel_size_=cfg.tensor_model_parallel_size, pipeline_model_parallel_size_=cfg.pipeline_model_parallel_size, pipeline_model_parallel_split_rank_=cfg.pipeline_model_parallel_split_rank, ) if cfg.model_file is not None: if not os.path.exists(cfg.model_file): raise ValueError(f"Model file {cfg.model_file} does not exist") pretrained_cfg = MegatronNMTModel.restore_from(cfg.model_file, trainer=trainer, return_config=True) OmegaConf.set_struct(pretrained_cfg, True) with open_dict(pretrained_cfg): pretrained_cfg.precision = trainer.precision model = MegatronNMTModel.restore_from( restore_path=cfg.model_file, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(), override_config_path=pretrained_cfg, ) elif cfg.checkpoint_dir is not None: checkpoint_path = inject_model_parallel_rank(os.path.join(cfg.checkpoint_dir, cfg.checkpoint_name)) model = MegatronNMTModel.load_from_checkpoint(checkpoint_path, hparams_file=cfg.hparams_file, trainer=trainer) else: raise ValueError("need at least a nemo file or checkpoint dir") model.freeze() logging.info(f"Translating: {cfg.srctext}") src_text = [] translations = [] with open(cfg.srctext, 'r') as src_f, open(cfg.tgtout, 'w') as tgt_f: for line in src_f: src_text.append(line.strip()) if len(src_text) == cfg.batch_size: translations = model.translate( text=src_text, source_lang=cfg.source_lang, target_lang=cfg.target_lang, ) for translation in translations: tgt_f.write(translation + "\n") src_text = [] if len(src_text) > 0: translations = model.translate(text=src_text, source_lang=cfg.source_lang, target_lang=cfg.target_lang,) for translation in translations: tgt_f.write(translation + "\n") if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-main
examples/nlp/machine_translation/nmt_transformer_infer_megatron.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional from omegaconf import OmegaConf from pytorch_lightning import Trainer from nemo.collections.nlp.data.machine_translation.preproc_mt_data import MTDataPreproc from nemo.collections.nlp.models.machine_translation.mt_enc_dec_config import MTEncDecModelConfig from nemo.collections.nlp.models.machine_translation.mt_enc_dec_model import MTEncDecModel from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy from nemo.core.config import hydra_runner from nemo.core.config.modelPT import NemoConfig from nemo.core.config.pytorch_lightning import TrainerConfig from nemo.utils import logging from nemo.utils.config_utils import update_model_config from nemo.utils.exp_manager import ExpManagerConfig, exp_manager """ Usage: 1. If you need to start docker and install NeMo, otherwise skip this step: a. ```docker run --gpus all -it --rm -v /home/okuchaiev/repos/NeMo/:/NeMo -p 6006:6006 -v /mnt:/mnt --shm-size=16g --ulimit memlock=-1 --ulimit stack=67108864 --device=/dev/snd nvcr.io/nvidia/pytorch:20.11-py3``` b. ```cd /NeMo``` c. ```./reinstall.sh``` 2. Train a new tokenizer (or use pre-trained one): ```yttm bpe --data /mnt/D1/Data/NMT/wmt16_de_en/train.clean.en-de.shuffled.common --model tokenizer.BPE.8192.model --vocab_size 8192``` (To use WANDB, optionally, do login first) ``wandb login [YOUR WANDB login]`` 3. Start training: (This example for "base" model on 2 GPUs for 150000 steps with batch size of 12500 tokens per GPU) python enc_dec_nmt.py \ --config-path=conf \ --config-name=aayn_base \ trainer.devices=[0,1] \ ~trainer.max_epochs \ +trainer.max_steps=150000 \ model.beam_size=4 \ model.max_generation_delta=5 \ model.label_smoothing=0.1 \ model.encoder_tokenizer.tokenizer_model=tokenizer.BPE.8192.model \ model.decoder_tokenizer.tokenizer_model=tokenizer.BPE.8192.model \ model.encoder.num_layers=6 \ model.encoder.hidden_size=512 \ model.encoder.inner_size=2048 \ model.encoder.num_attention_heads=8 \ model.encoder.ffn_dropout=0.1 \ model.decoder.num_layers=6 \ model.decoder.hidden_size=512 \ model.decoder.inner_size=2048 \ model.decoder.num_attention_heads=8 \ model.decoder.ffn_dropout=0.1 \ model.train_ds.src_file_name=/mnt/D1/Data/NMT/wmt16_de_en/train.clean.de.shuffled \ model.train_ds.tgt_file_name=/mnt/D1/Data/NMT/wmt16_de_en/train.clean.en.shuffled \ model.train_ds.tokens_in_batch=12500 \ model.validation_ds.src_file_name=/mnt/D1/Data/NMT/wmt16_de_en/wmt14-en-de.ref \ model.validation_ds.tgt_file_name=/mnt/D1/Data/NMT/wmt16_de_en/wmt14-en-de.src \ model.validation_ds.tokens_in_batch=8192 \ model.test_ds.src_file_name=/mnt/D1/Data/NMT/wmt16_de_en/wmt14-en-de.ref \ model.test_ds.tgt_file_name=/mnt/D1/Data/NMT/wmt16_de_en/wmt14-en-de.src \ model.optim.lr=0.001 \ model.optim.sched.warmup_ratio=0.05 \ +exp_manager.create_wandb_logger=True \ +exp_manager.wandb_logger_kwargs.name=TEST-nmt-base \ +exp_manager.wandb_logger_kwargs.project=nmt-de-en \ +exp_manager.create_checkpoint_callback=True \ +exp_manager.checkpoint_callback_params.monitor=val_sacreBLEU \ +exp_manager.exp_dir=nmt_base \ +exp_manager.checkpoint_callback_params.mode=max """ @dataclass class MTEncDecConfig(NemoConfig): name: Optional[str] = 'MTEncDec' do_training: bool = True do_testing: bool = False model: MTEncDecModelConfig = MTEncDecModelConfig() trainer: Optional[TrainerConfig] = TrainerConfig() exp_manager: Optional[ExpManagerConfig] = ExpManagerConfig(name='MTEncDec', files_to_copy=[]) @hydra_runner(config_path="conf", config_name="aayn_base") def main(cfg: MTEncDecConfig) -> None: # merge default config with user specified config default_cfg = MTEncDecConfig() cfg = update_model_config(default_cfg, cfg) logging.info("\n\n************** Experiment configuration ***********") logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') # training is managed by PyTorch Lightning trainer_cfg = OmegaConf.to_container(cfg.trainer) trainer_cfg.pop('strategy', None) trainer = Trainer(strategy=NLPDDPStrategy(), **trainer_cfg) # tokenizers will be trained and and tarred training data will be created if needed # model config is then updated if cfg.model.preproc_out_dir is not None: MTDataPreproc(cfg=cfg.model, trainer=trainer) # experiment logs, checkpoints, and auto-resume are managed by exp_manager and PyTorch Lightning exp_manager(trainer, cfg.exp_manager) # everything needed to train translation models is encapsulated in the NeMo MTEncdDecModel mt_model = MTEncDecModel(cfg.model, trainer=trainer) logging.info("\n\n************** Model parameters and their sizes ***********") for name, param in mt_model.named_parameters(): print(name, param.size()) logging.info("***********************************************************\n\n") if cfg.do_training: trainer.fit(mt_model) # Reset for PTL 2.0 as test uses the same ckpt as train via previously set self._ckpt_path trainer.ckpt_path = None if cfg.do_testing: trainer.test(mt_model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/machine_translation/enc_dec_nmt.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from argparse import ArgumentParser import torch import torch.multiprocessing as mp from torch.utils.data import DataLoader from nemo.collections.nlp.data.language_modeling import TarredSentenceDataset from nemo.collections.nlp.data.machine_translation import TarredTranslationDataset from nemo.collections.nlp.models.machine_translation.mt_enc_dec_model import MTEncDecModel from nemo.utils import logging def get_args(): parser = ArgumentParser(description='Batch translation of sentences from a pre-trained model on multiple GPUs') parser.add_argument("--model", type=str, required=True, help="Path to the .nemo translation model file") parser.add_argument( "--text2translate", type=str, required=True, help="Path to the pre-processed tarfiles for translation" ) parser.add_argument("--result_dir", type=str, required=True, help="Folder to write translation results") parser.add_argument( "--twoside", action="store_true", help="Set flag when translating the source side of a parallel dataset" ) parser.add_argument( '--metadata_path', type=str, required=True, help="Path to the JSON file that contains dataset info" ) parser.add_argument('--topk', type=int, default=500, help="Value of k for topk sampling") parser.add_argument('--src_language', type=str, required=True, help="Source lang ID for detokenization") parser.add_argument('--tgt_language', type=str, required=True, help="Target lang ID for detokenization") parser.add_argument( '--reverse_lang_direction', action="store_true", help="Reverse source and target language direction for parallel dataset", ) parser.add_argument('--n_gpus', type=int, default=1, help="Number of GPUs to use") args = parser.parse_args() return args def translate(rank, world_size, args): if args.model.endswith(".nemo"): logging.info("Attempting to initialize from .nemo file") model = MTEncDecModel.restore_from(restore_path=args.model, map_location=f"cuda:{rank}") elif args.model.endswith(".ckpt"): logging.info("Attempting to initialize from .ckpt file") model = MTEncDecModel.load_from_checkpoint(checkpoint_path=args.model, map_location=f"cuda:{rank}") model.replace_beam_with_sampling(topk=args.topk) model.eval() if args.twoside: dataset = TarredTranslationDataset( text_tar_filepaths=args.text2translate, metadata_path=args.metadata_path, encoder_tokenizer=model.encoder_tokenizer, decoder_tokenizer=model.decoder_tokenizer, shuffle_n=100, shard_strategy="scatter", world_size=world_size, global_rank=rank, reverse_lang_direction=args.reverse_lang_direction, ) else: dataset = TarredSentenceDataset( text_tar_filepaths=args.text2translate, metadata_path=args.metadata_path, tokenizer=model.encoder_tokenizer, shuffle_n=100, shard_strategy="scatter", world_size=world_size, global_rank=rank, ) loader = DataLoader(dataset, batch_size=1) result_dir = os.path.join(args.result_dir, f'rank{rank}') os.makedirs(result_dir, exist_ok=True) originals_file_name = os.path.join(result_dir, 'originals.txt') translations_file_name = os.path.join(result_dir, 'translations.txt') num_translated_sentences = 0 with open(originals_file_name, 'w') as of, open(translations_file_name, 'w') as tf: for batch_idx, batch in enumerate(loader): for i in range(len(batch)): if batch[i].ndim == 3: batch[i] = batch[i].squeeze(dim=0) batch[i] = batch[i].to(rank) if args.twoside: src_ids, src_mask, _, _, _ = batch else: src_ids, src_mask = batch if batch_idx % 100 == 0: logging.info( f"{batch_idx} batches ({num_translated_sentences} sentences) were translated by process with " f"rank {rank}" ) num_translated_sentences += len(src_ids) inputs, translations = model.batch_translate(src=src_ids, src_mask=src_mask) for src, translation in zip(inputs, translations): of.write(src + '\n') tf.write(translation + '\n') def main() -> None: args = get_args() world_size = torch.cuda.device_count() if args.n_gpus == -1 else args.n_gpus mp.spawn(translate, args=(world_size, args), nprocs=world_size, join=True) if __name__ == '__main__': main()
NeMo-main
examples/nlp/machine_translation/translate_ddp.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional from omegaconf import OmegaConf from pytorch_lightning import Trainer from nemo.collections.nlp.data.machine_translation.preproc_mt_data import MTDataPreproc from nemo.collections.nlp.models.machine_translation.mt_enc_dec_bottleneck_model import MTBottleneckModel from nemo.collections.nlp.models.machine_translation.mt_enc_dec_config import MTBottleneckModelConfig from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy from nemo.core.config import hydra_runner from nemo.core.config.modelPT import NemoConfig from nemo.core.config.pytorch_lightning import TrainerConfig from nemo.utils import logging from nemo.utils.config_utils import update_model_config from nemo.utils.exp_manager import ExpManagerConfig, exp_manager """ Usage: 1. If you need to start docker and install NeMo, otherwise skip this step: a. ```docker run --gpus all -it --rm -v /home/okuchaiev/repos/NeMo/:/NeMo -p 6006:6006 -v /mnt:/mnt --shm-size=16g --ulimit memlock=-1 --ulimit stack=67108864 --device=/dev/snd nvcr.io/nvidia/pytorch:20.11-py3``` b. ```cd /NeMo``` c. ```./reinstall.sh``` 2. Train a new tokenizer (or use pre-trained one): ```yttm bpe --data /mnt/D1/Data/NMT/wmt16_de_en/train.clean.en-de.shuffled.common --model tokenizer.BPE.8192.model --vocab_size 8192``` (To use WANDB, optionally, do login first) ``wandb login [YOUR WANDB login]`` 3. Start training: (This example for "base" model on 2 GPUs for 150000 steps with batch size of 12500 tokens per GPU) python enc_dec_nmt-bottleneck.py \ --config-path=conf \ --config-name=aayn_bottleneck \ trainer.devices=[0,1] \ ~trainer.max_epochs \ +trainer.max_steps=150000 \ model.beam_size=4 \ model.max_generation_delta=256 \ model.label_smoothing=0.1 \ model.model_type=nll \ model.non_recon_warmup_batches=7500 \ model.encoder_tokenizer.tokenizer_model=tokenizer.BPE.8192.model \ model.decoder_tokenizer.tokenizer_model=tokenizer.BPE.8192.model \ model.encoder.arch=perceiver \ model.encoder.hidden_steps=32 \ model.encoder.hidden_blocks=2 \ model.encoder.hidden_init_method=bridge \ model.encoder.num_layers=6 \ model.encoder.hidden_size=512 \ model.encoder.inner_size=2048 \ model.encoder.num_attention_heads=8 \ model.encoder.ffn_dropout=0.1 \ model.decoder.num_layers=6 \ model.decoder.hidden_size=512 \ model.decoder.inner_size=2048 \ model.decoder.num_attention_heads=8 \ model.decoder.ffn_dropout=0.1 \ model.train_ds.src_file_name=/mnt/D1/Data/NMT/wmt16_de_en/train.clean.de.shuffled \ model.train_ds.tgt_file_name=/mnt/D1/Data/NMT/wmt16_de_en/train.clean.en.shuffled \ model.train_ds.tokens_in_batch=12500 \ model.validation_ds.src_file_name=/mnt/D1/Data/NMT/wmt16_de_en/wmt14-en-de.ref \ model.validation_ds.tgt_file_name=/mnt/D1/Data/NMT/wmt16_de_en/wmt14-en-de.src \ model.validation_ds.tokens_in_batch=8192 \ model.test_ds.src_file_name=/mnt/D1/Data/NMT/wmt16_de_en/wmt14-en-de.ref \ model.test_ds.tgt_file_name=/mnt/D1/Data/NMT/wmt16_de_en/wmt14-en-de.src \ model.optim.lr=0.001 \ model.optim.sched.warmup_ratio=0.05 \ +exp_manager.create_wandb_logger=True \ +exp_manager.wandb_logger_kwargs.name=TEST-nmt-base \ +exp_manager.wandb_logger_kwargs.project=nmt-de-en \ +exp_manager.create_checkpoint_callback=True \ +exp_manager.checkpoint_callback_params.monitor=val_sacreBLEU \ +exp_manager.exp_dir=nmt_base \ +exp_manager.checkpoint_callback_params.mode=max """ @dataclass class MTBottleneckConfig(NemoConfig): name: Optional[str] = 'MTBottleneck' do_training: bool = True do_testing: bool = False model: MTBottleneckModelConfig = MTBottleneckModelConfig() trainer: Optional[TrainerConfig] = TrainerConfig() exp_manager: Optional[ExpManagerConfig] = ExpManagerConfig(name='MTBottleneck', files_to_copy=[]) @hydra_runner(config_path="conf", config_name="aayn_bottleneck") def main(cfg: MTBottleneckConfig) -> None: # merge default config with user specified config default_cfg = MTBottleneckConfig() cfg = update_model_config(default_cfg, cfg) logging.info("\n\n************** Experiment configuration ***********") logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') # training is managed by PyTorch Lightning trainer_cfg = OmegaConf.to_container(cfg.trainer) trainer_cfg.pop('strategy', None) trainer = Trainer(strategy=NLPDDPStrategy(), **trainer_cfg) # tokenizers will be trained and and tarred training data will be created if needed # model config is then updated if cfg.model.preproc_out_dir is not None: MTDataPreproc(cfg=cfg.model, trainer=trainer) # experiment logs, checkpoints, and auto-resume are managed by exp_manager and PyTorch Lightning exp_manager(trainer, cfg.exp_manager) # everything needed to train translation models is encapsulated in the NeMo MTEncdDecModel mt_model = MTBottleneckModel(cfg.model, trainer=trainer) logging.info("\n\n************** Model parameters and their sizes ***********") for name, param in mt_model.named_parameters(): print(name, param.size()) logging.info("***********************************************************\n\n") if cfg.do_training: trainer.fit(mt_model) if cfg.do_testing: trainer.test(mt_model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/machine_translation/enc_dec_nmt-bottleneck.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import BertDPRModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="bert_ir_config") def main(cfg: DictConfig) -> None: logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) bert_dpr_model = BertDPRModel(cfg.model, trainer=trainer) trainer.fit(bert_dpr_model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/information_retrieval/bert_dpr.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import BertJointIRModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="bert_ir_config") def main(cfg: DictConfig) -> None: logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) bert_joint_ir_model = BertJointIRModel(cfg.model, trainer=trainer) trainer.fit(bert_joint_ir_model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/information_retrieval/bert_joint_ir.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import pandas as pd def construct_negatives(input_file, output_file, num_passages, num_negatives): qrels = pd.read_csv(input_file, delimiter="\t", header=None) with open(output_file, "w") as f: for i in range(len(qrels)): query_id, rel_passage_id = qrels[0][i], qrels[2][i] negatives = np.random.randint(num_passages, size=num_negatives) output_ids = [query_id, rel_passage_id] + negatives.tolist() output_str = [str(id_) for id_ in output_ids] print("\t".join(output_str), file=f) def main(): parser = argparse.ArgumentParser(description="Negative passages construction") parser.add_argument("--data", type=str, default="msmarco_dataset", help="path to folder with data") parser.add_argument("--num_passages", type=int, default=8841823, help="total number of passages") parser.add_argument("--num_negatives", type=int, default=10, help="number of negatives per positive") args = parser.parse_args() for mode in ["train", "dev"]: construct_negatives( input_file=f"{args.data}/qrels.{mode}.tsv", output_file=f"{args.data}/query2passages.{mode}.tsv", num_passages=args.num_passages, num_negatives=args.num_negatives, ) if __name__ == '__main__': main()
NeMo-main
examples/nlp/information_retrieval/construct_random_negatives.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json from ast import literal_eval import ijson def main(filename): with open(filename, 'r') as file: objects = ijson.kvitems(file, 'wellFormedAnswers') valid_old_key_to_new_key = {} new_key = 0 for key, well_formed_answer in objects: value = well_formed_answer if isinstance(well_formed_answer, list) else literal_eval(well_formed_answer) if len(value) > 0: valid_old_key_to_new_key[key] = str(new_key) new_key += 1 filtered_data = {} fieldnames = ['query', 'query_type', 'answers', 'wellFormedAnswers', 'passages'] for fieldname in fieldnames: add_data(filename, filtered_data, fieldname, valid_old_key_to_new_key) with open(filename, 'w') as fw: json.dump(filtered_data, fw) def add_data(filename, filtered_data, fieldname, valid_old_key_to_new_key): with open(filename, 'r') as f: objects = ijson.kvitems(f, fieldname) filtered_data[fieldname] = { valid_old_key_to_new_key[key]: query for key, query in objects if key in valid_old_key_to_new_key } if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--filename") args = parser.parse_args() main(args.filename)
NeMo-main
examples/nlp/dialogue/remove_ms_marco_samples_without_wellFormedAnswers.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import re import numpy as np from nemo.collections.nlp.metrics.dialogue_metrics import DialogueGenerationMetrics def read_jsonl(filename): with open(filename, 'r', encoding="UTF-8") as f: docs = [json.loads(line) for line in f.readlines()] return docs def get_incorrect_labels(docs): incorrect_labels_docs = [] for doc in docs: if doc["ground_truth_labels"] != doc["generated_labels"]: incorrect_labels_docs.append( { "input": doc["input"], "ground_truth_labels": doc["ground_truth_labels"], "generated_labels": doc["generated_labels"], } ) return incorrect_labels_docs def get_incorrect_slots(docs): incorrect_slots_docs = [] for doc in docs: if doc["ground_truth_slots"] != doc["generated_slots"]: incorrect_slots_docs.append( { "input": doc["input"], "ground_truth_slots": doc["ground_truth_slots"], "generated_slots": doc["generated_slots"], } ) return incorrect_slots_docs def sort_by_f1(docs): for i in range(len(docs)): doc = docs[i] generated_field = doc["generated"] ground_truth_field = doc["ground_truth"] generated_field = remove_punctation(generated_field.lower()) ground_truth_field = remove_punctation(ground_truth_field.lower()) p, r, f1 = DialogueGenerationMetrics._get_one_f1(generated_field, ground_truth_field) docs[i]["f1"] = f1 docs[i]["generated"] = generated_field docs[i]["ground_truth"] = ground_truth_field docs.sort(key=lambda x: x["f1"]) return docs def remove_punctation(sentence): return re.sub(r'[^\w\s]', '', sentence) def generation_main(filename): docs = read_jsonl(filename) docs = sort_by_f1(docs) bleu = DialogueGenerationMetrics.get_bleu( [doc["generated"] for doc in docs], [doc["ground_truth"] for doc in docs] ) acc = np.mean([int(doc["generated"] == doc["ground_truth"]) for doc in docs]) * 100 f1 = np.mean([doc["f1"] for doc in docs]) print("Token level F1 is {:.3}".format(f1)) print("BLEU is {:.3}".format(bleu)) print("Exact match accuracy is {:.3}".format(acc)) for i in range(0): print(docs[i]) def classification_main(filename): docs = read_jsonl(filename) incorrect_labels_docs = get_incorrect_labels(docs) incorrect_slots_docs = get_incorrect_slots(docs) print("{} / {} have incorrect labels".format(len(incorrect_labels_docs), len(docs))) print("{} / {} have incorrect slots".format(len(incorrect_slots_docs), len(docs))) for doc in incorrect_labels_docs: print(doc) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--prediction_filename") parser.add_argument("--mode", choices=['generation', 'classification'], default='classification') args = parser.parse_args() if args.mode == 'classification': classification_main(args.prediction_filename) else: generation_main(args.prediction_filename)
NeMo-main
examples/nlp/dialogue/analyse_prediction_results.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example of how to train and test dialogue models in NeMo. ***Setting the configs*** The model and the PT trainer are defined in a config file that declares multiple important sections. The most important ones are: model: All arguments that are related to the Model - model, loss, optimizer, schedulers, and datasets/data loaders. trainer: Any argument to be passed to PyTorch Lightning including number of epochs, number of GPUs, precision level, etc. This script uses the `/examples/nlp/dialogue_state_tracking/conf/dialog_config.yaml` config file by default. You may update the config file from the file directly. The other option is to set another config file via command-line arguments by `--config-name=CONFIG_FILE_PATH'. ***Model Training*** python dialogue.py do_training=True model.dataset.data_dir=<DATA_DIR_WITH_JSON_DATA> model.dataset.dialogues_example_dir=<DAT_DIR_FOR_CACHING_INTERMEDIATE_AND_SAVING_PREDICTIONS> model.dataset.task=<TASK - see conf/dialogue_config.yaml for full list> e.g. sgd model.language_model.pretrained_model_name=<TASK - see conf/dialogue_config.yaml for full list> e.g. gpt2 trainer.devices=[<DEVICE_IDS_TO_USE>] ***Model Evaluation*** command as above, change do_training=False """ import os import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models.dialogue.dialogue_gpt_classification_model import DialogueGPTClassificationModel from nemo.collections.nlp.models.dialogue.dialogue_gpt_generation_model import DialogueGPTGenerationModel from nemo.collections.nlp.models.dialogue.dialogue_nearest_neighbour_model import DialogueNearestNeighbourModel from nemo.collections.nlp.models.dialogue.dialogue_s2s_generation_model import DialogueS2SGenerationModel from nemo.collections.nlp.models.dialogue.dialogue_zero_shot_intent_model import DialogueZeroShotIntentModel from nemo.collections.nlp.models.dialogue.intent_slot_classification_model import IntentSlotClassificationModel from nemo.collections.nlp.models.dialogue.sgdqa_model import SGDQAModel from nemo.collections.nlp.modules.common.megatron.megatron_utils import compute_model_parallel_rank from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.app_state import AppState from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="dialogue_config") def main(cfg: DictConfig) -> None: pl.seed_everything(42) logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') try: strategy = NLPDDPStrategy(no_ddp_communication_hook=True, find_unused_parameters=True,) except (ImportError, ModuleNotFoundError): strategy = None trainer = pl.Trainer(**cfg.trainer, strategy=strategy) exp_manager(trainer, cfg.get("exp_manager", None)) app_state = AppState() app_state.data_parallel_size = cfg.model.data_parallel_size if cfg.model.tensor_model_parallel_size > 1: app_state.model_parallel_size = cfg.model.tensor_model_parallel_size app_state.tensor_model_parallel_rank = compute_model_parallel_rank( trainer.local_rank, app_state.model_parallel_size ) if 'bert' in cfg.model.language_model.pretrained_model_name: if cfg.model.dataset.task == 'sgd': if cfg.model.original_nemo_checkpoint is not None: model_class = DialogueZeroShotIntentModel else: model_class = SGDQAModel elif cfg.model.dataset.task in ['zero_shot', 'design']: model_class = DialogueZeroShotIntentModel else: model_class = IntentSlotClassificationModel elif 'gpt' in cfg.model.language_model.pretrained_model_name.lower(): if cfg.model.dataset.task in ['ms_marco', 'mellon_qa']: model_class = DialogueGPTGenerationModel else: model_class = DialogueGPTClassificationModel elif ( 'bart' in cfg.model.language_model.pretrained_model_name.lower() or 't5' in cfg.model.language_model.pretrained_model_name.lower() ): # please use bf16/32 with t5-large and above # see https://github.com/huggingface/transformers/pull/10956 model_class = DialogueS2SGenerationModel elif 'sentence-transformers' in cfg.model.language_model.pretrained_model_name.lower(): model_class = DialogueNearestNeighbourModel if cfg.pretrained_model or (cfg.model.nemo_path and os.path.exists(cfg.model.nemo_path)): if cfg.pretrained_model: logging.info(f'Loading pretrained model {cfg.pretrained_model}') model = model_class.from_pretrained(cfg.pretrained_model) else: logging.info(f'Restoring model from {cfg.model.nemo_path}') model = model_class.restore_from(cfg.model.nemo_path, trainer=trainer) if cfg.do_training: model.setup_training_data(train_data_config=cfg.model.train_ds) model.setup_multiple_validation_data(val_data_config=cfg.model.validation_ds) else: logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') model = model_class(cfg.model, trainer=trainer) if cfg.do_training: trainer.fit(model) if cfg.model.nemo_path: if not os.path.exists(cfg.model.nemo_path): model.save_to(cfg.model.nemo_path) else: updated_nemo_path = cfg.model.nemo_path.replace(".nemo", "_new.nemo") logging.warning("nemo path exists, saving at {} instead".format(updated_nemo_path)) model.save_to(updated_nemo_path) else: data_dir = cfg.model.dataset.get('data_dir', None) dialogues_example_dir = cfg.model.dataset.get('dialogues_example_dir', None) if data_dir is None or dialogues_example_dir is None: raise ValueError('No dataset directory provided. Skipping evaluation. ') elif not os.path.exists(data_dir): raise ValueError(f'{data_dir} is not found, skipping evaluation on the test set.') else: if hasattr(model, "update_data_dirs"): model.update_data_dirs(data_dir=data_dir, dialogues_example_dir=dialogues_example_dir) model._cfg.dataset = cfg.model.dataset if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.ds_item is not None: model.setup_multiple_test_data(test_data_config=cfg.model.test_ds) trainer.test(model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/dialogue/dialogue.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to train a ThutmoseTaggerModel for inverse text normalization(ITN). This script uses the `/examples/nlp/text_normalization_as_tagging/conf/thutmose_tagger_itn_config.yaml` config file by default. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. Probably it is worth looking at the example config file to see the list of parameters used for training. USAGE Example: 1. Obtain a processed dataset 2. Run: python ${NEMO_PATH}/examples/nlp/text_normalization_as_tagging/normalization_as_tagging_train.py \ lang=${LANG} \ data.validation_ds.data_path=${DATA_PATH}/valid.tsv \ data.train_ds.data_path=${DATA_PATH}/train.tsv \ data.train_ds.batch_size=128 \ data.train_ds.num_workers=8 \ model.language_model.pretrained_model_name=${LANGUAGE_MODEL} \ model.label_map=${DATA_PATH}/label_map.txt \ model.semiotic_classes=${DATA_PATH}/semiotic_classes.txt \ model.optim.lr=3e-5 \ trainer.devices=[1] \ trainer.num_nodes=1 \ trainer.accelerator=gpu \ trainer.strategy=ddp \ trainer.max_epochs=5 Information on the arguments: Most arguments in the example config file are quite self-explanatory (e.g., `model.optim.lr` refers to the learning rate for training the model). Some arguments we want to mention are: + lang: The language of the dataset. + model.language_model.pretrained_model_name: This is the backbone BERT model (depends on the language) e.g. bert-base-uncased (English), DeepPavlov/rubert-base-cased (Russian) """ from helpers import ITN_MODEL, instantiate_model_and_trainer from omegaconf import DictConfig, OmegaConf from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="thutmose_tagger_itn_config") def main(cfg: DictConfig) -> None: logging.info(f'Config Params: {OmegaConf.to_yaml(cfg)}') # Train the model if cfg.model.do_training: logging.info( "================================================================================================" ) logging.info('Start training...') trainer, model = instantiate_model_and_trainer(cfg, ITN_MODEL, True) thutmose_tagger_exp_manager = cfg.get('exp_manager', None) exp_manager(trainer, thutmose_tagger_exp_manager) trainer.fit(model) logging.info('Training finished!') if __name__ == '__main__': main()
NeMo-main
examples/nlp/text_normalization_as_tagging/normalization_as_tagging_train.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to run itn inference with the ThutmoseTaggerModel. The inference works on a raw file (no labels required). Each line of the input file represents a single example for inference. Specify inference.from_file and inference.batch_size parameters. USAGE Example: 1. Train a model, or use a pretrained checkpoint. 2. Run: export TOKENIZERS_PARALLELISM=false python ${NEMO_PATH}/examples/nlp/text_normalization_as_tagging/normalization_as_tagging_infer.py \ pretrained_model=./training.nemo \ inference.from_file=./input.txt \ inference.out_file=./output.txt \ model.max_sequence_len=1024 #\ inference.batch_size=128 This script uses the `/examples/nlp/text_normalization_as_tagging/conf/thutmose_tagger_itn_config.yaml` config file by default. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. """ import os from helpers import ITN_MODEL, instantiate_model_and_trainer from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.data.text_normalization_as_tagging.utils import spoken_preprocessing from nemo.core.config import hydra_runner from nemo.utils import logging @hydra_runner(config_path="conf", config_name="thutmose_tagger_itn_config") def main(cfg: DictConfig) -> None: logging.debug(f'Config Params: {OmegaConf.to_yaml(cfg)}') if cfg.pretrained_model is None: raise ValueError("A pre-trained model should be provided.") _, model = instantiate_model_and_trainer(cfg, ITN_MODEL, False) text_file = cfg.inference.from_file logging.info(f"Running inference on {text_file}...") if not os.path.exists(text_file): raise ValueError(f"{text_file} not found.") with open(text_file, "r", encoding="utf-8") as f: lines = f.readlines() batch_size = cfg.inference.get("batch_size", 8) batch, all_preds = [], [] for i, line in enumerate(lines): s = spoken_preprocessing(line) # this is the same input transformation as in corpus preparation batch.append(s.strip()) if len(batch) == batch_size or i == len(lines) - 1: outputs = model._infer(batch) for x in outputs: all_preds.append(x) batch = [] if len(all_preds) != len(lines): raise ValueError( "number of input lines and predictions is different: predictions=" + str(len(all_preds)) + "; lines=" + str(len(lines)) ) out_file = cfg.inference.out_file with open(f"{out_file}", "w", encoding="utf-8") as f_out: f_out.write("\n".join(all_preds)) logging.info(f"Predictions saved to {out_file}.") if __name__ == "__main__": main()
NeMo-main
examples/nlp/text_normalization_as_tagging/normalization_as_tagging_infer.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Tuple import pytorch_lightning as pl from omegaconf import DictConfig from nemo.collections.nlp.models import ThutmoseTaggerModel from nemo.utils import logging __all__ = ["ITN_MODEL", "MODEL_NAMES", "instantiate_model_and_trainer"] ITN_MODEL = "itn" MODEL_NAMES = [ITN_MODEL] def instantiate_model_and_trainer( cfg: DictConfig, model_name: str, do_training: bool ) -> Tuple[pl.Trainer, ThutmoseTaggerModel]: """ Function for instantiating a model and a trainer Args: cfg: The config used to instantiate the model and the trainer. model_name: A str indicates the model direction, currently only 'itn'. do_training: A boolean flag indicates whether the model will be trained or evaluated. Returns: trainer: A PyTorch Lightning trainer model: A ThutmoseTaggerModel """ if model_name not in MODEL_NAMES: raise ValueError(f"{model_name} is unknown model type") # Get configs for the corresponding models trainer_cfg = cfg.get("trainer") model_cfg = cfg.get("model") pretrained_cfg = cfg.get("pretrained_model", None) trainer = pl.Trainer(**trainer_cfg) if not pretrained_cfg: logging.info(f"Initializing {model_name} model") if model_name == ITN_MODEL: model = ThutmoseTaggerModel(model_cfg, trainer=trainer) else: raise ValueError(f"{model_name} is unknown model type") elif os.path.exists(pretrained_cfg): logging.info(f"Restoring pretrained {model_name} model from {pretrained_cfg}") model = ThutmoseTaggerModel.restore_from(pretrained_cfg) else: logging.info(f"Loading pretrained model {pretrained_cfg}") if model_name == ITN_MODEL: if pretrained_cfg not in ThutmoseTaggerModel.get_available_model_names(): raise ( ValueError( f"{pretrained_cfg} not in the list of available Tagger models." f"Select from {ThutmoseTaggerModel.list_available_models()}" ) ) model = ThutmoseTaggerModel.from_pretrained(pretrained_cfg) else: raise ValueError(f"{model_name} is unknown model type") # Setup train and validation data if do_training: model.setup_training_data(train_data_config=cfg.data.train_ds) model.setup_validation_data(val_data_config=cfg.data.validation_ds) logging.info(f"Model {model_name} -- Device {model.device}") return trainer, model
NeMo-main
examples/nlp/text_normalization_as_tagging/helpers.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to sample each label from the labeled files. """ import sys from argparse import ArgumentParser from collections import Counter parser = ArgumentParser(description="Sample labels") parser.add_argument("--filename", required=True, type=str, help='File with input data') parser.add_argument("--max_count", required=True, type=int, help='Count') args = parser.parse_args() vocab = Counter() out_sample = open(args.filename + ".sample_" + str(args.max_count), "w", encoding="utf-8") out_rest = open(args.filename + ".rest_" + str(args.max_count), "w", encoding="utf-8") n = 0 with open(args.filename, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split("\t") if len(parts) < 2: print("Warning: bad format in line: " + str(n) + ": " + line, file=sys.stderr) continue tags = parts[1].split(" ") ok = False for t in tags: if t not in vocab: vocab[t] = 0 if vocab[t] < args.max_count: ok = True vocab[t] += 1 if ok: out_sample.write(line) else: out_rest.write(line) n += 1 out_sample.close() out_rest.close()
NeMo-main
examples/nlp/text_normalization_as_tagging/dataset_preparation/sample_each_label.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to get label vocab from train and dev labeled files. """ import sys from argparse import ArgumentParser from collections import Counter parser = ArgumentParser(description="Get label vocab") parser.add_argument("--train_filename", required=True, type=str, help='File with training data') parser.add_argument("--dev_filename", required=True, type=str, help='File with development data') parser.add_argument("--out_filename", required=True, type=str, help='Output file') args = parser.parse_args() vocab = Counter() n = 0 for fn in [args.train_filename, args.dev_filename]: with open(fn, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split("\t") if len(parts) < 2: print("Warning: bad format in line: " + str(n) + ": " + line, file=sys.stderr) continue tags = parts[1].split(" ") for t in tags: if t == "<SELF>": vocab["KEEP"] += 1 elif t == "<DELETE>": vocab["DELETE"] += 1 else: vocab["DELETE|" + t] += 1 n += 1 print("len(vocab)=", len(vocab)) with open(args.out_filename, "w", encoding="utf-8") as out: out.write("KEEP\n") out.write("DELETE\n") for t, freq in vocab.most_common(10000000): if t == "KEEP": continue if t == "DELETE": continue out.write(t + "\n")
NeMo-main
examples/nlp/text_normalization_as_tagging/dataset_preparation/get_label_vocab.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to after google_data_preprocessing_before_alignment.py to obtain separate "parallel" corpora for each semiotic class. USAGE Example: 1. Download the Google TN dataset from https://www.kaggle.com/google-nlu/text-normalization 2. Unzip the English subset (e.g., by running `tar zxvf en_with_types.tgz`). Then there will a folder named `en_with_types`. 3. Run python google_data_preprocessing_before_alignment.py which will produce a file data.tsv in its --output-dir 4. [Optional]. sort -u and rewrite data.tsv 5. Clone https://github.com/moses-smt/giza-pp.git, run "make" from its root folder. 6. Run this script python ${NEMO}/examples/nlp/text_normalization_as_tagging/dataset_preparation/prepare_corpora_for_alignment.py \ --data_dir=<--output-dir from the previous step> \ --out_dir=<destination directory for giza alignment folders> \ --giza_dir=/.../giza-pp/GIZA++-v2 \ --mckls_binary=/.../giza-pp/mkcls-v2/mkcls \ --lang={en,ru} Each corpus will be stored within <--data-dir> in the subdirectory with the name of the semiotic class, containing files ready to be fed to Giza++: src - written form, tokenized as characters dst - spoken form, tokenized as words run.sh - script for running Giza++ """ from argparse import ArgumentParser from collections import Counter from os import listdir, mkdir from os.path import isdir, join from shutil import rmtree from nemo.collections.nlp.data.text_normalization_as_tagging.utils import get_src_and_dst_for_alignment parser = ArgumentParser(description='Split corpus to subcorpora for giza alignment') parser.add_argument('--data_dir', type=str, required=True, help='Path to folder with data') parser.add_argument('--out_dir', type=str, required=True, help='Path to output folder') parser.add_argument('--giza_dir', type=str, required=True, help='Path to folder with GIZA++ binaries') parser.add_argument('--mckls_binary', type=str, required=True, help='Path to mckls binary') parser.add_argument('--lang', type=str, required=True, help='Language') args = parser.parse_args() def prepare_subcorpora_from_data() -> None: """Preprocess a corpus in Google TN Dataset format, extract TN-ITN phrase pairs, prepare input for GIZA++ alignment. """ semiotic_vcb = Counter() cache_vcb = {} filenames = [] for fn in listdir(args.data_dir + "/train"): filenames.append(args.data_dir + "/train/" + fn) for fn in listdir(args.data_dir + "/dev"): filenames.append(args.data_dir + "/dev/" + fn) for fn in filenames: with open(fn, "r", encoding="utf-8") as f: # Loop through each line of the file for line in f: parts = line.strip().split("\t") if len(parts) < 3: continue if len(parts) != 3: raise ValueError("Expect 3 parts, got " + str(len(parts))) semiotic_class, written, spoken = parts[0], parts[1].strip(), parts[2].strip() if spoken == "<self>": continue semiotic_class = semiotic_class.casefold() semiotic_vcb[semiotic_class] += 1 classdir = join(args.out_dir, semiotic_class) if not isdir(classdir): mkdir(classdir) src, dst, _, _ = get_src_and_dst_for_alignment(semiotic_class, written, spoken, args.lang) if src == "" or dst == "": continue if len(src.split(" ")) >= 100: continue if semiotic_class not in cache_vcb: cache_vcb[semiotic_class] = Counter() cache_vcb[semiotic_class][(src, dst)] += 1 for sem in semiotic_vcb: classdir = join(args.out_dir, sem) if not isdir(classdir): raise ValueError("No such directory: " + classdir) print(classdir, " has ", semiotic_vcb[sem], " instances") with open(join(classdir, "run.sh"), "w") as out: out.write("GIZA_PATH=\"" + args.giza_dir + "\"\n") out.write("MKCLS=\"" + args.mckls_binary + "\"\n") out.write("\n") out.write("${GIZA_PATH}/plain2snt.out src dst\n") out.write("${MKCLS} -m2 -psrc -c15 -Vsrc.classes opt >& mkcls1.log\n") out.write("${MKCLS} -m2 -pdst -c15 -Vdst.classes opt >& mkcls2.log\n") out.write("${GIZA_PATH}/snt2cooc.out src.vcb dst.vcb src_dst.snt > src_dst.cooc\n") out.write( "${GIZA_PATH}/GIZA++ -S src.vcb -T dst.vcb -C src_dst.snt -coocurrencefile src_dst.cooc -p0 0.98 -o GIZA++ >& GIZA++.log\n" ) out.write("##reverse direction\n") out.write("${GIZA_PATH}/snt2cooc.out dst.vcb src.vcb dst_src.snt > dst_src.cooc\n") out.write( "${GIZA_PATH}/GIZA++ -S dst.vcb -T src.vcb -C dst_src.snt -coocurrencefile dst_src.cooc -p0 0.98 -o GIZA++reverse >& GIZA++reverse.log\n" ) out_src = open(join(classdir, "src"), 'w', encoding="utf-8") out_dst = open(join(classdir, "dst"), 'w', encoding="utf-8") out_freq = open(join(classdir, "freq"), 'w', encoding="utf-8") for src, dst in cache_vcb[sem]: freq = cache_vcb[sem][(src, dst)] out_src.write(src + "\n") out_dst.write(dst + "\n") out_freq.write(str(freq) + "\n") out_freq.close() out_dst.close() out_src.close() # Main code if __name__ == '__main__': for name in listdir(args.out_dir): path = join(args.out_dir, name) if isdir(path): rmtree(path) # Processing prepare_subcorpora_from_data()
NeMo-main
examples/nlp/text_normalization_as_tagging/dataset_preparation/prepare_corpora_for_alignment.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to combine joined giza alignments and Google Text Normalization dataset to produce training corpus for the ThutmoseTaggerModel. """ import glob import os from argparse import ArgumentParser from collections import Counter from typing import Dict, Optional, TextIO, Tuple from nemo.collections.nlp.data.text_normalization_as_tagging.utils import get_src_and_dst_for_alignment from nemo.utils import logging parser = ArgumentParser(description="Produce data for the ThutmoseTaggerModel") parser.add_argument( "--mode", required=True, type=str, help='Mode, one of ["get_replacement_vocab", "filter_by_vocab", "get_labeled_corpus"]', ) parser.add_argument( "--data_dir", required=True, type=str, help='Path to data directory with files like output-00000-of-00100.tsv' ) parser.add_argument( "--giza_dir", required=True, type=str, help='Path to directory with class folders like ordinal, date etc' ) parser.add_argument( "--alignment_filename", required=True, type=str, help='Name of alignment file, like "itn.out", "itn.out.vocab2000"' ) parser.add_argument("--out_filename", required=True, type=str, help='Output file') parser.add_argument("--vocab_filename", required=True, type=str, help='Vocab name') parser.add_argument("--lang", required=True, type=str, help="Language") args = parser.parse_args() def process_file_itn(inputname: str, out: TextIO, keys2replacements: Dict[str, str]) -> None: """Processes one file in Google TN Dataset format to get the labeled data for ThutmoseTaggerModel Args: inputname: name of input file out: output stream keys2replacements: Mapping from (semiotic class, spoken, written) to the segmented written form, which is aligned one-to-one to spoken words (this is the result obtained from Giza++ alignment pipeline) """ words = [] tags = [] semiotic_info = [] sent_is_ok = True with open(inputname, "r", encoding="utf-8") as f: for line in f: if line.startswith("<eos>"): if sent_is_ok and len(words) > 0: out.write(" ".join(words) + "\t" + " ".join(tags) + "\t" + ";".join(semiotic_info) + "\n") words = [] tags = [] semiotic_info = [] sent_is_ok = True else: cls, written, spoken = line.strip().split("\t") if spoken == "sil": continue if spoken == "<self>": words.append(written.casefold()) tags.append("<SELF>") continue src, dst, same_begin, same_end = get_src_and_dst_for_alignment( cls.casefold(), written, spoken, args.lang ) same_from_begin = [] if same_begin == "" else same_begin.split(" ") same_from_end = [] if same_end == "" else same_end.split(" ") key = cls.casefold() + "\t" + src + "\t" + dst if key in keys2replacements: replacements = keys2replacements[key].split(" ") spoken_words = dst.split(" ") for w, r in zip( same_from_begin + spoken_words + same_from_end, same_from_begin + replacements + same_from_end ): words.append(w) if cls == "LETTERS" or cls == "PLAIN": if w == r: tags.append("<SELF>") else: tags.append(r) elif w == r.replace("_", ""): tags.append("<SELF>") else: tags.append(r) semiotic_info.append( cls + " " + str(len(words) - len(spoken_words) - len(same_from_begin) - len(same_from_end)) + " " + str(len(words)) ) else: sent_is_ok = False def process_line(semiotic_class: str, line: str) -> Optional[Tuple[str, str, str, int]]: """A helper function to read the file with alignment results""" parts = line.strip().split("\t") if len(parts) != 6: return None freq = int(parts[0]) if parts[1] != "good:": return None src, dst, leftside_align, rightside_align = parts[2], parts[3], parts[4], parts[5] align = rightside_align if semiotic_class == "letters" or semiotic_class == "plain": align = leftside_align return src, dst, align, freq def get_replacement_vocab() -> None: """Loops through the files with alignment results in each semiotic class subfolder, counts frequencies of different replacement segments. """ full_vocab = Counter() alignment_files = glob.glob(args.giza_dir + "/*/" + args.alignment_filename) for fn in alignment_files: fn_parts = fn.split("/") if len(fn_parts) < 2: raise ValueError("Bad filename: " + fn) semiotic_class = fn_parts[-2] class_vocab = Counter() with open(fn, "r", encoding="utf-8") as f: for line in f: t = process_line(semiotic_class, line) if t is None: continue src, dst, replacement, freq = t inputs = src.split(" ") replacements = replacement.split(" ") if len(inputs) != len(replacements): raise ValueError("Length mismatch in: " + line) for inp, rep in zip(inputs, replacements): if inp == rep: # skip same words continue full_vocab[rep] += freq class_vocab[rep] += freq with open(args.vocab_filename + "." + semiotic_class, "w", encoding="utf-8") as out: for k, v in class_vocab.most_common(1000000000): out.write(k + "\t" + str(v) + "\n") with open(args.vocab_filename, "w", encoding="utf-8") as out: for k, v in full_vocab.most_common(1000000000): out.write(k + "\t" + str(v) + "\n") def filter_by_vocab() -> None: """Given a restricted vocabulary of replacements, loops through the files with alignment results in each semiotic class subfolder, discards the examples containing a replacement which is not in our restricted vocabulary. """ if not os.path.exists(args.vocab_filename): raise ValueError(f"Alignments dir {args.giza_dir} does not exist") # load vocab from file vocab = {} with open(args.vocab_filename, "r", encoding="utf-8") as f: for line in f: k, v = line.strip().split("\t") vocab[k] = int(v) print("len(vocab)=", len(vocab)) alignment_files = glob.glob(args.giza_dir + "/*/" + args.alignment_filename) for fn in alignment_files: fn_parts = fn.split("/") if len(fn_parts) < 2: raise ValueError("Bad filename: " + fn) semiotic_class = fn_parts[-2] out = open(args.giza_dir + "/" + semiotic_class + "/" + args.out_filename, "w", encoding="utf-8") with open(fn, "r", encoding="utf-8") as f: for line in f: t = process_line(semiotic_class, line) if t is None: continue src, dst, replacement, freq = t ok = True for s, r in zip(src.split(" "), replacement.split(" ")): if s != r and r not in vocab: ok = False if ok: out.write(semiotic_class + "\t" + src + "\t" + dst + "\t" + replacement + "\n") out.close() def get_labeled_corpus() -> None: """Loops through the files with alignment results in each semiotic class subfolder, collects a mapping from (semiotic class, spoken, written) to the segmented written form, which is aligned one-to-one to spoken words. Then loops through the files in Google TN Dataset format to get the labeled data for ThutmoseTaggerModel. It extracts the whole sentences and substitutes the semiotic spans to their aligned form from the dictionary. """ if not os.path.exists(args.data_dir): raise ValueError(f"Data dir {args.data_dir} does not exist") keys2replacements = {} alignment_files = glob.glob(args.giza_dir + "/*/" + args.alignment_filename) if len(alignment_files) == 0: raise ValueError("Did not found any such files: " + args.giza_dir + "/*/" + args.alignment_filename) for af in alignment_files: with open(af, "r", encoding="utf-8") as f: for line in f: cls, src, dst, replacements = line.strip().split("\t") key = cls + "\t" + dst + "\t" + src if key in keys2replacements and keys2replacements[key] != replacements: logging.warning("keys2replacements[key] != replacements", keys2replacements[key], replacements) keys2replacements[key] = replacements print("size of phrase-to-replacements dictionary =", len(keys2replacements)) out = open(args.out_filename, "w", encoding="utf-8") input_paths = sorted([os.path.join(args.data_dir, f) for f in os.listdir(args.data_dir)]) for inputname in input_paths: process_file_itn(inputname, out, keys2replacements) out.close() def main() -> None: if not os.path.exists(args.giza_dir): raise ValueError(f"Alignments dir {args.giza_dir} does not exist") if args.mode == "get_replacement_vocab": get_replacement_vocab() elif args.mode == "filter_by_vocab": filter_by_vocab() elif args.mode == "get_labeled_corpus": get_labeled_corpus() else: raise ValueError("unknown mode: " + args.mode) if __name__ == "__main__": main()
NeMo-main
examples/nlp/text_normalization_as_tagging/dataset_preparation/prepare_corpora_after_alignment.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used to filter sentences containing bad examples from Google TN Dataset. """ from argparse import ArgumentParser from os import listdir, mkdir from os.path import exists, isfile, join from typing import Set parser = ArgumentParser(description="Filter Google TN Dataset by error vocabulary") parser.add_argument( "--data_dir", required=True, type=str, help='Path to data directory with files like output-00000-of-00100.tsv' ) parser.add_argument( "--out_dir", required=True, type=str, help='Output data directory, same files (with some sentences filtered)' ) parser.add_argument("--errors_vocab_filename", required=True, type=str, help='File with error vocabulary') parser.add_argument("--lang", required=True, type=str, help="Language") args = parser.parse_args() def filter_file(inp_filename: str, out_filename: str, error_vcb: Set) -> None: """Filter out whole sentences containing bad itn conversions. The output format is the same as input. Args: inp_filename: Name of input file in Google TN Dataset format. out_filename: Name of output file in Google TN Dataset format. error_vcb: Set of tuples with erroneous conversion, e.g. ("CARDINAL", "two", "132") """ out = open(out_filename, "w", encoding="utf-8") sent_lines = [] sent_is_ok = True with open(inp_filename, "r", encoding="utf-8") as f: for line in f: sent_lines.append(line.strip()) if line.startswith("<eos>"): if sent_is_ok and len(sent_lines) > 1: # there should be at least one line except <eos> out.write("\n".join(sent_lines) + "\n") sent_lines = [] sent_is_ok = True else: cls, written, spoken = line.strip().split("\t") k = (cls, spoken.casefold(), written.casefold()) if k in error_vcb: sent_is_ok = False out.close() def main() -> None: if not exists(args.data_dir): raise ValueError(f"Data dir {args.data_dir} does not exist") # load errors vocabulary error_vcb = set() with open(args.errors_vocab_filename, "r", encoding="utf-8") as f: for line in f: cls, spoken, written = line.strip().split("\t") k = (cls, spoken, written) error_vcb.add(k) for subdir in listdir(args.data_dir): mkdir(join(args.out_dir, subdir)) for filename in listdir(join(args.data_dir, subdir)): if not filename.startswith('output'): continue inp_filename = join(args.data_dir, subdir, filename) out_filename = join(args.out_dir, subdir, filename) if not isfile(inp_filename): continue filter_file(inp_filename, out_filename, error_vcb) if __name__ == "__main__": main()
NeMo-main
examples/nlp/text_normalization_as_tagging/dataset_preparation/filter_sentences_with_errors.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used after GIZA++ alignment to extract final alignments for each semiotic class. """ import re from argparse import ArgumentParser from nemo.collections.nlp.data.text_normalization_as_tagging.utils import ( check_monotonicity, fill_alignment_matrix, get_targets, get_targets_from_back, ) parser = ArgumentParser(description='Extract final alignments from GIZA++ alignments') parser.add_argument('--mode', type=str, required=True, help='tn or itn') parser.add_argument('--giza_dir', type=str, required=True, help='Path to folder with GIZA++ alignment') parser.add_argument( '--giza_suffix', type=str, required=True, help='suffix of alignment files, e.g. \"Ahmm.5\", \"A3.final\"' ) parser.add_argument('--out_filename', type=str, required=True, help='Output file') parser.add_argument('--lang', type=str, required=True, help="Language") args = parser.parse_args() def main() -> None: g = open(args.giza_dir + "/GIZA++." + args.giza_suffix, "r", encoding="utf-8") f = open(args.giza_dir + "/GIZA++reverse." + args.giza_suffix, "r", encoding="utf-8") target_inner_delimiter = "" if args.mode == "tn": g, f = f, g target_inner_delimiter = "_" out = open(args.giza_dir + "/" + args.out_filename, "w", encoding="utf-8") cache = {} good_count, not_mono_count, not_covered_count, exception_count = 0, 0, 0, 0 n = 0 while True: n += 3 if n % 10000 == 0: print(n, "lines processed") fline1 = f.readline().strip() fline2 = f.readline().strip() fline3 = f.readline().strip() gline1 = g.readline().strip() gline2 = g.readline().strip() gline3 = g.readline().strip() if fline1 == "" and gline1 == "": break cache_key = fline1 + "\t" + fline2 + "\t" + gline1 + "\t" + gline2 if cache_key in cache: out.write(cache[cache_key] + "\n") continue if fline1 == "" or gline1 == "" or fline2 == "" or gline2 == "" or fline3 == "" or gline3 == "": raise ValueError("Empty line: " + str(n)) try: matrix, srctokens, dsttokens = fill_alignment_matrix(fline2, fline3, gline2, gline3) except Exception: print(fline1) print(fline2) print(fline3) print(gline1) print(gline2) print(gline3) exception_count += 1 out_str = "-exception:\t" + fline2 + "\t" + gline2 out.write(out_str + "\n") continue else: matrix[matrix <= 2] = 0 # leave only 1-to-1 alignment points if check_monotonicity(matrix): targets = get_targets(matrix, dsttokens, delimiter=target_inner_delimiter) targets_from_back = get_targets_from_back(matrix, dsttokens, delimiter=target_inner_delimiter) if len(targets) != len(srctokens): raise ValueError( "targets length doesn't match srctokens length: len(targets)=" + str(len(targets)) + "; len(srctokens)=" + str(len(srctokens)) ) leftside_align = " ".join(targets) rightside_align = " ".join(targets_from_back) rightside_align = rightside_align.replace("<DELETE> <DELETE> _11100_", "_11 <DELETE> 100_") leftside_align = leftside_align.replace("<DELETE> <DELETE> _11100_", "_11 <DELETE> 100_") # _1 4000_ => _14 000_ # 1 5,000 => 15 ,000 rightside_align = re.sub(r"^_1 ([\d])(,?000)", r"_1\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"^_1 ([\d])(,?000)", r"_1\g<1> \g<2>", leftside_align) # "_2 10 0_" => "_2 <DELETE> 100_" rightside_align = re.sub(r"([\d]) 10 0_", r"\g<1> <DELETE> 100_", rightside_align) leftside_align = re.sub(r"([\d]) 10 0_", r"\g<1> <DELETE> 100_", leftside_align) if srctokens[0] in [ "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety", ]: # ten thousand sixty _1 00 60_ => _10 0 60_ rightside_align = re.sub(r"^(_\d) 00 (\d)", r"\g<1>0 0 \g<2>", rightside_align) leftside_align = re.sub(r"^(_\d) 00 (\d)", r"\g<1>0 0 \g<2>", leftside_align) # ten thousand sixty three _1 0, 06 3_ => _10 ,0 6 3_ rightside_align = re.sub(r"([ _]\d) 0, 0(\d)", r"\g<1>0 ,0 \g<2>", rightside_align) leftside_align = re.sub(r"([ _]\d) 0, 0(\d)", r"\g<1>0 ,0 \g<2>", leftside_align) # _3 0, 7 7 4=> _30 , 7 7 4_ rightside_align = re.sub(r"(\d) 0, ", r"\g<1>0 , ", rightside_align) leftside_align = re.sub(r"(\d) 0, ", r"\g<1>0 , ", leftside_align) # _1 1, 1 <DELETE> 40_ => _11 , 1 <DELETE> 40_ rightside_align = re.sub(r"1 1, (\d)", r"11 , \g<1>", rightside_align) leftside_align = re.sub(r"1 1, (\d)", r"11 , \g<1>", leftside_align) if re.match(r".+надцат", srctokens[0]) or srctokens[0] in [ "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", ]: # "_1 <DELETE> 12 14_" -> "_11 <DELETE> 2 14_" rightside_align = re.sub( r"^(_1) (<DELETE>) ([\d])([\d])", r"\g<1>\g<3> \g<2> \g<4>", rightside_align ) leftside_align = re.sub( r"^(_1) (<DELETE>) ([\d])([\d])", r"\g<1>\g<3> \g<2> \g<4>", leftside_align ) # "_1 10 10_" -> "_11 0 10_" rightside_align = re.sub(r"^_1 ([\d])0 ([\d] ?[\d])", r"_1\g<1> 0 \g<2>", rightside_align) leftside_align = re.sub(r"^_1 ([\d])0 ([\d] ?[\d])", r"_1\g<1> 0 \g<2>", leftside_align) if args.giza_dir.endswith("decimal") and args.lang == "ru": # "_1 <DELETE> 0, 5_" => "_10 <DELETE> , 5_" #десять целых и пять десятых rightside_align = re.sub( r"(\d) (<DELETE>) ([0123456789])(,) ([\d])", r"\g<1>\g<3> \g<2> \g<4> \g<5>", rightside_align ) leftside_align = re.sub( r"(\d) (<DELETE>) ([0123456789])(,) ([\d])", r"\g<1>\g<3> \g<2> \g<4> \g<5>", leftside_align ) if args.giza_dir.endswith("decimal") and args.lang == "en": # "_7 0. 7_" => _70 . 7_ rightside_align = re.sub(r"^(_\d) 0\. (\d)", r"\g<1>0 . \g<2>", rightside_align) leftside_align = re.sub(r"^(_\d) 0\. (\d)", r"\g<1>0 . \g<2>", leftside_align) if args.giza_dir.endswith("money") and args.lang == "en": # "_1 , 000__£<<" => "_1 ,000_ _£<<" rightside_align = re.sub(r"(\d) , 000_(_[£$€])", r"\g<1> ,000_ \g<2>", rightside_align) leftside_align = re.sub(r"(\d) , 000_(_[£$€])", r"\g<1> ,000_ \g<2>", leftside_align) if args.giza_dir.endswith("money"): # "_5 <DELETE> 000000__иен_" => "_5 000000_ _иен_" rightside_align = re.sub( r"([\d]) <DELETE> 000000_(_[^\d])", r"\g<1> 000000_ \g<2>", rightside_align ) leftside_align = re.sub(r"([\d]) <DELETE> 000000_(_[^\d])", r"\g<1> 000000_ \g<2>", leftside_align) # _5_ <DELETE> _m__£<< => "_5_ _m_ _£<<" rightside_align = re.sub( r"([\d]_) <DELETE> (_[mk]_)(_[^\d])", r"\g<1> \g<2> \g<3>", rightside_align ) leftside_align = re.sub(r"([\d]_) <DELETE> (_[mk]_)(_[^\d])", r"\g<1> \g<2> \g<3>", leftside_align) # "_3 <DELETE> 0__m__£<<" => "_30 _m_ _£<<" rightside_align = re.sub( r"([\d]) <DELETE> 0_(_[mk]_)(_[^\d])", r"\g<1>0 \g<2> \g<3>", rightside_align ) leftside_align = re.sub( r"([\d]) <DELETE> 0_(_[mk]_)(_[^\d])", r"\g<1>0 \g<2> \g<3>", leftside_align ) # "_15 <DELETE> 000__руб._" => "_15 000_ _руб._" rightside_align = re.sub(r"([\d]) <DELETE> (000_)(_[^\d])", r"\g<1> \g<2> \g<3>", rightside_align) leftside_align = re.sub(r"([\d]) <DELETE> (000_)(_[^\d])", r"\g<1> \g<2> \g<3>", leftside_align) # "_2 5 0 000__$<<" => "_2 50 000_ _$<<" rightside_align = re.sub(r"([\d]) 0 000_(_[^\d])", r"\g<1>0 000_ \g<2>", rightside_align) leftside_align = re.sub(r"([\d]) 0 000_(_[^\d])", r"\g<1>0 000_ \g<2>", leftside_align) # "_5 0 0000__$_" => "_500 000_ _$_" rightside_align = re.sub(r"([\d]) 0 0000_(_[^\d])", r"\g<1>00 000_ \g<2>", rightside_align) leftside_align = re.sub(r"([\d]) 0 0000_(_[^\d])", r"\g<1>00 000_ \g<2>", leftside_align) # "_1 000__руб._" => "_1000_ _руб._" rightside_align = re.sub(r"_1 000_(_[^\d])", r"_1000_ \g<1>", rightside_align) leftside_align = re.sub(r"_1 000_(_[^\d])", r"_1000_ \g<1>", leftside_align) # replace cases like "2 0__января" with "20_ _января" leftside_align = re.sub(r"([\d]) (00?_)(_[^\d])", r"\g<1>\g<2> \g<3>", leftside_align) rightside_align = re.sub(r"([\d]) (00?_)(_[^\d])", r"\g<1>\g<2> \g<3>", rightside_align) # "_3 <DELETE> 0__september_ _2 014_" => "_30_ <DELETE> _september_ _2 014_" # "_3 <DELETE> 00__тыс.__руб._" => "_300_ <DELETE> _тыс.__руб._" leftside_align = re.sub( r"([\d]) <DELETE> (00?_)(_[^\d])", r"\g<1>\g<2> <DELETE> \g<3>", leftside_align ) rightside_align = re.sub( r"([\d]) <DELETE> (00?_)(_[^\d])", r"\g<1>\g<2> <DELETE> \g<3>", rightside_align ) # "_october_ _2 0,2 015_" => "_october_ _20 ,2 015_" leftside_align = re.sub(r"([\d]) (0),(\d)", r"\g<1>\g<2> ,\g<3>", leftside_align) rightside_align = re.sub(r"([\d]) (0),(\d)", r"\g<1>\g<2> ,\g<3>", rightside_align) # "_3 0_.10. _1 9 4 3_" => "_30_ .10. _1 9 4 3_" leftside_align = re.sub(r"([\d]) (0_)(\.[\d])", r"\g<1>\g<2> \g<3>", leftside_align) rightside_align = re.sub(r"([\d]) (0_)(\.[\d])", r"\g<1>\g<2> \g<3>", rightside_align) # replace cases like "_1 0000_" with "_10 000_" # replace cases like "_5 00000_" with "_500 000_" rightside_align = re.sub(r"([\d]) ([0][0]?)(000000000_)", r"\g<1>\g<2> \g<3>", rightside_align) leftside_align = re.sub(r"([\d]) ([0][0]?)(000000000_)", r"\g<1>\g<2> \g<3>", leftside_align) rightside_align = re.sub(r"([\d]) ([0][0]?)(000000_)", r"\g<1>\g<2> \g<3>", rightside_align) leftside_align = re.sub(r"([\d]) ([0][0]?)(000000_)", r"\g<1>\g<2> \g<3>", leftside_align) rightside_align = re.sub(r"([\d]) ([0][0]?)(000_)", r"\g<1>\g<2> \g<3>", rightside_align) leftside_align = re.sub(r"([\d]) ([0][0]?)(000_)", r"\g<1>\g<2> \g<3>", leftside_align) # "_4 00,000_" -> "_400 ,000_" rightside_align = re.sub(r"([\d]) ([0][0]?),(000_)", r"\g<1>\g<2> ,\g<3>", rightside_align) leftside_align = re.sub(r"([\d]) ([0][0]?),(000_)", r"\g<1>\g<2> ,\g<3>", leftside_align) # "_9 3 ,0__²_> _км_" => "_9 3 ,0__²_> _км_" rightside_align = re.sub(r"([\d]) (,00?_)(_[^\d])", r"\g<1>\g<2> \g<3>", rightside_align) leftside_align = re.sub(r"([\d]) (,00?_)(_[^\d])", r"\g<1>\g<2> \g<3>", leftside_align) # "_0 <DELETE> , <DELETE> <DELETE> 01__г_" => "_0 <DELETE> , 01 <DELETE> _г_" rightside_align = re.sub( r"(,) <DELETE> <DELETE> 01_(_[^\d])", r"\g<1> 01_ <DELETE> \g<2>", rightside_align ) leftside_align = re.sub( r"(,) <DELETE> <DELETE> 01_(_[^\d])", r"\g<1> 01_ <DELETE> \g<2>", leftside_align ) # "_0 <DELETE> , 7 6 <DELETE> <DELETE> 1__км_" => "_0 <DELETE> , 7 6 1_ <DELETE> _км_" rightside_align = re.sub( r"(,) (\d) (\d) <DELETE> <DELETE> 1_(_[^\d])", r"\g<1> \g<2> \g<3> 1_ <DELETE> \g<4>", rightside_align, ) leftside_align = re.sub( r"(,) (\d) (\d) <DELETE> <DELETE> 1_(_[^\d])", r"\g<1> \g<2> \g<3> 1_ <DELETE> \g<4>", leftside_align, ) # "_5 <DELETE> 0000__рублей_" => "_50 000_ рублей" rightside_align = re.sub( r"([\d]) <DELETE> ([0][0]?)(000_)(_)", r"\g<1>\g<2> \g<3> \g<4>", rightside_align ) leftside_align = re.sub( r"([\d]) <DELETE> ([0][0]?)(000_)(_)", r"\g<1>\g<2> \g<3> \g<4>", leftside_align ) # "_1 <DELETE> 115_" -> "_1 1 15_" rightside_align = re.sub(r"<DELETE> ([1])([1][\d])", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> ([1])([1][\d])", r"\g<1> \g<2>", leftside_align) # "_1 <DELETE> 990-х_" -> "_1 9 90-х_" rightside_align = re.sub(r"<DELETE> (9)(90)", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> (9)(90)", r"\g<1> \g<2>", leftside_align) rightside_align = re.sub(r"<DELETE> (8)(80)", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> (8)(80)", r"\g<1> \g<2>", leftside_align) rightside_align = re.sub(r"<DELETE> (7)(70)", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> (7)(70)", r"\g<1> \g<2>", leftside_align) rightside_align = re.sub(r"<DELETE> (6)(60)", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> (6)(60)", r"\g<1> \g<2>", leftside_align) rightside_align = re.sub(r"<DELETE> (5)(50)", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> (5)(50)", r"\g<1> \g<2>", leftside_align) rightside_align = re.sub(r"<DELETE> (4)(40)", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> (4)(40)", r"\g<1> \g<2>", leftside_align) rightside_align = re.sub(r"<DELETE> (3)(30)", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> (3)(30)", r"\g<1> \g<2>", leftside_align) rightside_align = re.sub(r"<DELETE> (2)(20)", r"\g<1> \g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> (2)(20)", r"\g<1> \g<2>", leftside_align) # восемь ноль ноль ноль ноль ноль ноль ноль _8 0 0 0 0 0 0 0_ # _8 <DELETE> <DELETE> <DELETE> <DELETE> <DELETE> <DELETE> 0000000_ rightside_align = re.sub( r"<DELETE> <DELETE> <DELETE> <DELETE> <DELETE> <DELETE> 0000000_", r"0 0 0 0 0 0 0_", rightside_align, ) leftside_align = re.sub( r"<DELETE> <DELETE> <DELETE> <DELETE> <DELETE> <DELETE> 0000000_", r"0 0 0 0 0 0 0_", leftside_align, ) # _8 <DELETE> <DELETE> <DELETE> <DELETE> <DELETE> 000000_ rightside_align = re.sub( r"<DELETE> <DELETE> <DELETE> <DELETE> <DELETE> 000000_", r"0 0 0 0 0 0_", rightside_align ) leftside_align = re.sub( r"<DELETE> <DELETE> <DELETE> <DELETE> <DELETE> 000000_", r"0 0 0 0 0 0_", leftside_align ) # _8 <DELETE> <DELETE> <DELETE> <DELETE> 00000_ rightside_align = re.sub(r"<DELETE> <DELETE> <DELETE> <DELETE> 00000_", r"0 0 0 0 0_", rightside_align) leftside_align = re.sub(r"<DELETE> <DELETE> <DELETE> <DELETE> 00000_", r"0 0 0 0 0_", leftside_align) # _8 <DELETE> <DELETE> <DELETE> 0000_ rightside_align = re.sub(r"<DELETE> <DELETE> <DELETE> 0000_", r"0 0 0 0_", rightside_align) leftside_align = re.sub(r"<DELETE> <DELETE> <DELETE> 0000_", r"0 0 0 0_", leftside_align) # _8 <DELETE> <DELETE> 000_ rightside_align = re.sub(r"<DELETE> <DELETE> 000_", r"0 0 0_", rightside_align) leftside_align = re.sub(r"<DELETE> <DELETE> 000_", r"0 0 0_", leftside_align) # "_2 <DELETE> <DELETE> 010/11" => "_2 0 10 /11" rightside_align = re.sub( r"<DELETE> <DELETE> (0)([1][\d])/([\d])", r"\g<1> \g<2> /\g<3>", rightside_align ) leftside_align = re.sub( r"<DELETE> <DELETE> (0)([1][\d])/([\d])", r"\g<1> \g<2> /\g<3>", leftside_align ) # "_2 0 <DELETE> 11/12_" => "_2 0 11 /12_" rightside_align = re.sub(r"<DELETE> ([\d]+)/([\d])", r"\g<1> /\g<2>", rightside_align) leftside_align = re.sub(r"<DELETE> ([\d]+)/([\d])", r"\g<1> /\g<2>", leftside_align) # "_2 0 1 0/2 0 11_" => "_2 0 10 /2 0 11_" rightside_align = re.sub(r"([\d]) ([\d]+)/([\d])", r"\g<1>\g<2> /\g<3>", rightside_align) leftside_align = re.sub(r"([\d]) ([\d]+)/([\d])", r"\g<1>\g<2> /\g<3>", leftside_align) # "_5 0%_" => "_50 %_" # "_1 00%_" => "_100 %_" # "_1 00,00%_" => "_100,00 %_" rightside_align = re.sub(r"([\d]) ([0,]+)%", r"\g<1>\g<2> %", rightside_align) leftside_align = re.sub(r"([\d]) ([0,]+)%", r"\g<1>\g<2> %", leftside_align) # ATTENTION: keep the order of next two rules # "_2 0½_" => "_20 ½_" rightside_align = re.sub(r"([\d]) ([\d]+)½", r"\g<1>\g<2> ½", rightside_align) leftside_align = re.sub(r"([\d]) ([\d]+)½", r"\g<1>\g<2> ½", leftside_align) # "_1 ½_ <DELETE> <DELETE> <DELETE>" => "_1 <DELETE> <DELETE> <DELETE> ½_" #одна целая и одна вторая rightside_align = re.sub( r"([\d]) (_?½_)? <DELETE> <DELETE> <DELETE>", r"\g<1> <DELETE> <DELETE> <DELETE> \g<2>", rightside_align, ) leftside_align = re.sub( r"([\d]) (_?½_)? <DELETE> <DELETE> <DELETE>", r"\g<1> <DELETE> <DELETE> <DELETE> \g<2>", leftside_align, ) if args.lang == "en" and srctokens[-1] == "half": # _2 <DELETE> 1/ 2_ => _2 <DELETE> <DELETE> ½_ rightside_align = re.sub(r"(\d) <DELETE> 1/ 2_$", r"\g<1> <DELETE> <DELETE> ½_", rightside_align) leftside_align = re.sub(r"(\d) <DELETE> 1/ 2_$", r"\g<1> <DELETE> <DELETE> ½_", leftside_align) # "_1 50_ <DELETE> _тыс.__руб._" => "_1 50_ _тыс._ _руб._" rightside_align = re.sub(r"_ <DELETE> (_[^\d]+_)(_[^\d]+_)", r"_ \g<1> \g<2>", rightside_align) leftside_align = re.sub(r"_ <DELETE> (_[^\d]+_)(_[^\d]+_)", r"_ \g<1> \g<2>", leftside_align) # _1000 000__$_ => "_1000000_ _$_" rightside_align = re.sub(r"_1000 000_(_[^\d])", r"_1000000_ \g<1>", rightside_align) leftside_align = re.sub(r"_1000 000_(_[^\d])", r"_1000000_ \g<1>", leftside_align) if args.giza_dir.endswith("date") and args.lang == "en": # "_1 2_ <DELETE> _november_ _2 014_" => " <DELETE> _12_ <DELETE> _november_ _2 014_" if srctokens[0] == "the": leftside_align = re.sub(r"^_1 (\d_)", r"<DELETE> _1\g<1>", leftside_align) rightside_align = re.sub(r"^_1 (\d_)", r"<DELETE> _1\g<1>", rightside_align) # "<DELETE> <DELETE> _12,2012_" => "_12_ ,20 12_" leftside_align = re.sub(r"^<DELETE> <DELETE> _12,2012_", r"_12_ ,20 12_", leftside_align) rightside_align = re.sub(r"^<DELETE> <DELETE> _12,2012_", r"_12_ ,20 12_", rightside_align) # "<DELETE> _1,20 14_" => "_1 ,20 14_" leftside_align = re.sub(r"^<DELETE> _1,(\d)", r"_1 ,\g<1>", leftside_align) rightside_align = re.sub(r"^<DELETE> _1,(\d)", r"_1 ,\g<1>", rightside_align) # "_2 <DELETE> 1,20 14_" => "_2 1 ,20 14_" leftside_align = re.sub(r"<DELETE> 1,(\d)", r"1 ,\g<1>", leftside_align) rightside_align = re.sub(r"<DELETE> 1,(\d)", r"1 ,\g<1>", rightside_align) # <DELETE> _11,19 9 7_ => _11 ,19 9 7_ leftside_align = re.sub(r"<DELETE> _11,(\d)", r"_11 ,\g<1>", leftside_align) rightside_align = re.sub(r"<DELETE> _11,(\d)", r"_11 ,\g<1>", rightside_align) if len(srctokens) >= 2 and srctokens[-2] == "twenty": # "<DELETE> <DELETE> _12,200 9_" => "_12 ,20 09_" leftside_align = re.sub( r"^<DELETE> <DELETE> _12,200 (\d_)", r"_12_ ,20 0\g<1>", leftside_align ) rightside_align = re.sub( r"^<DELETE> <DELETE> _12,200 (\d_)", r"_12_ ,20 0\g<1>", rightside_align ) # "_april_ _2 015_" => "_april_ _20 15_" leftside_align = re.sub(r"2 0(\d\d_)$", r"20 \g<1>", leftside_align) rightside_align = re.sub(r"2 0(\d\d_)$", r"20 \g<1>", rightside_align) elif len(srctokens) >= 2 and srctokens[-2] == "thousand": # "<DELETE> <DELETE> _12,200 9_" => "_12 ,2 00 9_" leftside_align = re.sub( r"^<DELETE> <DELETE> _12,200 (\d_)", r"_12_ ,2 00 \g<1>", leftside_align ) rightside_align = re.sub( r"^<DELETE> <DELETE> _12,200 (\d_)", r"_12_ ,2 00 \g<1>", rightside_align ) # thirtieth twenty fifteen _3 0th__,20 15_ => _30th_ _,20 15_ leftside_align = re.sub(r"(\d) 0th_(_,\d)", r"\g<1>0th_ \g<2>", leftside_align) rightside_align = re.sub(r"(\d) 0th_(_,\d)", r"\g<1>0th_ \g<2>", rightside_align) if args.giza_dir.endswith("date") and args.lang == "ru": # тысяча девятьсот шестидесятого года _1 9 6 0_ => _1 9 60_ <DELETE> if srctokens[-1] == "года": leftside_align = re.sub(r"(\d) 0_", r"\g<1>0_ <DELETE>", leftside_align) rightside_align = re.sub(r"(\d) 0_", r"\g<1>0_ <DELETE>", rightside_align) if args.giza_dir.endswith("time"): if srctokens[-1] == "hundred": # fifteen hundred <DELETE> _15:00_ rightside_align = re.sub(r"<DELETE> (_\d\d:)00_", r"\g<1> 00_", rightside_align) leftside_align = re.sub(r"<DELETE> (_\d\d:)00_", r"\g<1> 00_", leftside_align) # !! Do not change the order of next two rules # twenty one hundred _2 1:00_ <DELETE> rightside_align = re.sub(r"(_\d) (\d:)00_ <DELETE>", r"\g<1> \g<2> 00_", rightside_align) leftside_align = re.sub(r"(_\d) (\d:)00_ <DELETE>", r"\g<1> \g<2> 00_", leftside_align) # twenty hundred _2 0:00_ rightside_align = re.sub(r"(_\d) (\d:)00_", r"\g<1>\g<2> 00_", rightside_align) leftside_align = re.sub(r"(_\d) (\d:)00_", r"\g<1>\g<2> 00_", leftside_align) if srctokens[-1] == "o'clock": # nine o'clock <DELETE> _09:00_ => "_09:00_ <DELETE>" rightside_align = re.sub(r"^<DELETE> ([^ ])$", r"\g<1> <DELETE>", rightside_align) leftside_align = re.sub(r"^<DELETE> ([^ ])$", r"\g<1> <DELETE>", leftside_align) # "_1 1:3 3_" => "_11: 3 3_" rightside_align = re.sub(r"_(\d) (\d:)(\d)", r"\g<1>\g<2> \g<3>", rightside_align) leftside_align = re.sub(r"_(\d) (\d:)(\d)", r"\g<1>\g<2> \g<3>", leftside_align) ban = False if args.giza_dir.endswith("ordinal"): if dsttokens[0] == "_—": # тысяча девятьсот сорок пятом _— 1 9 4 5_ ban = True # ban roman numbers with at least two symbols, because we do not split them to parts for t in rightside_align.split(): if re.match(r"^_?[ivxl][ivxl]+_?$", t): ban = True # ban cases like "_11/05/2013_", "_2005-11-25_", because they are source of incorrect alignments if args.giza_dir.endswith("date") and args.lang == "en": if "/" in rightside_align or "-" in rightside_align: ban = True # ban brackets if "(" in rightside_align or ")" in rightside_align: ban = True if ban: out_str = ( "ban:\t" + " ".join(srctokens) + "\t" + " ".join(dsttokens) + "\t" + leftside_align + "\t" + rightside_align ) else: out_str = ( "good:\t" + " ".join(srctokens) + "\t" + " ".join(dsttokens) + "\t" + leftside_align + "\t" + rightside_align ) out.write(out_str + "\n") cache[cache_key] = out_str else: out_str = "-mon:\t" + " ".join(srctokens) + "\t" + " ".join(dsttokens) out.write(out_str + "\n") cache[cache_key] = out_str not_mono_count += 1 f.close() g.close() out.close() # Main code if __name__ == '__main__': main()
NeMo-main
examples/nlp/text_normalization_as_tagging/dataset_preparation/extract_giza_alignments.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to construct a vocabulary of multiple references """ from argparse import ArgumentParser from collections import Counter from os import listdir from nemo.collections.nlp.data.text_normalization_as_tagging.utils import spoken_preprocessing parser = ArgumentParser(description="Get reference vocabulary from corpus (it will be used in testing)") parser.add_argument("--data_dir", type=str, required=True, help="Path to folder with data") parser.add_argument("--out_filename", type=str, required=True, help="Path to output file") args = parser.parse_args() if __name__ == "__main__": vcb = {} filenames = [] for fn in listdir(args.data_dir + "/train"): filenames.append(args.data_dir + "/train/" + fn) for fn in listdir(args.data_dir + "/dev"): filenames.append(args.data_dir + "/dev/" + fn) for fn in filenames: print("Processing ", fn) with open(fn, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split("\t") if len(parts) < 3: continue if len(parts) != 3: raise ValueError("Expect 3 parts, got " + str(len(parts))) semiotic_class, written, spoken = parts[0], parts[1].strip().casefold(), parts[2].strip().casefold() spoken = spoken_preprocessing(spoken) if spoken == "<self>": continue if spoken == "" or written == "": continue if len(spoken.split(" ")) >= 100: continue k = (semiotic_class, spoken) if k not in vcb: vcb[k] = Counter() vcb[k][written] += 1 with open(args.out_filename, "w", encoding="utf-8") as out: for sem, spoken in vcb: for written in vcb[(sem, spoken)]: out.write(sem + "\t" + spoken + "\t" + written + "\t" + str(vcb[(sem, spoken)][written]) + "\n") out.write(sem + "\t" + spoken + "\t" + spoken + "\t1\n")
NeMo-main
examples/nlp/text_normalization_as_tagging/evaluation/get_multi_reference_vocab.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to prepare test corpus for the ThutmoseTaggerModel from Google Text Normalization dataset. """ import os import re from argparse import ArgumentParser from collections import Counter from typing import Dict, TextIO, Tuple from nemo.collections.nlp.data.text_normalization_as_tagging.utils import spoken_preprocessing parser = ArgumentParser(description="Text Normalization Data Preprocessing for English") parser.add_argument( "--data_dir", required=True, type=str, help="Path to data directory with files like output-00000-of-00100.tsv" ) parser.add_argument("--reference_vocab", required=True, type=str, help="Multi Reference vocabulary") parser.add_argument("--output_file", required=True, type=str, help="Output file") parser.add_argument( "--sampling_count", required=True, type=int, help="Number of examples per class, you want, use -1 for all examples" ) args = parser.parse_args() def process_file( inputname: str, out: TextIO, out_raw: TextIO, reference_vcb: Dict[Tuple[str, str], Dict[str, int]], sampling_vcb: Dict[str, int], ) -> None: words = [] reference_words = [] # size may be different semiotic_info = [] raw_lines = [] sent_ok = True if args.sampling_count == -1 else False with open(inputname, "r", encoding="utf-8") as f: for line in f: if line.startswith("<eos>"): if len(words) > 0 and sent_ok: out.write( " ".join(words) + "\t" + " ".join(reference_words) + "\t" + ";".join(semiotic_info) + "\n" ) out_raw.write("\n".join(raw_lines) + "\n" + line) words = [] reference_words = [] semiotic_info = [] raw_lines = [] sent_ok = True if args.sampling_count == -1 else False else: raw_lines.append(line.strip()) cls, written, spoken = line.strip().split("\t") spoken = spoken_preprocessing(spoken) written = written.casefold() references = set() if spoken == "sil": continue if spoken == "<self>": words.append(written) reference_words.append(written) # if reference is <self>, but the word has itn conversions in our dictionary, add them for cls in ["CARDINAL", "ORDINAL", "DATE"]: # date, ex sixties -> 60s k = (cls, written) if k in reference_vcb: for tr_variant in reference_vcb[k]: references.add(tr_variant) semiotic_info.append( cls + " " + str(len(words) - 1) + " " + str(len(words)) + " | " + " | ".join(references) ) break continue spoken_words = spoken.split() words.extend(spoken_words) k = (cls, spoken) if k in reference_vcb: for tr_variant in reference_vcb[k]: references.add(tr_variant) references.add(spoken) references.add(written) for tr_variant in list(references): # 6,51 km² => 6,51 km 2 (tr_variant2, n2) = re.subn(r"²", " 2", tr_variant) (tr_variant3, n3) = re.subn(r"³", " 3", tr_variant) if n2 > 0: references.add(tr_variant2) if n3 > 0: references.add(tr_variant3) semiotic_info.append( cls + " " + str(len(words) - len(spoken_words)) + " " + str(len(words)) + " | " + " | ".join(list(references)) ) reference_words.append(written.casefold()) if cls not in sampling_vcb: sampling_vcb[cls] = 0 if sampling_vcb[cls] < args.sampling_count: sent_ok = True sampling_vcb[cls] += 1 def main() -> None: if not os.path.exists(args.data_dir): raise ValueError(f"Data dir {args.data_dir} does not exist") reference_vcb = {} with open(args.reference_vocab, "r", encoding="utf-8") as f: for line in f: sem, spoken, written, freq = line.strip().split("\t") k = (sem, spoken) if k not in reference_vcb: reference_vcb[k] = {} reference_vcb[k][written] = int(freq) sampling_vcb = Counter() out = open(args.output_file, "w", encoding="utf-8") out_raw = open(args.output_file + ".raw", "w", encoding="utf-8") input_paths = sorted([os.path.join(args.data_dir, f) for f in os.listdir(args.data_dir)]) for inputname in input_paths: process_file(inputname, out, out_raw, reference_vcb, sampling_vcb) out.close() out_raw.close() if __name__ == "__main__": main()
NeMo-main
examples/nlp/text_normalization_as_tagging/evaluation/prepare_corpora_for_testing.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to compare the inference output of Thutmose tagger with multi_reference file. The additional report is stored to a separate file for each semiotic class. USAGE Example: python eval_per_class.py \ --inference_file= \ --reference_file= \ --output_file= The inference file is a tsv file in which the first column contains the predicted sentence text. The reference file is a tsv file in which the first column contains the input sentence text, the second column contains the reference sentence text (taken from Google TN dataset) the third column (optional) contains additional acceptable references for semiotic spans in this sentence. E.g. mizoguchi akiko september twenty ten mizoguchi akiko september 2010 DATE 2 5 | sept 2010 | sep. 2010 ... The script generates: a file with report on accuracy per semiotiotic class (output_file). files (<output_file>.<semiotic_class>) with sentences, containing errors in this semiotic span. """ import glob import os from argparse import ArgumentParser from collections import Counter parser = ArgumentParser(description="Compare inference output with multi-reference, print report per class") parser.add_argument("--inference_file", type=str, required=True, help="Path to inference file 1") parser.add_argument("--reference_file", type=str, required=True, help="Path to reference file") parser.add_argument("--output_file", type=str, required=True, help="Path to output file") args = parser.parse_args() # Main code if __name__ == '__main__': # delete all class-specific reports, as they are created in the append mode for f in glob.glob(args.output_file + ".*"): os.remove(f) total_count = Counter() correct_count = Counter() f_ref = open(args.reference_file, "r", encoding="utf-8") f_infer = open(args.inference_file, "r", encoding="utf-8") f_out = open(args.output_file, "w", encoding="utf-8") lines_ref = f_ref.readlines() lines_infer = f_infer.readlines() f_ref.close() f_infer.close() if len(lines_ref) != len(lines_infer): raise ValueError( "Number of lines doesn't match: len(lines_ref)=" + str(len(lines_ref)) + "; len(lines_infer)=" + str(len(lines_infer)) ) for i in range(len(lines_infer)): _, inp_str, _, tag_with_swap_str, semiotic = lines_infer[i].strip().split("\t") input_words = inp_str.split(" ") predicted_tags = tag_with_swap_str.split(" ") predicted_words = predicted_tags[:] for k in range(len(predicted_tags)): t = predicted_tags[k] if t == "<SELF>": predicted_words[k] = input_words[k] elif t == "<DELETE>": predicted_words[k] = "" else: predicted_words[k] = predicted_words[k].replace(">", "").replace("<", "") parts = lines_ref[i].strip().split("\t") if len(parts) < 2 or len(parts) > 3: raise ValueError("Bad format: " + lines_ref[i]) if len(parts) == 3: # there are non-trivial semiotic spans spans = parts[2].split(";") for span in spans: span_parts = span.split(" | ") try: sem, begin, end = span_parts[0].split(" ") except Exception: print("error: ", lines_ref[i]) continue begin = int(begin) end = int(end) ok = False predicted_span = " ".join(predicted_words[begin:end]).replace("_", " ").replace(" ", "").casefold() input_span = " ".join(input_words[begin:end]) total_count[sem] += 1 for tr_variant in span_parts[1:]: ref_span = tr_variant.replace("_", " ").replace(" ", "").casefold() if ref_span == predicted_span: ok = True correct_count[sem] += 1 break if not ok: out_sem = open(args.output_file + "." + sem, "a", encoding="utf-8") out_sem.write( "error: pred=" + " ".join(predicted_words[begin:end]) + "; inp=" + input_span + "; ref=" + span + "\n" ) out_sem.write("\tinput=" + " ".join(input_words) + "\n") out_sem.write("\ttags=" + " ".join(predicted_tags) + "\n") out_sem.write("\tpred=" + " ".join(predicted_words) + "\n") out_sem.write("\tsemiotic=" + semiotic + "\n") out_sem.write("\tref=" + parts[1] + "\n") out_sem.close() f_out.write("class\ttotal\tcorrect\terrors\taccuracy\n") for sem in total_count: f_out.write( sem + "\t" + str(total_count[sem]) + "\t" + str(correct_count[sem]) + "\t" + str(total_count[sem] - correct_count[sem]) + "\t" + str(correct_count[sem] / total_count[sem]) + "\n" ) f_out.close()
NeMo-main
examples/nlp/text_normalization_as_tagging/evaluation/eval_per_class.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to compare the inference output of Thutmose tagger with multi_reference file USAGE Example: python eval.py \ --inference_file= \ --reference_file= \ --print_other_errors The inference file is a tsv file in which the first column contains the predicted sentence text. The reference file is a tsv file in which the first column contains the input sentence text, the second column contains the reference sentence text (taken from Google TN dataset) the third column (optional) contains additional acceptable references for semiotic spans in this sentence. E.g. mizoguchi akiko september twenty ten mizoguchi akiko september 2010 DATE 2 5 | sept 2010 | sep. 2010 ... (to get a reference file see the last steps in examples/nlp/text_normalization_as_tagging/prepare_dataset_en.sh, starting from ".../examples/nlp/text_normalization_as_tagging/evaluation/get_multi_reference_vocab.py" ) The script outputs the following metrics: Word Error Rate (WER) - an automatic metric commonly used in ASR. It does not take into account additional references. Sentence accuracy: The sentence is regarded as correct if its characters (without spaces) match to the reference, It takes into account additional references. If at least one digital character doesn't match this sentence is regarded as containing Digit Error. If all digital character match, but at least one non-digital character doesn't match this sentence is regarded as containing Other Error. """ import re from argparse import ArgumentParser from nemo.collections.asr.metrics.wer import word_error_rate parser = ArgumentParser(description="Compare inference output with multi-reference") parser.add_argument("--inference_file", type=str, required=True, help="Path to inference file") parser.add_argument( "--print_other_errors", action='store_true', help="Whether to print other errors, if false only digit errors will be printed", ) parser.add_argument("--reference_file", type=str, required=True, help="Path to reference file") args = parser.parse_args() # Main code if __name__ == "__main__": inputs = [] references = [] # list(size=len(inputs)) of lists skip_ids = set() # sentences ids to be skipped during evaluation with open(args.reference_file, "r", encoding="utf-8") as f: for line in f: multi_references = [] parts = line.strip().split("\t") if len(parts) < 2 or len(parts) > 3: raise ValueError("Bad format: " + line) words = parts[0].split() inputs.append(words) if len(parts) == 3: # there are non-trivial semiotic spans multi_references.append("") input_position = 0 if "TELEPHONE" in parts[2] or "ELECTRONIC" in parts[2]: skip_ids.add(len(references)) spans = parts[2].split(";") multi_references_updated = [] for span in spans: span_parts = span.split(" | ") try: sem, begin, end = span_parts[0].split(" ") except Exception: print("error: ", line) continue begin = int(begin) end = int(end) for ref in multi_references: if len(span_parts) > 20 or len(multi_references_updated) > 20000: print("warning: too many references: ", inputs[-1]) break for tr_variant in span_parts[1:]: multi_references_updated.append( ref + " " + " ".join(inputs[-1][input_position:begin]) # copy needed words from input + " " + tr_variant ) multi_references = multi_references_updated[:] # copy multi_references_updated = [] input_position = end for i in range(len(multi_references)): # copy needed words from the input end multi_references[i] += " " + " ".join(inputs[-1][input_position : len(inputs[-1])]) # the last reference added is the actual one multi_references.append(parts[1]) references.append(multi_references) predictions = [] predicted_tags = [] predicted_semiotic = [] # load predictions with open(args.inference_file, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split("\t") if len(parts) == 1: predictions.append(parts[0].casefold()) predicted_tags.append([]) continue if len(parts) != 5: raise ValueError("Bad format: " + line) prediction, inp_str, tag_str, tags_with_swap_str, semiotic = parts predictions.append(prediction.casefold()) tags = tag_str.split(" ") predicted_tags.append(tags) predicted_semiotic.append(semiotic) sentences_with_errors_on_digits = 0 correct_sentences_disregarding_space = 0 if len(inputs) != len(predictions) or len(inputs) != len(references): raise ValueError( "Length mismatch: len(inputs)=" + str(len(inputs)) + "; len(predictions)=" + str(len(predictions)) + "; len(references)=" + str(len(references)) ) refs_for_wer = [] preds_for_wer = [] for i in range(len(inputs)): ok_digit = False ok_all = False if i in skip_ids: continue refs_for_wer.append(references[i][-1]) preds_for_wer.append(predictions[i]) for ref in references[i]: ref_digit_fragments = re.findall(r"\d+", ref) pred_digit_fragments = re.findall(r"\d+", predictions[i]) if "".join(pred_digit_fragments) == "".join(ref_digit_fragments): ok_digit = True if predictions[i].replace("_", "").replace(" ", "") == ref.replace("_", "").replace(" ", ""): ok_all = True if not ok_digit: print("digit error:") print("\tinput=", " ".join(inputs[i])) print("\ttags=", " ".join(predicted_tags[i])) print("\tpred=", predictions[i]) print("\tsemiotic=", predicted_semiotic[i]) print("\tref=", references[i][-1]) # last reference is actual reference sentences_with_errors_on_digits += 1 elif ok_all: correct_sentences_disregarding_space += 1 elif args.print_other_errors: print("other error:") print("\tinput=", " ".join(inputs[i])) print("\ttags=", " ".join(predicted_tags[i])) print("\tpred=", predictions[i]) print("\tsemiotic=", predicted_semiotic[i]) print("\tref=", references[i][-1]) # last reference is actual reference wer = word_error_rate(refs_for_wer, preds_for_wer) print("WER: ", wer) print( "Sentence accuracy: ", correct_sentences_disregarding_space / (len(inputs) - len(skip_ids)), correct_sentences_disregarding_space, ) print( "digit errors: ", sentences_with_errors_on_digits / (len(inputs) - len(skip_ids)), sentences_with_errors_on_digits, ) print( "other errors: ", (len(inputs) - len(skip_ids) - correct_sentences_disregarding_space - sentences_with_errors_on_digits) / (len(inputs) - len(skip_ids)), len(inputs) - len(skip_ids) - correct_sentences_disregarding_space - sentences_with_errors_on_digits, )
NeMo-main
examples/nlp/text_normalization_as_tagging/evaluation/eval.py
# Copyright (c) 2020, MeetKai Inc. All rights reserved. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to evaluate a NeuralMachineTranslationModel. To load the example Text2Sparql dataset, please refer to ./data/import_datasets.py. To train a model, please refer to text2sparql.py. ***Setting the configs*** This script uses the `/examples/nlp/text2sparql/conf/text2sparql_config.yaml` config file by default. You may update the config file from the file directly or by using the command line arguments. Another other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. Please refer to text2sparql.py for detailed instructions on setting the configuration. ***How to run the script?*** - To reload and evaluate the model, run: python evaluate_text2sparql.py \ model.test_ds.filepath="$TGT_DATA_DIR"/test_easy.tsv \ model.batch_size=16 \ model.nemo_path=./NeMo_logs/bart.nemo \ exp_manager.exp_dir=./NeMo_logs """ import os import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models.text2sparql import Text2SparqlModel from nemo.core.config import hydra_runner from nemo.utils import logging @hydra_runner(config_path="conf", config_name="text2sparql_config") def main(cfg: DictConfig) -> None: logging.info(f"Config:\n {OmegaConf.to_yaml(cfg)}") trainer = pl.Trainer(devices=cfg.trainer.devices, accelerator=cfg.trainer.accelerator) nmt_model = Text2SparqlModel.restore_from(restore_path=cfg.model.nemo_path) nmt_model.setup_test_data(cfg.model.test_ds) results = trainer.test(nmt_model) with open(cfg.model.test_ds.filepath, "r", encoding='utf-8') as f: lines = f.readlines() lines[0] = lines[0].strip() + f"\tpredictions\n" for i, res in enumerate(results[0]["texts"]): lines[i + 1] = lines[i + 1].strip() + f"\t{res}\n" savepath = os.path.join(cfg.exp_manager.exp_dir, os.path.basename(cfg.model.test_ds.filepath)) with open(savepath, "w", encoding='utf-8') as f: f.writelines(lines) logging.info(f"Predictions saved to {savepath}") if __name__ == "__main__": main()
NeMo-main
examples/nlp/text2sparql/evaluate_text2sparql.py
# Copyright (c) 2020, MeetKai Inc. All rights reserved. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to train and save a Text2SparqlModel. Text2SparqlModel in NeMo supports sequence to sequence problems such as language translation and text summarization, provided the data follows the format specified below. ***Data format*** Text2SparqlModel requires the data to be stored in TAB separated files (.tsv) with two columns of sentence and label, where the first line is a header of format: sentence[TAB]label And each line is of the format: [SENTENCE][TAB][LABEL] If your dataset is stored in another format, you need to convert it to this format to use a Text2SparqlModel. ***Setting the configs*** This script uses the `/examples/nlp/text2sparql/conf/text2sparql_config.yaml` config file by default. You may update the config file from the file directly or by using the command line arguments. Another other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. A Text2SparqlModel's config file declares multiple import sections. They are: - trainer: Arguments to be passed to PyTorch Lightning. - model: All arguments that relate to the Model - language_model, tokenizers, datasets, optimizer, generate. - exp_manager: Arguments to be passed to NeMo's experiment manager. - hydra: Arguments to be passed to Hydra. If using text2sparql_config.yaml, you must first update the following fields in the config: - model.nemo_path: Model save path. Eg. [PATH]/bart.nemo - model.data_dir: Path to data directory. Alternatively, you can adjust the file paths directly: - model.train_ds.filepath - model.validation_ds.filepath - model.test_ds.filepath - exp_manager.exp_dir: Directory to log results from the experiment. It is highly recommended to also adjust these parameters as necessary: - trainer.devices: Set to 0 to use CPU. Otherwise the number denotes the number of GPUs. - trainer.max_epochs: Maximum number of epochs to train for. - model.batch_size: 8 is sufficient to train a decent Bart model for Text2Sparql. - model.max_seq_length: Maximum (tokenized) sequence length. 150 is sufficient for Text2Sparql. - model.language_model.pretrained_model_name: End2end pretrained model name from huggingface. - model.encoder_tokenizer.tokenizer_name: Pretrained tokenizer name from huggingface. - model.decoder_tokenizer.tokenizer_name: The same as above, as the tokenizer will handle encoding and decoding. - model.optim.lr: Learning rate. You can also specify an encoder and decoder rather than using an end2end model like Bart by defining these parameters: - model.language_model.pretrained_encoder_model_name: Pretrained huggingface encoder model name. - model.encoder_tokenizer.tokenizer_name: Pretrained huggingface encoder tokenizer name. - model.language_model.pretrained_decoder_model_name: Pretrained huggingface decoder model name. - model.decoder_tokenizer.tokenizer_name: Pretrained huggingface decoder tokenizer name. - model.language_model.pretrained_model_name: Set this to null. ***How to run the script?*** - First, download the data to TGT_DATA_DIR (see ./data/import_datasets.py): SRC_DATA_DIR=./data/text2sparql_src TGT_DATA_DIR=./data/text2sparql_tgt python ./data/import_datasets.py \ --source_data_dir $SRC_DATA_DIR \ --target_data_dir $TGT_DATA_DIR - And run the following to train and save the model: python text2sparql.py \ model.train_ds.filepath="$TGT_DATA_DIR"/train.tsv \ model.validation_ds.filepath="$TGT_DATA_DIR"/test_easy.tsv \ model.test_ds.filepath="$TGT_DATA_DIR"/test_hard.tsv \ model.batch_size=16 \ model.nemo_path=./NeMo_logs/bart.nemo \ exp_manager.exp_dir=./NeMo_logs """ import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models.text2sparql import Text2SparqlModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="text2sparql_config") def main(cfg: DictConfig) -> None: logging.info(f"Config:\n {OmegaConf.to_yaml(cfg)}") trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) nmt_model = Text2SparqlModel(cfg.model, trainer=trainer) trainer.fit(nmt_model) if cfg.model.nemo_path: nmt_model.save_to(cfg.model.nemo_path) if __name__ == "__main__": main()
NeMo-main
examples/nlp/text2sparql/text2sparql.py
# Copyright (c) 2020, MeetKai Inc. All rights reserved. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script downloads Text2Sparql data and processes it into NeMo's neural machine translation dataset format. Text2Sparql data consists of 3 files which are saved to source_data_dir: - train_queries_v3.tsv - test_easy_queries_v3.tsv - test_hard_queries_v3.tsv After processing, the script saves them to the target_data_dir as: - train.tsv - test_easy.tsv - test_hard.tsv You may run it with: python import_datasets \ --source_data_dir ./text2sparql_src \ --target_data_dir ./text2sparql_tgt """ import argparse import csv import os from urllib.request import Request, urlopen from nemo.collections.nlp.data.data_utils.data_preprocessing import MODE_EXISTS_TMP, if_exist from nemo.utils import logging base_url = "https://m.meetkai.com/public_datasets/knowledge/" prefix_map = { "train_queries_v3.tsv": "train.tsv", "test_easy_queries_v3.tsv": "test_easy.tsv", "test_hard_queries_v3.tsv": "test_hard.tsv", } def download_text2sparql(infold: str): """Downloads text2sparql train, test_easy, and test_hard data Args: infold: save directory path """ os.makedirs(infold, exist_ok=True) for prefix in prefix_map: url = base_url + prefix logging.info(f"Downloading: {url}") if if_exist(infold, [prefix]): logging.info("** Download file already exists, skipping download") else: req = Request(url, headers={"User-Agent": "Mozilla/5.0"}) with open(os.path.join(infold, prefix), "wb") as handle: handle.write(urlopen(req, timeout=20).read()) def process_text2sparql(infold: str, outfold: str, do_lower_case: bool): """ Process and convert MeetKai's text2sparql datasets to NeMo's neural machine translation format. Args: infold: directory path to raw text2sparql data containing train.tsv, test_easy.tsv, test_hard.tsv outfold: output directory path to save formatted data for NeuralMachineTranslationDataset the first line is header (sentence [tab] label) each line should be [sentence][tab][label] do_lower_case: if true, convert all sentences and labels to lower """ logging.info(f"Processing Text2Sparql dataset and storing at: {outfold}") os.makedirs(outfold, exist_ok=True) dataset_name = "Text2Sparql" for prefix in prefix_map: input_file = os.path.join(infold, prefix) output_file = os.path.join(outfold, prefix_map[prefix]) if if_exist(outfold, [prefix_map[prefix]]): logging.info(f"** {MODE_EXISTS_TMP.format(prefix_map[prefix], dataset_name, output_file)}") continue if not if_exist(infold, [prefix]): logging.info(f"** {prefix} of {dataset_name}" f" is skipped as it was not found") continue assert input_file != output_file, "input file cannot equal output file" with open(input_file, "r") as in_file: with open(output_file, "w") as out_file: reader = csv.reader(in_file, delimiter="\t") # replace headers out_file.write("sentence\tlabel\n") next(reader) for line in reader: sentence = line[0] label = line[1] if do_lower_case: sentence = sentence.lower() label = label.lower() out_file.write(f"{sentence}\t{label}\n") if __name__ == "__main__": # Parse the command-line arguments. parser = argparse.ArgumentParser(description="Process and convert datasets into NeMo's format") parser.add_argument( "--source_data_dir", required=True, type=str, help="Path to the folder containing the dataset files" ) parser.add_argument("--target_data_dir", required=True, type=str, help="Path to save the processed dataset") parser.add_argument("--do_lower_case", action="store_true") args = parser.parse_args() source_dir = args.source_data_dir target_dir = args.target_data_dir do_lower_case = args.do_lower_case download_text2sparql(infold=source_dir) process_text2sparql(infold=source_dir, outfold=target_dir, do_lower_case=do_lower_case)
NeMo-main
examples/nlp/text2sparql/data/import_datasets.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ## Tasks This script works with all GLUE Benchmark tasks, more details about the GLUE Benchmark could be found at https://gluebenchmark.com/ More details on how to use this script could be found in tutorials/nlp/GLUE_Benchmark.ipynb ## Model Training To train GLUEModel with the default config file, run: python glue_benchmark.py \ model.dataset.data_dir=<PATH_TO_DATA_DIR> \ model.task_name=TASK_NAME \ trainer.max_epochs=<NUM_EPOCHS> \ trainer.devices="[<CHANGE_TO_GPU_YOU_WANT_TO_USE>] Supported task names: ["cola", "sst-2", "mrpc", "sts-b", "qqp", "mnli", "qnli", "rte", "wnli"] Note, MNLI task includes both matched and mismatched dev sets """ import os import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import GLUEModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_name="glue_benchmark_config") def main(cfg: DictConfig) -> None: logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager_cfg = cfg.get("exp_manager", None) if exp_manager_cfg: exp_manager_cfg.name = cfg.model.task_name logging.info(f'Setting task_name to {exp_manager_cfg.name} in exp_manager') exp_manager(trainer, exp_manager_cfg) if cfg.model.nemo_path and os.path.exists(cfg.model.nemo_path): model = GLUEModel.restore_from(cfg.model.nemo_path) logging.info(f'Restoring model from {cfg.model.nemo_path}') model.update_data_dir(data_dir=cfg.model.dataset.data_dir) model.setup_training_data() model.setup_multiple_validation_data() trainer.fit(model) else: model = GLUEModel(cfg.model, trainer=trainer) trainer.fit(model) if cfg.model.nemo_path: model.save_to(cfg.model.nemo_path) if __name__ == '__main__': main()
NeMo-main
examples/nlp/glue_benchmark/glue_benchmark.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to train, evaluate and perform inference with the TextClassificationModel. TextClassificationModel in NeMo supports text classification problems such as sentiment analysis or domain/intent detection for dialogue systems, as long as the data follows the format specified below. ***Data format*** TextClassificationModel requires the data to be stored in TAB separated files (.tsv) with two columns of sentence and label. Each line of the data file contains text sequences, where words are separated with spaces and label separated with [TAB], i.e.: [WORD][SPACE][WORD][SPACE][WORD][TAB][LABEL] For example: hide new secretions from the parental units[TAB]0 that loves its characters and communicates something rather beautiful about human nature[TAB]1 ... If your dataset is stored in another format, you need to convert it to this format to use the TextClassificationModel. ***Setting the configs*** The model and the PT trainer are defined in a config file which declares multiple important sections. The most important ones are: model: All arguments that are related to the Model - language model, tokenizer, head classifier, optimizer, schedulers, and datasets/data loaders. trainer: Any argument to be passed to PyTorch Lightning including number of epochs, number of GPUs, precision level, etc. This script uses the `/examples/nlp/text_classification/conf/text_classification_config.yaml` default config file by default. You may update the config file from the file directly or by using the command line arguments. Other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. You first need to set the num_classes in the config file which specifies the number of classes in the dataset. Notice that some config lines, including `model.dataset.classes_num`, have `???` as their value, this means that values for these fields are required to be specified by the user. We need to specify and set the `model.train_ds.file_name`, `model.validation_ds.file_name`, and `model.test_ds.file_name` in the config file to the paths of the train, validation, and test files if they exist. We may do it by updating the config file or by setting them from the command line. ***How to run the script?*** For example the following would train a model for 50 epochs in 2 GPUs on a classification task with 2 classes: # python text_classification_with_bert.py model.dataset.num_classes=2 model.train_ds=PATH_TO_TRAIN_FILE model.validation_ds=PATH_TO_VAL_FILE trainer.max_epochs=50 trainer.devices=2 This script would also reload the last checkpoint after the training is done and does evaluation on the dev set, then performs inference on some sample queries. By default, this script uses examples/nlp/text_classification/conf/text_classifciation_config.py config file, and you may update all the params in the config file from the command line. You may also use another config file like this: # python text_classification_with_bert.py --config-name==PATH_TO_CONFIG_FILE model.dataset.num_classes=2 model.train_ds=PATH_TO_TRAIN_FILE model.validation_ds=PATH_TO_VAL_FILE trainer.max_epochs=50 trainer.devices=2 ***Load a saved model*** This script would save the model after training into '.nemo' checkpoint file specified by nemo_path of the model config. You may restore the saved model like this: model = TextClassificationModel.restore_from(restore_path=NEMO_FILE_PATH) ***Evaluation a saved model on another dataset*** # If you wanted to evaluate the saved model on another dataset, you may restore the model and create a new data loader: eval_model = TextClassificationModel.restore_from(restore_path=checkpoint_path) # Then, you may create a dataloader config for evaluation: eval_config = OmegaConf.create( {'file_path': cfg.model.test_ds.file_path, 'batch_size': 64, 'shuffle': False, 'num_workers': 3} ) eval_model.setup_test_data(test_data_config=eval_config) # You need to create a new trainer: eval_trainer = pl.Trainer(devices=1) eval_model.set_trainer(eval_trainer) eval_trainer.test(model=eval_model, verbose=False) """ import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models.text_classification import TextClassificationModel from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="text_classification_config") def main(cfg: DictConfig) -> None: logging.info(f'\nConfig Params:\n{OmegaConf.to_yaml(cfg)}') try: strategy = NLPDDPStrategy() except (ImportError, ModuleNotFoundError): strategy = None trainer = pl.Trainer(strategy=strategy, **cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) if not cfg.model.train_ds.file_path: raise ValueError("'train_ds.file_path' need to be set for the training!") model = TextClassificationModel(cfg.model, trainer=trainer) logging.info("===========================================================================================") logging.info('Starting training...') trainer.fit(model) logging.info('Training finished!') logging.info("===========================================================================================") if cfg.model.nemo_path: # '.nemo' file contains the last checkpoint and the params to initialize the model model.save_to(cfg.model.nemo_path) logging.info(f'Model is saved into `.nemo` file: {cfg.model.nemo_path}') # We evaluate the trained model on the test set if test_ds is set in the config file if cfg.model.test_ds.file_path: logging.info("===========================================================================================") logging.info("Starting the testing of the trained model on test set...") trainer.test(model=model, ckpt_path=None, verbose=False) logging.info("Testing finished!") logging.info("===========================================================================================") # perform inference on a list of queries. if "infer_samples" in cfg.model and cfg.model.infer_samples: logging.info("===========================================================================================") logging.info("Starting the inference on some sample queries...") # max_seq_length=512 is the maximum length BERT supports. results = model.classifytext(queries=cfg.model.infer_samples, batch_size=16, max_seq_length=512) logging.info('The prediction results of some sample queries with the trained model:') for query, result in zip(cfg.model.infer_samples, results): logging.info(f'Query : {query}') logging.info(f'Predicted label: {result}') logging.info("Inference finished!") logging.info("===========================================================================================") if __name__ == '__main__': main()
NeMo-main
examples/nlp/text_classification/text_classification_with_bert.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script runs model parallel text classification evaluation. """ import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models.text_classification import TextClassificationModel from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="text_classification_config") def main(cfg: DictConfig) -> None: logging.info(f'\nConfig Params:\n{OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(strategy=NLPDDPStrategy(), **cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) # TODO: can we drop strict=False model = TextClassificationModel.restore_from(cfg.model.nemo_path, trainer=trainer, strict=False) model.setup_test_data(test_data_config=cfg.model.test_ds) trainer.test(model=model, ckpt_path=None) if __name__ == '__main__': main()
NeMo-main
examples/nlp/text_classification/model_parallel_text_classification_evaluation.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to process and import IMDB, ChemProt, SST-2, and THUCnews datasets into NeMo's format. You may run it as the following: python import_datasets.py \ --dataset_name DATASET_NAME \ --target_data_dir TARGET_PATH \ --source_data_dir SOURCE_PATH The dataset should be specified by "DATASET_NAME" which can be from ["sst-2", "chemprot", "imdb", "thucnews"]. It reads the data from "SOURCE_PATH" folder, processes and converts the data into NeMo's format. Then writes the results into "TARGET_PATH" folder. """ import argparse import csv import glob import os from os.path import exists import tqdm from nemo.utils import logging def process_imdb(infold, outfold, uncased, modes=['train', 'test']): if not os.path.exists(infold): link = 'https://ai.stanford.edu/~amaas/data/sentiment/' raise ValueError( f'Data not found at {infold}. ' f'Please download IMDB reviews dataset from {link} and ' f'extract it into the folder specified by source_data_dir argument.' ) logging.info(f'Processing IMDB dataset and store at {outfold}') os.makedirs(outfold, exist_ok=True) outfiles = {} for mode in modes: outfiles[mode] = open(os.path.join(outfold, mode + '.tsv'), 'w') for sent in ['neg', 'pos']: if sent == 'neg': label = 0 else: label = 1 files = glob.glob(f'{infold}/{mode}/{sent}/*.txt') for file in files: with open(file, 'r') as f: review = f.read().strip() if uncased: review = review.lower() review = review.replace("<br />", "") outfiles[mode].write(f'{review}\t{label}\n') for mode in modes: outfiles[mode].close() class_labels_file = open(os.path.join(outfold, 'label_ids.tsv'), 'w') class_labels_file.write('negative\npositive\n') class_labels_file.close() def process_sst2(infold, outfold, uncased, splits=['train', 'dev']): """Process sst2 dataset.""" # "test" split doesn't have labels, so it is skipped if not os.path.exists(infold): link = 'https://dl.fbaipublicfiles.com/glue/data/SST-2.zip' raise ValueError( f'Data not found at {infold}. Please download SST-2 dataset from `{link}` and ' f'extract it into the folder specified by `source_data_dir` argument.' ) logging.info(f'Processing SST-2 dataset') os.makedirs(outfold, exist_ok=True) def _read_tsv(input_file, quotechar=None): """Read a tab separated value file.""" with open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines for split in splits: # Load input file. input_file = os.path.join(infold, split + '.tsv') lines = _read_tsv(input_file) # Create output. outfile = open(os.path.join(outfold, split + '.tsv'), 'w') # Copy lines, skip the header (line 0). for line in lines[1:]: text = line[0] label = line[1] # Lowercase when required. if uncased: text = text.lower() # Write output. outfile.write(f'{text}\t{label}\n') # Close file. outfile.close() class_labels_file = open(os.path.join(outfold, 'label_ids.tsv'), 'w') class_labels_file.write('negative\npositive\n') class_labels_file.close() logging.info(f'Result stored at {outfold}') def process_chemprot(source_dir, target_dir, uncased, modes=['train', 'test', 'dev']): if not os.path.exists(source_dir): link = 'https://github.com/arwhirang/recursive_chemprot/tree/master/Demo/tree_LSTM/data' raise ValueError(f'Data not found at {source_dir}. ' f'Please download ChemProt from {link}.') logging.info(f'Processing Chemprot dataset and store at {target_dir}') os.makedirs(target_dir, exist_ok=True) naming_map = {'train': 'trainingPosit_chem', 'test': 'testPosit_chem', 'dev': 'developPosit_chem'} def _read_tsv(input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines outfiles = {} label_mapping = {} out_label_mapping = open(os.path.join(target_dir, 'label_mapping.tsv'), 'w') for mode in modes: outfiles[mode] = open(os.path.join(target_dir, mode + '.tsv'), 'w') input_file = os.path.join(source_dir, naming_map[mode]) lines = _read_tsv(input_file) for line in lines: text = line[1] label = line[2] if label == "True": label = line[3] if uncased: text = text.lower() if label not in label_mapping: out_label_mapping.write(f'{label}\t{len(label_mapping)}\n') label_mapping[label] = len(label_mapping) label = label_mapping[label] outfiles[mode].write(f'{text}\t{label}\n') for mode in modes: outfiles[mode].close() out_label_mapping.close() def process_thucnews(infold, outfold): modes = ['train', 'test'] train_size = 0.8 if not os.path.exists(infold): link = 'thuctc.thunlp.org/' raise ValueError(f'Data not found at {infold}. ' f'Please download THUCNews from {link}.') logging.info(f'Processing THUCNews dataset and store at {outfold}') os.makedirs(outfold, exist_ok=True) outfiles = {} for mode in modes: outfiles[mode] = open(os.path.join(outfold, mode + '.tsv'), 'a+', encoding='utf-8') categories = ['体育', '娱乐', '家居', '彩票', '房产', '教育', '时尚', '时政', '星座', '游戏', '社会', '科技', '股票', '财经'] for category in categories: label = categories.index(category) category_files = glob.glob(f'{infold}/{category}/*.txt') test_num = int(len(category_files) * (1 - train_size)) test_files = category_files[:test_num] train_files = category_files[test_num:] for mode in modes: logging.info(f'Processing {mode} data of the category {category}') if mode == 'test': files = test_files else: files = train_files if len(files) == 0: logging.info(f'Skipping category {category} for {mode} mode') continue for file in tqdm.tqdm(files): with open(file, 'r', encoding='utf-8') as f: news = f.read().strip().replace('\r', '') news = news.replace('\n', '').replace('\t', ' ') outfiles[mode].write(f'{news}\t{label}\n') for mode in modes: outfiles[mode].close() if __name__ == "__main__": # Parse the command-line arguments. parser = argparse.ArgumentParser(description="Process and convert datasets into NeMo\'s format.") parser.add_argument("--dataset_name", required=True, type=str, choices=['imdb', 'thucnews', 'chemprot']) parser.add_argument( "--source_data_dir", required=True, type=str, help='The path to the folder containing the dataset files.' ) parser.add_argument("--target_data_dir", required=True, type=str) parser.add_argument("--do_lower_case", action='store_true') args = parser.parse_args() dataset_name = args.dataset_name do_lower_case = args.do_lower_case source_dir = args.source_data_dir target_dir = args.target_data_dir if not exists(source_dir): raise FileNotFoundError(f"{source_dir} does not exist.") if dataset_name == 'imdb': process_imdb(source_dir, target_dir, do_lower_case) elif dataset_name == 'thucnews': process_thucnews(source_dir, target_dir) elif dataset_name == "chemprot": process_chemprot(source_dir, target_dir, do_lower_case) elif dataset_name == "sst-2": process_sst2(source_dir, target_dir, do_lower_case) else: raise ValueError( f'Dataset {dataset_name} is not supported.' + "Please make sure that you build the preprocessing process for it. " + "NeMo's format assumes that a data file has a header and each line of the file follows " + "the format: text [TAB] label. Label is assumed to be an integer." )
NeMo-main
examples/nlp/text_classification/data/import_datasets.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to visualize the errors made by a (duplex) TN system. More specifically, after running the evaluation script `duplex_text_normalization_test.py`, a log file containing info about the errors will be generated. The location of this file is determined by the argument `inference.errors_log_fp`. After that, we can use this script to generate a HTML visualization. USAGE Example: # python analyze_errors.py \ --errors_log_fp=PATH_TO_ERRORS_LOG_FILE_PATH \ --visualization_fp=PATH_TO_VISUALIZATION_FILE_PATH """ from argparse import ArgumentParser from typing import List from nemo.collections.nlp.data.text_normalization import constants # Longest Common Subsequence def lcs(X, Y): """ Function for finding the longest common subsequence between two lists. In this script, this function is particular used for aligning between the ground-truth output string and the predicted string (for visualization purpose). Args: X: a list Y: a list Returns: a list which is the longest common subsequence between X and Y """ m, n = len(X), len(Y) L = [[0 for x in range(n + 1)] for x in range(m + 1)] # Following steps build L[m+1][n+1] in bottom up fashion. Note # that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] for i in range(m + 1): for j in range(n + 1): if i == 0 or j == 0: L[i][j] = 0 elif X[i - 1] == Y[j - 1]: L[i][j] = L[i - 1][j - 1] + 1 else: L[i][j] = max(L[i - 1][j], L[i][j - 1]) # Following code is used to print LCS index = L[m][n] # Create a character array to store the lcs string lcs = [''] * (index + 1) lcs[index] = '' # Start from the right-most-bottom-most corner and # one by one store characters in lcs[] i = m j = n while i > 0 and j > 0: # If current character in X[] and Y are same, then # current character is part of LCS if X[i - 1] == Y[j - 1]: lcs[index - 1] = X[i - 1] i -= 1 j -= 1 index -= 1 # If not same, then find the larger of two and # go in the direction of larger value elif L[i - 1][j] > L[i][j - 1]: i -= 1 else: j -= 1 return lcs[:-1] # Classes class ErrorCase: """ This class represents an error case Args: _input: Original input string target: Ground-truth target string pred: Predicted string mode: A string indicates the mode (i.e., constants.ITN_MODE or constants.TN_MODE) """ def __init__(self, _input: str, target: str, pred: str, classes: str, mode: str): self._input = _input self.target = target self.pred = pred self.mode = mode self.classes = classes # Tokens self.target_tokens = self.target.split(' ') self.pred_tokens = self.pred.split(' ') # LCS lcs_tokens = lcs(self.target_tokens, self.pred_tokens) target_tokens_hightlight = [False] * len(self.target_tokens) pred_tokens_hightlight = [False] * len(self.pred_tokens) target_idx, pred_idx = 0, 0 for token in lcs_tokens: while self.target_tokens[target_idx] != token: target_idx += 1 while self.pred_tokens[pred_idx] != token: pred_idx += 1 target_tokens_hightlight[target_idx] = True pred_tokens_hightlight[pred_idx] = True target_idx += 1 pred_idx += 1 # Spans self.target_spans = self.get_spans(target_tokens_hightlight) self.pred_spans = self.get_spans(pred_tokens_hightlight) # Determine unhighlighted target spans unhighlighted_target_spans = [] for ix, t in enumerate(self.target_spans): if not t[-1]: unhighlighted_target_spans.append((ix, t)) # Determine unhighlighted pred spans unhighlighted_pred_spans = [] for ix, t in enumerate(self.pred_spans): if not t[-1]: unhighlighted_pred_spans.append((ix, t)) @classmethod def from_lines(cls, lines: List[str], mode: str): """ This method returns an instance of ErrorCase from raw string lines. Args: lines: A list of raw string lines for the error case. mode: A string indicates the mode (i.e., constants.ITN_MODE or constants.TN_MODE) Returns: an instance of ErrorCase. """ for line in lines: if line.startswith('Original Input'): _input = line[line.find(':') + 1 :].strip() elif line.startswith('Predicted Str'): pred = line[line.find(':') + 1 :].strip() elif line.startswith('Ground-Truth'): target = line[line.find(':') + 1 :].strip() elif line.startswith('Ground Classes'): classes = line[line.find(':') + 1 :].strip() return cls(_input, target, pred, classes, mode) def get_html(self): """ This method returns a HTML string representing this error case instance. Returns: a string contains the HTML representing this error case instance. """ html_str = '' # Input input_form = 'Written' if self.mode == constants.TN_MODE else 'Spoken' padding_multiplier = 1 if self.mode == constants.TN_MODE else 2 padding_spaces = ''.join(['&nbsp;'] * padding_multiplier) input_str = f'<b>[Input ({input_form})]{padding_spaces}</b>: {self._input}</br>\n' html_str += input_str + ' ' # Target target_html = self.get_spans_html(self.target_spans, self.target_tokens) target_form = 'Spoken' if self.mode == constants.TN_MODE else 'Written' target_str = f'<b>[Target ({target_form})]</b>: {target_html}</br>\n' html_str += target_str + ' ' # Pred pred_html = self.get_spans_html(self.pred_spans, self.pred_tokens) padding_multiplier = 10 if self.mode == constants.TN_MODE else 11 padding_spaces = ''.join(['&nbsp;'] * padding_multiplier) pred_str = f'<b>[Prediction]{padding_spaces}</b>: {pred_html}</br>\n' html_str += pred_str + ' ' # Classes padding_multiplier = 15 if self.mode == constants.TN_MODE else 16 padding_spaces = ''.join(['&nbsp;'] * padding_multiplier) class_str = f'<b>[Classes]{padding_spaces}</b>: {self.classes}</br>\n' html_str += class_str + ' ' # Space html_str += '</br>\n' return html_str def get_spans(self, tokens_hightlight): """ This method extracts the list of spans. Args: tokens_hightlight: A list of boolean values where each value indicates whether a token needs to be hightlighted. Returns: spans: A list of spans. Each span is represented by a tuple of 3 elements: (1) Start Index (2) End Index (3) A boolean value indicating whether the span needs to be hightlighted. """ spans, nb_tokens = [], len(tokens_hightlight) cur_start_idx, cur_bool_val = 0, tokens_hightlight[0] for idx in range(nb_tokens): if idx == nb_tokens - 1: if tokens_hightlight[idx] != cur_bool_val: spans.append((cur_start_idx, nb_tokens - 2, cur_bool_val)) spans.append((nb_tokens - 1, nb_tokens - 1, tokens_hightlight[idx])) else: spans.append((cur_start_idx, nb_tokens - 1, cur_bool_val)) else: if tokens_hightlight[idx] != cur_bool_val: spans.append((cur_start_idx, idx - 1, cur_bool_val)) cur_start_idx, cur_bool_val = idx, tokens_hightlight[idx] return spans def get_spans_html(self, spans, tokens): """ This method generates a HTML string for a string sequence from its spans. Args: spans: A list of contiguous spans in a sequence. Each span is represented by a tuple of 3 elements: (1) Start Index (2) End Index (3) A boolean value indicating whether the span needs to be hightlighted. tokens: All tokens in the sequence Returns: html_str: A HTML string for the string sequence. """ html_str = '' for start, end, type in spans: color = 'red' if type else 'black' span_tokens = tokens[start : end + 1] span_str = '<span style="color:{}">{}</span> '.format(color, ' '.join(span_tokens)) html_str += span_str return html_str # Main function for analysis def analyze(errors_log_fp: str, visualization_fp: str): """ This method generates a HTML visualization of the error cases logged in a log file. Args: errors_log_fp: Path to the error log file visualization_fp: Path to the output visualization file """ # Read lines from errors log with open(errors_log_fp, 'r', encoding='utf-8') as f: lines = f.readlines() # Process lines tn_error_cases, itn_error_cases = [], [] for ix in range(0, len(lines), 8): mode_line = lines[ix] info_lines = lines[ix + 1 : ix + 7] # Append new error case if mode_line.startswith('Forward Problem'): mode = constants.TN_MODE tn_error_cases.append(ErrorCase.from_lines(info_lines, mode)) elif mode_line.startswith('Backward Problem'): mode = constants.ITN_MODE itn_error_cases.append(ErrorCase.from_lines(info_lines, mode)) # Basic stats print('---- Text Normalization ----') print('Number of TN errors: {}'.format(len(tn_error_cases))) print('---- Inverse Text Normalization ---- ') print('Number of ITN errors: {}'.format(len(itn_error_cases))) # Produce a visualization with open(visualization_fp, 'w+', encoding='utf-8') as f: # Appendix f.write('Appendix</br>') f.write('<a href="#tn_section">Text Normalization Analysis.</a></br>') f.write('<a href="#itn_section">Inverse Text Normalization Analysis.</a>') # TN Section f.write('<h2 id="tn_section">Text Normalization</h2>\n') for errorcase in tn_error_cases: f.write(errorcase.get_html()) # ITN Section f.write('<h2 id="itn_section">Inverse Text Normalization</h2>\n') for errorcase in itn_error_cases: f.write(errorcase.get_html()) if __name__ == '__main__': # Parse argument parser = ArgumentParser() parser.add_argument('--errors_log_fp', help='Path to the error log file', required=True) parser.add_argument('--visualization_fp', help='Path to the output visualization file', required=True) args = parser.parse_args() analyze(args.errors_log_fp, args.visualization_fp)
NeMo-main
examples/nlp/duplex_text_normalization/analyze_errors.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to run inference with the DuplexTextNormalizationModel. DuplexTextNormalizationModel is essentially a wrapper class around DuplexTaggerModel and DuplexDecoderModel. Therefore, two trained NeMo models should be specified to run the joint evaluation (one is a trained DuplexTaggerModel and the other is a trained DuplexDecoderModel). This script can perform inference for 2 settings: 1. inference from a raw file (no labels required). Each line of the file represents a single example for inference. Specify in inference.from_file and inference.batch_size parameters. python duplex_text_normalization_infer.py \ tagger_pretrained_model=PATH_TO_TRAINED_TAGGER \ decoder_pretrained_model=PATH_TO_TRAINED_DECODER \ mode={tn,itn,joint} \ lang={en,ru,de} \ inference.from_file=PATH_TO_RAW_TEXT_FILE The predictions will be saved at "_norm" and "_denorm" files. 2. Interactive inference (one query at a time), set inference.interactive to True to enter the interactive mode python duplex_text_normalization_infer.py \ tagger_pretrained_model=PATH_TO_TRAINED_TAGGER \ decoder_pretrained_model=PATH_TO_TRAINED_DECODER \ mode={tn,itn,joint} \ lang={en,ru,de} \ inference.interactive=true This script uses the `/examples/nlp/duplex_text_normalization/conf/duplex_tn_config.yaml` config file by default. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. """ import os from typing import List from helpers import DECODER_MODEL, TAGGER_MODEL, instantiate_model_and_trainer from nemo_text_processing.text_normalization.data_loader_utils import post_process_punct from nn_wfst.en.electronic.normalize import ElectronicNormalizer from nn_wfst.en.whitelist.normalize import WhitelistNormalizer from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.data.text_normalization import constants from nemo.collections.nlp.models import DuplexTextNormalizationModel from nemo.core.config import hydra_runner from nemo.utils import logging @hydra_runner(config_path="conf", config_name="duplex_tn_config") def main(cfg: DictConfig) -> None: logging.debug(f'Config Params: {OmegaConf.to_yaml(cfg)}') lang = cfg.lang if cfg.decoder_pretrained_model is None or cfg.tagger_pretrained_model is None: raise ValueError("Both pre-trained models (DuplexTaggerModel and DuplexDecoderModel) should be provided.") tagger_trainer, tagger_model = instantiate_model_and_trainer(cfg, TAGGER_MODEL, False) decoder_trainer, decoder_model = instantiate_model_and_trainer(cfg, DECODER_MODEL, False) decoder_model.max_sequence_len = 512 tagger_model.max_sequence_len = 512 tn_model = DuplexTextNormalizationModel(tagger_model, decoder_model, lang) if lang == constants.ENGLISH: normalizer_electronic = ElectronicNormalizer(input_case="cased", lang=lang, deterministic=True) normalizer_whitelist = WhitelistNormalizer(input_case="cased", lang=lang, deterministic=True) if cfg.inference.get("from_file", False): text_file = cfg.inference.from_file logging.info(f'Running inference on {text_file}...') if not os.path.exists(text_file): raise ValueError(f'{text_file} not found.') with open(text_file, 'r') as f: lines = f.readlines() if lang == constants.ENGLISH: new_lines = normalizer_electronic.normalize_list(lines) lines = [ post_process_punct(input=input_, normalized_text=norm_) for input_, norm_ in zip(lines, new_lines) ] new_lines = normalizer_whitelist.normalize_list(lines) lines = [ post_process_punct(input=input_, normalized_text=norm_) for input_, norm_ in zip(lines, new_lines) ] def _get_predictions(lines: List[str], mode: str, batch_size: int, text_file: str): """ Runs inference on a batch data without labels and saved predictions to a file. """ assert mode in ['tn', 'itn'] file_name, extension = os.path.splitext(text_file) batch, all_preds = [], [] for i, line in enumerate(lines): batch.append(line.strip()) if len(batch) == batch_size or i == len(lines) - 1: outputs = tn_model._infer(batch, [constants.DIRECTIONS_TO_MODE[mode]] * len(batch),) all_preds.extend([x for x in outputs[-1]]) batch = [] assert len(all_preds) == len(lines) out_file = f'{file_name}_{mode}{extension}' with open(f'{out_file}', 'w') as f_out: f_out.write("\n".join(all_preds)) logging.info(f'Predictions for {mode} save to {out_file}.') batch_size = cfg.inference.get("batch_size", 8) if cfg.mode in ['tn', 'joint']: # TN mode _get_predictions(lines, 'tn', batch_size, text_file) if cfg.mode in ['itn', 'joint']: # ITN mode _get_predictions(lines, 'itn', batch_size, text_file) else: print('Entering interactive mode.') done = False while not done: print('Type "STOP" to exit.') test_input = input('Input a test input:') if test_input == "STOP": done = True if not done: if lang == constants.ENGLISH: new_input = normalizer_electronic.normalize(test_input, verbose=False) test_input = post_process_punct(input=test_input, normalized_text=new_input) new_input = normalizer_whitelist.normalize(test_input, verbose=False) test_input = post_process_punct(input=test_input, normalized_text=new_input) directions = [] inputs = [] if cfg.mode in ['itn', 'joint']: directions.append(constants.DIRECTIONS_TO_MODE[constants.ITN_MODE]) inputs.append(test_input) if cfg.mode in ['tn', 'joint']: directions.append(constants.DIRECTIONS_TO_MODE[constants.TN_MODE]) inputs.append(test_input) outputs = tn_model._infer(inputs, directions)[-1] if cfg.mode in ['joint', 'itn']: print(f'Prediction (ITN): {outputs[0]}') if cfg.mode in ['joint', 'tn']: print(f'Prediction (TN): {outputs[-1]}') if __name__ == '__main__': main()
NeMo-main
examples/nlp/duplex_text_normalization/duplex_text_normalization_infer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script contains an example on how to train a DuplexTextNormalizationModel. Note that DuplexTextNormalizationModel is essentially a wrapper class around two other classes: (1) DuplexTaggerModel is a model for identifying spans in the input that need to be normalized. Usually, such spans belong to semiotic classes (e.g., DATE, NUMBERS, ...). (2) DuplexDecoderModel is a model for normalizing the spans identified by the tagger. For example, in the text normalization (TN) problem, each span will be converted to its spoken form. In the inverse text normalization (ITN) problem, each span will be converted to its written form. Therefore, this script consists of two parts, one is for training the tagger model and the other is for training the decoder. This script uses the `/examples/nlp/duplex_text_normalization/conf/duplex_tn_config.yaml` config file by default. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. Probably it is worth looking at the example config file to see the list of parameters used for training. USAGE Example: 1. Obtain a processed dataset (refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization/nn_text_normalization.rst>`) 2. Run: # python duplex_text_normalization_train.py \ data.validation_ds.data_path=PATH_TO_VALIDATION_FILE \ data.train_ds.data_path=PATH_TO_TRAIN_FILE \ mode={tn,itn,joint} \ lang={en,ru,de} There are 3 different modes. `tn` mode is for training a system for TN only. `itn` mode is for training a system for ITN. `joint` is for training a system that can do both TN and ITN at the same time. Note that the above command will first train a tagger and then train a decoder sequentially. You can also train only a tagger (without training a decoder) by running the following command: # python duplex_text_normalization_train.py data.validation_ds.data_path=PATH_TO_VALIDATION_FILE \ data.train_ds.data_path=PATH_TO_TRAIN_FILE \ data.test_ds.data_path=PATH_TO_TEST_FILE \ mode={tn,itn,joint} lang={en,ru,de} decoder_model.do_training=false Or you can also train only a decoder (without training a tagger): # python duplex_text_normalization_train.py \ data.validation_ds.data_path=PATH_TO_VALIDATION_FILE \ data.train_ds.data_path=PATH_TO_TRAIN_FILE \ data.test_ds.data_path=PATH_TO_TEST_FILE \ mode={tn,itn,joint} \ lang={en,ru,de} \ tagger_model.do_training=false To use tarred dataset for decoder training set: data.train_ds.use_tarred_dataset=True \ data.train_ds.tar_metadata_file=\PATH_TO\<TARRED_DATA_OUTPUT_DIR>\metadata.json Information on the arguments: Most arguments in the example config file are quite self-explanatory (e.g., `decoder_model.optim.lr` refers to the learning rate for training the decoder). Some arguments we want to mention are: + lang: The language of the dataset. + tagger_model.nemo_path: This is the path where the final trained tagger model will be saved to. + decoder_model.nemo_path: This is the path where the final trained decoder model will be saved to. """ from helpers import DECODER_MODEL, TAGGER_MODEL, instantiate_model_and_trainer from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.data.text_normalization import TextNormalizationTestDataset from nemo.collections.nlp.models import DuplexTextNormalizationModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="conf", config_name="duplex_tn_config") def main(cfg: DictConfig) -> None: logging.info(f'Config Params: {OmegaConf.to_yaml(cfg)}') # Train the tagger if cfg.tagger_model.do_training: logging.info( "================================================================================================" ) logging.info('Starting training tagger...') tagger_trainer, tagger_model = instantiate_model_and_trainer(cfg, TAGGER_MODEL, True) tagger_exp_manager = cfg.get('tagger_exp_manager', None) exp_manager(tagger_trainer, tagger_exp_manager) tagger_trainer.fit(tagger_model) logging.info('Training finished!') # Train the decoder if cfg.decoder_model.do_training: logging.info( "================================================================================================" ) logging.info('Starting training decoder...') decoder_trainer, decoder_model = instantiate_model_and_trainer(cfg, DECODER_MODEL, True) decoder_exp_manager = cfg.get('decoder_exp_manager', None) exp_manager(decoder_trainer, decoder_exp_manager) decoder_trainer.fit(decoder_model) logging.info('Training finished!') # Evaluation after training if ( hasattr(cfg.data, 'test_ds') and cfg.data.test_ds.data_path is not None and cfg.tagger_model.do_training and cfg.decoder_model.do_training ): tn_model = DuplexTextNormalizationModel(tagger_model, decoder_model, cfg.lang) test_dataset = TextNormalizationTestDataset(cfg.data.test_ds.data_path, cfg.mode, cfg.lang) results = tn_model.evaluate(test_dataset, cfg.data.test_ds.batch_size, cfg.data.test_ds.errors_log_fp) print(f'\nTest results: {results}') if __name__ == '__main__': main()
NeMo-main
examples/nlp/duplex_text_normalization/duplex_text_normalization_train.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script runs evaluation on the test data. For more details on the data format refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization.rst>` 1. To evaluate the tagger model: python duplex_text_normalization_test.py \ tagger_pretrained_model=PATH_TO_TRAINED_TAGGER \ mode={tn,itn,joint} \ lang={en,ru,de} 2. To evaluate the decoder model: python duplex_text_normalization_test.py \ decoder_pretrained_model=PATH_TO_TRAINED_DECODER \ mode={tn,itn,joint} \ lang={en,ru,de} 3. To jointly evaluate "tagger -> decoder" pipeline the DuplexTextNormalizationModel will be used. DuplexTextNormalizationModel is essentially a wrapper class around DuplexTaggerModel and DuplexDecoderModel. Therefore, two trained NeMo models should be specified to run the joint evaluation (one is a trained DuplexTaggerModel and the other is a trained DuplexDecoderModel). Additionally, an error log will be saved in a file specified with data.test_ds.errors_log_fp (this file can be later used with analyze_errors.py) python duplex_text_normalization_test.py \ tagger_pretrained_model=PATH_TO_TRAINED_TAGGER \ decoder_pretrained_model=PATH_TO_TRAINED_DECODER \ mode={tn,itn,joint} \ lang={en,ru,de} \ data.test_ds.errors_log_fp=PATH_TO_FILE_TO_SAVE_ERROR_LOG \ data.test_ds.use_cache=true \ data.test_ds.batch_size=256 """ from helpers import DECODER_MODEL, TAGGER_MODEL, instantiate_model_and_trainer from omegaconf import DictConfig from nemo.collections.nlp.data.text_normalization import TextNormalizationTestDataset from nemo.collections.nlp.models import DuplexTextNormalizationModel from nemo.core.config import hydra_runner from nemo.utils import logging @hydra_runner(config_path="conf", config_name="duplex_tn_config") def main(cfg: DictConfig) -> None: lang = cfg.lang if cfg.tagger_pretrained_model: tagger_trainer, tagger_model = instantiate_model_and_trainer(cfg, TAGGER_MODEL, False) tagger_model.max_sequence_len = 512 tagger_model.setup_test_data(cfg.data.test_ds) logging.info('Evaluating the tagger...') tagger_trainer.test(model=tagger_model, verbose=False) else: logging.info('Tagger checkpoint is not provided, skipping tagger evaluation') if cfg.decoder_pretrained_model: decoder_trainer, decoder_model = instantiate_model_and_trainer(cfg, DECODER_MODEL, False) decoder_model.max_sequence_len = 512 decoder_model.setup_multiple_test_data(cfg.data.test_ds) logging.info('Evaluating the decoder...') decoder_trainer.test(decoder_model) else: logging.info('Decoder checkpoint is not provided, skipping decoder evaluation') if cfg.tagger_pretrained_model and cfg.decoder_pretrained_model: logging.info('Running evaluation of the duplex model (tagger + decoder) on the test set.') tn_model = DuplexTextNormalizationModel(tagger_model, decoder_model, lang) test_dataset = TextNormalizationTestDataset(cfg.data.test_ds.data_path, cfg.mode, lang) results = tn_model.evaluate(test_dataset, cfg.data.test_ds.batch_size, cfg.data.test_ds.errors_log_fp) print(f'\nTest results: {results}') if __name__ == '__main__': main()
NeMo-main
examples/nlp/duplex_text_normalization/duplex_text_normalization_test.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl from omegaconf import DictConfig from nemo.collections.nlp.data.text_normalization import constants from nemo.collections.nlp.models import DuplexDecoderModel, DuplexTaggerModel from nemo.utils import logging __all__ = ['TAGGER_MODEL', 'DECODER_MODEL', 'MODEL_NAMES', 'instantiate_model_and_trainer'] TAGGER_MODEL = 'tagger' DECODER_MODEL = 'decoder' MODEL_NAMES = [TAGGER_MODEL, DECODER_MODEL] def instantiate_model_and_trainer(cfg: DictConfig, model_name: str, do_training: bool): """ Function for instantiating a model and a trainer Args: cfg: The config used to instantiate the model and the trainer. model_name: A str indicates whether the model to be instantiated is a tagger or a decoder (i.e., model_name should be either TAGGER_MODEL or DECODER_MODEL). do_training: A boolean flag indicates whether the model will be trained or evaluated. Returns: trainer: A PyTorch Lightning trainer model: A NLPModel that can either be a DuplexTaggerModel or a DuplexDecoderModel """ assert model_name in MODEL_NAMES # Get configs for the corresponding models trainer_cfg = cfg.get(f'{model_name}_trainer') model_cfg = cfg.get(f'{model_name}_model') pretrained_cfg = cfg.get(f'{model_name}_pretrained_model', None) trainer = pl.Trainer(**trainer_cfg) if not pretrained_cfg: logging.info(f'Initializing {model_name} model') if model_name == TAGGER_MODEL: model = DuplexTaggerModel(model_cfg, trainer=trainer) if model_name == DECODER_MODEL: model = DuplexDecoderModel(model_cfg, trainer=trainer) elif os.path.exists(pretrained_cfg): logging.info(f'Restoring pretrained {model_name} model from {pretrained_cfg}') if model_name == TAGGER_MODEL: model = DuplexTaggerModel.restore_from(pretrained_cfg) if model_name == DECODER_MODEL: model = DuplexDecoderModel.restore_from(pretrained_cfg) else: logging.info(f'Loading pretrained model {pretrained_cfg}') if model_name == TAGGER_MODEL: if pretrained_cfg not in DuplexTaggerModel.get_available_model_names(): raise ( ValueError( f'{pretrained_cfg} not in the list of available Tagger models. Select from {DuplexTaggerModel.list_available_models()}' ) ) model = DuplexTaggerModel.from_pretrained(pretrained_cfg) if model_name == DECODER_MODEL: if pretrained_cfg not in DuplexDecoderModel.get_available_model_names(): raise ( ValueError( f'{pretrained_cfg} not in the list of available Decoder models. Select from {DuplexDecoderModel.list_available_models()}' ) ) model = DuplexDecoderModel.from_pretrained(pretrained_cfg) # Set model.lang (if it is still None) if model.lang is None: model.lang = cfg.lang assert model.lang in constants.SUPPORTED_LANGS # Setup covering grammars (if enabled) # We only support integrating with English TN covering grammars at the moment if model_name == DECODER_MODEL and model_cfg.use_cg and cfg.lang == constants.ENGLISH: if model.cg_normalizer is None: model.setup_cgs(model_cfg) # Setup train and validation data if do_training: model.setup_training_data(train_data_config=cfg.data.train_ds) if model_name == DECODER_MODEL: model.setup_multiple_validation_data(val_data_config=cfg.data.validation_ds) else: model.setup_validation_data(val_data_config=cfg.data.validation_ds) logging.info(f'Model {model_name} -- Device {model.device}') return trainer, model
NeMo-main
examples/nlp/duplex_text_normalization/helpers.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.en.graph_utils import GraphFst from nemo_text_processing.text_normalization.en.verbalizers.whitelist import WhiteListFst class VerbalizeFst(GraphFst): """ Composes other verbalizer grammars. For deployment, this grammar will be compiled and exported to OpenFst Finate State Archiv (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="verbalize", kind="verbalize", deterministic=deterministic) whitelist_graph = WhiteListFst(deterministic=deterministic).fst self.fst = whitelist_graph
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/whitelist/verbalize.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.normalize import Normalizer from nemo_text_processing.text_normalization.token_parser import TokenParser from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor class WhitelistNormalizer(Normalizer): """ Normalizer for WHITELIST. Args: input_case: accepting either "lower_cased" or "cased" input. lang: language deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files whitelist: path to a file with whitelist replacements """ def __init__( self, input_case: str, lang: str = 'en', deterministic: bool = True, cache_dir: str = None, overwrite_cache: bool = False, whitelist: str = None, ): from nn_wfst.en.whitelist.tokenize_and_classify import ClassifyFst from nn_wfst.en.whitelist.verbalize_final import VerbalizeFinalFst self.tagger = ClassifyFst( input_case=input_case, deterministic=deterministic, cache_dir=cache_dir, overwrite_cache=overwrite_cache, whitelist=whitelist, ) self.verbalizer = VerbalizeFinalFst(deterministic=deterministic) self.post_processor = None self.parser = TokenParser() self.lang = lang self.processor = MosesProcessor(lang_id=lang)
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/whitelist/normalize.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_WHITE_SPACE, GraphFst, delete_extra_space, delete_space, generator_main, ) from nemo_text_processing.text_normalization.en.taggers.punctuation import PunctuationFst from nemo_text_processing.text_normalization.en.taggers.whitelist import WhiteListFst from nemo_text_processing.text_normalization.en.taggers.word import WordFst from pynini.lib import pynutil from nemo.utils import logging class ClassifyFst(GraphFst): """ Final class that composes all other classification grammars. This class can process an entire sentence including punctuation. For deployment, this grammar will be compiled and exported to OpenFst Finate State Archiv (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: input_case: accepting either "lower_cased" or "cased" input. deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files whitelist: path to a file with whitelist replacements """ def __init__( self, input_case: str, cache_dir: str = None, overwrite_cache: bool = False, deterministic: bool = True, whitelist: str = None, ): super().__init__(name="tokenize_and_classify", kind="classify", deterministic=deterministic) far_file = None if cache_dir is not None and cache_dir != "None": os.makedirs(cache_dir, exist_ok=True) whitelist_file = os.path.basename(whitelist) if whitelist else "" far_file = os.path.join( cache_dir, f"_{input_case}_en_tn_{deterministic}_deterministic{whitelist_file}.far" ) if not overwrite_cache and far_file and os.path.exists(far_file): self.fst = pynini.Far(far_file, mode="r")["tokenize_and_classify"] logging.info(f'ClassifyFst.fst was restored from {far_file}.') else: logging.info(f"Creating ClassifyFst grammars.") punctuation = PunctuationFst(deterministic=deterministic) punct_graph = punctuation.fst word_graph = WordFst(deterministic=deterministic, punctuation=punctuation).fst whitelist_graph = WhiteListFst(input_case=input_case, deterministic=deterministic).fst classify = pynutil.add_weight(whitelist_graph, 1) | pynutil.add_weight(word_graph, 100) punct = pynutil.insert("tokens { ") + pynutil.add_weight(punct_graph, weight=2.1) + pynutil.insert(" }") punct = pynini.closure( pynini.compose(pynini.closure(NEMO_WHITE_SPACE, 1), delete_extra_space) | (pynutil.insert(" ") + punct), 1, ) token = pynutil.insert("tokens { ") + classify + pynutil.insert(" }") token_plus_punct = ( pynini.closure(punct + pynutil.insert(" ")) + token + pynini.closure(pynutil.insert(" ") + punct) ) graph = ( token_plus_punct + pynini.closure( ( pynini.compose(pynini.closure(NEMO_WHITE_SPACE, 1), delete_extra_space) | (pynutil.insert(" ") + punct + pynutil.insert(" ")) ) + token_plus_punct ).optimize() ) graph = delete_space + graph + delete_space graph |= punct self.fst = graph.optimize() if far_file: generator_main(far_file, {"tokenize_and_classify": self.fst}) logging.info(f"ClassifyFst grammars are saved to {far_file}.")
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/whitelist/tokenize_and_classify.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import GraphFst, delete_extra_space, delete_space from nemo_text_processing.text_normalization.en.verbalizers.word import WordFst from nn_wfst.en.electronic.verbalize import VerbalizeFst from pynini.lib import pynutil class VerbalizeFinalFst(GraphFst): """ Finite state transducer that verbalizes an entire sentence. Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="verbalize_final", kind="verbalize", deterministic=deterministic) verbalize = VerbalizeFst(deterministic=deterministic).fst word = WordFst(deterministic=deterministic).fst types = verbalize | word if deterministic: graph = ( pynutil.delete("tokens") + delete_space + pynutil.delete("{") + delete_space + types + delete_space + pynutil.delete("}") ) else: graph = delete_space + types + delete_space graph = delete_space + pynini.closure(graph + delete_extra_space) + graph + delete_space self.fst = graph
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/whitelist/verbalize_final.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/whitelist/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.en.graph_utils import GraphFst from nemo_text_processing.text_normalization.en.verbalizers.electronic import ElectronicFst class VerbalizeFst(GraphFst): """ Composes other verbalizer grammars. For deployment, this grammar will be compiled and exported to OpenFst Finate State Archiv (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="verbalize", kind="verbalize", deterministic=deterministic) electronic_graph = ElectronicFst(deterministic=deterministic).fst self.fst = electronic_graph
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/electronic/verbalize.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.normalize import Normalizer from nemo_text_processing.text_normalization.token_parser import TokenParser from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor class ElectronicNormalizer(Normalizer): """ Normalizer for ELECTRONIC. Args: input_case: accepting either "lower_cased" or "cased" input. lang: language deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files """ def __init__( self, input_case: str = 'cased', lang: str = 'en', deterministic: bool = True, cache_dir: str = None, overwrite_cache: bool = False, ): from nn_wfst.en.electronic.tokenize_and_classify import ClassifyFst from nn_wfst.en.electronic.verbalize_final import VerbalizeFinalFst self.tagger = ClassifyFst( input_case=input_case, deterministic=deterministic, cache_dir=cache_dir, overwrite_cache=overwrite_cache ) self.verbalizer = VerbalizeFinalFst(deterministic=deterministic) self.post_processor = None self.parser = TokenParser() self.lang = lang self.processor = MosesProcessor(lang_id=lang)
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/electronic/normalize.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_WHITE_SPACE, GraphFst, delete_extra_space, delete_space, generator_main, ) from nemo_text_processing.text_normalization.en.taggers.electronic import ElectronicFst from nemo_text_processing.text_normalization.en.taggers.punctuation import PunctuationFst from nemo_text_processing.text_normalization.en.taggers.word import WordFst from pynini.lib import pynutil from nemo.utils import logging class ClassifyFst(GraphFst): """ Final class that composes all other classification grammars. This class can process an entire sentence including punctuation. For deployment, this grammar will be compiled and exported to OpenFst Finate State Archiv (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: input_case: accepting either "lower_cased" or "cased" input. deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files """ def __init__( self, input_case: str, cache_dir: str = None, overwrite_cache: bool = False, deterministic: bool = True ): super().__init__(name="tokenize_and_classify", kind="classify", deterministic=deterministic) far_file = None if cache_dir is not None and cache_dir != "None": os.makedirs(cache_dir, exist_ok=True) far_file = os.path.join(cache_dir, f"_{input_case}_en_tn_{deterministic}_deterministic.far") if not overwrite_cache and far_file and os.path.exists(far_file): self.fst = pynini.Far(far_file, mode="r")["tokenize_and_classify"] logging.info(f'ClassifyFst.fst was restored from {far_file}.') else: logging.info(f"Creating ClassifyFst grammars.") punctuation = PunctuationFst(deterministic=deterministic) punct_graph = punctuation.fst word_graph = WordFst(deterministic=deterministic, punctuation=punctuation).fst electonic_graph = ElectronicFst(deterministic=deterministic).fst classify = pynutil.add_weight(electonic_graph, 1.1) | pynutil.add_weight(word_graph, 100) punct = pynutil.insert("tokens { ") + pynutil.add_weight(punct_graph, weight=2.1) + pynutil.insert(" }") punct = pynini.closure( pynini.compose(pynini.closure(NEMO_WHITE_SPACE, 1), delete_extra_space) | (pynutil.insert(" ") + punct), 1, ) token = pynutil.insert("tokens { ") + classify + pynutil.insert(" }") token_plus_punct = ( pynini.closure(punct + pynutil.insert(" ")) + token + pynini.closure(pynutil.insert(" ") + punct) ) graph = ( token_plus_punct + pynini.closure( ( pynini.compose(pynini.closure(NEMO_WHITE_SPACE, 1), delete_extra_space) | (pynutil.insert(" ") + punct + pynutil.insert(" ")) ) + token_plus_punct ).optimize() ) graph = delete_space + graph + delete_space graph |= punct self.fst = graph.optimize() if far_file: generator_main(far_file, {"tokenize_and_classify": self.fst}) logging.info(f"ClassifyFst grammars are saved to {far_file}.")
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/electronic/tokenize_and_classify.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import GraphFst, delete_extra_space, delete_space from nemo_text_processing.text_normalization.en.verbalizers.word import WordFst from nn_wfst.en.electronic.verbalize import VerbalizeFst from pynini.lib import pynutil class VerbalizeFinalFst(GraphFst): """ Finite state transducer that verbalizes an entire sentence. Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="verbalize_final", kind="verbalize", deterministic=deterministic) verbalize = VerbalizeFst(deterministic=deterministic).fst word = WordFst(deterministic=deterministic).fst types = verbalize | word if deterministic: graph = ( pynutil.delete("tokens") + delete_space + pynutil.delete("{") + delete_space + types + delete_space + pynutil.delete("}") ) else: graph = delete_space + types + delete_space graph = delete_space + pynini.closure(graph + delete_extra_space) + graph + delete_space self.fst = graph
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/electronic/verbalize_final.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
examples/nlp/duplex_text_normalization/nn_wfst/en/electronic/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script creates data splits of the Google Text Normalization dataset of the format mentioned in the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization.rst>`. USAGE Example: 1. Download the Google TN dataset from https://www.kaggle.com/google-nlu/text-normalization 2. Unzip the English subset (e.g., by running `tar zxvf en_with_types.tgz`). Then there will a folder named `en_with_types`. 3. Run this script # python data_split.py \ --data_dir=en_with_types/ \ --output_dir=data_split/ \ --lang=en In this example, the split files will be stored in the `data_split` folder. The folder should contain three subfolders `train`, 'dev', and `test` with `.tsv` files. """ from argparse import ArgumentParser from os import listdir, mkdir from os.path import isdir, isfile, join from tqdm import tqdm from nemo.collections.nlp.data.text_normalization import constants # Local Constants TEST_SIZE_EN = 100002 TEST_SIZE_RUS = 100007 def read_google_data(data_file: str, lang: str, split: str, add_test_full=False): """ The function can be used to read the raw data files of the Google Text Normalization dataset (which can be downloaded from https://www.kaggle.com/google-nlu/text-normalization) Args: data_file: Path to the data file. Should be of the form output-xxxxx-of-00100 lang: Selected language. split: data split add_test_full: do not truncate test data i.e. take the whole test file not #num of lines Return: data: list of examples """ data = [] cur_classes, cur_tokens, cur_outputs = [], [], [] with open(data_file, 'r', encoding='utf-8') as f: for linectx, line in tqdm(enumerate(f)): es = line.strip().split('\t') if split == "test" and not add_test_full: # For the results reported in the paper "RNN Approaches to Text Normalization: A Challenge": # + For English, the first 100,002 lines of output-00099-of-00100 are used for the test set # + For Russian, the first 100,007 lines of output-00099-of-00100 are used for the test set if lang == constants.ENGLISH and linectx == TEST_SIZE_EN: break if lang == constants.RUSSIAN and linectx == TEST_SIZE_RUS: break if len(es) == 2 and es[0] == '<eos>': data.append((cur_classes, cur_tokens, cur_outputs)) # Reset cur_classes, cur_tokens, cur_outputs = [], [], [] continue # Remove _trans (for Russian) if lang == constants.RUSSIAN: es[2] = es[2].replace('_trans', '') # Update the current example assert len(es) == 3 cur_classes.append(es[0]) cur_tokens.append(es[1]) cur_outputs.append(es[2]) return data if __name__ == '__main__': parser = ArgumentParser(description='Preprocess Google text normalization dataset') parser.add_argument('--data_dir', type=str, required=True, help='Path to folder with data') parser.add_argument('--output_dir', type=str, default='preprocessed', help='Path to folder with preprocessed data') parser.add_argument( '--lang', type=str, default=constants.ENGLISH, choices=constants.SUPPORTED_LANGS, help='Language' ) parser.add_argument( '--add_test_full', action='store_true', help='If True, additional folder test_full will be created without truncation of files', ) args = parser.parse_args() # Create the output dir (if not exist) if not isdir(args.output_dir): mkdir(args.output_dir) mkdir(args.output_dir + '/train') mkdir(args.output_dir + '/dev') mkdir(args.output_dir + '/test') if args.add_test_full: mkdir(args.output_dir + '/test_full') for fn in sorted(listdir(args.data_dir))[::-1]: fp = join(args.data_dir, fn) if not isfile(fp): continue if not fn.startswith('output'): continue # Determine the current split split_nb = int(fn.split('-')[1]) if split_nb < 90: cur_split = "train" elif split_nb < 95: cur_split = "dev" elif split_nb == 99: cur_split = "test" data = read_google_data(data_file=fp, lang=args.lang, split=cur_split) # write out output_file = join(args.output_dir, f'{cur_split}', f'{fn}.tsv') print(fp) print(output_file) output_f = open(output_file, 'w', encoding='utf-8') for inst in data: cur_classes, cur_tokens, cur_outputs = inst for c, t, o in zip(cur_classes, cur_tokens, cur_outputs): output_f.write(f'{c}\t{t}\t{o}\n') output_f.write('<eos>\t<eos>\n') print(f'{cur_split}_sentences: {len(data)}') # additionally generate full test files if needed if cur_split == "test" and args.add_test_full: data = read_google_data(data_file=fp, lang=args.lang, split=cur_split, add_test_full=True) # write out output_file = join(args.output_dir, 'test_full', f'{fn}.tsv') output_f = open(output_file, 'w', encoding='utf-8') for inst in data: cur_classes, cur_tokens, cur_outputs = inst for c, t, o in zip(cur_classes, cur_tokens, cur_outputs): output_f.write(f'{c}\t{t}\t{o}\n') output_f.write('<eos>\t<eos>\n') print(f'{cur_split}_sentences: {len(data)}')
NeMo-main
examples/nlp/duplex_text_normalization/data/data_split.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import pickle import random import tarfile from glob import glob from typing import List, Tuple from joblib import Parallel, delayed from tqdm import tqdm from transformers import AutoTokenizer import nemo.collections.nlp.data.text_normalization.constants as constants from nemo.collections.nlp.data.text_normalization.decoder_dataset import TextNormalizationDecoderDataset from nemo.utils import logging """ The script builds tar files for Tarred TextNormalizationDecoderDataset See `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization/nn_text_normalization.rst>` for more details on data format, and en/data_processing.py on how to pre-process the data before tarring. To run the script, use: python create_tarred_dataset.py \ --input_files = "train_processed/output-00099-of-00100" \ --input_files = "train_processed/output-00098-of-00100" \ --lang = "en" \ --out_dir="TARRED_DATA_OUTPUT_DIR" See the argparse help for more arguments. """ def _preprocess_file(input_file: str) -> List[Tuple[List[str]]]: """ Performs initial preprocessing, i.e., urls formatting, removal of "_trans" from Ru set Args: input_file: path to a file in google TN format Returns: Processed data. Each element is a Tuple(List[semiotic classes], List[written words], List[spoken words]) """ print(f"Reading and running initial pre-processing of {input_file}...") cur_split = [] with open(input_file, 'r', encoding='utf-8') as f: # Loop through each line of the file cur_classes, cur_tokens, cur_outputs = [], [], [] for linectx, line in tqdm(enumerate(f)): es = line.strip().split('\t') if len(es) == 2 and es[0] == '<eos>': cur_split.append((cur_classes, cur_tokens, cur_outputs)) # Reset cur_classes, cur_tokens, cur_outputs = [], [], [] continue assert len(es) == 3 cur_classes.append(es[0]) cur_tokens.append(es[1]) cur_outputs.append(es[2]) return cur_split def _write_batches_to_tarfiles( input_file: str, tokenizer: AutoTokenizer, tokenizer_name: str, mode: str, lang: str, max_seq_len: int, batch_size: int, out_dir: str, num_batches_per_tarfile: int, decoder_data_augmentation: bool = False, ): """ Creates tar files for the input file, i.e.: 1. Creates a TextNormalizationDecoderDataset from the input file 2. Constructs batches of size `batch_size` 3. Saves each created batch to a pickle file and then adds `num_batches_per_tarfile` of the pickle files to a tarfile. Args: input_file: path to cleaned data file. See en/data_processing.py for cleaning. tokenizer: tokenizer tokenizer_name: the name of the tokenizer, usually corresponds to the pre-trained LM mode: model training mode max_seq_len: maximum length of the sequence (examples that are longer will be discarded) batch_size: batch size out_dir: path to output directory num_batches_per_tarfile: number of batches saved in each tar file decoder_data_augmentation: Set to True to enable data augmentation for the decoder model lang: data language """ dataset = TextNormalizationDecoderDataset( input_file=input_file, raw_instances=_preprocess_file(input_file=input_file), tokenizer=tokenizer, tokenizer_name=tokenizer_name, mode=mode, max_len=max_seq_len, decoder_data_augmentation=decoder_data_augmentation, lang=lang, use_cache=False, max_insts=-1, do_tokenize=False, initial_shuffle=True, ) dataset.batchify(batch_size) file_name = os.path.basename(input_file) tar_file_ctr = 0 tar_file_path = os.path.join( out_dir, '%s-batches.%d.%d.%d.tar' % (file_name, batch_size, max_seq_len, tar_file_ctr) ) tar_file_ptr = tarfile.open(tar_file_path, 'w') total_batch_ctr = 0 batch_ctr = 0 for batch in dataset.batches: total_batch_ctr += 1 batch_ctr += 1 pickle_file = os.path.join(out_dir, '%s-batch-%d.pkl' % (file_name, total_batch_ctr)) pickle.dump(batch, open(pickle_file, 'wb')) tar_file_ptr.add(pickle_file) os.remove(pickle_file) if batch_ctr == num_batches_per_tarfile: tar_file_ctr += 1 tar_file_ptr.close() tar_file_path = os.path.join( out_dir, f'%s-batches.%d.%d.%d.tar' % (file_name, batch_size, max_seq_len, tar_file_ctr) ) tar_file_ptr = tarfile.open(tar_file_path, 'w',) batch_ctr = 0 # return tar files paths that have batches remaining remainder_tar_file_path = tar_file_ptr.name tar_file_ptr.close() return total_batch_ctr, remainder_tar_file_path if __name__ == '__main__': parser = argparse.ArgumentParser(description='(Inverse) Text Normalization tarred dataset creation') parser.add_argument('--transformer_name', type=str, default="t5-small", help='Name of the pretrained LM.') parser.add_argument('--mode', type=str, default='tn', choices=constants.MODES, help='(I)TN model training mode.') parser.add_argument('--lang', type=str, default='en', choices=constants.SUPPORTED_LANGS, help='language.') parser.add_argument( '--decoder_data_augmentation', action="store_true", help='Set to True to use data augmentation for the decoder model.', ) parser.add_argument( '-in', '--input_files', action='append', required=True, help="Example: -in train_processed/output-00099-of-00100 -in train_processed/output-00098-of-00100", ) parser.add_argument('--out_dir', type=str, required=True, help='Path to store dataloader and tokenizer models.') parser.add_argument( '--max_seq_length', type=int, default=80, help='Maximum sequence length, longer examples will be discarded.' ) parser.add_argument('--min_seq_length', type=int, default=1, help='Minimum sequence length.') parser.add_argument( '--num_batches_per_tarfile', type=int, default=2, help='Number batches, i.e., pickle files, included in a single .tar file.', ) parser.add_argument('--n_jobs', type=int, default=-2, help='The maximum number of concurrently running jobs.') parser.add_argument( '--batch_size', type=int, default=16, help='Batch size, i.e., number of examples in a single pickle file. This batch size will override the training size.', ) parser.add_argument( '--factor', default=8, type=int, help='The final number of tar files will be divisible by the "factor" value' ) args = parser.parse_args() # check if tar files exist if os.path.exists(args.out_dir): tar_files_in_out_dir = glob(f'{args.out_dir}/*.tar') if tar_files_in_out_dir: raise ValueError( f'Tar files detected in {args.out_dir}. Delete the files to re-construct the dataset in the same directory.' ) else: os.makedirs(args.out_dir) world_size = 1 tokenizer = AutoTokenizer.from_pretrained(args.transformer_name) results_list = Parallel(n_jobs=args.n_jobs)( delayed(_write_batches_to_tarfiles)( input_file=input_file, tokenizer=tokenizer, tokenizer_name=args.transformer_name, mode=args.mode, lang=args.lang, batch_size=args.batch_size, max_seq_len=args.max_seq_length, decoder_data_augmentation=args.decoder_data_augmentation, out_dir=args.out_dir, num_batches_per_tarfile=args.num_batches_per_tarfile, ) for input_file in args.input_files ) total_batches = sum([batch_count for batch_count, _ in results_list]) # save batches from tar files containing the left over batches (if there's enough batches) remainder_tar_file_ctr = 0 remainder_tar_file_path = os.path.join( args.out_dir, f'remainder-batches.tokens.{args.batch_size}.tar_file_{remainder_tar_file_ctr}.tar' ) remainder_tar_file_ptr = tarfile.open(remainder_tar_file_path, 'w') batch_in_tar_ctr = 0 for _, tar_file_path in results_list: tar_file_ptr = tarfile.open(tar_file_path, 'r') for member in tar_file_ptr.getmembers(): remainder_tar_file_ptr.addfile(member, tar_file_ptr.extractfile(member.name)) batch_in_tar_ctr += 1 if batch_in_tar_ctr == args.num_batches_per_tarfile: remainder_tar_file_ctr += 1 remainder_tar_file_ptr.close() remainder_tar_file_path = os.path.join( args.out_dir, f'remainder-batches.tokens.{args.batch_size}.tar_file_{remainder_tar_file_ctr}.tar', ) remainder_tar_file_ptr = tarfile.open(remainder_tar_file_path, 'w',) batch_in_tar_ctr = 0 tar_file_ptr.close() os.remove(tar_file_path) # log the number of batches remaining as they will be discarded num_batches_discarded = len(remainder_tar_file_ptr.getmembers()) remainder_tar_file_ptr.close() os.remove(remainder_tar_file_path) tar_file_paths = glob(f'{args.out_dir}/*.tar') if args.factor != 1: num_tar_files = len(tar_file_paths) num_tars_to_drop = num_tar_files % args.factor num_batches_discarded += num_tars_to_drop * args.num_batches_per_tarfile random.shuffle(tar_file_paths) for _ in range(num_tars_to_drop): os.remove(tar_file_paths.pop(-1)) total_batches -= num_batches_discarded logging.info(f'Number of batches discarded: {num_batches_discarded}, total batches kept: {total_batches}') # dump metadata to json metadata = {} metadata['num_batches'] = total_batches # rename tar files so they can be more easily used with CLI and YAML file_name = f'{args.mode}.{args.batch_size}_bs.{args.num_batches_per_tarfile}_b_per_tar.{args.max_seq_length}_len' for index, path in enumerate(tar_file_paths): os.rename(path, os.path.join(args.out_dir, f'{file_name}.{index}.tar')) text_tar_filepaths = f'{file_name}._OP_0..{index}_CL_.tar' logging.info(f'Files for brace expansion: "{text_tar_filepaths}"') metadata['text_tar_filepaths'] = text_tar_filepaths # add tar files to metadata tar_file_paths = glob(f'{args.out_dir}/*.tar') metadata['tar_files'] = tar_file_paths metadata_path = os.path.join(args.out_dir, 'metadata.json') json.dump(metadata, open(metadata_path, 'w')) num_tar_files = len(tar_file_paths) if num_tar_files < world_size: raise ValueError( ( f'Number of tar files found: {num_tar_files} is less than world size: {world_size}. ' f'There should be at least one tar file per GPU (ideally many tar files per GPU). ' f'This may be due to dataset size. ' f'Decrease num_batches_per_tarfile or num_tokens_per_batch to increase the number of tarfiles. ' f'Also using shard_strategy=replicate will use all available tarfiles for every GPU. ' ) )
NeMo-main
examples/nlp/duplex_text_normalization/data/create_tarred_dataset.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to clean the splits of English Google Text Normalization dataset for better training performance. Without these processing steps we noticed that the model would have a hard time to learn certain input cases, and instead starts to either make unrecoverable errors or hallucinate. For example, the model struggles to learn numbers with five or more digits due to limited examples in the training data, so we simplified the task for the model by letting it verbalize those cases digit by digit. This makes the model more rebust to errors. The operations include: - numbers that are longer than `max_integer_length` will be verbalized digit by digit, e.g. the mapping "10001" -> "ten thousand and one" in the data will be changed to "10001" -> "one zero zero zero one" - denominators of fractions that are longer than `max_denominator_length` will be verbalized digit by digit - sentences with non-English characters will be removed - some class formats converted to standardized format, e.g. for `Fraction` "½" become "1/2" - urls that have a spoken form of "*_letter" e.g. "dot h_letter _letter t_letter _letter m_letter _letter l_letter" are converted to "dot h t m l" - for class types "PLAIN", "LETTERS", "ELECTRONIC", "VERBATIM", "PUNCT" the spoken form is changed to "<self>" which means this class should be left unchanged USAGE Example: 1. Download the Google TN dataset from https://www.kaggle.com/google-nlu/text-normalization 2. Unzip the English subset (e.g., by running `tar zxvf en_with_types.tgz`). Then there will a folder named `en_with_types`. 3. Run the data_split.py scripts to obtain the data splits 4. Run this script on the different splits # python data_preprocessing.py \ --input_path=data_split/train \ --output_dir=train_processed \ --max_integer_length=4 \ --max_denominator_length=3 In this example, the cleaned files will be saved in train_processed/. After this script, you can use upsample.py to create a more class balanced training dataset for better performance. """ import os from argparse import ArgumentParser import inflect import regex as re from tqdm import tqdm from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor from nemo.collections.nlp.data.text_normalization.constants import EN_GREEK_TO_SPOKEN from nemo.collections.nlp.data.text_normalization.utils import ( add_space_around_dash, convert_fraction, convert_superscript, ) from nemo.utils import logging engine = inflect.engine() # these are all words that can appear in a verbalized number, this list will be used later as a filter to detect numbers in verbalizations number_verbalizations = list(range(0, 20)) + list(range(20, 100, 10)) number_verbalizations = ( [engine.number_to_words(x, zero="zero").replace("-", " ").replace(",", "") for x in number_verbalizations] + ["hundred", "thousand", "million", "billion", "trillion"] + ["point"] ) digit = "0123456789" processor = MosesProcessor(lang_id="en") def process_url(o): """ The function is used to process the spoken form of every URL in an example. E.g., "dot h_letter _letter t_letter _letter m_letter _letter l_letter" -> "dot h t m l" Args: o: The expected outputs for the spoken form Return: o: The outputs for the spoken form with preprocessed URLs. """ def flatten(l): """ flatten a list of lists """ return [item for sublist in l for item in sublist] if o != '<self>' and '_letter' in o: o_tokens = o.split(' ') all_spans, cur_span = [], [] for j in range(len(o_tokens)): if len(o_tokens[j]) == 0: continue if o_tokens[j] == '_letter': all_spans.append(cur_span) all_spans.append([' ']) cur_span = [] else: o_tokens[j] = o_tokens[j].replace('_letter', '') cur_span.append(o_tokens[j]) if len(cur_span) > 0: all_spans.append(cur_span) o_tokens = flatten(all_spans) o = '' for o_token in o_tokens: if len(o_token) > 1: o += ' ' + o_token + ' ' else: o += o_token o = o.strip() o_tokens = processor.tokenize(o).split() o = ' '.join(o_tokens) return o def convert2digits(digits: str): """ Verbalizes integer digit by digit, e.g. "12,000.12" -> "one two zero zero zero point one two" It can also take in a string that has an integer as prefix and outputs only the verbalized part of that, e.g. "12 kg" -> "one two" and outputs a warning Args: digits: integer in string format Return: res: number verbalization of the integer prefix of the input """ res = [] for i, x in enumerate(digits): if x in digit: res.append(engine.number_to_words(str(x), zero="zero").replace("-", " ").replace(",", "")) elif x == ".": res.append("point") elif x in [" ", ","]: continue else: # logging.warning(f"remove {digits[:i]} from {digits[i:]}") break res = " ".join(res) return res, i def convert(example): cls, written, spoken = example written = convert_fraction(written) written = re.sub("é", "e", written) written = convert_superscript(written) if cls == "TIME": written = re.sub("([0-9]): ([0-9])", "\\1:\\2", written) if cls == "MEASURE": written = re.sub("([0-9])\s?''", '\\1"', written) spoken = process_url(spoken) if cls in ["TELEPHONE", "DIGIT", "MEASURE", "DECIMAL", "MONEY", "ADDRESS"]: spoken = re.sub(" o ", " zero ", spoken) spoken = re.sub(" o ", " zero ", spoken) spoken = re.sub("^o ", "zero ", spoken) spoken = re.sub(" o$", " zero", spoken) spoken = re.sub("^sil ", "", spoken) spoken = re.sub(" sil ", " ", spoken) spoken = re.sub(" sil ", " ", spoken) spoken = re.sub(" sil$", "", spoken) if cls != "ELECTRONIC": written = add_space_around_dash(written) example[1] = written example[2] = spoken l = args.max_integer_length - 2 # if written form does not fulfill this format return if not re.search("[0-9]{%s}[,\s]?[0-9]{3}" % l, written): if cls != "FRACTION": return idx = written.index("/") denominator = written[idx + 1 :].strip() if not re.search(r"[0-9]{%s}" % (args.max_denominator_length + 1), denominator): return # convert spoken forms for different classes if cls == "CARDINAL": if written[0] == "-": digits = "minus " + convert2digits(written[1:])[0] else: digits = convert2digits(written)[0] spoken = digits elif cls == "ADDRESS": idx = re.search("[0-9]", written).start() number = convert2digits(written[idx:].strip())[0] s_words = spoken.split() for i, x in enumerate(s_words): if x in number_verbalizations: break spoken = " ".join(s_words[:i]) + " " + number elif cls == "DECIMAL": res = [] for i, x in enumerate(written): if i == 0 and x == "-": res.append("minus") elif x in digit: res.append(engine.number_to_words(str(x), zero="zero").replace("-", " ").replace(",", "")) elif x == ".": res.append("point") spoken = " ".join(res) m = re.search("([a-z]+)", written) if m: spoken += " " + m.group(1) elif cls == "FRACTION": res = [] if written[0] == "-": res.append("minus") written = written[1:] idx = written.index("/") numerator = written[:idx].strip() denominator = written[idx + 1 :].strip() if len(numerator) > args.max_integer_length: numerator = convert2digits(numerator)[0] else: numerator = engine.number_to_words(str(numerator), zero="zero").replace("-", " ").replace(",", "") if len(denominator) > args.max_denominator_length: denominator = convert2digits(denominator)[0] else: denominator = engine.number_to_words(str(denominator), zero="zero").replace("-", " ").replace(",", "") spoken = numerator + " slash " + denominator if res: spoken = "minus " + spoken elif cls == "MEASURE": res = [] if written[0] == "-": res.append("minus") written = written[1:] idx = re.search("(?s:.*)([0-9]\s?[a-zA-Zµμ\/%Ω'])", written).end() number, unit_idx = convert2digits(written[:idx].strip()) s_words = spoken.split() for i, x in enumerate(s_words): if x not in number_verbalizations: break spoken = number + " " + " ".join(s_words[i:]) if res: spoken = "minus " + spoken elif cls == "MONEY": res = [] if written[0] == "-": res.append("minus") written = written[1:] idx = re.search("[0-9]", written).start() m = re.search("\.", written[idx:]) idx_end = len(written) if m: idx_end = m.start() + idx number, unit_idx = convert2digits(written[idx:idx_end].strip()) s_words = spoken.split() for i, x in enumerate(s_words): if x not in number_verbalizations: break spoken = number + " " + " ".join(s_words[i:]) if res: spoken = "minus " + spoken elif cls == "ORDINAL": res = [] if written[0] == "-": res.append("minus") written = written[1:] if "th" in written.lower(): idx = written.lower().index("th") elif "rd" in written.lower(): idx = written.lower().index("rd") elif "nd" in written.lower(): idx = written.lower().index("nd") elif "st" in written.lower(): idx = written.lower().index("st") if re.search(r"[¿¡ºª]", written) is None: spoken = convert2digits(written[:idx].strip())[0] + " " + written[idx:].lower() if res: spoken = "minus " + spoken example[2] = spoken def ignore(example): """ This function makes sure specific class types like 'PLAIN', 'ELECTRONIC' etc. are left unchanged. Args: example: data example """ cls, _, _ = example if cls in ["PLAIN", "LETTERS", "ELECTRONIC", "VERBATIM", "PUNCT"]: example[2] = "<self>" if example[1] == 'I' and re.search("(first|one)", example[2]): example[2] = "<self>" def process_file(fp): """ Reading the raw data from a file of NeMo format and preprocesses it. Write is out to the output directory. For more info about the data format, refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization.rst>`. Args: fp: file path """ file_name = fp.split("/")[-1] output_path = f"{args.output_dir}/{file_name}" logging.info(f"-----input_file--------\n{fp}") logging.info(f"-----output_file--------\n{output_path}") insts, w_words, s_words, classes = [], [], [], [] delete_sentence = False with open(fp, 'r', encoding='utf-8') as f: for line in tqdm(f): es = [e.strip() for e in line.strip().split('\t')] if es[0] == '<eos>': if not delete_sentence: inst = (classes, w_words, s_words) insts.append(inst) # Reset w_words, s_words, classes = [], [], [] delete_sentence = False else: # convert data sample convert(es) # decide if this data sample's spoken form should be same as written form ignore(es) characters_ignore = "¿¡ºª" + "".join(EN_GREEK_TO_SPOKEN.keys()) # delete sentence with greek symbols, etc. if re.search(rf"[{characters_ignore}]", es[1]) is not None: delete_sentence = True # delete characters from chinese, japanese, korean if re.search(r'[\u4e00-\u9fff]+', es[1]) is not None: delete_sentence = True if es[0] == 'MONEY' and re.search("\s?DM$", es[1]): delete_sentence = True if es[0] == 'MEASURE' and re.search("\s?Da$", es[1]): delete_sentence = True classes.append(es[0]) w_words.append(es[1]) s_words.append(es[2]) inst = (classes, w_words, s_words) insts.append(inst) output_f = open(output_path, 'w+', encoding='utf-8') for _, inst in enumerate(insts): cur_classes, cur_tokens, cur_outputs = inst for c, t, o in zip(cur_classes, cur_tokens, cur_outputs): output_f.write(f'{c}\t{t}\t{o}\n') output_f.write(f'<eos>\t<eos>\n') def main(): if not os.path.exists(args.input_path): raise ValueError(f"Input path {args.input_path} does not exist") if os.path.exists(args.output_dir): logging.info( f"Output directory {args.output_dir} exists already. Existing files could be potentially overwritten." ) else: logging.info(f"Creating output directory {args.output_dir}.") os.makedirs(args.output_dir, exist_ok=True) if os.path.isdir(args.input_path): input_paths = sorted([os.path.join(args.input_path, f) for f in os.listdir(args.input_path)]) else: input_paths = [args.input_path] for input_file in input_paths: process_file(input_file) if __name__ == "__main__": parser = ArgumentParser(description="Text Normalization Data Preprocessing for English") parser.add_argument("--output_dir", required=True, type=str, help='Path to output directory.') parser.add_argument("--input_path", required=True, type=str, help='Path to input file or input directory.') parser.add_argument( "--max_integer_length", default=4, type=int, help='Maximum number of digits for integers that are allowed. Beyond this, the integers are verbalized digit by digit.', ) parser.add_argument( "--max_denominator_length", default=3, type=int, help='Maximum number of digits for denominators that are allowed. Beyond this, the denominator is verbalized digit by digit.', ) args = parser.parse_args() main()
NeMo-main
examples/nlp/duplex_text_normalization/data/en/data_preprocessing.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to create a more class balanced file from a set of the data files of the English Google Text Normalization dataset for better training performance. Currently this script upsamples the class types "MONEY", "MEASURE", "TIME", "FRACTION" since these are underrepresented in the Google Text Normalization dataset, but still diverse in its representations. Of all the input files in `input_dir` this script takes the first file and computes the class patterns that occurs in it. For those that are underrepresented, quantitatively defined as lower than `min_number`, the other files are scanned for sentences that have the missing patterns. Those sentences are appended to the first file and outputted. USAGE Example: 1. Download the Google TN dataset from https://www.kaggle.com/google-nlu/text-normalization 2. Unzip the English subset (e.g., by running `tar zxvf en_with_types.tgz`). Then there will a folder named `en_with_types`. 3. Run the data_split.py, data_preprocessing.py scripts to obtain cleaned data files 4. Run this script on the training data portion # python upsample.py \ --input_dir=train_processed/ \ --output_file=train_upsampled.tsv/ \ --min_number=2000 In this example, the final file will be train_upsampled.tsv. """ import glob from argparse import ArgumentParser from collections import defaultdict from typing import List import numpy as np import regex as re parser = ArgumentParser(description="English Text Normalization upsampling") parser.add_argument("--input_dir", required=True, type=str, help='Path to input directory with preprocessed data') parser.add_argument("--output_file", required=True, type=str, help='Path to output file') parser.add_argument("--min_number", default=2000, type=int, help='minimum number per pattern') parser.add_argument("--pretty", action="store_true", help='Pretty print') args = parser.parse_args() # global pattern tables MONEY_PATTERNS = defaultdict(int) MEASURE_PATTERNS = defaultdict(int) TIME_PATTERNS = defaultdict(int) FRACTION_PATTERNS = defaultdict(int) # global templates/stencils for creating patterns money_templates = ["([0-9]|\.|,)+"] measure_templates = ["^-?([0-9]|\.|,|/|\s)+"] time_templates = [ "^[0-9]+:[0-9][0-9]$", "^[0-9]+:[0-9][0-9]\s?[a-zA-Z]+$", "^[0-9]+\s(p|P|A|a)\.?(m|M)\.?", "^[0-9]+(p|P|A|a)\.?(m|M)\.?", "^[0-9]:[0-9][0-9]\s(p|P|A|a)\.?(m|M)\.?", "^[0-9][0-9]:[0-9][0-9]\s(p|P|A|a)\.?(m|M)\.?", "^[0-9]:[0-9][0-9](p|P|A|a)\.?(m|M)\.?", "^[0-9][0-9]:[0-9][0-9](p|P|A|a)\.?(m|M)\.?", "^[0-9]+.[0-9][0-9]\s?(p|P|A|a)\.?(m|M)\.?", "^[0-9]+:[0-9]+:[0-9]+", "^[0-9]+:[0-9]+.[0-9]+", "^[0-9]+.[0-9]+$", "^[0-9]+.[0-9]+\s?[a-zA-Z]+$", ] fraction_templates = [ "^-?[0-9]+\s?\/\s?[0-9]{3}$", "^-?[0-9]{3}\s?\/\s?[0-9]+$", "^[0-9]+\s[0-9]+\/[0-9]+$", "^[0-9]+\s[0-9]+\/[0-9]+$", "^[0-9]+\s[0-9]+\s\/\s[0-9]+$", "^-?[0-9]+\s\/\s[0-9]+$", "^-?[0-9]+\/[0-9]+$", ] # classes that still need to be upsampled, and required number of instances needed classes_to_upsample = defaultdict(int) def include_sentence(sentence_patterns) -> bool: """ Determines whether to use a sentence for upsampling whose patterns are provided as input. This will check the global pattern tables if this sentence includes any patterns that are still needed. Args: sentence_patterns: dictionary of patterns for a sentence grouped by class Returns: include: whether or not to use the sentence or for upsampling """ include = False for k, v in sentence_patterns["MONEY"].items(): if v > 0 and k in MONEY_PATTERNS and MONEY_PATTERNS[k] < args.min_number: include = True for k, v in sentence_patterns["MEASURE"].items(): if v > 0 and k in MEASURE_PATTERNS and MEASURE_PATTERNS[k] < args.min_number: include = True for k, v in sentence_patterns["TIME"].items(): if v > 0 and k in TIME_PATTERNS and TIME_PATTERNS[k] < args.min_number: include = True for k, v in sentence_patterns["FRACTION"].items(): if v > 0 and k in FRACTION_PATTERNS and FRACTION_PATTERNS[k] < args.min_number: include = True if include: for k, v in sentence_patterns["MONEY"].items(): if v > 0 and k in MONEY_PATTERNS: MONEY_PATTERNS[k] += v if MONEY_PATTERNS[k] - v < args.min_number and MONEY_PATTERNS[k] >= args.min_number: classes_to_upsample["MONEY"] -= 1 if classes_to_upsample["MONEY"] <= 0: classes_to_upsample.pop("MONEY") for k, v in sentence_patterns["MEASURE"].items(): if v > 0 and k in MEASURE_PATTERNS: MEASURE_PATTERNS[k] += v if MEASURE_PATTERNS[k] - v < args.min_number and MEASURE_PATTERNS[k] >= args.min_number: classes_to_upsample["MEASURE"] -= 1 if classes_to_upsample["MEASURE"] <= 0: classes_to_upsample.pop("MEASURE") for k, v in sentence_patterns["TIME"].items(): if v > 0 and k in TIME_PATTERNS: TIME_PATTERNS[k] += v if TIME_PATTERNS[k] - v < args.min_number and TIME_PATTERNS[k] >= args.min_number: classes_to_upsample["TIME"] -= 1 if classes_to_upsample["TIME"] <= 0: classes_to_upsample.pop("TIME") for k, v in sentence_patterns["FRACTION"].items(): if v > 0 and k in FRACTION_PATTERNS: FRACTION_PATTERNS[k] += v if FRACTION_PATTERNS[k] - v < args.min_number and FRACTION_PATTERNS[k] >= args.min_number: classes_to_upsample["FRACTION"] -= 1 if classes_to_upsample["FRACTION"] <= 0: classes_to_upsample.pop("FRACTION") return include def read_data_file(fp: str, upsample_file: bool = False): """ Reading the raw data from a file of NeMo format For more info about the data format, refer to the `text_normalization doc <https://github.com/NVIDIA/NeMo/blob/main/docs/source/nlp/text_normalization.rst>`. Args: fp: file paths upsample_file: whether or not this input file should be used in full or only for upsampling, i.e. only as a subset Returns: insts: List of sentences parsed as list of words """ insts, w_words, s_words, classes = [], [], [], [] with open(fp, 'r', encoding='utf-8') as f: sentence_patterns = { "FRACTION": defaultdict(int), "MEASURE": defaultdict(int), "TIME": defaultdict(int), "MONEY": defaultdict(int), } for line in f: es = [e.strip() for e in line.strip().split('\t')] if es[0] == '<eos>': if not upsample_file: inst = (classes, w_words, s_words) insts.append(inst) else: ok = include_sentence(sentence_patterns) if ok: inst = (classes, w_words, s_words) insts.append(inst) # Reset w_words, s_words, classes = [], [], [] sentence_patterns = { "FRACTION": defaultdict(int), "MEASURE": defaultdict(int), "TIME": defaultdict(int), "MONEY": defaultdict(int), } else: classes.append(es[0]) w_words.append(es[1]) s_words.append(es[2]) if not upsample_file: register_patterns(cls=es[0], input_str=es[1], pretty=args.pretty) else: if es[0] in classes_to_upsample: patterns = lookup_patterns(cls=es[0], input_str=es[1]) update_patterns(sentence_patterns[es[0]], patterns) if not upsample_file: inst = (classes, w_words, s_words) insts.append(inst) return insts def update_patterns(patterns: dict, new_patterns: dict): """ updates a given pattern table with counts from another table by adding them to the given table. Args: patterns: main table new_patterns: new table to update the main table with """ for k, v in new_patterns.items(): patterns[k] += v def register_patterns(cls: str, input_str: str, pretty: bool = False): """ Saves all patterns created from input string from global templates/stencils to global pattern table Args: cls: class type of input_str input_str: input string pretty: used to pretty print patterns """ if cls == "MONEY": new_dict = create_pattern(money_templates, input_str, pretty=pretty) update_patterns(MONEY_PATTERNS, new_dict) if cls == "MEASURE": new_dict = create_pattern(measure_templates, input_str, pretty=pretty) update_patterns(MEASURE_PATTERNS, new_dict) if cls == "TIME": new_dict = create_pattern(time_templates, input_str, pretty=pretty) update_patterns(TIME_PATTERNS, new_dict) if cls == "FRACTION": new_dict = create_pattern(fraction_templates, input_str, pretty=pretty) update_patterns(FRACTION_PATTERNS, new_dict) def lookup_patterns(cls: str, input_str: str) -> dict: """ Look up all patterns that match an input string from global pattern table Args: cls: class type of input_str input_str: input string """ if cls == "MONEY": new_dict = create_pattern(MONEY_PATTERNS.keys(), input_str) if cls == "MEASURE": new_dict = create_pattern(MEASURE_PATTERNS.keys(), input_str) if cls == "TIME": new_dict = create_pattern(TIME_PATTERNS.keys(), input_str) if cls == "FRACTION": new_dict = create_pattern(FRACTION_PATTERNS.keys(), input_str) return new_dict def create_pattern(templates: List[str], input_str: str, pretty: bool = False): """ create all patterns based on list of input templates using the input string. Args: templates: list of templates/stencils input_str: string to apply templates on to create patterns pretty: used to pretty print patterns """ res = defaultdict(int) for template in templates: if re.search(template, input_str) is None: continue if not pretty: res[re.sub(template, template, input_str)] += 1 else: res[re.sub(template, "@", input_str)] += 1 return res def print_stats(): """ print statistics on class patterns to be upsampled """ print("MONEY") for k, v in MONEY_PATTERNS.items(): print(f"\t{k}\t{v}") print("no. patterns to upsample", classes_to_upsample["MONEY"]) print("MEASURE") for k, v in MEASURE_PATTERNS.items(): print(f"\t{k}\t{v}") print("no. patterns to upsample", classes_to_upsample["MEASURE"]) print("TIME") for k, v in TIME_PATTERNS.items(): print(f"\t{k}\t{v}") print("no. patterns to upsample", classes_to_upsample["TIME"]) print("FRACTION") for k, v in FRACTION_PATTERNS.items(): print(f"\t{k}\t{v}") print("no. patterns to upsample", classes_to_upsample["FRACTION"]) def main(): input_files = sorted(glob.glob(f"{args.input_dir}/output-*")) print("Taking in full: ", input_files[0]) inst_first_file = read_data_file(input_files[0]) measure_keys = list(MEASURE_PATTERNS.keys()) for k in measure_keys: if re.search("\s?st$", k) is not None or re.search("\s?Da$", k) is not None: MEASURE_PATTERNS.pop(k) money_keys = list(MONEY_PATTERNS.keys()) for k in money_keys: if re.search("(DM|SHP|BMD|SCR|SHP|ARS|BWP|SBD)$", k) is not None: MONEY_PATTERNS.pop(k) classes_to_upsample["FRACTION"] = sum(np.asarray(list(FRACTION_PATTERNS.values())) < args.min_number) classes_to_upsample["MEASURE"] = sum(np.asarray(list(MEASURE_PATTERNS.values())) < args.min_number) classes_to_upsample["TIME"] = sum(np.asarray(list(TIME_PATTERNS.values())) < args.min_number) classes_to_upsample["MONEY"] = sum(np.asarray(list(MONEY_PATTERNS.values())) < args.min_number) print_stats() for fp in input_files[1:]: print("Upsamling: ", fp) instances = read_data_file(fp, upsample_file=True) inst_first_file.extend(instances) print_stats() output_f = open(args.output_file, 'w+', encoding='utf-8') for ix, inst in enumerate(inst_first_file): cur_classes, cur_tokens, cur_outputs = inst for c, t, o in zip(cur_classes, cur_tokens, cur_outputs): output_f.write(f'{c}\t{t}\t{o}\n') output_f.write(f'<eos>\t<eos>\n') if __name__ == "__main__": main()
NeMo-main
examples/nlp/duplex_text_normalization/data/en/upsample.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl import torch from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models.token_classification.punctuation_capitalization_config import ( PunctuationCapitalizationLexicalAudioConfig, ) from nemo.collections.nlp.models.token_classification.punctuation_capitalization_lexical_audio_model import ( PunctuationCapitalizationLexicalAudioModel, ) from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager """ This script show how to train a Punctuation and Capitalization Model with lexical and acoustic features. More details on the task and data format could be found in tutorials/nlp/Punctuation_and_Capitalization.ipynb *** Setting the configs *** The model and the PT trainer are defined in a config file which declares multiple important sections. The most important ones are: model: All arguments that are related to the Model - language model, audio encoder, tokenizer, token classifier, optimizer, schedulers, and datasets/data loaders. trainer: Any argument to be passed to PyTorch Lightning including number of epochs, number of GPUs, precision level, etc. This script uses the `/examples/nlp/token_classification/conf/punctuation_capitalization_lexical_audio_config.yaml` config file by default. You may update the config file from the file directly. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. *** Model training *** To run this script and train the model from scratch, use: python punctuation_capitalization_lexical_audio_train_evaluate.py \ model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \ model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \ model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \ model.train_ds.audio_file=<NAME_OF_TRAIN_AUDIO_FILE> \ model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \ model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \ model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \ model.validation_ds.audio_file=<NAME_OF_DEV_AUDIO_FILE> To use BERT-like pretrained P&C models' weights to initialize lexical encoder, use: python punctuation_capitalization_lexical_audio_train_evaluate.py \ model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \ model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \ model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \ model.train_ds.audio_file=<NAME_OF_TRAIN_AUDIO_FILE> \ model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \ model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \ model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \ model.validation_ds.audio_file=<NAME_OF_DEV_AUDIO_FILE> \ model.restore_lexical_encoder_from=<PATH/TO/CHECKPOINT.nemo> If you wish to perform testing after training set `do_testing` to `true: python punctuation_capitalization_lexical_audio_train_evaluate.py \ +do_testing=true \ pretrained_model=<PATH/TO/CHECKPOINT.nemo> \ model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \ model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \ model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \ model.train_ds.audio_file=<NAME_OF_TRAIN_AUDIO_FILE> \ model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \ model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \ model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \ model.validation_ds.audio_file=<NAME_OF_DEV_AUDIO_FILE> \ model.test_ds.ds_item=<PATH/TO/TEST_DATA> \ model.test_ds.text_file=<NAME_OF_TEST_INPUT_TEXT_FILE> \ model.test_ds.labels_file=<NAME_OF_TEST_LABELS_FILE> \ model.test_ds.audio_file=<NAME_OF_TEST_AUDIO_FILE> Set `do_training` to `false` and `do_testing` to `true` to perform evaluation without training: python punctuation_capitalization_lexical_audio_train_evaluate.py \ +do_testing=true \ +do_training=false \ pretrained_model==<PATH/TO/CHECKPOINT.nemo> \ model.test_ds.ds_item=<PATH/TO/DEV/DATA> \ model.test_ds.text_file=<NAME_OF_TEST_INPUT_TEXT_FILE> \ model.test_ds.labels_file=<NAME_OF_TEST_LABELS_FILE> \ model.test_ds.audio_file=<NAME_OF_TEST_AUDIO_FILE> """ @hydra_runner(config_path="conf", config_name="punctuation_capitalization_lexical_audio_config") def main(cfg: DictConfig) -> None: torch.manual_seed(42) cfg = OmegaConf.merge(OmegaConf.structured(PunctuationCapitalizationLexicalAudioConfig()), cfg) trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) if not cfg.do_training and not cfg.do_testing: raise ValueError("At least one of config parameters `do_training` and `do_testing` has to be `true`.") if cfg.do_training: if cfg.model.get('train_ds') is None: raise ValueError('`model.train_ds` config section is required if `do_training` config item is `True`.') if cfg.do_testing: if cfg.model.get('test_ds') is None: raise ValueError('`model.test_ds` config section is required if `do_testing` config item is `True`.') if not cfg.pretrained_model: logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') model = PunctuationCapitalizationLexicalAudioModel(cfg.model, trainer=trainer) else: if os.path.exists(cfg.pretrained_model): model = PunctuationCapitalizationLexicalAudioModel.restore_from(cfg.pretrained_model) elif cfg.pretrained_model in PunctuationCapitalizationLexicalAudioModel.get_available_model_names(): model = PunctuationCapitalizationLexicalAudioModel.from_pretrained(cfg.pretrained_model) else: raise ValueError( f'Provide path to the pre-trained .nemo file or choose from ' f'{PunctuationCapitalizationLexicalAudioModel.list_available_models()}' ) model.update_config_after_restoring_from_checkpoint( class_labels=cfg.model.class_labels, common_dataset_parameters=cfg.model.common_dataset_parameters, train_ds=cfg.model.get('train_ds') if cfg.do_training else None, validation_ds=cfg.model.get('validation_ds') if cfg.do_training else None, test_ds=cfg.model.get('test_ds') if cfg.do_testing else None, optim=cfg.model.get('optim') if cfg.do_training else None, ) model.set_trainer(trainer) if cfg.do_training: model.setup_training_data() model.setup_multiple_validation_data(cfg.model.validation_ds) model.setup_optimization() else: model.setup_multiple_test_data(cfg.model.test_ds) if cfg.do_training: trainer.fit(model) if cfg.do_testing: trainer.test(model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/token_classification/punctuation_capitalization_lexical_audio_train_evaluate.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json from pathlib import Path from typing import Dict, List, Union import torch.cuda from nemo.collections.nlp.models import PunctuationCapitalizationLexicalAudioModel, PunctuationCapitalizationModel """ This script is for restoring punctuation and capitalization. Usage example: python punctuate_capitalize.py \ --input_manifest <PATH/TO/INPUT/MANIFEST> \ --output_manifest <PATH/TO/OUTPUT/MANIFEST> Usage example for lexical audio model: python punctuate_capitalize.py \ --input_manifest <PATH/TO/INPUT/MANIFEST> \ --output_manifest <PATH/TO/OUTPUT/MANIFEST> \ --use_audio <PATH/TO/INPUT/MANIFEST> is a path to NeMo ASR manifest. Usually it is an output of NeMo/examples/asr/transcribe_speech.py but can be a manifest with 'text' key. Alternatively you can use --input_text parameter for passing text for inference. <PATH/TO/OUTPUT/MANIFEST> is a path to NeMo ASR manifest into which script output will be written. Alternatively you can use parameter --output_text. For more details on this script usage look in argparse help. """ def get_args() -> argparse.Namespace: default_model_parameter = "pretrained_name" default_model = "punctuation_en_bert" parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="The script is for restoring punctuation and capitalization in text or text and audio. To use text and audio use '--use_audio'. Long strings are split into " "segments of length `--max_seq_length`. `--max_seq_length` is the length which includes [CLS] and [SEP] " "tokens. If `--use_audio` is set, samples with texts longer than `--max_seq_length` will be ignored. Parameter `--step` controls segments overlapping. `--step` is a distance between beginnings of " "consequent segments. Model outputs for tokens near the borders of tensors are less accurate and can be " "discarded before final predictions computation. Parameter `--margin` is number of discarded outputs near " "segments borders. Probabilities of tokens in overlapping parts of segments multiplied before selecting the " "best prediction. Default values of parameters `--max_seq_length`, `--step`, and `--margin` are optimal for " "IWSLT 2019 test dataset.", ) parser.add_argument( '--use_audio', required=False, action="store_true", help="If set `PunctuationCapitalizationLexicalAudioModel` will be used for inference", ) input_ = parser.add_mutually_exclusive_group(required=True) input_.add_argument( "--input_manifest", "-m", type=Path, help="Path to the file with NeMo manifest which needs punctuation and capitalization. If the first element " "of manifest contains key 'pred_text', 'pred_text' values are passed for tokenization. Otherwise 'text' " "values are passed for punctuation and capitalization. Exactly one parameter of `--input_manifest` and " "`--input_text` should be provided.", ) input_.add_argument( "--input_text", "-t", type=Path, help="Path to file with text which needs punctuation and capitalization. Exactly one parameter of " "`--input_manifest` and `--input_text` should be provided.", ) parser.add_argument( '--audio_file', required=False, type=Path, help="Path to file with paths to audio. One path per row. Required if '--input_text' provided. Else 'audio_filepath' from manifest will be used.", ) output = parser.add_mutually_exclusive_group(required=True) output.add_argument( "--output_manifest", "-M", type=Path, help="Path to output NeMo manifest. Text with restored punctuation and capitalization will be saved in " "'pred_text' elements if 'pred_text' key is present in the input manifest. Otherwise text with restored " "punctuation and capitalization will be saved in 'text' elements. Exactly one parameter of `--output_manifest` " "and `--output_text` should be provided.", ) output.add_argument( "--output_text", "-T", type=Path, help="Path to file with text with restored punctuation and capitalization. Exactly one parameter of " "`--output_manifest` and `--output_text` should be provided.", ) model = parser.add_mutually_exclusive_group(required=False) model.add_argument( "--pretrained_name", "-p", help=f"The name of NGC pretrained model. No more than one of parameters `--pretrained_name`, `--model_path`" f"should be provided. If neither of parameters `--pretrained_name` and `--model_path` are provided, then the " f"script is run with `--{default_model_parameter}={default_model}`.", choices=[m.pretrained_model_name for m in PunctuationCapitalizationModel.list_available_models()] + [m.pretrained_model_name for m in PunctuationCapitalizationLexicalAudioModel.list_available_models()], ) model.add_argument( "--model_path", "-P", type=Path, help=f"Path to .nemo checkpoint of punctuation and capitalization model. No more than one of parameters " f"`--pretrained_name` and `--model_path` should be provided. If neither of parameters `--pretrained_name` and " f"`--model_path` are provided, then the script is run with `--{default_model_parameter}={default_model}`.", ) parser.add_argument( "--max_seq_length", "-L", type=int, default=64, help="Length of segments into which queries are split. `--max_seq_length` includes [CLS] and [SEP] tokens.", ) parser.add_argument( "--step", "-s", type=int, default=8, help="Relative shift of consequent segments into which long queries are split. Long queries are split into " "segments which can overlap. Parameter `step` controls such overlapping. Imagine that queries are " "tokenized into characters, `max_seq_length=5`, and `step=2`. In such a case query 'hello' is tokenized " "into segments `[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]`.", ) parser.add_argument( "--margin", "-g", type=int, default=16, help="A number of subtokens in the beginning and the end of segments which output probabilities are not used " "for prediction computation. The first segment does not have left margin and the last segment does not have " "right margin. For example, if input sequence is tokenized into characters, `max_seq_length=5`, `step=1`, " "and `margin=1`, then query 'hello' will be tokenized into segments `[['[CLS]', 'h', 'e', 'l', '[SEP]'], " "['[CLS]', 'e', 'l', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]`. These segments are passed to the " "model. Before final predictions computation, margins are removed. In the next list, subtokens which logits " "are not used for final predictions computation are marked with asterisk: `[['[CLS]'*, 'h', 'e', 'l'*, " "'[SEP]'*], ['[CLS]'*, 'e'*, 'l', 'l'*, '[SEP]'*], ['[CLS]'*, 'l'*, 'l', 'o', '[SEP]'*]]`.", ) parser.add_argument( "--batch_size", "-b", type=int, default=128, help="Number of segments which are processed simultaneously.", ) parser.add_argument( "--save_labels_instead_of_text", "-B", action="store_true", help="If this option is set, then punctuation and capitalization labels are saved instead text with restored " "punctuation and capitalization. Labels are saved in format described here " "https://docs.nvidia.com/deeplearning/nemo/" "user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#nemo-data-format", ) parser.add_argument( "--device", "-d", choices=['cpu', 'cuda'], help="Which device to use. If device is not set and CUDA is available, then GPU will be used. If device is " "not set and CUDA is not available, then CPU is used.", ) parser.add_argument( "--sample_rate", type=int, default=16000, help="Target sample rate for audios if `--use_audio` was passed", required=False, ) args = parser.parse_args() if args.input_manifest is None and args.output_manifest is not None: parser.error("--output_manifest requires --input_manifest") if args.use_audio and (args.input_manifest is None and args.audio_file is None): parser.error("--use_audio and --input_text require --audio_file") if args.pretrained_name is None and args.model_path is None: setattr(args, default_model_parameter, default_model) for name in ["input_manifest", "input_text", "output_manifest", "output_text", "model_path", "audio_file"]: if getattr(args, name) is not None: setattr(args, name, getattr(args, name).expanduser()) return args def load_manifest(manifest: Path) -> List[Dict[str, Union[str, float]]]: result = [] with manifest.open() as f: for i, line in enumerate(f): data = json.loads(line) result.append(data) return result def main() -> None: args = get_args() if args.pretrained_name is None: model = ( PunctuationCapitalizationModel.restore_from(args.model_path) if not args.use_audio else PunctuationCapitalizationLexicalAudioModel.restore_from(args.model_path) ) else: model = ( PunctuationCapitalizationModel.from_pretrained(args.pretrained_name) if not args.use_audio else PunctuationCapitalizationLexicalAudioModel.restore_from(args.model_path) ) if args.device is None: if torch.cuda.is_available(): model = model.cuda() else: model = model.cpu() else: model = model.to(args.device) if args.input_manifest is None: texts = [] audios = [] with args.input_text.open() as f: for line in f: texts.append(line.strip()) if args.use_audio: with args.audio_file.open() as f: for line in f: audios.append(line.strip()) else: manifest = load_manifest(args.input_manifest) text_key = "pred_text" if "pred_text" in manifest[0] else "text" texts = [] audios = [] for item in manifest: texts.append(item[text_key]) if args.use_audio: audios.append(item["audio_filepath"]) if args.use_audio: processed_texts = model.add_punctuation_capitalization( texts, batch_size=args.batch_size, max_seq_length=args.max_seq_length, step=args.step, margin=args.margin, return_labels=args.save_labels_instead_of_text, audio_queries=audios, target_sr=args.sample_rate, ) else: processed_texts = model.add_punctuation_capitalization( texts, batch_size=args.batch_size, max_seq_length=args.max_seq_length, step=args.step, margin=args.margin, return_labels=args.save_labels_instead_of_text, ) if args.output_manifest is None: args.output_text.parent.mkdir(exist_ok=True, parents=True) with args.output_text.open('w') as f: for t in processed_texts: f.write(t + '\n') else: args.output_manifest.parent.mkdir(exist_ok=True, parents=True) with args.output_manifest.open('w') as f: for item, t in zip(manifest, processed_texts): item[text_key] = t f.write(json.dumps(item) + '\n') if __name__ == "__main__": main()
NeMo-main
examples/nlp/token_classification/punctuate_capitalize_infer.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytorch_lightning as pl import torch from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import PunctuationCapitalizationModel from nemo.collections.nlp.models.token_classification.punctuation_capitalization_config import ( PunctuationCapitalizationConfig, ) from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager """ This script show how to train a Punctuation and Capitalization Model. More details on the task and data format could be found in tutorials/nlp/Punctuation_and_Capitalization.ipynb *** Setting the configs *** The model and the PT trainer are defined in a config file which declares multiple important sections. The most important ones are: model: All arguments that are related to the Model - language model, tokenizer, token classifier, optimizer, schedulers, and datasets/data loaders. trainer: Any argument to be passed to PyTorch Lightning including number of epochs, number of GPUs, precision level, etc. This script uses the `/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml` config file by default. You may update the config file from the file directly. The other option is to set another config file via command line arguments by `--config-name=CONFIG_FILE_PATH'. Additional default parameters could be found in PunctuationCapitalizationDataConfigBase from /nemo/collections/nlp/data/token_classification/punctuation_capitalization_dataset.py, use `+` to modify their values via command line, e.g.: `+model.train_ds.num_workers=2` For more details about the config files and different ways of model restoration, see tutorials/00_NeMo_Primer.ipynb *** Model training *** To run this script and train the model from scratch, use: python punctuation_capitalization_train_evaluate.py \ model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \ model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \ model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \ model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \ model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \ model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \ ~model.test_ds To use one of the pretrained versions of the model and finetune it, run: python punctuation_capitalization_train_evaluate.py \ pretrained_model=punctuation_en_bert \ model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \ model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \ model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \ model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \ model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \ model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \ ~model.test_ds pretrained_model - pretrained PunctuationCapitalization model from list_available_models() or path to a .nemo file, for example: punctuation_en_bert or model.nemo If you wish to perform testing after training set `do_testing` to `true: python punctuation_capitalization_train_evaluate.py \ +do_testing=true \ pretrained_model=punctuation_en_bert \ model.train_ds.ds_item=<PATH/TO/TRAIN/DATA> \ model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \ model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \ model.validation_ds.ds_item=<PATH/TO/DEV/DATA> \ model.validation_ds.text_file=<NAME_OF_DEV_INPUT_TEXT_FILE> \ model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \ model.test_ds.ds_item=<PATH/TO/TEST_DATA> \ model.test_ds.text_file=<NAME_OF_TEST_INPUT_TEXT_FILE> \ model.test_ds.labels_file=<NAME_OF_TEST_LABELS_FILE> Set `do_training` to `false` and `do_testing` to `true` to perform evaluation without training: python punctuation_capitalization_train_evaluate.py \ +do_testing=true \ +do_training=false \ pretrained_model=punctuation_en_bert \ model.test_ds.ds_item=<PATH/TO/TEST/DATA> \ model.test_ds.text_file=<NAME_OF_TEST_INPUT_TEXT_FILE> \ model.test_ds.labels_file=<NAME_OF_TEST_LABELS_FILE> """ @hydra_runner(config_path="conf", config_name="punctuation_capitalization_config") def main(cfg: DictConfig) -> None: torch.manual_seed(42) cfg = OmegaConf.merge(OmegaConf.structured(PunctuationCapitalizationConfig()), cfg) trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) if not cfg.do_training and not cfg.do_testing: raise ValueError("At least one of config parameters `do_training` and `do_testing` has to `true`.") if cfg.do_training: if cfg.model.get('train_ds') is None: raise ValueError('`model.train_ds` config section is required if `do_training` config item is `True`.') if cfg.do_testing: if cfg.model.get('test_ds') is None: raise ValueError('`model.test_ds` config section is required if `do_testing` config item is `True`.') if not cfg.pretrained_model: logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') model = PunctuationCapitalizationModel(cfg.model, trainer=trainer) else: if os.path.exists(cfg.pretrained_model): model = PunctuationCapitalizationModel.restore_from(cfg.pretrained_model) elif cfg.pretrained_model in PunctuationCapitalizationModel.get_available_model_names(): model = PunctuationCapitalizationModel.from_pretrained(cfg.pretrained_model) else: raise ValueError( f'Config parameter `pretrained_model` should contain a path to the pre-trained .nemo file or a model ' f'name from ' f'{[m.pretrained_model_name for m in PunctuationCapitalizationModel.list_available_models()]}. ' f'Provided `pretrained_model="{cfg.pretrained_model}"` is neither a valid path, nor a valid model ' f'name.' ) model.update_config_after_restoring_from_checkpoint( class_labels=cfg.model.class_labels, common_dataset_parameters=cfg.model.common_dataset_parameters, train_ds=cfg.model.get('train_ds') if cfg.do_training else None, validation_ds=cfg.model.get('validation_ds') if cfg.do_training else None, test_ds=cfg.model.get('test_ds') if cfg.do_testing else None, optim=cfg.model.get('optim') if cfg.do_training else None, ) model.set_trainer(trainer) if cfg.do_training: model.setup_training_data() model.setup_multiple_validation_data(cfg.model.validation_ds) model.setup_optimization() else: model.setup_multiple_test_data(cfg.model.test_ds) if cfg.do_training: trainer.fit(model) if cfg.do_testing: trainer.test(model) if __name__ == '__main__': main()
NeMo-main
examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py