Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
SaylorTwift HF Staff corypaik commited on
Commit
153b2d8
·
verified ·
0 Parent(s):

Duplicate from corypaik/prost

Browse files

Co-authored-by: Cory Paik <[email protected]>

Files changed (5) hide show
  1. .gitattributes +17 -0
  2. README.md +184 -0
  3. data/default.jsonl +3 -0
  4. dataset_infos.json +1 -0
  5. prost.py +85 -0
.gitattributes ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
+ *.joblib filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.pb filter=lfs diff=lfs merge=lfs -text
15
+ *.pt filter=lfs diff=lfs merge=lfs -text
16
+ *.pth filter=lfs diff=lfs merge=lfs -text
17
+ data/default.jsonl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ extended:
5
+ - original
6
+ language_creators:
7
+ - expert-generated
8
+ language:
9
+ - en-US
10
+ license:
11
+ - apache-2.0
12
+ multilinguality:
13
+ - monolingual
14
+ paperswithcode_id: prost
15
+ size_categories:
16
+ - 10K<n<100K
17
+ source_datasets:
18
+ - original
19
+ task_categories:
20
+ - question-answering
21
+ task_ids:
22
+ - multiple-choice-qa
23
+ - open-domain-qa
24
+ ---
25
+
26
+ # PROST: Physical Reasoning about Objects Through Space and Time
27
+
28
+ ## Table of Contents
29
+ - [Table of Contents](#table-of-contents)
30
+ - [Dataset Description](#dataset-description)
31
+ - [Dataset Summary](#dataset-summary)
32
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
33
+ - [Languages](#languages)
34
+ - [Dataset Structure](#dataset-structure)
35
+ - [Data Instances](#data-instances)
36
+ - [Data Fields](#data-fields)
37
+ - [Data Splits](#data-splits)
38
+ - [Dataset Creation](#dataset-creation)
39
+ - [Curation Rationale](#curation-rationale)
40
+ - [Source Data](#source-data)
41
+ - [Annotations](#annotations)
42
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
43
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
44
+ - [Social Impact of Dataset](#social-impact-of-dataset)
45
+ - [Discussion of Biases](#discussion-of-biases)
46
+ - [Other Known Limitations](#other-known-limitations)
47
+ - [Additional Information](#additional-information)
48
+ - [Dataset Curators](#dataset-curators)
49
+ - [Licensing Information](#licensing-information)
50
+ - [Citation Information](#citation-information)
51
+ - [Contributions](#contributions)
52
+
53
+ ## Dataset Description
54
+
55
+ - **Homepage:**
56
+ - **Repository:** https://github.com/nala-cub/prost
57
+ - **Paper:** https://arxiv.org/abs/2106.03634
58
+ - **Leaderboard:**
59
+ - **Point of Contact:** [Stéphane Aroca-Ouellette](mailto:[email protected])
60
+
61
+ ### Dataset Summary
62
+ *Physical Reasoning about Objects Through Space and Time* (PROST) is a probing dataset to evaluate the ability of pretrained LMs to understand and reason about the physical world. PROST consists of 18,736 cloze-style multiple choice questions from 14 manually curated templates, covering 10 physical reasoning concepts: direction, mass, height, circumference, stackable, rollable, graspable, breakable, slideable, and bounceable.
63
+
64
+
65
+ ### Supported Tasks and Leaderboards
66
+ The task is multiple choice question answering, but you can formulate it multiple ways. You can use `context` and `question` to form cloze style questions, or `context` and `ex_question` as multiple choice question answering. See the [GitHub](https://github.com/nala-cub/prost) repo for examples using GPT-1, GPT-2, BERT, RoBERTa, ALBERT, T5, and UnifiedQA.
67
+
68
+ ### Languages
69
+ The text in the dataset is in English. The associated BCP-47 code is `en-US`.
70
+
71
+ ## Dataset Structure
72
+
73
+ ### Data Instances
74
+ An example looks like this:
75
+
76
+ ```json
77
+ {
78
+ "A": "glass",
79
+ "B": "pillow",
80
+ "C": "coin",
81
+ "D": "ball",
82
+ "context": "A person drops a glass, a pillow, a coin, and a ball from a balcony.",
83
+ "ex_question": "Which object is the most likely to break?",
84
+ "group": "breaking",
85
+ "label": 0,
86
+ "name": "breaking_1",
87
+ "question": "The [MASK] is the most likely to break."
88
+ }
89
+ ```
90
+
91
+
92
+ ### Data Fields
93
+
94
+ - `A`: Option A (0)
95
+ - `B`: Option B (1)
96
+ - `C`: Option C (2)
97
+ - `D`: Option D (3)
98
+ - `context`: Context for the question
99
+ - `question`: A cloze style continuation of the context.
100
+ - `ex_question`: A multiple-choice style question.
101
+ - `group`: The question group, e.g. *bouncing*
102
+ - `label`: A ClassLabel indication the correct option
103
+ - `name':` The template identifier.
104
+
105
+ ### Data Splits
106
+
107
+ The dataset contains 18,736 examples for testing.
108
+
109
+ ## Dataset Creation
110
+
111
+ ### Curation Rationale
112
+
113
+ PROST is designed to avoid models succeeding in unintended ways. First, PROST provides no training data, so as to probe models in a zero-shot fashion. This prevents models from succeeding through spurious correlations between testing and training, and encourages success through a true understanding of and reasoning about the concepts at hand. Second, we manually write templates for all questions in an effort to prevent models from having seen the exact same sentences in their training data. Finally, it focuses on a small set of well defined, objective concepts that only require a small vocabulary. This allows researchers to focus more on the quality of training data rather than on size of it.
114
+
115
+ ### Source Data
116
+
117
+ #### Initial Data Collection and Normalization
118
+
119
+ [More Information Needed]
120
+
121
+ #### Who are the source language producers?
122
+
123
+ [More Information Needed]
124
+
125
+ ### Annotations
126
+
127
+ #### Annotation process
128
+
129
+ [More Information Needed]
130
+
131
+ #### Who are the annotators?
132
+
133
+ [More Information Needed]
134
+
135
+ ### Personal and Sensitive Information
136
+
137
+ [More Information Needed]
138
+
139
+ ## Considerations for Using the Data
140
+
141
+ ### Social Impact of Dataset
142
+
143
+ [More Information Needed]
144
+
145
+ ### Discussion of Biases
146
+
147
+ [More Information Needed]
148
+
149
+ ### Other Known Limitations
150
+
151
+ [More Information Needed]
152
+
153
+ ## Additional Information
154
+
155
+ ### Dataset Curators
156
+
157
+ [More Information Needed]
158
+
159
+ ### Licensing Information
160
+
161
+ PROST is licensed under the Apache 2.0 license.
162
+
163
+ ### Citation Information
164
+
165
+ ```
166
+ @inproceedings{aroca-ouellette-etal-2021-prost,
167
+ title = "{PROST}: {P}hysical Reasoning about Objects through Space and Time",
168
+ author = "Aroca-Ouellette, St{\'e}phane and
169
+ Paik, Cory and
170
+ Roncone, Alessandro and
171
+ Kann, Katharina",
172
+ booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
173
+ month = aug,
174
+ year = "2021",
175
+ address = "Online",
176
+ publisher = "Association for Computational Linguistics",
177
+ url = "https://aclanthology.org/2021.findings-acl.404",
178
+ pages = "4597--4608",
179
+ }
180
+ ```
181
+
182
+ ### Contributions
183
+
184
+ Thanks to [@corypaik](https://github.com/corypaik) for adding this dataset.
data/default.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05d773ae2768047579ea22415fc593199430747027b3df5621e60044fe893bde
3
+ size 7197063
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "*Physical Reasoning about Objects Through Space and Time* (PROST) is a probing dataset to evaluate the ability of pretrained LMs to understand and reason about the physical world. PROST consists of 18,736 cloze-style multiple choice questions from 14 manually curated templates, covering 10 physical reasoning concepts: direction, mass, height, circumference, stackable, rollable, graspable, breakable, slideable, and bounceable.\n", "citation": "@inproceedings{aroca-ouellette-etal-2021-prost,\n title = \"{PROST}: {P}hysical Reasoning about Objects through Space and Time\",\n author = \"Aroca-Ouellette, St{'e}phane and\n Paik, Cory and\n Roncone, Alessandro and\n Kann, Katharina\",\n booktitle = \"Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021\",\n month = aug,\n year = \"2021\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.findings-acl.404\",\n pages = \"4597--4608\",\n}\n", "homepage": "https://github.com/nala-cub/prost", "license": "Apache 2.0", "features": {"A": {"dtype": "string", "id": null, "_type": "Value"}, "B": {"dtype": "string", "id": null, "_type": "Value"}, "C": {"dtype": "string", "id": null, "_type": "Value"}, "D": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "ex_question": {"dtype": "string", "id": null, "_type": "Value"}, "group": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 4, "names": ["A", "B", "C", "D"], "names_file": null, "id": null, "_type": "ClassLabel"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "prost", "config_name": "default", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"test": {"name": "test", "num_bytes": 5698256, "num_examples": 18736, "dataset_name": "prost"}}, "download_checksums": {"https://huggingface.co/datasets/corypaik/prost/resolve/main/data/default.jsonl": {"num_bytes": 7197063, "checksum": "05d773ae2768047579ea22415fc593199430747027b3df5621e60044fe893bde"}}, "download_size": 7197063, "post_processing_size": null, "dataset_size": 5698256, "size_in_bytes": 12895319}}
prost.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and Cory Paik
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the 'License');
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an 'AS IS' BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """ Physical Reasoning about Objects Through Space and Time (PROST)
16
+
17
+ PROST is a probing dataset to evaluate the ability of pretrained LMs to
18
+ understand and reason about the physical world.
19
+ """
20
+ import json
21
+ import datasets
22
+
23
+
24
+ _CITATION = """\
25
+ @inproceedings{aroca-ouellette-etal-2021-prost,
26
+ title = "{PROST}: {P}hysical Reasoning about Objects through Space and Time",
27
+ author = "Aroca-Ouellette, St{\'e}phane and
28
+ Paik, Cory and
29
+ Roncone, Alessandro and
30
+ Kann, Katharina",
31
+ booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
32
+ month = aug,
33
+ year = "2021",
34
+ address = "Online",
35
+ publisher = "Association for Computational Linguistics",
36
+ url = "https://aclanthology.org/2021.findings-acl.404",
37
+ pages = "4597--4608",
38
+ }
39
+ """
40
+
41
+
42
+ _DESCRIPTION = """\
43
+ *Physical Reasoning about Objects Through Space and Time* (PROST) is a probing dataset to evaluate the ability of pretrained LMs to understand and reason about the physical world. PROST consists of 18,736 cloze-style multiple choice questions from 14 manually curated templates, covering 10 physical reasoning concepts: direction, mass, height, circumference, stackable, rollable, graspable, breakable, slideable, and bounceable.
44
+ """
45
+
46
+ _HOMEPAGE = 'https://github.com/nala-cub/prost'
47
+ _LICENSE = 'Apache 2.0'
48
+
49
+ _URL = 'https://huggingface.co/datasets/corypaik/prost/resolve/main/data'
50
+
51
+ _URLs = {'default': f'{_URL}/default.jsonl'}
52
+
53
+ MC_LABELS = list('ABCD')
54
+
55
+
56
+ class Prost(datasets.GeneratorBasedBuilder):
57
+
58
+ VERSION = datasets.Version('1.0.1')
59
+
60
+ def _info(self):
61
+ features = datasets.Features({
62
+ 'A': datasets.Value('string'),
63
+ 'B': datasets.Value('string'),
64
+ 'C': datasets.Value('string'),
65
+ 'D': datasets.Value('string'),
66
+ 'context': datasets.Value('string'),
67
+ 'question': datasets.Value('string'),
68
+ 'ex_question': datasets.Value('string'),
69
+ 'group': datasets.Value('string'),
70
+ 'label': datasets.ClassLabel(names=MC_LABELS),
71
+ 'name': datasets.Value('string'),})
72
+ return datasets.DatasetInfo(description=_DESCRIPTION, features=features,
73
+ supervised_keys=None, homepage=_HOMEPAGE,
74
+ license=_LICENSE, citation=_CITATION)
75
+
76
+ def _split_generators(self, dl_manager):
77
+ """ Returns SplitGenerators."""
78
+ path = dl_manager.download_and_extract(_URLs[self.config.name])
79
+ kwargs = {'path': path}
80
+ return [datasets.SplitGenerator(datasets.Split.TEST, gen_kwargs=kwargs)]
81
+
82
+ def _generate_examples(self, path):
83
+ with open(path, 'r') as f:
84
+ for _id, line in enumerate(f.readlines()):
85
+ yield _id, json.loads(line)