File size: 2,504 Bytes
11538ef 0742b9b 11538ef baa8233 e5f9604 11538ef 0742b9b 11538ef 1662b60 8dbb707 11538ef 82dfe66 a9bafde 11538ef baa8233 11538ef baa8233 11538ef e5f9604 11538ef e5f9604 11538ef e5f9604 11538ef baa8233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
"""
NOTE: This file implements translation tasks using datasets from WMT conferences,
provided by sacrebleu. Traditionally they are evaluated with BLEU scores. TER
and CHRF are other options.
We defer citations and descriptions of the many translations tasks used
here to the SacreBLEU repo from which we've obtained the datasets:
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/dataset.py
Homepage: https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/dataset.py
"""
from sacrebleu import sacrebleu
import datasets
import os
import json
_CITATION = """
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
"""
class SacrebleuManual(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
names = [name for name in list(sacrebleu.get_available_testsets()) if name not in ["wmt23", "wmt24"] and "wmt21" not in name]
print(names)
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"{name.replace('/', '_')}_{langpair}", version=datasets.Version("1.0.0"), description="")
for name in names
for langpair in sacrebleu.get_langpairs_for_testset(name)
]
def _info(self):
features = datasets.Features(
{
"translation": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=f"Sacrebleu\n{self.config.description}",
features=features,
homepage="",
license="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download(f"{os.path.join(*self.config.name.split('_'))}.jsonl")
print(downloaded_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"path": downloaded_files},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, path):
with open(path, encoding="utf-8") as f:
for key, row in enumerate(f):
yield key, json.loads(row) |