Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
12,100
If the two real roots of the equation (lgx)<sup>2</sup>\-lgx+lg2•lg5=0 with respect to x are m and n, then 2<sup>m+n</sup>\=\_\_\_\_\_\_.
128
74.21875
12,101
Given that the terminal side of angle $\alpha$ passes through point $P(\sqrt{3}, m)$ ($m \neq 0$), and $\cos \alpha = \frac{m}{6}$, find the value of $\sin \alpha$ ___.
\frac{\sqrt{3}}{2}
2.34375
12,102
Points were marked on the sides of triangle \(ABC\): 12 points on side \(AB\), 9 points on side \(BC\), and 10 points on side \(AC\). None of the vertices of the triangle are marked. How many triangles can be formed with vertices at the marked points?
4071
21.09375
12,103
For how many positive integers $n$ less than or equal to 500 is $$(\cos t - i\sin t)^n = \cos nt - i\sin nt$$ true for all real $t$?
500
86.71875
12,104
Let $b_n$ be the number obtained by writing the integers 1 to $n$ from left to right, where each integer is squared. For example, $b_3 = 149$ (since $1^2 = 1$, $2^2 = 4$, $3^2 = 9$), and $b_5 = 1491625$. For $1 \le k \le 100$, determine how many $b_k$ are divisible by 4.
50
7.8125
12,105
For any real numbers $x,y$ that satisfies the equation $$ x+y-xy=155 $$ and $$ x^2+y^2=325 $$ , Find $|x^3-y^3|$
4375
75
12,106
How many zeros are there at the end of $\frac{2018!}{30!\times 11!}$?
493
36.71875
12,107
On the $x O y$ coordinate plane, there is a Chinese chess "knight" at the origin $(0,0)$. The "knight" needs to be moved to the point $P(1991,1991)$ using the movement rules of the chess piece. What is the minimum number of moves required?
1328
26.5625
12,108
A rectangle has dimensions 12 by 15, and a circle centered at one of its vertices has a radius of 15. What is the area of the union of the regions enclosed by the rectangle and the circle? Express your answer in terms of \( \pi \).
180 + 168.75\pi
0.78125
12,109
Three triangles. Inside triangle $ABC$, a random point $M$ is chosen. What is the probability that the area of one of the triangles $ABM$, $BCM$, or $CAM$ will be greater than the sum of the areas of the other two?
0.75
0
12,110
Find the 150th term of the sequence that consists of all those positive integers which are either powers of 3 or sums of distinct powers of 3.
2280
21.875
12,111
The diagonals AC and CE of the regular hexagon ABCDEF are divided by inner points M and N respectively, so that AM/AC = CN/CE = r. Determine r if B, M, and N are collinear.
\frac{1}{\sqrt{3}}
0
12,112
Given $α∈(\frac{π}{2},π)$, and $sin(α+\frac{π}{3})=\frac{12}{13}$, determine the value of $sin(\frac{π}{6}-α)+sin(\frac{2π}{3}-α)$.
\frac{7}{13}
24.21875
12,113
What is the minimum length of the second longest side of a triangle with an area of one unit?
\sqrt{2}
34.375
12,114
Let the set \[ S=\{1, 2, \cdots, 12\}, \quad A=\{a_{1}, a_{2}, a_{3}\} \] where \( a_{1} < a_{2} < a_{3}, \quad a_{3} - a_{2} \leq 5, \quad A \subseteq S \). Find the number of sets \( A \) that satisfy these conditions.
185
86.71875
12,115
Calculate the following infinite product: $3^{\frac{1}{3}} \cdot 9^{\frac{1}{9}} \cdot 27^{\frac{1}{27}} \cdot 81^{\frac{1}{81}} \dotsm.$
3^{\frac{3}{4}}
82.8125
12,116
Given the function $f(x)=\frac{1}{3}x^{3}+ax^{2}+bx-\frac{2}{3}$, the equation of the tangent line at $x=2$ is $x+y-2=0$. (I) Find the values of the real numbers $a$ and $b$. (II) Find the extreme values of the function $f(x)$.
-\frac{2}{3}
9.375
12,117
Given the function \( f(x) = \lg \frac{1 + x}{1 - x} \), if \( f\left(\frac{y + z}{1 + y z}\right) = 1 \) and \( f\left(\frac{y - z}{1 - y z}\right) = 2 \), where \( -1 < y, z < 1 \), find the value of \( f(y) \cdot f(z) \).
-3/4
0
12,118
The shortest distance from a point on the curve $f(x) = \ln(2x-1)$ to the line $2x - y + 3 = 0$ is what?
\sqrt{5}
57.8125
12,119
Given $f(\sin \alpha + \cos \alpha) = \sin \alpha \cdot \cos \alpha$, determine the domain of $f(x)$ and the value of $f\left(\sin \frac{\pi}{6}\right)$.
-\frac{3}{8}
61.71875
12,120
Find the maximum value of the product \(x^{2} y^{2} z^{2} u\) given the condition that \(x, y, z, u \geq 0\) and: \[ 2x + xy + z + yz u = 1 \]
1/512
1.5625
12,121
Point \( M \) is the midpoint of side \( BC \) of the triangle \( ABC \), where \( AB = 17 \), \( AC = 30 \), and \( BC = 19 \). A circle is constructed with diameter \( AB \). A point \( X \) is chosen arbitrarily on this circle. What is the minimum possible length of the segment \( MX \)?
6.5
12.5
12,122
What is the remainder when $5x^8 - 3x^7 + 4x^6 - 9x^4 + 3x^3 - 5x^2 + 8$ is divided by $3x - 6$?
1020
8.59375
12,123
Given the ellipse \(\frac{x^{2}}{16}+\frac{y^{2}}{9}=1\) with three points \(P\), \(Q\), and \(R\) on it, where \(P\) and \(Q\) are symmetric with respect to the origin. Find the maximum value of \(|RP| + |RQ|\).
10
61.71875
12,124
Given that \( a \) and \( b \) are positive integers, and \( b - a = 2013 \). If the equation \( x^{2} - a x + b = 0 \) has a positive integer solution, what is the smallest value of \( a \)?
93
45.3125
12,125
Let $ABCD$ be a parallelogram with $\angle ABC=135^\circ$, $AB=14$ and $BC=8$. Extend $\overline{CD}$ through $D$ to $E$ so that $DE=3$. If $\overline{BE}$ intersects $\overline{AD}$ at $F$, then find the length of segment $FD$. A) $\frac{6}{17}$ B) $\frac{18}{17}$ C) $\frac{24}{17}$ D) $\frac{30}{17}$
\frac{24}{17}
43.75
12,126
Let \( a \star b = ab + a + b \) for all integers \( a \) and \( b \). Evaluate \( 1 \star (2 \star (3 \star (4 \star \ldots (99 \star 100) \ldots))) \).
101! - 1
0
12,127
A basketball team consists of 12 players, including two pairs of twins, Alex and Brian, and Chloe and Diana. In how many ways can we choose a team of 5 players if no pair of twins can both be in the team lineup simultaneously?
560
23.4375
12,128
How many different positive three-digit integers can be formed using only the digits in the set $\{1, 2, 2, 3, 4, 4, 4\}$ if no digit may be used more times than it appears in the given set of available digits?
43
67.1875
12,129
Given the parabola $y=ax^{2}+bx+c$ ($a\neq 0$) with its axis of symmetry to the left of the $y$-axis, where $a$, $b$, $c \in \{-3,-2,-1,0,1,2,3\}$, let the random variable $X$ be the value of "$|a-b|$". Then, the expected value $EX$ is \_\_\_\_\_\_.
\dfrac {8}{9}
2.34375
12,130
Given the function \( f(x) = \cos x + \log_2 x \) for \( x > 0 \), if the positive real number \( a \) satisfies \( f(a) = f(2a) \), then find the value of \( f(2a) - f(4a) \).
-1
79.6875
12,131
The base of the pyramid is an isosceles right triangle, where each leg measures 8. Each of the pyramid's lateral edges is 9. Find the volume of the pyramid.
224/3
70.3125
12,132
Given that the function $f(x+1)$ is an odd function, and the function $f(x-1)$ is an even function, and $f(0)=2$, then $f(4)=$ ?
-2
11.71875
12,133
For a positive number $x$, define $f(x)=\frac{2x}{x+1}$. Calculate: $f(\frac{1}{101})+f(\frac{1}{100})+f(\frac{1}{99})+\ldots +f(\frac{1}{3})+f(\frac{1}{2})+f(1)+f(2)+f(3)+\ldots +f(99)+f(100)+f(101)$.
201
72.65625
12,134
Given that $α$ is an angle in the third quadrant and $\cos(α+π)=\frac{4}{5}$, find the value of $\tan 2α$.
\frac{24}{7}
94.53125
12,135
Let \( x \neq y \), and the two sequences \( x, a_{1}, a_{2}, a_{3}, y \) and \( b_{1}, x, b_{2}, b_{3}, y, b_{4} \) are both arithmetic sequences. Then \(\frac{b_{4}-b_{3}}{a_{2}-a_{1}}\) equals $\qquad$.
2.6666666666666665
0
12,136
Given the complex number $z=(2m^{2}+3m-2)+(m^{2}+m-2)i$ where $(m\in\mathbb{R})$, find the value of $m$ under the following conditions: $(1) z$ is a real number; $(2) z$ is an imaginary number; $(3) z$ is a pure imaginary number; $(4) z=0$.
-2
27.34375
12,137
Given a sequence \( x_{n} \), satisfying \( (n+1) x_{n+1}=x_{n}+n \), and \( x_{1}=2 \), find \( x_{2009} \).
\frac{2009! + 1}{2009!}
0
12,138
Given a four-digit number \(\overline{abcd}\), when divided by 2, 3, 4, 5, 6, and 7, the remainders are all different and none of them are 0. Find the minimum value of \(\overline{abcd}\).
1259
100
12,139
Factorize the expression $27x^6 - 512y^6$ and find the sum of all integer coefficients in its factorized form.
92
53.90625
12,140
There is a peculiar four-digit number (with the first digit not being 0). It is a perfect square, and the sum of its digits is also a perfect square. Dividing this four-digit number by the sum of its digits results in yet another perfect square. Additionally, the number of divisors of this number equals the sum of its digits, which is a perfect square. If all the digits of this four-digit number are distinct, what is this four-digit number?
2601
91.40625
12,141
Given four points \( O, A, B, C \) on a plane, with \( OA=4 \), \( OB=3 \), \( OC=2 \), and \( \overrightarrow{OB} \cdot \overrightarrow{OC}=3 \), find the maximum area of triangle \( ABC \).
2 \sqrt{7} + \frac{3\sqrt{3}}{2}
2.34375
12,142
Suppose $p$ and $q$ are both real numbers, and $\sin \alpha$ and $\cos \alpha$ are the two real roots of the equation $x^{2}+px+q=0$ with respect to $x$. Find the minimum value of $p+q$.
-1
78.125
12,143
Find the area of triangle ABC, whose vertices have coordinates A(0,0), B(1424233,2848467), C(1424234,2848469). Round the answer to two decimal places.
0.50
63.28125
12,144
The value of $\sin 210^\circ$ is equal to $\frac{-\sqrt{3}}{2}$.
-\frac{1}{2}
64.0625
12,145
Find the smallest natural number ending in the digit 6, which increases fourfold when its last digit is moved to the beginning of the number.
153846
92.1875
12,146
Does there exist an integer \( n \) such that \( 21n \equiv 1 \mod 74 \)?
67
9.375
12,147
One of the angles in a triangle is $120^{\circ}$, and the lengths of the sides form an arithmetic progression. Find the ratio of the lengths of the sides of the triangle.
3 : 5 : 7
57.8125
12,148
Parallelogram $PQRS$ has vertices $P(4,4)$, $Q(-2,-2)$, $R(-8,-2)$, and $S(2,4)$. If a point is selected at random from the region determined by the parallelogram, what is the probability that the point is not above the $x$-axis?
\frac{1}{2}
32.03125
12,149
A straight one-way city street has 8 consecutive traffic lights. Every light remains green for 1.5 minutes, yellow for 3 seconds, and red for 1.5 minutes. The lights are synchronized so that each light turns red 10 seconds after the preceding one turns red. What is the longest interval of time, in seconds, during which all 8 lights are green?
20
16.40625
12,150
The sum of the maximum and minimum values of the function $y=2\sin \left( \frac{\pi x}{6}- \frac{\pi}{3}\right)$ where $(0\leqslant x\leqslant 9)$ is to be determined.
2-\sqrt{3}
5.46875
12,151
By how many zeros does the number 2012! end?
501
100
12,152
Given the complex numbers \( z_1 \) and \( z_2 \) such that \( \left| z_1 + z_2 \right| = 20 \) and \( \left| z_1^2 + z_2^2 \right| = 16 \), find the minimum value of \( \left| z_1^3 + z_2^3 \right| \).
3520
82.03125
12,153
Find the limits: 1) \(\lim_{x \to 3}\left(\frac{1}{x-3}-\frac{6}{x^2-9}\right)\) 2) \(\lim_{x \to \infty}\left(\sqrt{x^2 + 1}-x\right)\) 3) \(\lim_{n \to \infty} 2^n \sin \frac{x}{2^n}\) 4) \(\lim_{x \to 1}(1-x) \tan \frac{\pi x}{2}\).
\frac{2}{\pi}
89.0625
12,154
To encourage residents to conserve water, a city charges residents for domestic water use in a tiered pricing system. The table below shows partial information on the tiered pricing for domestic water use for residents in the city, each with their own water meter: | Water Sales Price | Sewage Treatment Price | |-------------------|------------------------| | Monthly Water Usage per Household | Unit Price: yuan/ton | Unit Price: yuan/ton | | 17 tons or less | $a$ | $0.80$ | | More than 17 tons but not more than 30 tons | $b$ | $0.80$ | | More than 30 tons | $6.00$ | $0.80$ | (Notes: 1. The amount of sewage generated by each household is equal to the amount of tap water used by that household; 2. Water bill = tap water cost + sewage treatment fee) It is known that in April 2020, the Wang family used 15 tons of water and paid 45 yuan, and in May, they used 25 tons of water and paid 91 yuan. (1) Find the values of $a$ and $b$; (2) If the Wang family paid 150 yuan for water in June, how many tons of water did they use that month?
35
26.5625
12,155
From an arbitrary tetrahedron, four smaller tetrahedra are separated by four planes passing through the midpoints of the edges emanating from each vertex. Calculate the ratio of the volume of the remaining body to the volume of the original tetrahedron.
1/2
96.875
12,156
The product of all integers whose absolute value is greater than 3 but not greater than 6 is ____.
-14400
24.21875
12,157
Find the sum of $453_6$, $436_6$, and $42_6$ in base 6.
1415_6
78.90625
12,158
The cheetah takes strides of 2 meters each and the fox takes strides of 1 meter each. The time it takes for the cheetah to run 2 strides is the same as the time it takes for the fox to run 3 strides. Given that the distance between the cheetah and the fox is 30 meters, find the distance the cheetah must run to catch up with the fox.
120
51.5625
12,159
Given that the odd function $f(x)$ is a monotonically increasing function defined on $\mathbb{R}$ and the sequence $\{x_n\}$ is an arithmetic sequence with a common difference of 2, satisfying $f(x_8) + f(x_9) + f(x_{10}) + f(x_{11}) = 0$, find the value of $x_{2012}$.
4005
90.625
12,160
In the diagram, $D$ and $E$ are the midpoints of $\overline{AC}$ and $\overline{BC}$ respectively, where $A(0,8)$, $B(0,0)$, and $C(10,0)$. Find the sum of the slope and $y$-intercept of the line passing through the points $C$ and $D$.
\frac{36}{5}
73.4375
12,161
The integers \( m \) and \( n \) satisfy the equation \( 3^{m} \times n = 7! + 8! + 9! \). What is the smallest possible value for \( n \)?
560
52.34375
12,162
A sequence of numbers is arranged in the following pattern: \(1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, \cdots\). Starting from the first number on the left, find the sum of the first 99 numbers.
1782
39.84375
12,163
In the six-digit number $1 A B C D E$, each letter represents a digit. Given that $1 A B C D E \times 3 = A B C D E 1$, calculate the value of $A+B+C+D+E$.
26
68.75
12,164
In the interior of a triangle \( ABC \) with area 1, points \( D \), \( E \), and \( F \) are chosen such that \( D \) is the midpoint of \( AE \), \( E \) is the midpoint of \( BF \), and \( F \) is the midpoint of \( CD \). Find the area of triangle \( DEF \).
1/7
57.03125
12,165
Two cars start from the same location at the same time, moving in the same direction at a constant speed. Each car can carry a maximum of 24 barrels of gasoline, and each barrel of gasoline allows a car to travel 60km. Both cars must return to the starting point, but they do not have to return at the same time. The cars can lend gasoline to each other. To maximize the distance one car can travel away from the starting point, the other car should turn back at a distance of $\boxed{360}$ km from the starting point.
360
69.53125
12,166
In the tetrahedron $P-ABC$, edges $PA$, $AB$, and $AC$ are mutually perpendicular, and $PA = AB = AC$. Points $E$ and $F$ are the midpoints of segments $AB$ and $PC$, respectively. Find the sine of the angle between line $EF$ and plane $PBC$.
\frac{1}{3}
57.8125
12,167
What is the result of $120 \div (6 \div 2 \times 3)$?
\frac{120}{9}
0
12,168
How many pairs of two-digit positive integers have a difference of 50?
40
53.125
12,169
The diagonals \(AC\) and \(BD\) of the symmetric trapezoid \(ABCD\) intersect at point \(O\). The area of triangle \(AOB\) is \(52 \, \text{m}^2\) and the area of triangle \(COD\) is \(117 \, \text{m}^2\). Calculate the area of the trapezoid.
325
50
12,170
Calculate the value of $3^{12} \cdot 3^3$ and express it as some integer raised to the third power.
243
17.1875
12,171
In the finals of a beauty contest among giraffes, there were two finalists: the Tall one and the Spotted one. There are 135 voters divided into 5 districts, each district is divided into 9 precincts, and each precinct has 3 voters. Voters in each precinct choose the winner by majority vote; in a district, the giraffe that wins in the majority of precincts is the winner; finally, the giraffe that wins in the majority of districts is declared the winner of the final. The Tall giraffe won. What is the minimum number of voters who could have voted for the Tall giraffe?
30
64.0625
12,172
Given distinct natural numbers \( k, l, m, n \), it is known that there exist three natural numbers \( a, b, c \) such that each of the numbers \( k, l, m, n \) is a root of either the equation \( a x^{2} - b x + c = 0 \) or the equation \( c x^{2} - 16 b x + 256 a = 0 \). Find \( k^{2} + l^{2} + m^{2} + n^{2} \).
325
7.8125
12,173
Alexio now has 100 cards numbered from 1 to 100. He again randomly selects one card from the box. What is the probability that the number on the chosen card is a multiple of 3, 5, or 7? Express your answer as a common fraction.
\frac{11}{20}
67.96875
12,174
In rectangle $ABCD$, side $AB$ measures $8$ units and side $BC$ measures $4$ units. Points $F$ and $G$ are on side $CD$ such that segment $DF$ measures $2$ units and segment $GC$ measures $2$ units, and lines $AF$ and $BG$ intersect at $E$. What is the area of triangle $AEB$?
32
77.34375
12,175
\[ \sum_{k=1}^{70} \frac{k}{x-k} \geq \frac{5}{4} \] is a union of disjoint intervals the sum of whose lengths is 1988.
1988
31.25
12,176
When two fair dice are thrown, the numbers obtained are $a$ and $b$, respectively. Express the probability that the slope $k$ of the line $bx+ay=1$ is greater than or equal to $-\dfrac{2}{5}$.
\dfrac{1}{6}
20.3125
12,177
You are in a place where 99% of the inhabitants are vampires and 1% are regular humans. On average, 90% of the vampires are correctly identified as vampires, and 90% of humans are correctly identified as humans. What is the probability that someone identified as a human is actually a human?
1/12
84.375
12,178
Given the parabola C: x² = 2py (p > 0), draw a line l: y = 6x + 8, which intersects the parabola C at points A and B. Point O is the origin, and $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$. A moving circle P has its center on the parabola C and passes through a fixed point D(0, 4). If the moving circle P intersects the x-axis at points E and F, and |DE| < |DF|, find the minimum value of $\frac{|DE|}{|DF|}$.
\sqrt{2} - 1
0
12,179
Given an $8 \times 6$ grid, consider a triangle with vertices at $D=(2,1)$, $E=(7,1)$, and $F=(5,5)$. Determine the fraction of the grid covered by this triangle.
\frac{5}{24}
77.34375
12,180
The real numbers \( x, y, z \) satisfy \( x + y + z = 2 \) and \( xy + yz + zx = 1 \). Find the maximum possible value of \( x - y \).
\frac{2 \sqrt{3}}{3}
42.96875
12,181
The quadratic \( x^2 + 1800x + 1800 \) can be written in the form \( (x+b)^2 + c \), where \( b \) and \( c \) are constants. What is \( \frac{c}{b} \)?
-898
89.84375
12,182
A deck consists of 32 cards divided into 4 suits, each containing 8 cards. In how many ways can we choose 6 cards such that all four suits are represented among them?
415744
0
12,183
A positive integer sequence has its first term as 8 and its second term as 1. From the third term onwards, each term is the sum of the two preceding terms. What is the remainder when the 2013th term in this sequence is divided by 105?
16
27.34375
12,184
Observing the equations:<br/>$1\times 3+1=4=2^{2}$;<br/>$2\times 4+1=9=3^{2}$;<br/>$3\times 5+1=16=4^{2}$;<br/>$4\times 6+1=25=5^{2}$;<br/>$\ldots $<br/>$(1)7\times 9+1=( $______)$^{2}$;<br/>$(2)$ Using the pattern you discovered, calculate: $(1+\frac{1}{1×3})×(1+\frac{1}{2×4})×(1+\frac{1}{3×5})×⋅⋅⋅×(1+\frac{1}{198×200})$.
\frac{199}{100}
89.84375
12,185
If $\alpha, \beta, \gamma$ are the roots of the equation $x^3 - x - 1 = 0$, find the value of $\frac{1 + \alpha}{1 - \alpha} + \frac{1 + \beta}{1 - \beta} + \frac{1 + \gamma}{1 - \gamma}$.
-7
64.0625
12,186
Xiaopang arranges the 50 integers from 1 to 50 in ascending order without any spaces in between. Then, he inserts a "+" sign between each pair of adjacent digits, resulting in an addition expression: \(1+2+3+4+5+6+7+8+9+1+0+1+1+\cdots+4+9+5+0\). Please calculate the sum of this addition expression. The result is ________.
330
60.15625
12,187
Lucy surveyed a group of people about their knowledge of mosquitoes. To the nearest tenth of a percent, she found that $75.3\%$ of the people surveyed thought mosquitoes transmitted malaria. Of the people who thought mosquitoes transmitted malaria, $52.8\%$ believed that mosquitoes also frequently transmitted the common cold. Since mosquitoes do not transmit the common cold, these 28 people were mistaken. How many total people did Lucy survey?
70
40.625
12,188
Digital clocks display hours and minutes (for example, 16:15). While practicing arithmetic, Buratino finds the sum of the digits on the clock $(1+6+1+5=13)$. Write down such a time of day when the sum of the digits on the clock will be the greatest.
19:59
33.59375
12,189
Xiao Gang goes to buy milk and finds that it's on special offer that day: each bag costs 2.5 yuan, and there is a "buy two, get one free" promotion. Xiao Gang has 30 yuan. What is the maximum number of bags of milk he can buy?
18
74.21875
12,190
The interior angles of a convex polygon form an arithmetic sequence, with the smallest angle being $120^\circ$ and the common difference being $5^\circ$. Determine the number of sides $n$ for the polygon.
n = 9
86.71875
12,191
Given three points $A$, $B$, $C$ on a straight line in the Cartesian coordinate system, satisfying $\overrightarrow{OA}=(-3,m+1)$, $\overrightarrow{OB}=(n,3)$, $\overrightarrow{OC}=(7,4)$, and $\overrightarrow{OA} \perp \overrightarrow{OB}$, where $O$ is the origin. $(1)$ Find the values of the real numbers $m$, $n$; $(2)$ Let $G$ be the centroid of $\triangle AOC$, and $\overrightarrow{OG}= \frac{2}{3} \overrightarrow{OB}$, find the value of $\cos \angle AOC$.
-\frac{\sqrt{5}}{5}
64.84375
12,192
Given that \( x \) is a multiple of \( 7200 \), what is the greatest common divisor of \( f(x)=(5x+6)(8x+3)(11x+9)(4x+12) \) and \( x \)?
72
33.59375
12,193
There are four distinct codes $A, B, C, D$ used by an intelligence station, with one code being used each week. Each week, a code is chosen randomly with equal probability from the three codes that were not used the previous week. Given that code $A$ is used in the first week, what is the probability that code $A$ is also used in the seventh week? (Express your answer as a simplified fraction.)
61/243
65.625
12,194
If $x^2 + 3x - 1 = 0$, then $x^3 + 5x^2 + 5x + 18 =$ ?
20
94.53125
12,195
In the sequence \(\left\{a_{n}\right\}\), it is known that \(a_{1}=1\) and \(a_{n+1}>a_{n}\), and that \(a_{n+1}^{2}+a_{n}^{2}+1=2\left(a_{n+1}+a_{n}+2 a_{n+1} a_{n}\right)\). Find \(\lim \limits_{n \rightarrow \infty} \frac{S_{n}}{n a_{n}}\).
1/3
35.9375
12,196
Simplify $\sqrt{18} \times \sqrt{32} \times \sqrt{2}$.
24\sqrt{2}
91.40625
12,197
There are 19 weights with values $1, 2, 3, \ldots, 19$ grams: nine iron, nine bronze, and one gold. It is known that the total weight of all the iron weights is 90 grams more than the total weight of the bronze weights. Find the weight of the gold weight.
10
79.6875
12,198
Given that $A, B, C, D, E, F$ are the vertices of a regular hexagon with a side length of 2, and a parabola passes through the points $A, B, C, D$, find the distance from the focus of the parabola to its directrix.
\frac{\sqrt{3}}{2}
15.625
12,199
How many positive integers less than $201$ are multiples of either $6$ or $8$, but not both at once?
42
26.5625