Update README.md
Browse files
README.md
CHANGED
@@ -14,38 +14,52 @@ The **Git-10M** dataset is a global-scale remote sensing image-text pair dataset
|
|
14 |
<img src="https://github.com/Chen-Yang-Liu/Text2Earth/raw/main/images/dataset.png" width="1000"/>
|
15 |
</div>
|
16 |
|
17 |
-
## Load Dataset
|
18 |
-
```python
|
19 |
-
from modelscope.msdatasets import MsDataset
|
20 |
-
ds = MsDataset.load('lcybuaa/Git-10M')
|
21 |
-
```
|
22 |
-
|
23 |
|
24 |
## View samples from the dataset
|
25 |
```python
|
26 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
save_path = 'xxxxx'
|
28 |
-
ds = load_dataset('lcybuaa/Git-10M', cache_dir=save_path)
|
29 |
train_dataset = ds["train"]
|
30 |
|
|
|
31 |
for i, example in enumerate(train_dataset):
|
|
|
32 |
image = example["image"]
|
33 |
-
#
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
```
|
46 |
|
47 |
## Git-RSCLIP: Remote Sensing Vision-Language Contrastive Pre-training Foundation Model
|
48 |
-
Git-RSCLIP is pre-trained using the contrastive learning framework on the Git-10M dataset
|
49 |
Git-RSCLIP is here:[[Huggingface](https://huggingface.co/lcybuaa/Git-RSCLIP) | [Modelscope](https://modelscope.cn/models/lcybuaa1111/Git-RSCLIP)]
|
50 |
|
51 |
Compare the Top1-Acc of Zero-shot classification on multiple image classification datasets:
|
@@ -63,13 +77,13 @@ Compare the Top1-Acc of Zero-shot classification on multiple image classificatio
|
|
63 |
# BibTeX entry and citation info
|
64 |
|
65 |
```bibtex
|
66 |
-
@
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
}
|
75 |
```
|
|
|
14 |
<img src="https://github.com/Chen-Yang-Liu/Text2Earth/raw/main/images/dataset.png" width="1000"/>
|
15 |
</div>
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## View samples from the dataset
|
19 |
```python
|
20 |
from datasets import load_dataset
|
21 |
+
import math
|
22 |
+
|
23 |
+
def XYZToLonLat(x,y,z):
|
24 |
+
# Transform tile-location to (longitude,latitude)
|
25 |
+
n = 2**z*1.0
|
26 |
+
lon = x / n * 360.0 - 180.0 # longitude
|
27 |
+
lat = math.atan(math.sinh(math.pi * (1 - 2.0 * y / n)))
|
28 |
+
lat = math.degrees(lat) # latitude
|
29 |
+
return lon,lat
|
30 |
+
|
31 |
+
|
32 |
+
# load dataset
|
33 |
save_path = 'xxxxx'
|
34 |
+
ds = load_dataset.load('lcybuaa/Git-10M', cache_dir=save_path)
|
35 |
train_dataset = ds["train"]
|
36 |
|
37 |
+
|
38 |
for i, example in enumerate(train_dataset):
|
39 |
+
# PIL image:
|
40 |
image = example["image"]
|
41 |
+
# filename of the image:
|
42 |
+
img_name = example["img_name"]
|
43 |
+
# visual quality score as shown in Fig. 5 of the paper.
|
44 |
+
img_quality_score = example['img_quality_score']
|
45 |
+
# caption of the image
|
46 |
+
caption = example['caption']
|
47 |
+
# word length of the caption as shown in Fig. 6 of the paper.
|
48 |
+
caption_length = example['caption_length']
|
49 |
+
# image spatial resolution as shown in Fig. 4 of the paper.
|
50 |
+
resolution = example['resolution']
|
51 |
+
# image Geolocation as shown in Fig. 3 of the paper.
|
52 |
+
Google_location = example['Google_location']
|
53 |
+
Level_TileZ, TileX, TileY = Google_location.split('_')
|
54 |
+
longitude, latitude = XYZToLonLat(TileX, TileY, Level_TileZ)
|
55 |
+
|
56 |
+
# More Tips:
|
57 |
+
# Resolution = 2 ** (17 - Level_TileZ)
|
58 |
+
|
59 |
```
|
60 |
|
61 |
## Git-RSCLIP: Remote Sensing Vision-Language Contrastive Pre-training Foundation Model
|
62 |
+
Git-RSCLIP is pre-trained using the contrastive learning framework on the **Git-10M dataset**.
|
63 |
Git-RSCLIP is here:[[Huggingface](https://huggingface.co/lcybuaa/Git-RSCLIP) | [Modelscope](https://modelscope.cn/models/lcybuaa1111/Git-RSCLIP)]
|
64 |
|
65 |
Compare the Top1-Acc of Zero-shot classification on multiple image classification datasets:
|
|
|
77 |
# BibTeX entry and citation info
|
78 |
|
79 |
```bibtex
|
80 |
+
@ARTICLE{Text2Earth,
|
81 |
+
author={Liu, Chenyang and Chen, Keyan and Zhao, Rui and Zou, Zhengxia and Shi, Zhenwei},
|
82 |
+
journal={IEEE Geoscience and Remote Sensing Magazine},
|
83 |
+
title={Text2Earth: Unlocking text-driven remote sensing image generation with a global-scale dataset and a foundation model},
|
84 |
+
year={2025},
|
85 |
+
volume={},
|
86 |
+
number={},
|
87 |
+
pages={2-23},
|
88 |
+
doi={10.1109/MGRS.2025.3560455}}
|
89 |
```
|