--- license: mit task_categories: - text-to-image tags: - remote-sensing - image-generation - global-scale - high-resolution --- The **Git-10M** dataset is a global-scale remote sensing image-text pair dataset, consisting of over **10 million** image-text pairs with geographical locations and resolution information. This dataset was introduced in the paper [Text2Earth: Unlocking Text-driven Remote Sensing Image Generation with a Global-Scale Dataset and a Foundation Model](https://huggingface.co/papers/2501.00895). [Project Page: https://chen-yang-liu.github.io/Text2Earth/](https://chen-yang-liu.github.io/Text2Earth/) [GitHub Repository: https://github.com/Chen-Yang-Liu/Text2Earth](https://github.com/Chen-Yang-Liu/Text2Earth)
## Load Dataset ```python from modelscope.msdatasets import MsDataset ds = MsDataset.load('lcybuaa/Git-10M') ``` ## View samples from the dataset ```python from datasets import load_dataset save_path = 'xxxxx' ds = load_dataset.load('lcybuaa/Git-10M', cache_dir=save_path) train_dataset = ds["train"] for i, example in enumerate(train_dataset): image = example["image"] # Text Description text = example["text"].split('_GOOGLE_LEVEL_)[-1] # Image Resolution Level = int(example["text"].split('_GOOGLE_LEVEL_)[0]) if Level != 0: Resolution = 2**(17-Level) else: print('This image comes from a public dataset. There is no available resolution metadata.') # save image image.save(f"image_{i}.png") # print('text:', text) ``` ## Git-RSCLIP: Remote Sensing Vision-Language Contrastive Pre-training Foundation Model Git-RSCLIP is pre-trained using the contrastive learning framework on the Git-10M dataset. Git-RSCLIP is here:[[Huggingface](https://huggingface.co/lcybuaa/Git-RSCLIP) | [Modelscope](https://modelscope.cn/models/lcybuaa1111/Git-RSCLIP)] Compare the Top1-Acc of Zero-shot classification on multiple image classification datasets: | Method | OPTIMAL31 | RSC11 | RSICB128 | WHURS19 | RS2800/RSSCN7 | CLRS | Average score | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | CLIP | 0.6 | 0.45 | 0.25 | 0.77 | 0.52 | 0.56 | 0.52 | | RemoteCLIP | 0.82 | 0.67 | 0.34 | 0.93 | 0.52 | 0.66 | 0.65 | | GeoRSCLIP | 0.83 | 0.67 | 0.35 | 0.89 | 0.63 | 0.69 | 0.68 | | SkyCLIP50 | 0.77 | 0.60 | 0.38 | 0.78 | 0.55 | 0.61 | 0.62 | | (Git-RSCLIP) Ours | **0.95** | **0.67** | **0.52** | **0.94** | **0.64** | **0.65** | **0.73** | ## MIT License: This dataset is licensed under the MIT License. ```bibtex @misc{liu2025text2earthunlockingtextdrivenremote, title={Text2Earth: Unlocking Text-driven Remote Sensing Image Generation with a Global-Scale Dataset and a Foundation Model}, author={Chenyang Liu and Keyan Chen and Rui Zhao and Zhengxia Zou and Zhenwei Shi}, year={2025}, eprint={2501.00895}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2501.00895}, } ```