code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
"""SentencePiece Tokenization for Wiki Dataset Example: * python scripts/wiki_sp_tokenize_json.py --word --unigram """ import gzip import json import subprocess from pathlib import Path import sentencepiece as spm import joblib import numpy as np import click from tqdm import tqdm from opencc import OpenCC from wiki_tokenize_json import clean_text, filter_texts, SECTION_BLACKLIST DATAPATH = "/mnt/Intel/zhwiki.json.gz" TMPPATH = "/mnt/Intel/tmp_texts.txt" TMPPATH_WORD = "/mnt/Intel/tmp_words.txt" MODEL_PREFIX = "data/{algorithm}_{seg_word}_model" CC = OpenCC('t2s') VOC_SIZE = 7500 PAD = 1 UNK = 0 def json_to_txt(): with gzip.open(DATAPATH) as f: with open(TMPPATH, "w") as fw: for _, line in tqdm(enumerate(f.readlines())): article = json.loads(line) if "年表" in article["title"] or "列表" in article["title"]: continue for title, section in zip(article["section_titles"], article["section_texts"]): title = CC.convert(title) if title in SECTION_BLACKLIST: continue for paragraph in [x for x in section.split("\n") if len(x) > 50]: paragraph = clean_text(paragraph) if len(paragraph) < 200 or filter_texts(paragraph): continue for sentence in [x for x in paragraph.split("。") if len(x) > 10]: fw.write(sentence + "。\n") def fit_model(seg_word=True, algorithm="bpe"): if not Path(TMPPATH).exists(): json_to_txt() if seg_word: print("Performing word segmentation...") res = subprocess.run([ "thulac", "-model_dir", "/mnt/SSD_Data/openai_nlp/THULAC/models/", "-seg_only", "-input", TMPPATH, "-output", TMPPATH_WORD ], stdout=subprocess.PIPE) print(res) # Train Model print("Training model...") spm.SentencePieceTrainer.Train( '--input={} --model_prefix={} --vocab_size={} ' '--input_sentence_size=20000000 ' '--character_coverage=0.995 --model_type={algorithm}'.format( TMPPATH_WORD if seg_word else TMPPATH, MODEL_PREFIX.format(algorithm=algorithm, seg_word=seg_word), VOC_SIZE, algorithm="unigram" ) ) def tokenize(seg_word=True, algorithm="bpe"): print("Tokenizing...") sp = spm.SentencePieceProcessor() sp.Load(MODEL_PREFIX.format( algorithm=algorithm, seg_word=seg_word) + ".model") tokens = [] with open(TMPPATH_WORD if seg_word else TMPPATH) as f: for _, sentence in tqdm(enumerate(f.readlines())): tokens.append( np.array(sp.EncodeAsIds(sentence)) ) joblib.dump(np.array(tokens), f"data/tokens_{algorithm}_{seg_word}.pkl") @click.command() @click.option("--word", is_flag=True) @click.option("--bpe/--unigram", default=True) def main(word, bpe): seg_word = True if word else False algorithm = "bpe" if bpe else "unigram" # fit_model(seg_word, algorithm) tokenize(seg_word, algorithm) if __name__ == "__main__": # pylint: disable=no-value-for-parameter main()
[ "subprocess.run", "gzip.open", "sentencepiece.SentencePieceProcessor", "json.loads", "wiki_tokenize_json.clean_text", "click.option", "click.command", "opencc.OpenCC", "pathlib.Path", "numpy.array", "wiki_tokenize_json.filter_texts" ]
[((564, 577), 'opencc.OpenCC', 'OpenCC', (['"""t2s"""'], {}), "('t2s')\n", (570, 577), False, 'from opencc import OpenCC\n'), ((2890, 2905), 'click.command', 'click.command', ([], {}), '()\n', (2903, 2905), False, 'import click\n'), ((2907, 2943), 'click.option', 'click.option', (['"""--word"""'], {'is_flag': '(True)'}), "('--word', is_flag=True)\n", (2919, 2943), False, 'import click\n'), ((2945, 2990), 'click.option', 'click.option', (['"""--bpe/--unigram"""'], {'default': '(True)'}), "('--bpe/--unigram', default=True)\n", (2957, 2990), False, 'import click\n'), ((2462, 2490), 'sentencepiece.SentencePieceProcessor', 'spm.SentencePieceProcessor', ([], {}), '()\n', (2488, 2490), True, 'import sentencepiece as spm\n'), ((640, 659), 'gzip.open', 'gzip.open', (['DATAPATH'], {}), '(DATAPATH)\n', (649, 659), False, 'import gzip\n'), ((1724, 1896), 'subprocess.run', 'subprocess.run', (["['thulac', '-model_dir', '/mnt/SSD_Data/openai_nlp/THULAC/models/',\n '-seg_only', '-input', TMPPATH, '-output', TMPPATH_WORD]"], {'stdout': 'subprocess.PIPE'}), "(['thulac', '-model_dir',\n '/mnt/SSD_Data/openai_nlp/THULAC/models/', '-seg_only', '-input',\n TMPPATH, '-output', TMPPATH_WORD], stdout=subprocess.PIPE)\n", (1738, 1896), False, 'import subprocess\n'), ((2826, 2842), 'numpy.array', 'np.array', (['tokens'], {}), '(tokens)\n', (2834, 2842), True, 'import numpy as np\n'), ((790, 806), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (800, 806), False, 'import json\n'), ((1597, 1610), 'pathlib.Path', 'Path', (['TMPPATH'], {}), '(TMPPATH)\n', (1601, 1610), False, 'from pathlib import Path\n'), ((1257, 1278), 'wiki_tokenize_json.clean_text', 'clean_text', (['paragraph'], {}), '(paragraph)\n', (1267, 1278), False, 'from wiki_tokenize_json import clean_text, filter_texts, SECTION_BLACKLIST\n'), ((1330, 1353), 'wiki_tokenize_json.filter_texts', 'filter_texts', (['paragraph'], {}), '(paragraph)\n', (1342, 1353), False, 'from wiki_tokenize_json import clean_text, filter_texts, SECTION_BLACKLIST\n')]
from django.conf.urls import url, include from django.contrib import admin from django.views.generic import TemplateView urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^', include('server.urls'), name='server'), ]
[ "django.conf.urls.include", "django.conf.urls.url" ]
[((143, 174), 'django.conf.urls.url', 'url', (['"""^admin/"""', 'admin.site.urls'], {}), "('^admin/', admin.site.urls)\n", (146, 174), False, 'from django.conf.urls import url, include\n'), ((191, 213), 'django.conf.urls.include', 'include', (['"""server.urls"""'], {}), "('server.urls')\n", (198, 213), False, 'from django.conf.urls import url, include\n')]
# Adapted for numpy/ma/cdms2 by convertcdms.py # Import the modules needed for the tuturial import vcs, cdms2 as cdms, cdutil, time, os, sys # Open data file: filepath = os.path.join(vcs.sample_data, 'clt.nc') cdmsfile = cdms.open( filepath ) # Extract a 3 dimensional data set and get a subset of the time dimension data = cdmsfile('clt', longitude=(-180, 180), latitude = (-90., 90.)) # Initial VCS: v = vcs.init() # Assign the variable "t_asd" to the persistent 'ASD' template. t_asd = v.gettemplate( 'ASD' ) # Create a new template from the existing 'ASD' template t2_asd = v.createtemplate( 'new', 'ASD' ) # Plot the data using the above 'ASD' template. v.plot( data, t_asd ) # Remove picture segments from the page. t_asd.list( ) t_asd.xlabel2.priority = 0 t_asd.xtic2.priority = 0 t_asd.xtic2.priority = 0 t_asd.legend.priority=0 # save current 'Mean' placemant for x and y coordinates xmean_current = t_asd.mean.x ymean_current = t_asd.mean.y # now change the placement t_asd.mean.x=0.5 # move the "Mean" text to x-axis center t_asd.mean.y=0.5 # move the "Mean" text to y-axis center t_asd.data.priority = 0 # remove the data so the "Mean" text is visable. v.update() ############################################################################# # Place the colorbar legend vertically and to the right side ############################################################################# t_asd.data.priority = 1 t_asd.legend.priority = 1 t_asd.legend.list() # list the legend members v.mode=0 # turn the automatic update off # move 'Mean' text back where it was t_asd.mean.x = xmean_current t_asd.mean.y = ymean_current # move the right side of a plot to the left to make space for the legend # first move the inner plot t_asd.data.x2 = 0.87 # then move the sorrounding box - the right y-axis t_asd.box1.x2 = 0.87 # set the top x-axis (secind y axis) to be blank t_asd.xlabel2.priority = 0 t_asd.xtic2.priority = 0 # set the right y-axis (second y axis) to be blank (priority=0) t_asd.ylabel2.priority = 0 t_asd.ytic2.priority = 0 # move the colorbar legend position, to be vertial and to the right t_asd.legend.x1=0.9 t_asd.legend.y1=0.82 t_asd.legend.x2=0.95 t_asd.legend.y2=0.3 # clear the canvas and plot the template again v.clear() v.plot( data, t_asd )
[ "cdms2.open", "os.path.join", "vcs.init" ]
[((171, 210), 'os.path.join', 'os.path.join', (['vcs.sample_data', '"""clt.nc"""'], {}), "(vcs.sample_data, 'clt.nc')\n", (183, 210), False, 'import vcs, cdms2 as cdms, cdutil, time, os, sys\n'), ((222, 241), 'cdms2.open', 'cdms.open', (['filepath'], {}), '(filepath)\n', (231, 241), True, 'import vcs, cdms2 as cdms, cdutil, time, os, sys\n'), ((409, 419), 'vcs.init', 'vcs.init', ([], {}), '()\n', (417, 419), False, 'import vcs, cdms2 as cdms, cdutil, time, os, sys\n')]
"""Install or upgrade a bcbio-nextgen installation. """ from __future__ import print_function import os import subprocess import sys import yaml from bcbiovm.docker import manage, mounts DEFAULT_IMAGE = "chapmanb/bcbio-nextgen-devel" def full(args, dockerconf): """Full installaction of docker image and data. """ updates = [] args = add_install_defaults(args) if args.wrapper: updates.append("wrapper scripts") upgrade_bcbio_vm() dmounts = mounts.prepare_system(args.datadir, dockerconf["biodata_dir"]) if args.install_tools: updates.append("bcbio-nextgen code and third party tools") pull(args, dockerconf) _check_docker_image(args) # Ensure external galaxy configuration in sync when doing tool upgrade manage.run_bcbio_cmd(args.image, dmounts, ["upgrade"]) if args.install_data: if len(args.genomes) == 0: print("Data not installed, no genomes provided with `--genomes` flag") sys.exit(1) elif len(args.aligners) == 0: print("Data not installed, no aligners provided with `--aligners` flag") sys.exit(1) else: updates.append("biological data") _check_docker_image(args) manage.run_bcbio_cmd(args.image, dmounts, _get_cl(args)) _save_install_defaults(args) if updates: print("\nbcbio-nextgen-vm updated with latest %s" % " and ".join(updates)) else: print("\nNo update targets specified, need '--wrapper', '--tools' or '--data'\n" "See 'bcbio_vm.py upgrade -h' for more details.") def _get_cl(args): clargs = ["upgrade"] if args.install_data: clargs.append("--data") for g in args.genomes: clargs.extend(["--genomes", g]) for a in args.aligners: clargs.extend(["--aligners", a]) return clargs def upgrade_bcbio_vm(): """Upgrade bcbio-nextgen-vm wrapper code. """ conda_bin = os.path.join(os.path.dirname(os.path.realpath(sys.executable)), "conda") if not os.path.exists(conda_bin): print("Cannot update bcbio-nextgen-vm; not installed with conda") else: subprocess.check_call([conda_bin, "install", "--yes", "-c", "https://conda.binstar.org/bcbio", "bcbio-nextgen-vm"]) def pull(args, dockerconf): """Pull down latest docker image, using export uploaded to S3 bucket. Long term plan is to use the docker index server but upload size is currently smaller with an exported gzipped image. """ print("Retrieving bcbio-nextgen docker image with code and tools") # subprocess.check_call(["docker", "pull", image]) assert args.image, "Unspecified image name for docker import" subprocess.check_call(["docker", "import", dockerconf["image_url"], args.image]) def _save_install_defaults(args): """Save arguments passed to installation to be used on subsequent upgrades. Avoids needing to re-include genomes and aligners on command line. """ install_config = _get_config_file(args) if install_config is None: return if os.path.exists(install_config) and os.path.getsize(install_config) > 0: with open(install_config) as in_handle: cur_config = yaml.load(in_handle) else: cur_config = {} for attr in ["genomes", "aligners"]: if not cur_config.get(attr): cur_config[attr] = [] for x in getattr(args, attr): if x not in cur_config[attr]: cur_config[attr].append(str(x)) if args.image != DEFAULT_IMAGE and args.image: cur_config["image"] = args.image with open(install_config, "w") as out_handle: yaml.dump(cur_config, out_handle, default_flow_style=False, allow_unicode=False) def _get_install_defaults(args): install_config = _get_config_file(args) if install_config and os.path.exists(install_config) and os.path.getsize(install_config) > 0: with open(install_config) as in_handle: return yaml.load(in_handle) return {} def _add_docker_defaults(args, default_args): if not hasattr(args, "image") or not args.image: if default_args.get("image") and not default_args.get("images") == "None": args.image = default_args["image"] else: args.image = DEFAULT_IMAGE return args def add_install_defaults(args): """Add previously saved installation defaults to command line arguments. """ default_args = _get_install_defaults(args) for attr in ["genomes", "aligners"]: for x in default_args.get(attr, []): new_val = getattr(args, attr) if x not in getattr(args, attr): new_val.append(x) setattr(args, attr, new_val) args = _add_docker_defaults(args, default_args) return args def _check_docker_image(args): """Ensure docker image exists. """ for image in subprocess.check_output(["docker", "images"]).split("\n"): parts = image.split() if len(parts) > 1 and parts[0] == args.image: return raise ValueError("Could not find docker image %s in local repository" % args.image) def docker_image_arg(args): if not hasattr(args, "image") or not args.image: default_args = _get_install_defaults(args) args = _add_docker_defaults(args, default_args) _check_docker_image(args) return args def _get_config_file(args): config_dir = os.path.join(args.datadir, "config") if not os.path.exists(config_dir): os.makedirs(config_dir) return os.path.join(config_dir, "install-params.yaml")
[ "yaml.load", "os.makedirs", "os.path.getsize", "bcbiovm.docker.manage.run_bcbio_cmd", "yaml.dump", "os.path.exists", "os.path.realpath", "subprocess.check_output", "bcbiovm.docker.mounts.prepare_system", "sys.exit", "os.path.join", "subprocess.check_call" ]
[((486, 548), 'bcbiovm.docker.mounts.prepare_system', 'mounts.prepare_system', (['args.datadir', "dockerconf['biodata_dir']"], {}), "(args.datadir, dockerconf['biodata_dir'])\n", (507, 548), False, 'from bcbiovm.docker import manage, mounts\n'), ((2802, 2887), 'subprocess.check_call', 'subprocess.check_call', (["['docker', 'import', dockerconf['image_url'], args.image]"], {}), "(['docker', 'import', dockerconf['image_url'], args.image]\n )\n", (2823, 2887), False, 'import subprocess\n'), ((5526, 5562), 'os.path.join', 'os.path.join', (['args.datadir', '"""config"""'], {}), "(args.datadir, 'config')\n", (5538, 5562), False, 'import os\n'), ((5645, 5692), 'os.path.join', 'os.path.join', (['config_dir', '"""install-params.yaml"""'], {}), "(config_dir, 'install-params.yaml')\n", (5657, 5692), False, 'import os\n'), ((795, 849), 'bcbiovm.docker.manage.run_bcbio_cmd', 'manage.run_bcbio_cmd', (['args.image', 'dmounts', "['upgrade']"], {}), "(args.image, dmounts, ['upgrade'])\n", (815, 849), False, 'from bcbiovm.docker import manage, mounts\n'), ((2071, 2096), 'os.path.exists', 'os.path.exists', (['conda_bin'], {}), '(conda_bin)\n', (2085, 2096), False, 'import os\n'), ((2190, 2309), 'subprocess.check_call', 'subprocess.check_call', (["[conda_bin, 'install', '--yes', '-c', 'https://conda.binstar.org/bcbio',\n 'bcbio-nextgen-vm']"], {}), "([conda_bin, 'install', '--yes', '-c',\n 'https://conda.binstar.org/bcbio', 'bcbio-nextgen-vm'])\n", (2211, 2309), False, 'import subprocess\n'), ((3174, 3204), 'os.path.exists', 'os.path.exists', (['install_config'], {}), '(install_config)\n', (3188, 3204), False, 'import os\n'), ((3764, 3849), 'yaml.dump', 'yaml.dump', (['cur_config', 'out_handle'], {'default_flow_style': '(False)', 'allow_unicode': '(False)'}), '(cur_config, out_handle, default_flow_style=False, allow_unicode=False\n )\n', (3773, 3849), False, 'import yaml\n'), ((3949, 3979), 'os.path.exists', 'os.path.exists', (['install_config'], {}), '(install_config)\n', (3963, 3979), False, 'import os\n'), ((5574, 5600), 'os.path.exists', 'os.path.exists', (['config_dir'], {}), '(config_dir)\n', (5588, 5600), False, 'import os\n'), ((5610, 5633), 'os.makedirs', 'os.makedirs', (['config_dir'], {}), '(config_dir)\n', (5621, 5633), False, 'import os\n'), ((1006, 1017), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1014, 1017), False, 'import sys\n'), ((2016, 2048), 'os.path.realpath', 'os.path.realpath', (['sys.executable'], {}), '(sys.executable)\n', (2032, 2048), False, 'import os\n'), ((3209, 3240), 'os.path.getsize', 'os.path.getsize', (['install_config'], {}), '(install_config)\n', (3224, 3240), False, 'import os\n'), ((3319, 3339), 'yaml.load', 'yaml.load', (['in_handle'], {}), '(in_handle)\n', (3328, 3339), False, 'import yaml\n'), ((3984, 4015), 'os.path.getsize', 'os.path.getsize', (['install_config'], {}), '(install_config)\n', (3999, 4015), False, 'import os\n'), ((4088, 4108), 'yaml.load', 'yaml.load', (['in_handle'], {}), '(in_handle)\n', (4097, 4108), False, 'import yaml\n'), ((4995, 5040), 'subprocess.check_output', 'subprocess.check_output', (["['docker', 'images']"], {}), "(['docker', 'images'])\n", (5018, 5040), False, 'import subprocess\n'), ((1153, 1164), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1161, 1164), False, 'import sys\n')]
import enum from pandas.io.pytables import DuplicateWarning from py2neo import Node, Relationship, Graph, NodeMatcher import pandas as pd from operator import itemgetter from typing import List, Dict import random graph = Graph("http://localhost:7474", username="neo4j", password='<PASSWORD>') main_ingr = set(['apple', 'banana', 'bell pepper', 'broccoli', 'cabbage', 'carrot', 'cheese', 'coconut', 'cucumber', 'egg', 'fish', 'grapes', 'lemon', 'mango', 'milk', 'mushroom', 'oranges', 'peach', 'pear', 'pineapple', 'potatoes', 'pumpkin', 'seafood', 'shrimp', 'strawberry', 'tomatoes', 'watermelon', 'winter melon', 'garlic', 'corn', 'eggplant', 'lettuce', 'onion', 'scallion', 'chicken', 'beef', 'lamb', 'pork', 'sauce', 'duck', 'meatball', 'wine', 'berries', 'crabmeat', 'kiwi', 'bitter melon', 'pepper', 'peas', 'ginger', 'shells', 'chili', 'ham', 'sausage', 'butter', 'bread', 'rice', 'vanilla']) def getRecipes( ingr: List[str], topk: int = 10, dietaryList: List[str] = None, cuisine: str = None, skip: int = 0) -> List[Dict]: n = len(ingr) if (n == 0): return [{}] ingr_type = {} for it in ingr: it = it.lower() if it in main_ingr: ingr_type[it] = (it.upper(), 'Has_Main_Ingredient', 'main_ingredient') print(it, ' is main ingredient') else: ingr_type[it] = (it.lower(), 'Has_Ingredient', 'ingredient') cand = {name: 0 for name in ingr} query_indegree = "WITH " for i in range(n): query_indegree += "size((:recipe)-[:{2}]->(:{3}{{Name:'{0}'}})) as a{1},".format(ingr_type[ingr[i]][0], str(i), ingr_type[ingr[i]][1], ingr_type[ingr[i]][2]) query_indegree = query_indegree[:-1] + " RETURN " for i in range(n): query_indegree += "a{0},".format(str(i)) query_indegree = query_indegree[:-1] res = graph.run(query_indegree) indegrees = pd.DataFrame(res) for i, name in enumerate(ingr): cand[name] = indegrees.iloc[[0],[i]].values[0][0] sorted_ingr = sorted(cand, key=lambda x : x[1]) query = '' for i in range(n): query += "OPTIONAL MATCH ((rep:recipe)-[r{0}:{3}]->(i{1}:{4}{{Name: '{2}'}})) ".format(str(i), str(i), ingr_type[sorted_ingr[i]][0], ingr_type[sorted_ingr[i]][1], ingr_type[sorted_ingr[i]][2]) if dietaryList is not None: for dietary in dietaryList: if dietary == 'halal': query += "MATCH (rep) WHERE rep.halal is null " elif dietary == 'vegetarian': vegan = 'vegan' query += "MATCH (rep)-[rs:Has_Meal_Type]->(:meal_type{{Name: '{0}'}}) WHERE (rep)-[:Has_Meal_Type]->(:meal_type{{Name: '{1}'}}) ".format(vegan, vegan) elif dietary == 'fruitarian': query += "MATCH (rep)-[:Has_Inferred_Meal_Type]->(:meal_type{Name:'fruit'}) " elif dietary == 'eggetarian': query += "MATCH (rep)-[:Has_Main_Ingredient]->(:main_ingredient{Name:'EGG'}) " if cuisine is not None: query += "MATCH (rep)-[:Has_Cuisine_Type]->(:cuisine_type{{Name: '{0}'}}) ".format(cuisine) query += "WITH rep, " for i in range(n): query += "r{0}, i{1}, ".format(str(i), str(i)) query += "(size((rep:recipe)-[:Has_Ingredient]->(:ingredient)) + size((rep:recipe)-[:Has_Main_Ingredient]->(:main_ingredient))) as degree, " for i in range(n): query += "size((rep:recipe)-[:{2}]->(:{3}{{Name: '{0}'}})) as minus_degree{1},".format(ingr_type[sorted_ingr[i]][0], str(i), ingr_type[sorted_ingr[i]][1], ingr_type[sorted_ingr[i]][2]) query = query[:-1] + ' ' query += "RETURN rep, " for i in range(n): query += "r{0}, i{1}, minus_degree{2},".format(str(i), str(i), str(i)) query += "degree ORDER BY degree" for i in range(n): query += "-minus_degree{0} * 2".format(str(i)) query += "," for i in range(n): query += "(case when minus_degree{0}>=1 then 1 else 0 end)+".format(str(i)) query = query[:-1] + " desc" query += ",degree SKIP {0} LIMIT 25;".format(skip * topk) print(query) res = graph.run(query) res = pd.DataFrame(res) # print(res) recipes = [] for i in range(min(topk, res.shape[0])): recipes.append(res.iloc[i,0]) return recipes ######################################## # Unit Test 1 ######################################## # res = getRecipes(['apple','banana', 'strawberry'], dietaryList=['vegetarian'], cuisine='chinese') # print(type(res[0])) # Sample query # query = # ''' # OPTIONAL MATCH ((rep:recipe)-[r0:Has_Main_Ingredient]->(i0:main_ingredient{Name: 'BANANA'})) # OPTIONAL MATCH ((rep:recipe)-[r1:Has_Main_Ingredient]->(i1:main_ingredient{Name: 'APPLE'})) # OPTIONAL MATCH ((rep:recipe)-[r2:Has_Main_Ingredient]->(i2:main_ingredient{Name: 'STRAWBERRY'})) # MATCH (rep)-[rs:Has_Meal_Type]->(:meal_type{Name: 'vegan'}) # WHERE (rep)-[:Has_Meal_Type]->(:meal_type{Name: 'vegan'}) # WITH rep, r0, i0, r1, i1, r2, i2, rs, # (size((rep:recipe)-[:Has_Ingredient]->(:ingredient)) + size((rep:recipe)-[:Has_Main_Ingredient]->(:main_ingredient))) as degree, size((rep:recipe)-[:Has_Main_Ingredient]->(:main_ingredient{Name: 'BANANA'})) as minus_degree0, # size((rep:recipe)-[:Has_Main_Ingredient]->(:main_ingredient{Name: 'APPLE'})) as minus_degree1, # size((rep:recipe)-[:Has_Main_Ingredient]->(:main_ingredient{Name: 'STRAWBERRY'})) as minus_degree2 # RETURN rep, r0, i0, minus_degree0,r1, i1, rs, minus_degree1,r2, i2, minus_degree2,degree # ORDER BY degree-minus_degree0 * 2-minus_degree1 * 2-minus_degree2 * 2, # (case when minus_degree0>=1 then 1 else 0 end)+(case when minus_degree1>=1 then 1 else 0 end)+(case when minus_degree2>=1 then 1 else 0 end) desc,degree LIMIT 25; # ''' def getRecipeByName(rep: str) -> Dict: query = "MATCH (rep:recipe) WHERE rep.Name=~'(?i){0}' RETURN rep".format(rep) res = graph.run(query) res = pd.DataFrame(res) if res.empty: return None return res.iloc[0,0] ######################################## # Unit Test 2 ######################################## # rep = 'super Fruity Smoothie' # print(getRecipeByName(rep)) # Sample query # MATCH (rep:recipe) # WHERE rep.Name=~'(?i)super Fruity Smoothie' # RETURN rep def getIngredient(id: str, rep: str) -> List[str]: query = "MATCH (rep:recipe)-[:Has_Ingredient]->(a:ingredient) WHERE rep.Name=~'(?i){0}' AND rep.RecipeId='{1}' RETURN a".format(rep, id) res = graph.run(query) res = pd.DataFrame(res) ingrs = [] for i in range(res.shape[0]): ingrs.append(res.iloc[i,0]['Name']) return ingrs ######################################## # Unit Test 3 ######################################## # rep = 'super Fruity Smoothie' # print(getIngredient(rep)) # Sample query # MATCH (rep:recipe)-[:Has_Ingredient]->(a:ingredient) # WHERE rep.Name=~'(?i)super Fruity Smoothie' # RETURN a # def random_init(length = 50): # query = "MATCH (n:recipe) RETURN n LIMIT {0}".format(str(length)) # res = graph.run(query) # res = pd.DataFrame(res) # for i in range(res.shape[0]): # random_set[i] = res.iloc[i,0] def browser(topk: int = 10, dietaryList: List[str] = None, cuisine: str = None) -> List[Dict]: query = "MATCH (a:recipe) WITH rand() as r, a " if dietaryList is not None: for dietary in dietaryList: if dietary == 'halal': query += "MATCH (a) WHERE a.halal is null " elif dietary == 'vegetarian': vegan = 'vegan' query += "MATCH (a)-[rs:Has_Meal_Type]->(:meal_type{{Name: '{0}'}}) WHERE (a)-[:Has_Meal_Type]->(:meal_type{{Name: '{1}'}}) ".format(vegan, vegan) elif dietary == 'fruitarian': query += "MATCH (a)-[:Has_Inferred_Meal_Type]->(:meal_type{Name:'fruit'}) " elif dietary == 'eggetarian': query += "MATCH (a)-[:Has_Main_Ingredient]->(:main_ingredient{Name:'EGG'}) " if cuisine is not None: query += "MATCH (a)-[:Has_Cuisine_Type]->(:cuisine_type{{Name: '{0}'}}) ".format(cuisine) query += "RETURN a ORDER BY r LIMIT {0};".format(topk) print(query) res = graph.run(query) res = pd.DataFrame(res) recipes = [] for i in range(res.shape[0]): recipes.append(res.iloc[i,0]) return recipes ######################################## # Unit Test 3 ######################################## # print(browser(dietaryList=['halal','fruitarian'], cuisine='chinese'))
[ "py2neo.Graph", "pandas.DataFrame" ]
[((223, 294), 'py2neo.Graph', 'Graph', (['"""http://localhost:7474"""'], {'username': '"""neo4j"""', 'password': '"""<PASSWORD>"""'}), "('http://localhost:7474', username='neo4j', password='<PASSWORD>')\n", (228, 294), False, 'from py2neo import Node, Relationship, Graph, NodeMatcher\n'), ((1890, 1907), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {}), '(res)\n', (1902, 1907), True, 'import pandas as pd\n'), ((4121, 4138), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {}), '(res)\n', (4133, 4138), True, 'import pandas as pd\n'), ((5904, 5921), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {}), '(res)\n', (5916, 5921), True, 'import pandas as pd\n'), ((6473, 6490), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {}), '(res)\n', (6485, 6490), True, 'import pandas as pd\n'), ((8211, 8228), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {}), '(res)\n', (8223, 8228), True, 'import pandas as pd\n')]
import cwgen import os import sys import PySimpleGUI as sg class CwGenUI: # General # GUI - window config WINDOW_DESCRIPTION = 'CW training material generator by SP6HFE' # GUI - text config E2CW_VER_LOCAL_KEY = '-E2CW VER LOCAL-' E2CW_VER_ONLINE_KEY = '-E2CW VER ONLINE-' # GUI - button config FILE_BROWSE_KEY = '-ADD FILE-' FILE_REMOVE_KEY = '-REMOVE FILE-' E2CW_DOWNLOAD_KEY = '-E2CW DOWNLOAD-' E2CW_GENERATE_KEY = '-E2CW GENERATE-' # GUI - input config FILE_PATH_INPUT_KEY = '-FILE PATH-' # GUI - table config FILES_DATA_TABLE_KEY = '-FILES DATA-' WORDS_FILTERED_TABLE_KEY = '-WORDS FILTERED-' WORDS_TO_GEN_TABLE_KEY = '-WORDS TO GEN-' # GUI - sliders config H_SLIDER_WIDTH = 21 H_SLIDER_HEIGHT = 10 LETTERS_MIN_KEY = '-LETTERS MIN-' LETTERS_MAX_KEY = '-LETTERS MAX-' LETTERS_MIN_RANGE_START_KEY = '-LETTERS MIN RANGE START-' LETTERS_MIN_RANGE_STOP_KEY = '-LETTERS MIN RANGE STOP-' LETTERS_MAX_RANGE_START_KEY = '-LETTERS MAX RANGE START-' LETTERS_MAX_RANGE_STOP_KEY = '-LETTERS MAX RANGE STOP-' WORDS_TO_TRAIN_KEY = '-WORDS TO TRAIN-' WORDS_TO_TRAIN_RANGE_START_KEY = 'WORDS TO TRAIN RANGE START-' WORDS_TO_TRAIN_RANGE_STOP_KEY = 'WORDS TO TRAIN RANGE STOP-' E2CW_WPM_KEY = '-E2CW WPM-' E2CW_WPM_RANGE_START_KEY = '-E2CW WPM RANGE START-' E2CW_WPM_RANGE_STOP_KEY = '-E2CW WPM RANGE STOP-' E2CW_FARNS_KEY = '-E2CW FARNS-' E2CW_FARNS_RANGE_START_KEY = '-E2CW FARNS RANGE START-' E2CW_FARNS_RANGE_STOP_KEY = '-E2CW FARNS RANGE STOP-' E2CW_PITCH_KEY = '-E2CW PITCH-' E2CW_PITCH_RANGE_START_KEY = '-E2CW PITCH RANGE START-' E2CW_PITCH_RANGE_STOP_KEY = '-E2CW PITCH RANGE STOP-' # GUI - combo config COMBO_LETTERS_SET_KEY = '-LETTERS SET-' COMBO_MATERIAL_GENERATION_KEY = '-MATERIAL GENERATION-' def __init__(self): """Class initialization""" # Members self.files_table_idx = -1 self.cw_gen = cwgen.CwGen() self.letters_sets = self.cw_gen.get_letters_sets() self.training_generator_schemes = self.cw_gen.get_training_generator_schemes() ebook2cw_version_local = self.cw_gen.get_ebook2cw_version_local() ebook2cw_version_online = self.cw_gen.get_ebook2cw_version_online() # GUI - header columns -> name, column size, visible? files_data_header = [ ("UUID", 0, False), ("File name", 14, True), ("Words", 6, True), ("Min len", 7, True), ("Max len", 7, True) ] words_filtered_header = [ ("Word length", 15, True), ("Count", 15, True) ] words_to_gen_header = [ ("Word length", 15, True), ("Count", 15, True) ] # GUI - tables files_data_table = [sg.Table(values=[], headings=[name for name, _size, _visible in files_data_header], col_widths=[size for _name, size, _visible in files_data_header], visible_column_map=[ visible for _name, _size, visible in files_data_header], num_rows=5, justification='left', auto_size_columns=False, enable_events=True, key=self.FILES_DATA_TABLE_KEY )] words_filtered_table = [sg.Table(values=[], headings=[ name for name, _size, _visible in words_filtered_header], col_widths=[ size for _name, size, _visible in words_filtered_header], num_rows=5, justification='left', auto_size_columns=False, key=self.WORDS_FILTERED_TABLE_KEY)] words_to_gen_table = [sg.Table(values=[], headings=[ name for name, _size, _visible in words_to_gen_header], col_widths=[ size for _name, size, _visible in words_to_gen_header], num_rows=5, justification='left', auto_size_columns=False, key=self.WORDS_TO_GEN_TABLE_KEY)] # GUI - rows files_operation = [sg.Input(enable_events=True, visible=False, key=self.FILE_PATH_INPUT_KEY), sg.FileBrowse(button_text="Add", file_types=( ("ALL Files", "*.*"), ("CWOPS sessions", "*.cwo")), target=self.FILE_PATH_INPUT_KEY, key=self.FILE_BROWSE_KEY), sg.Button(button_text="Remove selected", key=self.FILE_REMOVE_KEY)] letters_min = [sg.Text("MIN:", size=(4, 1)), sg.Text("0", size=(2, 1), key=self.LETTERS_MIN_RANGE_START_KEY), sg.Slider(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT), orientation='h', enable_events=True, key=self.LETTERS_MIN_KEY), sg.Text("0", size=(2, 1), key=self.LETTERS_MIN_RANGE_STOP_KEY)] letters_max = [sg.Text("MAX:", size=(4, 1)), sg.Text("0", size=(2, 1), key=self.LETTERS_MAX_RANGE_START_KEY), sg.Slider(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT), orientation='h', enable_events=True, key=self.LETTERS_MAX_KEY), sg.Text("0", size=(2, 1), key=self.LETTERS_MAX_RANGE_STOP_KEY)] letters_set = [sg.Text('From set:'), sg.Combo(values=([data['description'] for _id, data in self.letters_sets.items()]), default_value=list( self.letters_sets.items())[0][1]['description'], size=(max(len(data['description']) for _id, data in self.letters_sets.items()), 1), readonly=True, enable_events=True, key=self.COMBO_LETTERS_SET_KEY)] generator_scheme = [sg.Text('Using scheme:'), sg.Combo(values=([name for _id, name in self.training_generator_schemes.items()]), default_value=list( self.training_generator_schemes.items())[0][1], size=( max(len(name) for _id, name in self.training_generator_schemes.items()), 1), readonly=True, enable_events=True, key=self.COMBO_MATERIAL_GENERATION_KEY)] words_to_train = [sg.Text("SIZE:", size=(6, 1)), sg.Text("0", size=(2, 1), key=self.WORDS_TO_TRAIN_KEY), sg.Slider(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT), orientation='h', enable_events=True, key=self.WORDS_TO_TRAIN_RANGE_START_KEY), sg.Text("0", size=(2, 1), key=self.WORDS_TO_TRAIN_RANGE_STOP_KEY)] e2cw_version = [sg.Text('Local version:', size=(15, 1)), sg.Text(ebook2cw_version_local, key=self.E2CW_VER_LOCAL_KEY), sg.Text('Online version:', size=(15, 1)), sg.Text(ebook2cw_version_online, key=self.E2CW_VER_ONLINE_KEY)] e2cw_buttons = [sg.Button('Download / Update Ebook2CW', key=self.E2CW_DOWNLOAD_KEY), sg.Button('Generate training files', key=self.E2CW_GENERATE_KEY)] e2cw_wpm = [sg.Text("WPM:", size=(6, 1)), sg.Text("0", size=(2, 1), key=self.E2CW_WPM_RANGE_START_KEY), sg.Slider(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT), orientation='h', enable_events=True, key=self.E2CW_WPM_KEY), sg.Text("0", size=(2, 1), key=self.E2CW_WPM_RANGE_STOP_KEY)] e2cw_farns = [sg.Text("FARNS:", size=(6, 1)), sg.Text("0", size=(2, 1), key=self.E2CW_FARNS_RANGE_START_KEY), sg.Slider(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT), orientation='h', enable_events=True, key=self.E2CW_FARNS_KEY), sg.Text("0", size=(2, 1), key=self.E2CW_FARNS_RANGE_STOP_KEY)] e2cw_pitch = [sg.Text("PITCH:", size=(6, 1)), sg.Text("0", size=(2, 1), key=self.E2CW_PITCH_RANGE_START_KEY), sg.Slider(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT), orientation='h', enable_events=True, key=self.E2CW_PITCH_KEY), sg.Text("0", size=(2, 1), key=self.E2CW_PITCH_RANGE_STOP_KEY)] # GUI - columns left_col = [ [sg.Frame('Dictionaries', [files_operation, files_data_table])], [sg.Frame('Letters selection', [letters_set])], [sg.Frame('Words length', [letters_min, letters_max])], [sg.Frame('Training input', [words_filtered_table])]] right_col = [ [sg.Frame('Training generator', [generator_scheme])], [sg.Frame('Training set size', [words_to_train])], [sg.Frame('Training output', [words_to_gen_table])], [sg.Frame('Audible parameters', [e2cw_wpm, e2cw_farns, e2cw_pitch])], [sg.Frame('Ebook2CW', [e2cw_version, e2cw_buttons])]] # App layout layout = [[sg.Column(left_col), sg.VSeparator(), sg.Column(right_col)]] # Configure and create the window self.window = sg.Window(self.WINDOW_DESCRIPTION, layout) def _get_dictionary_key_by_value(self, dictionary, lookup_value, nested_key=None): '''Retrieves a key based on provided string value keeping insertion order, meaning if dictionary contain a number of keys with exact same value first key (in insertion order) will be returned. Args: dictionary (dict): dictionary to search for a key lookup_value (str): value for which key should be found nested_key (str): key in nested dictionary where lookup_value is Returns: result (str): key or None if lookup_value not found ''' result = None for key, value in dictionary.items(): if nested_key is not None: data = value[nested_key] else: data = value if data == lookup_value: result = key break return result def _update_ui_on_dictionary_set_change(self, values): """Updates relevant UI elements according to change in dictionary set. Args: values (dict): Dictionary containing GUI elements values Returns: None """ table_data = [] sliders_range = (0, 0) # get information related to already loaded data dictionaries_info = self.cw_gen.get_dictionaries_info() words_info = self.cw_gen.get_words_stat() # generate updated data for UI elements if len(dictionaries_info) > 0: for dictionary_data in dictionaries_info: row = [dictionary_data['uuid'], dictionary_data['name'], dictionary_data['stat']['words_count'], dictionary_data['stat']['min_length'], dictionary_data['stat']['max_length']] table_data.append(row) if len(words_info) > 0: sliders_range = (words_info['min_length'], words_info['max_length']) # update UI self.window[self.FILES_DATA_TABLE_KEY].update( values=table_data) words_min_length, words_max_length = self.update_words_length_sliders_config( values, (sliders_range)) self._update_ui_on_words_filtering_change( values, words_min_length, words_max_length) def _update_ui_on_words_filtering_change(self, values, min_length=None, max_length=None): '''Updates words stat with filtered result which allow user to see the data out of which training material could be generated. Args: values(): min_length (int): Minimal words length passed in when reading the value from self.window is not yet updated (window hadling did not advanced to the next loop yet) max_length (int): Maximal words length passed in when reading the value from self.window is not yet updated (window hadling did not advanced to the next loop yet) Returns: None ''' words_min_length = int(values[self.LETTERS_MIN_KEY]) words_max_length = int(values[self.LETTERS_MAX_KEY]) letters_set = self.window[self.COMBO_LETTERS_SET_KEY].get() generator_scheme = self.window[self.COMBO_MATERIAL_GENERATION_KEY].get( ) if min_length is not None: words_min_length = min_length if max_length is not None: words_max_length = max_length # get filtered words stat words_stat_filtered = self.cw_gen.get_words_stat_filtered( words_min_length, words_max_length, self._get_dictionary_key_by_value( self.letters_sets, letters_set, 'description'), self._get_dictionary_key_by_value(self.training_generator_schemes, generator_scheme)) # assemble words stat table (sorted by word length) stat = [] if words_stat_filtered: for word_length in sorted(words_stat_filtered['words_stat'].keys()): stat.append( [word_length, words_stat_filtered['words_stat'][word_length]]) # update UI self.window[self.WORDS_FILTERED_TABLE_KEY].update(values=stat) def handle_dictionary_add(self, values): """Handle new dictionary addition by passing file path to cwgen. UI gets updated. Args: values (dict): Dictionary containing GUI elements values Returns: None """ # on file selection cancel values[FILE_PATH_INPUT_KEY] is empty if len(values[self.FILE_PATH_INPUT_KEY]) > 0: file_path = os.path.normpath(values[self.FILE_PATH_INPUT_KEY]) if os.path.isfile(file_path): if self.cw_gen.add_dictionary(file_path): self._update_ui_on_dictionary_set_change(values) # clear file path storage to properly handle CANCEL situation self.window[self.FILE_PATH_INPUT_KEY].update(value="") def handle_dictionary_delete(self, values): """Handle dictionary deletion by passing its generated UUID to cwgen. UI gets updated. Args: values (dict): Dictionary containing GUI elements values Returns: None """ # self.files_table_idx == -1 when no dictionary in the table is selected if self.files_table_idx >= 0: table_data = self.window[self.FILES_DATA_TABLE_KEY].get() selected_dictionary_uuid = table_data[self.files_table_idx][0] if self.cw_gen.remove_dictionary(selected_dictionary_uuid): self._update_ui_on_dictionary_set_change(values) # set table index to negative to properly handle dictionary remove button click self.files_table_idx = -1 def handle_words_length_sliders(self, event, values): """Handle words length sliders movement to not let their values become ridiculous. Args: event (str): GUI event name values (dict): Dictionary containing GUI elements values Returns: None """ # get current positions slider_min_val = int(values[self.LETTERS_MIN_KEY]) slider_max_val = int(values[self.LETTERS_MAX_KEY]) # update them if needed if event == self.LETTERS_MIN_KEY: if slider_min_val > slider_max_val: slider_max_val = slider_min_val self.window[self.LETTERS_MAX_KEY].update( value=slider_max_val) if event == self.LETTERS_MAX_KEY: if slider_max_val < slider_min_val: slider_min_val = slider_max_val self.window[self.LETTERS_MIN_KEY].update( value=slider_min_val) return (slider_min_val, slider_max_val) def update_words_length_sliders_config(self, values, new_range): """Updates UI part related to words length sliders change their range assuring that sliders values gets updated when needed Args: values (dict): Dictionary containing GUI elements values new_range (tuple): New value range Returns: new_min_val, new_max_val (tuple): Updated words length sliders values """ current_range_min, current_range_max = self.window[self.LETTERS_MIN_KEY].Range current_min_val = int(values[self.LETTERS_MIN_KEY]) current_max_val = int(values[self.LETTERS_MAX_KEY]) new_range_min, new_range_max = new_range new_min_val = current_min_val new_max_val = current_max_val # range min value may affect sliders position if new_range_min > current_range_min: if new_range_min > current_min_val: new_min_val = new_range_min if new_min_val > current_max_val: new_max_val = new_min_val # range max value may affect sliders position if new_range_max < current_range_max: if new_range_max < current_max_val: new_max_val = new_range_max if new_max_val < current_min_val: new_min_val = new_max_val self.window[self.LETTERS_MIN_KEY].update( range=new_range, value=new_min_val) self.window[self.LETTERS_MAX_KEY].update( range=new_range, value=new_max_val) self.window[self.LETTERS_MIN_RANGE_START_KEY].update( value=new_range_min) self.window[self.LETTERS_MIN_RANGE_STOP_KEY].update( value=new_range_max) self.window[self.LETTERS_MAX_RANGE_START_KEY].update( value=new_range_min) self.window[self.LETTERS_MAX_RANGE_STOP_KEY].update( value=new_range_max) return (new_min_val, new_max_val) def handleGui(self): """GUI main loop where all events gets dispatched for handling Args: None Returns: None """ event, values = self.window.read() # See if user wants to quit or window was closed if event == sg.WINDOW_CLOSED: self.window.close() return False # Remember index of selected table row if event == self.FILES_DATA_TABLE_KEY: self.files_table_idx = values[self.FILES_DATA_TABLE_KEY][0] # Add a dictionary to the list if event == self.FILE_PATH_INPUT_KEY: self.handle_dictionary_add(values) # remove dictionary from the list if event == self.FILE_REMOVE_KEY: self.handle_dictionary_delete(values) # handle words length change if (event == self.LETTERS_MIN_KEY) or (event == self.LETTERS_MAX_KEY): words_min_length, words_max_length = self.handle_words_length_sliders( event, values) self._update_ui_on_words_filtering_change( values, words_min_length, words_max_length) # handle letters set and generator scheme change if (event == self.COMBO_LETTERS_SET_KEY) or (event == self.COMBO_MATERIAL_GENERATION_KEY): self._update_ui_on_words_filtering_change(values) return True # UI theming sg.theme('Default1') # Start the GUI ui = CwGenUI() # Display and interact with the GUI using an Event Loop while ui.handleGui(): pass # Game over del ui
[ "PySimpleGUI.Button", "PySimpleGUI.Input", "PySimpleGUI.theme", "cwgen.CwGen", "PySimpleGUI.Frame", "PySimpleGUI.Slider", "PySimpleGUI.FileBrowse", "PySimpleGUI.Table", "PySimpleGUI.Text", "PySimpleGUI.Window", "os.path.normpath", "os.path.isfile", "PySimpleGUI.Column", "PySimpleGUI.VSeparator" ]
[((21381, 21401), 'PySimpleGUI.theme', 'sg.theme', (['"""Default1"""'], {}), "('Default1')\n", (21389, 21401), True, 'import PySimpleGUI as sg\n'), ((2063, 2076), 'cwgen.CwGen', 'cwgen.CwGen', ([], {}), '()\n', (2074, 2076), False, 'import cwgen\n'), ((10656, 10698), 'PySimpleGUI.Window', 'sg.Window', (['self.WINDOW_DESCRIPTION', 'layout'], {}), '(self.WINDOW_DESCRIPTION, layout)\n', (10665, 10698), True, 'import PySimpleGUI as sg\n'), ((2983, 3335), 'PySimpleGUI.Table', 'sg.Table', ([], {'values': '[]', 'headings': '[name for name, _size, _visible in files_data_header]', 'col_widths': '[size for _name, size, _visible in files_data_header]', 'visible_column_map': '[visible for _name, _size, visible in files_data_header]', 'num_rows': '(5)', 'justification': '"""left"""', 'auto_size_columns': '(False)', 'enable_events': '(True)', 'key': 'self.FILES_DATA_TABLE_KEY'}), "(values=[], headings=[name for name, _size, _visible in\n files_data_header], col_widths=[size for _name, size, _visible in\n files_data_header], visible_column_map=[visible for _name, _size,\n visible in files_data_header], num_rows=5, justification='left',\n auto_size_columns=False, enable_events=True, key=self.FILES_DATA_TABLE_KEY)\n", (2991, 3335), True, 'import PySimpleGUI as sg\n'), ((3840, 4103), 'PySimpleGUI.Table', 'sg.Table', ([], {'values': '[]', 'headings': '[name for name, _size, _visible in words_filtered_header]', 'col_widths': '[size for _name, size, _visible in words_filtered_header]', 'num_rows': '(5)', 'justification': '"""left"""', 'auto_size_columns': '(False)', 'key': 'self.WORDS_FILTERED_TABLE_KEY'}), "(values=[], headings=[name for name, _size, _visible in\n words_filtered_header], col_widths=[size for _name, size, _visible in\n words_filtered_header], num_rows=5, justification='left',\n auto_size_columns=False, key=self.WORDS_FILTERED_TABLE_KEY)\n", (3848, 4103), True, 'import PySimpleGUI as sg\n'), ((4472, 4729), 'PySimpleGUI.Table', 'sg.Table', ([], {'values': '[]', 'headings': '[name for name, _size, _visible in words_to_gen_header]', 'col_widths': '[size for _name, size, _visible in words_to_gen_header]', 'num_rows': '(5)', 'justification': '"""left"""', 'auto_size_columns': '(False)', 'key': 'self.WORDS_TO_GEN_TABLE_KEY'}), "(values=[], headings=[name for name, _size, _visible in\n words_to_gen_header], col_widths=[size for _name, size, _visible in\n words_to_gen_header], num_rows=5, justification='left',\n auto_size_columns=False, key=self.WORDS_TO_GEN_TABLE_KEY)\n", (4480, 4729), True, 'import PySimpleGUI as sg\n'), ((4904, 4977), 'PySimpleGUI.Input', 'sg.Input', ([], {'enable_events': '(True)', 'visible': '(False)', 'key': 'self.FILE_PATH_INPUT_KEY'}), '(enable_events=True, visible=False, key=self.FILE_PATH_INPUT_KEY)\n', (4912, 4977), True, 'import PySimpleGUI as sg\n'), ((5007, 5172), 'PySimpleGUI.FileBrowse', 'sg.FileBrowse', ([], {'button_text': '"""Add"""', 'file_types': "(('ALL Files', '*.*'), ('CWOPS sessions', '*.cwo'))", 'target': 'self.FILE_PATH_INPUT_KEY', 'key': 'self.FILE_BROWSE_KEY'}), "(button_text='Add', file_types=(('ALL Files', '*.*'), (\n 'CWOPS sessions', '*.cwo')), target=self.FILE_PATH_INPUT_KEY, key=self.\n FILE_BROWSE_KEY)\n", (5020, 5172), True, 'import PySimpleGUI as sg\n'), ((5225, 5291), 'PySimpleGUI.Button', 'sg.Button', ([], {'button_text': '"""Remove selected"""', 'key': 'self.FILE_REMOVE_KEY'}), "(button_text='Remove selected', key=self.FILE_REMOVE_KEY)\n", (5234, 5291), True, 'import PySimpleGUI as sg\n'), ((5319, 5347), 'PySimpleGUI.Text', 'sg.Text', (['"""MIN:"""'], {'size': '(4, 1)'}), "('MIN:', size=(4, 1))\n", (5326, 5347), True, 'import PySimpleGUI as sg\n'), ((5373, 5436), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.LETTERS_MIN_RANGE_START_KEY'}), "('0', size=(2, 1), key=self.LETTERS_MIN_RANGE_START_KEY)\n", (5380, 5436), True, 'import PySimpleGUI as sg\n'), ((5494, 5634), 'PySimpleGUI.Slider', 'sg.Slider', ([], {'range': '(0, 0)', 'size': '(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT)', 'orientation': '"""h"""', 'enable_events': '(True)', 'key': 'self.LETTERS_MIN_KEY'}), "(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT),\n orientation='h', enable_events=True, key=self.LETTERS_MIN_KEY)\n", (5503, 5634), True, 'import PySimpleGUI as sg\n'), ((5690, 5752), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.LETTERS_MIN_RANGE_STOP_KEY'}), "('0', size=(2, 1), key=self.LETTERS_MIN_RANGE_STOP_KEY)\n", (5697, 5752), True, 'import PySimpleGUI as sg\n'), ((5780, 5808), 'PySimpleGUI.Text', 'sg.Text', (['"""MAX:"""'], {'size': '(4, 1)'}), "('MAX:', size=(4, 1))\n", (5787, 5808), True, 'import PySimpleGUI as sg\n'), ((5834, 5897), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.LETTERS_MAX_RANGE_START_KEY'}), "('0', size=(2, 1), key=self.LETTERS_MAX_RANGE_START_KEY)\n", (5841, 5897), True, 'import PySimpleGUI as sg\n'), ((5955, 6095), 'PySimpleGUI.Slider', 'sg.Slider', ([], {'range': '(0, 0)', 'size': '(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT)', 'orientation': '"""h"""', 'enable_events': '(True)', 'key': 'self.LETTERS_MAX_KEY'}), "(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT),\n orientation='h', enable_events=True, key=self.LETTERS_MAX_KEY)\n", (5964, 6095), True, 'import PySimpleGUI as sg\n'), ((6151, 6213), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.LETTERS_MAX_RANGE_STOP_KEY'}), "('0', size=(2, 1), key=self.LETTERS_MAX_RANGE_STOP_KEY)\n", (6158, 6213), True, 'import PySimpleGUI as sg\n'), ((6241, 6261), 'PySimpleGUI.Text', 'sg.Text', (['"""From set:"""'], {}), "('From set:')\n", (6248, 6261), True, 'import PySimpleGUI as sg\n'), ((6868, 6892), 'PySimpleGUI.Text', 'sg.Text', (['"""Using scheme:"""'], {}), "('Using scheme:')\n", (6875, 6892), True, 'import PySimpleGUI as sg\n'), ((7537, 7566), 'PySimpleGUI.Text', 'sg.Text', (['"""SIZE:"""'], {'size': '(6, 1)'}), "('SIZE:', size=(6, 1))\n", (7544, 7566), True, 'import PySimpleGUI as sg\n'), ((7595, 7649), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.WORDS_TO_TRAIN_KEY'}), "('0', size=(2, 1), key=self.WORDS_TO_TRAIN_KEY)\n", (7602, 7649), True, 'import PySimpleGUI as sg\n'), ((7713, 7873), 'PySimpleGUI.Slider', 'sg.Slider', ([], {'range': '(0, 0)', 'size': '(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT)', 'orientation': '"""h"""', 'enable_events': '(True)', 'key': 'self.WORDS_TO_TRAIN_RANGE_START_KEY'}), "(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT),\n orientation='h', enable_events=True, key=self.\n WORDS_TO_TRAIN_RANGE_START_KEY)\n", (7722, 7873), True, 'import PySimpleGUI as sg\n'), ((7930, 7995), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.WORDS_TO_TRAIN_RANGE_STOP_KEY'}), "('0', size=(2, 1), key=self.WORDS_TO_TRAIN_RANGE_STOP_KEY)\n", (7937, 7995), True, 'import PySimpleGUI as sg\n'), ((8024, 8063), 'PySimpleGUI.Text', 'sg.Text', (['"""Local version:"""'], {'size': '(15, 1)'}), "('Local version:', size=(15, 1))\n", (8031, 8063), True, 'import PySimpleGUI as sg\n'), ((8065, 8125), 'PySimpleGUI.Text', 'sg.Text', (['ebook2cw_version_local'], {'key': 'self.E2CW_VER_LOCAL_KEY'}), '(ebook2cw_version_local, key=self.E2CW_VER_LOCAL_KEY)\n', (8072, 8125), True, 'import PySimpleGUI as sg\n'), ((8152, 8192), 'PySimpleGUI.Text', 'sg.Text', (['"""Online version:"""'], {'size': '(15, 1)'}), "('Online version:', size=(15, 1))\n", (8159, 8192), True, 'import PySimpleGUI as sg\n'), ((8194, 8256), 'PySimpleGUI.Text', 'sg.Text', (['ebook2cw_version_online'], {'key': 'self.E2CW_VER_ONLINE_KEY'}), '(ebook2cw_version_online, key=self.E2CW_VER_ONLINE_KEY)\n', (8201, 8256), True, 'import PySimpleGUI as sg\n'), ((8285, 8352), 'PySimpleGUI.Button', 'sg.Button', (['"""Download / Update Ebook2CW"""'], {'key': 'self.E2CW_DOWNLOAD_KEY'}), "('Download / Update Ebook2CW', key=self.E2CW_DOWNLOAD_KEY)\n", (8294, 8352), True, 'import PySimpleGUI as sg\n'), ((8379, 8443), 'PySimpleGUI.Button', 'sg.Button', (['"""Generate training files"""'], {'key': 'self.E2CW_GENERATE_KEY'}), "('Generate training files', key=self.E2CW_GENERATE_KEY)\n", (8388, 8443), True, 'import PySimpleGUI as sg\n'), ((8468, 8496), 'PySimpleGUI.Text', 'sg.Text', (['"""WPM:"""'], {'size': '(6, 1)'}), "('WPM:', size=(6, 1))\n", (8475, 8496), True, 'import PySimpleGUI as sg\n'), ((8519, 8579), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.E2CW_WPM_RANGE_START_KEY'}), "('0', size=(2, 1), key=self.E2CW_WPM_RANGE_START_KEY)\n", (8526, 8579), True, 'import PySimpleGUI as sg\n'), ((8631, 8768), 'PySimpleGUI.Slider', 'sg.Slider', ([], {'range': '(0, 0)', 'size': '(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT)', 'orientation': '"""h"""', 'enable_events': '(True)', 'key': 'self.E2CW_WPM_KEY'}), "(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT),\n orientation='h', enable_events=True, key=self.E2CW_WPM_KEY)\n", (8640, 8768), True, 'import PySimpleGUI as sg\n'), ((8818, 8877), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.E2CW_WPM_RANGE_STOP_KEY'}), "('0', size=(2, 1), key=self.E2CW_WPM_RANGE_STOP_KEY)\n", (8825, 8877), True, 'import PySimpleGUI as sg\n'), ((8904, 8934), 'PySimpleGUI.Text', 'sg.Text', (['"""FARNS:"""'], {'size': '(6, 1)'}), "('FARNS:', size=(6, 1))\n", (8911, 8934), True, 'import PySimpleGUI as sg\n'), ((8959, 9021), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.E2CW_FARNS_RANGE_START_KEY'}), "('0', size=(2, 1), key=self.E2CW_FARNS_RANGE_START_KEY)\n", (8966, 9021), True, 'import PySimpleGUI as sg\n'), ((9077, 9216), 'PySimpleGUI.Slider', 'sg.Slider', ([], {'range': '(0, 0)', 'size': '(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT)', 'orientation': '"""h"""', 'enable_events': '(True)', 'key': 'self.E2CW_FARNS_KEY'}), "(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT),\n orientation='h', enable_events=True, key=self.E2CW_FARNS_KEY)\n", (9086, 9216), True, 'import PySimpleGUI as sg\n'), ((9270, 9331), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.E2CW_FARNS_RANGE_STOP_KEY'}), "('0', size=(2, 1), key=self.E2CW_FARNS_RANGE_STOP_KEY)\n", (9277, 9331), True, 'import PySimpleGUI as sg\n'), ((9358, 9388), 'PySimpleGUI.Text', 'sg.Text', (['"""PITCH:"""'], {'size': '(6, 1)'}), "('PITCH:', size=(6, 1))\n", (9365, 9388), True, 'import PySimpleGUI as sg\n'), ((9413, 9475), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.E2CW_PITCH_RANGE_START_KEY'}), "('0', size=(2, 1), key=self.E2CW_PITCH_RANGE_START_KEY)\n", (9420, 9475), True, 'import PySimpleGUI as sg\n'), ((9531, 9670), 'PySimpleGUI.Slider', 'sg.Slider', ([], {'range': '(0, 0)', 'size': '(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT)', 'orientation': '"""h"""', 'enable_events': '(True)', 'key': 'self.E2CW_PITCH_KEY'}), "(range=(0, 0), size=(self.H_SLIDER_WIDTH, self.H_SLIDER_HEIGHT),\n orientation='h', enable_events=True, key=self.E2CW_PITCH_KEY)\n", (9540, 9670), True, 'import PySimpleGUI as sg\n'), ((9724, 9785), 'PySimpleGUI.Text', 'sg.Text', (['"""0"""'], {'size': '(2, 1)', 'key': 'self.E2CW_PITCH_RANGE_STOP_KEY'}), "('0', size=(2, 1), key=self.E2CW_PITCH_RANGE_STOP_KEY)\n", (9731, 9785), True, 'import PySimpleGUI as sg\n'), ((15618, 15668), 'os.path.normpath', 'os.path.normpath', (['values[self.FILE_PATH_INPUT_KEY]'], {}), '(values[self.FILE_PATH_INPUT_KEY])\n', (15634, 15668), False, 'import os\n'), ((15685, 15710), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (15699, 15710), False, 'import os\n'), ((9850, 9911), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Dictionaries"""', '[files_operation, files_data_table]'], {}), "('Dictionaries', [files_operation, files_data_table])\n", (9858, 9911), True, 'import PySimpleGUI as sg\n'), ((9928, 9972), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Letters selection"""', '[letters_set]'], {}), "('Letters selection', [letters_set])\n", (9936, 9972), True, 'import PySimpleGUI as sg\n'), ((9989, 10041), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Words length"""', '[letters_min, letters_max]'], {}), "('Words length', [letters_min, letters_max])\n", (9997, 10041), True, 'import PySimpleGUI as sg\n'), ((10058, 10108), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Training input"""', '[words_filtered_table]'], {}), "('Training input', [words_filtered_table])\n", (10066, 10108), True, 'import PySimpleGUI as sg\n'), ((10150, 10200), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Training generator"""', '[generator_scheme]'], {}), "('Training generator', [generator_scheme])\n", (10158, 10200), True, 'import PySimpleGUI as sg\n'), ((10217, 10264), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Training set size"""', '[words_to_train]'], {}), "('Training set size', [words_to_train])\n", (10225, 10264), True, 'import PySimpleGUI as sg\n'), ((10281, 10330), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Training output"""', '[words_to_gen_table]'], {}), "('Training output', [words_to_gen_table])\n", (10289, 10330), True, 'import PySimpleGUI as sg\n'), ((10347, 10413), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Audible parameters"""', '[e2cw_wpm, e2cw_farns, e2cw_pitch]'], {}), "('Audible parameters', [e2cw_wpm, e2cw_farns, e2cw_pitch])\n", (10355, 10413), True, 'import PySimpleGUI as sg\n'), ((10430, 10480), 'PySimpleGUI.Frame', 'sg.Frame', (['"""Ebook2CW"""', '[e2cw_version, e2cw_buttons]'], {}), "('Ebook2CW', [e2cw_version, e2cw_buttons])\n", (10438, 10480), True, 'import PySimpleGUI as sg\n'), ((10527, 10546), 'PySimpleGUI.Column', 'sg.Column', (['left_col'], {}), '(left_col)\n', (10536, 10546), True, 'import PySimpleGUI as sg\n'), ((10548, 10563), 'PySimpleGUI.VSeparator', 'sg.VSeparator', ([], {}), '()\n', (10561, 10563), True, 'import PySimpleGUI as sg\n'), ((10565, 10585), 'PySimpleGUI.Column', 'sg.Column', (['right_col'], {}), '(right_col)\n', (10574, 10585), True, 'import PySimpleGUI as sg\n')]
# TODO: use sliding windows instead of chunking. # the chunking method fails when part of a dupe string # crosses the border between chunks import colorama from colorama import Fore from tqdm import trange, tqdm import os colorama.init(autoreset=True) DEFAULT_MIN = 5 DEFAULT_MAX = 10 def striplist(l): # clean out some unneeded chars return [x.strip(" \t\n\r") for x in l] def compare(input): # main comparison function test = input[0] data = input[1] chunk_length = input[2] # print("data", data) found = data.find(test) if found != -1: words = test.split() # don't return matched chunks shorter than the current chunk # length, even if they are rounding remainder orphans from the # chunking process if len(words) >= chunk_length: return test def make_chunks(lst, n): # Yield successive n-sized chunks from lst. for i in range(0, len(lst), n): yield lst[i : i + n] def chunkit(str, chunk_length): # make chunks of strings the way we like chunks = [] list = str.split() list = striplist(list) wordLists = make_chunks(list, chunk_length) for chunk in wordLists: if chunk != "": chunk = " ".join(chunk) chunks.append(chunk) return chunks def run(chunk_length, text, dataset): dataset = dataset.replace(os.linesep, " ") testChunks = chunkit(text, chunk_length) # remove empty lines testChunks = list(filter(None, testChunks)) results = [] for testLine in testChunks: found = compare([testLine, dataset, chunk_length]) if found != None: print("found", found) results.append(found) return results def dupecheck(min=DEFAULT_MIN, max=DEFAULT_MAX, text=None, dataset=None, verbose=False): assert text != None assert dataset != None text = text.replace(os.linesep, "") matches = [] for i in trange(max, min, -1): # print('text, i',text, i) res = run(i, text, dataset) if len(res) > 0: for r in res: if r not in matches: matches.append(r) return matches
[ "colorama.init", "tqdm.trange" ]
[((224, 253), 'colorama.init', 'colorama.init', ([], {'autoreset': '(True)'}), '(autoreset=True)\n', (237, 253), False, 'import colorama\n'), ((1951, 1971), 'tqdm.trange', 'trange', (['max', 'min', '(-1)'], {}), '(max, min, -1)\n', (1957, 1971), False, 'from tqdm import trange, tqdm\n')]
import boto3 from botocore.exceptions import ClientError import json import os import time import datetime from dateutil import tz from lib.account import * from lib.common import * import logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) logging.getLogger('botocore').setLevel(logging.WARNING) logging.getLogger('boto3').setLevel(logging.WARNING) RESOURCE_PATH = "s3/bucket" def lambda_handler(event, context): logger.debug("Received event: " + json.dumps(event, sort_keys=True)) message = json.loads(event['Records'][0]['Sns']['Message']) logger.info("Received message: " + json.dumps(message, sort_keys=True)) try: target_account = AWSAccount(message['account_id']) discover_buckets(target_account) except AssumeRoleError as e: logger.error("Unable to assume role into account {}({})".format(target_account.account_name, target_account.account_id)) return() except ClientError as e: logger.error("AWS Error getting info for {}: {}".format(target_account.account_name, e)) return() except Exception as e: logger.error("{}\nMessage: {}\nContext: {}".format(e, message, vars(context))) raise def discover_buckets(account): ''' Gathers all the S3 Buckets and various details about them ''' bucket_list = [] # Not all Public IPs are attached to instances. So we use ec2 describe_network_interfaces() # All results are saved to S3. Public IPs and metadata go to DDB (based on the the presense of PublicIp in the Association) s3_client = account.get_client('s3') response = s3_client.list_buckets() # This API call doesn't paganate. Go fig... bucket_list += response['Buckets'] for b in bucket_list: bucket_name = b['Name'] # Decorate with the account info b['account_id'] = account.account_id b['account_name'] = account.account_name b['resource_type'] = "s3-bucket" b['last_seen'] = str(datetime.datetime.now(tz.gettz('US/Eastern'))) b['errors'] = {} # Go through a bunch of API calls to get details on this bucket try: response = s3_client.get_bucket_encryption(Bucket=bucket_name) if 'ServerSideEncryptionConfiguration' in response: b['ServerSideEncryptionConfiguration'] = response['ServerSideEncryptionConfiguration'] except ClientError as e: if e.response['Error']['Code'] != 'ServerSideEncryptionConfigurationNotFoundError': b['errors']['ServerSideEncryptionConfiguration'] = e try: response = s3_client.get_bucket_acl(Bucket=bucket_name) if 'Grants' in response: b['Grants'] = response['Grants'] except ClientError as e: b['errors']['Grants'] = e try: response = s3_client.get_bucket_location(Bucket=bucket_name) if 'LocationConstraint' in response: if response['LocationConstraint'] is None: b['Location'] = "us-east-1" else: b['Location'] = response['LocationConstraint'] except ClientError as e: b['errors']['Location'] = e try: response = s3_client.get_bucket_policy(Bucket=bucket_name) if 'Policy' in response: b['BucketPolicy'] = json.loads(response['Policy']) except ClientError as e: if e.response['Error']['Code'] != 'NoSuchBucketPolicy': b['errors']['BucketPolicy'] = e try: response = s3_client.get_bucket_tagging(Bucket=bucket_name) if 'TagSet' in response: b['TagSet'] = response['TagSet'] except ClientError as e: if e.response['Error']['Code'] != 'NoSuchTagSet': b['errors']['TagSet'] = e try: response = s3_client.get_bucket_versioning(Bucket=bucket_name) del response['ResponseMetadata'] b['Versioning'] = response except ClientError as e: b['errors']['Versioning'] = e try: response = s3_client.get_bucket_request_payment(Bucket=bucket_name) del response['ResponseMetadata'] b['RequestPayer'] = response except ClientError as e: b['errors']['RequestPayer'] = e try: response = s3_client.get_bucket_website(Bucket=bucket_name) del response['ResponseMetadata'] b['Website'] = response except ClientError as e: if e.response['Error']['Code'] != 'NoSuchWebsiteConfiguration': b['errors']['Website'] = e try: response = s3_client.get_bucket_logging(Bucket=bucket_name) if 'LoggingEnabled' in response: b['Logging'] = response['LoggingEnabled'] except ClientError as e: b['errors']['Logging'] = e try: response = s3_client.get_bucket_cors(Bucket=bucket_name) if 'CORSRules' in response: b['CORSRules'] = response['CORSRules'] except ClientError as e: if e.response['Error']['Code'] != 'NoSuchCORSConfiguration': b['errors']['CORSRules'] = e save_resource_to_s3(RESOURCE_PATH, bucket_name, b) def json_serial(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, (datetime, date)): return obj.isoformat() raise TypeError ("Type %s not serializable" % type(obj))
[ "dateutil.tz.gettz", "json.loads", "logging.getLogger", "json.dumps" ]
[((210, 229), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (227, 229), False, 'import logging\n'), ((523, 572), 'json.loads', 'json.loads', (["event['Records'][0]['Sns']['Message']"], {}), "(event['Records'][0]['Sns']['Message'])\n", (533, 572), False, 'import json\n'), ((261, 290), 'logging.getLogger', 'logging.getLogger', (['"""botocore"""'], {}), "('botocore')\n", (278, 290), False, 'import logging\n'), ((317, 343), 'logging.getLogger', 'logging.getLogger', (['"""boto3"""'], {}), "('boto3')\n", (334, 343), False, 'import logging\n'), ((474, 507), 'json.dumps', 'json.dumps', (['event'], {'sort_keys': '(True)'}), '(event, sort_keys=True)\n', (484, 507), False, 'import json\n'), ((612, 647), 'json.dumps', 'json.dumps', (['message'], {'sort_keys': '(True)'}), '(message, sort_keys=True)\n', (622, 647), False, 'import json\n'), ((2039, 2061), 'dateutil.tz.gettz', 'tz.gettz', (['"""US/Eastern"""'], {}), "('US/Eastern')\n", (2047, 2061), False, 'from dateutil import tz\n'), ((3418, 3448), 'json.loads', 'json.loads', (["response['Policy']"], {}), "(response['Policy'])\n", (3428, 3448), False, 'import json\n')]
#!/usr/bin/python3 from PyQt5.QtGui import QBrush, QColor, QPainter from PyQt5.QtChart import QChartView, QChart, QPieSeries from portfolio.utils import confighandler from portfolio.db.fdbhandler import balances from portfolio.db.cdbhandler import cbalances from portfolio.gui.ui_components.fonts import ChartTitleFont class DistributionPieChart(QChartView): """ Pie chart that shows the distribution of capital according to several criteria """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Chart self.chart = QChart() self.chart.setTheme(QChart.ChartThemeDark) self.chart.legend().hide() self.chart.createDefaultAxes() self.chart.setAnimationOptions(QChart.SeriesAnimations) self.chart.setBackgroundVisible(False) self.chart.setTitle(" ") self.chart.setTitleBrush(QBrush(QColor('white'))) self.setChart(self.chart) self.setRenderHint(QPainter.Antialiasing) self.setStyleSheet("border: 0px; background-color: rgba(0,0,0,0)") self.setupSeries() # Initialize to all mode def setupSeries(self, mode="all"): """ Chart gets updated displaying the new data. Modes: - all : distribution between all accounts - accs : distribution between portfolio accounts - cryptoaccs : distribution between crypto accounts - strategies : distribution between strategies """ # Series self.chart.removeAllSeries() # Remove any previous series self.series = QPieSeries() # Get data if mode == "all": data = balances.get_all_accounts( ) + cbalances.get_all_accounts_with_amount_fiat() elif mode == "accounts": data = balances.get_all_accounts() elif mode == "crypto": data = cbalances.get_all_accounts_with_amount_fiat() elif mode == "currency": data = [(confighandler.get_fiat_currency().upper(), balances.get_total_balance_all_accounts( )), ("BTC", cbalances.get_total_balance_all_accounts_fiat())] data.sort(key=lambda x: x[1]) # Sort # Set Chart Title self.total = sum([i[1] for i in data]) self.setDefaultTitle() # Add to series for d in data: self.series.append(d[0], d[1]) # Hide little slices' labels self.series.setLabelsVisible(True) for slc in self.series.slices(): if slc.angleSpan() < 5: slc.setLabelVisible(False) slc.setLabelArmLengthFactor(0.05) self.chart.addSeries(self.series) # Signals and functionality self.series.hovered.connect(self.selectSlice) def selectSlice(self, _slice, state): """ Highlight selected slice """ font = ChartTitleFont() if state: font.setPointSize(20) _slice.setLabelVisible(True) self.chart.setTitle( f"{int(_slice.value())} {confighandler.get_fiat_currency().upper()} {round(_slice.percentage()*100,1)}%") else: font.setBold(False) if _slice.angleSpan() < 5: _slice.setLabelVisible(False) _slice.setExploded(False) self.setDefaultTitle() _slice.setLabelFont(font) def setDefaultTitle(self): """ Sets title as total balance from all pie slices """ self.chart.setTitle( f"{int(self.total)} {confighandler.get_fiat_currency().upper()}") font = ChartTitleFont(fontsize=20) self.chart.setTitleFont(font)
[ "PyQt5.QtGui.QColor", "portfolio.db.fdbhandler.balances.get_total_balance_all_accounts", "PyQt5.QtChart.QPieSeries", "portfolio.db.cdbhandler.cbalances.get_all_accounts_with_amount_fiat", "portfolio.gui.ui_components.fonts.ChartTitleFont", "portfolio.db.cdbhandler.cbalances.get_total_balance_all_accounts_fiat", "portfolio.db.fdbhandler.balances.get_all_accounts", "portfolio.utils.confighandler.get_fiat_currency", "PyQt5.QtChart.QChart" ]
[((590, 598), 'PyQt5.QtChart.QChart', 'QChart', ([], {}), '()\n', (596, 598), False, 'from PyQt5.QtChart import QChartView, QChart, QPieSeries\n'), ((1618, 1630), 'PyQt5.QtChart.QPieSeries', 'QPieSeries', ([], {}), '()\n', (1628, 1630), False, 'from PyQt5.QtChart import QChartView, QChart, QPieSeries\n'), ((2903, 2919), 'portfolio.gui.ui_components.fonts.ChartTitleFont', 'ChartTitleFont', ([], {}), '()\n', (2917, 2919), False, 'from portfolio.gui.ui_components.fonts import ChartTitleFont\n'), ((3624, 3651), 'portfolio.gui.ui_components.fonts.ChartTitleFont', 'ChartTitleFont', ([], {'fontsize': '(20)'}), '(fontsize=20)\n', (3638, 3651), False, 'from portfolio.gui.ui_components.fonts import ChartTitleFont\n'), ((910, 925), 'PyQt5.QtGui.QColor', 'QColor', (['"""white"""'], {}), "('white')\n", (916, 925), False, 'from PyQt5.QtGui import QBrush, QColor, QPainter\n'), ((1696, 1723), 'portfolio.db.fdbhandler.balances.get_all_accounts', 'balances.get_all_accounts', ([], {}), '()\n', (1721, 1723), False, 'from portfolio.db.fdbhandler import balances\n'), ((1739, 1784), 'portfolio.db.cdbhandler.cbalances.get_all_accounts_with_amount_fiat', 'cbalances.get_all_accounts_with_amount_fiat', ([], {}), '()\n', (1782, 1784), False, 'from portfolio.db.cdbhandler import cbalances\n'), ((1838, 1865), 'portfolio.db.fdbhandler.balances.get_all_accounts', 'balances.get_all_accounts', ([], {}), '()\n', (1863, 1865), False, 'from portfolio.db.fdbhandler import balances\n'), ((1917, 1962), 'portfolio.db.cdbhandler.cbalances.get_all_accounts_with_amount_fiat', 'cbalances.get_all_accounts_with_amount_fiat', ([], {}), '()\n', (1960, 1962), False, 'from portfolio.db.cdbhandler import cbalances\n'), ((3564, 3597), 'portfolio.utils.confighandler.get_fiat_currency', 'confighandler.get_fiat_currency', ([], {}), '()\n', (3595, 3597), False, 'from portfolio.utils import confighandler\n'), ((2061, 2102), 'portfolio.db.fdbhandler.balances.get_total_balance_all_accounts', 'balances.get_total_balance_all_accounts', ([], {}), '()\n', (2100, 2102), False, 'from portfolio.db.fdbhandler import balances\n'), ((2127, 2174), 'portfolio.db.cdbhandler.cbalances.get_total_balance_all_accounts_fiat', 'cbalances.get_total_balance_all_accounts_fiat', ([], {}), '()\n', (2172, 2174), False, 'from portfolio.db.cdbhandler import cbalances\n'), ((3087, 3120), 'portfolio.utils.confighandler.get_fiat_currency', 'confighandler.get_fiat_currency', ([], {}), '()\n', (3118, 3120), False, 'from portfolio.utils import confighandler\n'), ((2018, 2051), 'portfolio.utils.confighandler.get_fiat_currency', 'confighandler.get_fiat_currency', ([], {}), '()\n', (2049, 2051), False, 'from portfolio.utils import confighandler\n')]
#coding=utf8 import re import itchat from itchat.content import * ''' 0.0.1版本 功能: 1.匹配群聊关键字 说 ,然后回复接受到的消息 ''' # 群聊监控 @itchat.msg_register(TEXT, isGroupChat = True) def groupchat_reply(msg): room_name = itchat.search_chatrooms(userName=msg[u'FromUserName']) print(u"来自-%s-群聊消息|%s:%s"%(room_name[ u'NickName'],msg['ActualNickName'],msg['Text'])) # 匹配说关键字 if(re.match(u'^说', msg['Text'])): itchat.send_msg(msg['Text'].replace(u'说', ''),msg[u'FromUserName']) if(re.match(u'^搜', msg['Text'])): itchat.send_msg(u'电影名xxx',msg[u'FromUserName']) itchat.auto_login(hotReload=True,enableCmdQR=True) itchat.run(debug=True)
[ "itchat.msg_register", "re.match", "itchat.search_chatrooms", "itchat.send_msg", "itchat.auto_login", "itchat.run" ]
[((120, 163), 'itchat.msg_register', 'itchat.msg_register', (['TEXT'], {'isGroupChat': '(True)'}), '(TEXT, isGroupChat=True)\n', (139, 163), False, 'import itchat\n'), ((578, 629), 'itchat.auto_login', 'itchat.auto_login', ([], {'hotReload': '(True)', 'enableCmdQR': '(True)'}), '(hotReload=True, enableCmdQR=True)\n', (595, 629), False, 'import itchat\n'), ((630, 652), 'itchat.run', 'itchat.run', ([], {'debug': '(True)'}), '(debug=True)\n', (640, 652), False, 'import itchat\n'), ((208, 262), 'itchat.search_chatrooms', 'itchat.search_chatrooms', ([], {'userName': "msg[u'FromUserName']"}), "(userName=msg[u'FromUserName'])\n", (231, 262), False, 'import itchat\n'), ((375, 403), 're.match', 're.match', (['u"""^说"""', "msg['Text']"], {}), "(u'^说', msg['Text'])\n", (383, 403), False, 'import re\n'), ((490, 518), 're.match', 're.match', (['u"""^搜"""', "msg['Text']"], {}), "(u'^搜', msg['Text'])\n", (498, 518), False, 'import re\n'), ((529, 577), 'itchat.send_msg', 'itchat.send_msg', (['u"""电影名xxx"""', "msg[u'FromUserName']"], {}), "(u'电影名xxx', msg[u'FromUserName'])\n", (544, 577), False, 'import itchat\n')]
#! /usr/bin/python3 # -*- coding: utf-8 -*- #################################################################################################### import io #################################################################################################### def TailFile(p_FileName, p_BufferSize=io.DEFAULT_BUFFER_SIZE, p_Encoding='utf8', p_Separator = '\n', p_KeepSeparator=True): ''' Iterator used to read a file starting with the end, and proceeding backwards. p_FileName : the full path to the file to be read backwards p_BufferSize : the size of the file chunk to read into memory for processing p_Encoding : the encoding of the file, default is utf-8 p_Separator : the character(s) used to separate the stream. Usually either newline or space. p_KeepNewLine : keep the newline character at the end of the line (to be compatible with readline() ) ''' l_Separator = bytes(p_Separator, p_Encoding) l_KeepSeparator = l_Separator if p_KeepSeparator else b'' l_Fragment = bytearray() with open(p_FileName, 'rb') as l_File: l_File.seek(0, io.SEEK_END) l_Blocks = l_File.tell() // p_BufferSize while l_Blocks >= 0: l_File.seek(l_Blocks * p_BufferSize, io.SEEK_SET) l_BufferContent = l_File.read(p_BufferSize) # might overshoot at first read l_Blocks -= 1 if not l_Separator in l_BufferContent: l_Fragment = l_BufferContent + l_Fragment else: l_BufferFragments = l_BufferContent.split(l_Separator) yield str(l_BufferFragments[-1] + l_Fragment + l_KeepSeparator, p_Encoding) for l_BufferFragment in reversed(l_BufferFragments[1:-1]): yield str(l_BufferFragment + l_KeepSeparator, p_Encoding) l_Fragment = bytearray(l_BufferFragments[0]) yield str(l_Fragment, p_Encoding) #################################################################################################### if __name__ == '__main__': import os import sys import time C_TestFileName = 'tmp.txt' C_TestBufferSize = 9182 if len(sys.argv) != 2: print ('Usage: python3 tailfile.py <testfile>') sys.exit(0) if True: # benchmark l_Moment1 = time.time() l_Count1 = 0 with open(sys.argv[1], 'r') as l_File: for l_Line in l_File: l_Count1 += 1 l_Moment2 = time.time() l_Count2 = 0 for l_Line in TailFile(sys.argv[1], p_BufferSize=C_TestBufferSize): l_Count2 += 1 l_Moment3 = time.time() print ('{}: {} {}'.format(l_Count1, (l_Moment2 - l_Moment1), (l_Moment3 - l_Moment2))) else: # test algorithm # write reversed content to tmp file with open(C_TestFileName, 'w') as l_TempFile: for l_Line in TailFile(sys.argv[1], C_TestBufferSize, p_Separator='\n'): l_TempFile.write(l_Line) # print (l_Line, end='') # read and compare original file to reversed tmp file, should be identical for l_Line, l_Copy in zip(open(sys.argv[1], 'r'), TailFile(C_TestFileName, C_TestBufferSize)): if l_Line != l_Copy: print ('|'+l_Line+'|\n---\n|'+l_Copy+'|') break os.remove(C_TestFileName)
[ "os.remove", "sys.exit", "time.time" ]
[((2399, 2410), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (2407, 2410), False, 'import sys\n'), ((2461, 2472), 'time.time', 'time.time', ([], {}), '()\n', (2470, 2472), False, 'import time\n'), ((2631, 2642), 'time.time', 'time.time', ([], {}), '()\n', (2640, 2642), False, 'import time\n'), ((2796, 2807), 'time.time', 'time.time', ([], {}), '()\n', (2805, 2807), False, 'import time\n'), ((3550, 3575), 'os.remove', 'os.remove', (['C_TestFileName'], {}), '(C_TestFileName)\n', (3559, 3575), False, 'import os\n')]
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import textwrap from typing import Dict, Optional import libcst as cst from libcst.codemod import CodemodContext, VisitorBasedCodemodCommand presets_per_formatter: Dict[str, Dict[str, int]] = { "black": { "parameter_count": 1, "argument_count": 2, }, "yapf": { "parameter_count": 2, "argument_count": 2, }, } class AddTrailingCommas(VisitorBasedCodemodCommand): DESCRIPTION: str = textwrap.dedent( """ Codemod that adds trailing commas to arguments in function headers and function calls. The idea is that both the black and yapf autoformatters will tend to split headers and function calls so that there is one parameter / argument per line if there is a trailing comma: - Black will always separate them by line - Yapf appears to do so whenever there are at least two arguments Applying this codemod (and then an autoformatter) may make it easier to read function definitions and calls """ ) def __init__( self, context: CodemodContext, formatter: str = "black", parameter_count: Optional[int] = None, argument_count: Optional[int] = None, ) -> None: super().__init__(context) presets = presets_per_formatter.get(formatter) if presets is None: raise ValueError( f"Unknown formatter {formatter!r}. Presets exist for " + ", ".join(presets_per_formatter.keys()) ) self.parameter_count: int = parameter_count or presets["parameter_count"] self.argument_count: int = argument_count or presets["argument_count"] @staticmethod def add_args(arg_parser: argparse.ArgumentParser) -> None: arg_parser.add_argument( "--formatter", dest="formatter", metavar="FORMATTER", help="Formatter to target (e.g. yapf or black)", type=str, default="black", ) arg_parser.add_argument( "--paramter-count", dest="parameter_count", metavar="PARAMETER_COUNT", help="Minimal number of parameters for us to add trailing comma", type=int, default=None, ) arg_parser.add_argument( "--argument-count", dest="argument_count", metavar="ARGUMENT_COUNT", help="Minimal number of arguments for us to add trailing comma", type=int, default=None, ) def leave_Parameters( self, original_node: cst.Parameters, updated_node: cst.Parameters, ) -> cst.Parameters: skip = ( # self.parameter_count is None or len(updated_node.params) < self.parameter_count or ( len(updated_node.params) == 1 and updated_node.params[0].name.value in {"self", "cls"} ) ) if skip: return updated_node else: last_param = updated_node.params[-1] return updated_node.with_changes( params=( *updated_node.params[:-1], last_param.with_changes(comma=cst.Comma()), ), ) def leave_Call( self, original_node: cst.Call, updated_node: cst.Call, ) -> cst.Call: if len(updated_node.args) < self.argument_count: return updated_node else: last_arg = updated_node.args[-1] return updated_node.with_changes( args=( *updated_node.args[:-1], last_arg.with_changes(comma=cst.Comma()), ), )
[ "textwrap.dedent", "libcst.Comma" ]
[((634, 1244), 'textwrap.dedent', 'textwrap.dedent', (['"""\n Codemod that adds trailing commas to arguments in function\n headers and function calls.\n\n The idea is that both the black and yapf autoformatters will\n tend to split headers and function calls so that there\n is one parameter / argument per line if there is a trailing\n comma:\n - Black will always separate them by line\n - Yapf appears to do so whenever there are at least two arguments\n\n Applying this codemod (and then an autoformatter) may make\n it easier to read function definitions and calls\n """'], {}), '(\n """\n Codemod that adds trailing commas to arguments in function\n headers and function calls.\n\n The idea is that both the black and yapf autoformatters will\n tend to split headers and function calls so that there\n is one parameter / argument per line if there is a trailing\n comma:\n - Black will always separate them by line\n - Yapf appears to do so whenever there are at least two arguments\n\n Applying this codemod (and then an autoformatter) may make\n it easier to read function definitions and calls\n """\n )\n', (649, 1244), False, 'import textwrap\n'), ((3502, 3513), 'libcst.Comma', 'cst.Comma', ([], {}), '()\n', (3511, 3513), True, 'import libcst as cst\n'), ((3978, 3989), 'libcst.Comma', 'cst.Comma', ([], {}), '()\n', (3987, 3989), True, 'import libcst as cst\n')]
""" Tests with the Izhikevich neuron model. """ import numpy as np import matplotlib.pyplot as plt import pyNN.nest as sim from pyNN.utility.plotting import Figure, Panel # === Configure the simulator ================================================ duration = 100 dt = 0.01 sim.setup(timestep=dt, min_delay=0.1) # === Build and instrument the network ======================================= phasic_spiking = {'a': 0.02, 'b': 0.25, 'c': -65, 'd': 6} class_2 = {'a': 0.2, 'b': 0.26, 'c': -65, 'd': 0} params = class_2 n = 100 v_init = -64 input_currents = 0.0005 * np.logspace(-4, 6, n, base=np.e) neurons = sim.Population(n, sim.Izhikevich(i_offset=input_currents, **params)) neurons.record(['v', 'u', 'spikes']) neurons.initialize(v=v_init, u=-params['b']*v_init) # === Run the simulation ===================================================== sim.run(duration) # === Save the results, optionally plot a figure ============================= data = neurons.get_data().segments[0] first_spiketimes = [] rates = [] for spiketrain in data.spiketrains: if len(spiketrain) == 0: first_spiketimes.append(np.infty) else: first_spiketimes.append(spiketrain[0]) rates.append(np.count_nonzero(spiketrain) / duration) plt.scatter(input_currents, 1 / np.array(first_spiketimes), label='inverse ttfs') plt.scatter(input_currents, rates, label='avg spikerate') plt.legend() plt.savefig('FI') v = data.filter(name="v")[0] u = data.filter(name="u")[0] Figure(Panel(v, ylabel="Membrane potential (mV)", xticks=True, xlabel="Time (ms)", yticks=True), Panel(u, ylabel="u variable (units?)")).save('mem') # === Clean up and quit ======================================================== sim.end()
[ "pyNN.nest.run", "numpy.count_nonzero", "pyNN.nest.setup", "pyNN.nest.end", "matplotlib.pyplot.scatter", "matplotlib.pyplot.legend", "numpy.logspace", "numpy.array", "pyNN.utility.plotting.Panel", "matplotlib.pyplot.savefig", "pyNN.nest.Izhikevich" ]
[((281, 318), 'pyNN.nest.setup', 'sim.setup', ([], {'timestep': 'dt', 'min_delay': '(0.1)'}), '(timestep=dt, min_delay=0.1)\n', (290, 318), True, 'import pyNN.nest as sim\n'), ((857, 874), 'pyNN.nest.run', 'sim.run', (['duration'], {}), '(duration)\n', (864, 874), True, 'import pyNN.nest as sim\n'), ((1345, 1402), 'matplotlib.pyplot.scatter', 'plt.scatter', (['input_currents', 'rates'], {'label': '"""avg spikerate"""'}), "(input_currents, rates, label='avg spikerate')\n", (1356, 1402), True, 'import matplotlib.pyplot as plt\n'), ((1403, 1415), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1413, 1415), True, 'import matplotlib.pyplot as plt\n'), ((1416, 1433), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""FI"""'], {}), "('FI')\n", (1427, 1433), True, 'import matplotlib.pyplot as plt\n'), ((1745, 1754), 'pyNN.nest.end', 'sim.end', ([], {}), '()\n', (1752, 1754), True, 'import pyNN.nest as sim\n'), ((574, 606), 'numpy.logspace', 'np.logspace', (['(-4)', '(6)', 'n'], {'base': 'np.e'}), '(-4, 6, n, base=np.e)\n', (585, 606), True, 'import numpy as np\n'), ((635, 684), 'pyNN.nest.Izhikevich', 'sim.Izhikevich', ([], {'i_offset': 'input_currents'}), '(i_offset=input_currents, **params)\n', (649, 684), True, 'import pyNN.nest as sim\n'), ((1283, 1309), 'numpy.array', 'np.array', (['first_spiketimes'], {}), '(first_spiketimes)\n', (1291, 1309), True, 'import numpy as np\n'), ((1209, 1237), 'numpy.count_nonzero', 'np.count_nonzero', (['spiketrain'], {}), '(spiketrain)\n', (1225, 1237), True, 'import numpy as np\n'), ((1500, 1592), 'pyNN.utility.plotting.Panel', 'Panel', (['v'], {'ylabel': '"""Membrane potential (mV)"""', 'xticks': '(True)', 'xlabel': '"""Time (ms)"""', 'yticks': '(True)'}), "(v, ylabel='Membrane potential (mV)', xticks=True, xlabel='Time (ms)',\n yticks=True)\n", (1505, 1592), False, 'from pyNN.utility.plotting import Figure, Panel\n'), ((1610, 1648), 'pyNN.utility.plotting.Panel', 'Panel', (['u'], {'ylabel': '"""u variable (units?)"""'}), "(u, ylabel='u variable (units?)')\n", (1615, 1648), False, 'from pyNN.utility.plotting import Figure, Panel\n')]
import sys from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--indexes', dest='inFile', required=True, help='Path to indexes file, one per line.') parser.add_argument('--config', dest='config', required=True) o=parser.parse_args() outFile = open(f"{o.config}.summary.csv",'w') indexes = [] indexFile = open(o.inFile, 'r') for line in indexFile: indexes.append(line.strip()) indexFile.close() outFile.write("RunID,Index,Raw reads,SSCS reads,Mapped SSCS,DCS reads,Mapped DCS,% mapped SSCS,% mapped DCS,Raw/SSCS,SSCS/DCS,Peak Family Size,Max Family Size,Mean Insert Size,SSCS On Target,DCS On Target,DCS Mean Depth,DCS Max Depth,DCS Uncovered Target,Nucleotides Sequenced,A's Sequenced,T's Sequenced,C's Sequenced,G's Sequenced,Mutations,Mutation Frequency,A>T,A>C,A>G,T>A,T>C,T>G,C>A,C>T,C>G,G>A,G>T,G>C,ins,dels\n") for index in indexes: print(f"Index {index}") print("Reading config") # Get the run ID from the config file runID="" c="" C="" d="" configFile = open(f"{index}/{index}_config.sh", 'r') for line in configFile: if "RUN_ID=" in line: runID = line.strip().split('=')[1].strip('"') elif "minClonal=" in line: c=line.strip().split('=')[1].split()[0] elif "maxClonal=" in line: C=line.strip().split('=')[1].split()[0] elif "minDepth=" in line: d=line.strip().split('=')[1].split()[0] configFile.close() print("Getting read counts") # get read counts # Read tagstats files: rawFlagstats = open(f"{index}/Stats/data/{runID}.temp.sort.flagstats.txt", 'r').readlines() sscsFlagstats = open(f"{index}/Stats/data/{runID}_mem.sscs.sort.flagstats.txt", 'r').readlines() dcsFlagstats = open(f"{index}/Stats/data/{runID}_mem.dcs.sort.flagstats.txt", 'r').readlines() rawReads = float(rawFlagstats[0].split()[0]) #rawReads = float(pysam.flagstat(f"{index}/{runID}.temp.sort.bam").split('\n')[0].split()[0]) #sscsFlagstat=pysam.flagstat(f"{index}/{runID}_mem.sscs.sort.bam").split('\n') sscsReads=float(sscsFlagstats[0].split()[0]) mappedSscs=float(sscsFlagstats[4].split()[0]) # ~ dcsFlagstat=pysam.flagstat(f"{index}/{runID}_mem.dcs.sort.bam").split('\n') dcsReads=float(dcsFlagstats[0].split()[0]) mappedDcs=float(dcsFlagstats[4].split()[0]) print("Processing Tagstats") # get tagstats numbers tagstatsFile = open(f"{index}/Stats/data/{runID}.tagstats.txt", 'r') lastProportion=1 peakProportion = 0 peakSize = 1 maxSize=0 for line in tagstatsFile: if float(line.split()[2]) <= lastProportion: lastProportion = float(line.split()[2]) elif float(line.split()[2]) >= peakProportion: lastProportion = 0 peakSize = line.split()[0] peakProportion = float(line.split()[2]) maxSize = line.split()[0] tagstatsFile.close() sscsOnTarget="NA" # read depth file: print("Processing Depth") depthFile = open(f"{index}/Stats/data/{runID}.dcs.region.mutpos.vcf_depth.txt", 'r') totDepth = 0 numLocs = 0 dcsMaxDepth = 0 for line in depthFile: if "#" not in line: totDepth += int(line.split('\t')[3]) numLocs += 1 dcsMaxDepth = max(dcsMaxDepth, int(line.split('\t')[3])) dcsOnTarget="NA" if numLocs != 0: dcsMeanDepth=totDepth / numLocs else: dcsMeanDepth=0 dcsUncovered="NA" depthFile.close() # insert size file print("Processing Insert Size") insertSizeFile = open(f"{index}/Stats/data/{runID}.dcs.iSize_Metrics.txt", 'r') totInsertSize = 0 numInsertReads = 0 line = next(insertSizeFile) while "## HISTOGRAM" not in line: line = next(insertSizeFile) contIter = True line = next(insertSizeFile) while contIter: try: line = next(insertSizeFile) if line.strip() != "": linebins = [int(x) for x in line.strip().split('\t')] totInsertSize += linebins[0] * linebins[1] numInsertReads += linebins[1] except StopIteration: contIter = False if numInsertReads == 0: meanInsertSize = "N/A" else: meanInsertSize = totInsertSize / numInsertReads print("Processing countmuts") # get countmuts data sys.stderr.write(f"{index}/{runID}.dcs.filt.no_overlap.region.c{c}-{C}.d{d}.unique.countmuts.txt\n") cmFile = open(f"{index}/Final/dcs/{runID}.dcs.countmuts.csv", 'r') AsSeq="" AtoT="" AtoC="" AtoG="" TsSeq="" TtoA="" TtoC="" TtoG="" CsSeq="" CtoA="" CtoT="" CtoG="" GsSeq="" GtoA="" GtoT="" GtoC="" totalNt="" totalMuts="" ins="" dels="" for line in cmFile: if "##" not in line and "OVERALL" in line: linebins = line.strip().split(',') if "A>T" in line: AtoT=linebins[4] AsSeq=linebins[5] elif "A>C" in line: AtoC=linebins[4] elif "A>G" in line: AtoG=linebins[4] elif "T>A" in line: TtoA=linebins[4] TsSeq=linebins[5] elif "T>C" in line: TtoC=linebins[4] elif "T>G" in line: TtoG=linebins[4] elif "C>A" in line: CtoA=linebins[4] CsSeq=linebins[5] elif "C>T" in line: CtoT=linebins[4] elif "C>G" in line: CtoG=linebins[4] elif "G>A" in line: GtoA=linebins[4] GsSeq=linebins[5] elif "G>T" in line: GtoT=linebins[4] elif "G>C" in line: GtoC=linebins[4] elif "Total" in line and "SNV" in line: totalNt = float(linebins[5]) totalMuts = float(linebins[4]) elif "Total" in line and "INS" in line: ins=linebins[4] elif "Total" in line and "DEL" in line: dels=linebins[4] cmFile.close() if sscsReads > 0: percentMappedSSCS = mappedSscs/sscsReads rawPerSSCS = rawReads/sscsReads else: percentMappedSSCS = 0 rawPerSSCS = 0 if dcsReads > 0: percentMappedDCS = mappedDcs/dcsReads sscsPerDCS = sscsReads/dcsReads else: percentMappedDCS = 0 sscsPerDCS = 0 if totalNt > 0: mutFreq = totalMuts/totalNt else: mutFreq = 0 outFile.write( f"{runID}," f"{index},{rawReads},{sscsReads},{mappedSscs},{dcsReads},{mappedDcs}," f"{percentMappedSSCS},{percentMappedDCS},{rawPerSSCS},{sscsPerDCS}," f"{peakSize},{maxSize},{meanInsertSize},{sscsOnTarget},{dcsOnTarget},{dcsMeanDepth}," f"{dcsMaxDepth},{dcsUncovered},{totalNt},{AsSeq},{TsSeq},{CsSeq},{GsSeq},{totalMuts},{mutFreq}," f"{AtoT},{AtoC},{AtoG},{TtoA},{TtoC},{TtoG},{CtoA},{CtoT},{CtoG},{GtoA}," f"{GtoT},{GtoC},{ins},{dels}\n" ) outFile.close()
[ "sys.stderr.write", "argparse.ArgumentParser" ]
[((57, 73), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (71, 73), False, 'from argparse import ArgumentParser\n'), ((4423, 4533), 'sys.stderr.write', 'sys.stderr.write', (['f"""{index}/{runID}.dcs.filt.no_overlap.region.c{c}-{C}.d{d}.unique.countmuts.txt\n"""'], {}), "(\n f'{index}/{runID}.dcs.filt.no_overlap.region.c{c}-{C}.d{d}.unique.countmuts.txt\\n'\n )\n", (4439, 4533), False, 'import sys\n')]
from pathlib import Path from setuptools import find_packages, setup long_description: str = (Path(__file__).parent.resolve() / "README.md").read_text( encoding="utf-8" ) setup( name="crawler", version="0.0.0", description="A Web Crawler", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/darkslab/Crawler", author="<NAME>", author_email="<EMAIL>", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Topic :: Software Development :: Build Tools", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.8", ], keywords="crawler", package_dir={"": "src"}, packages=find_packages(where="src"), python_requires=">=3.8, <4", install_requires=[ "click==7.1.2", "aiohttp==3.8.1", "yarl==1.7.2", ], entry_points={ "console_scripts": [ "crawler=crawler:cli", ], }, )
[ "pathlib.Path", "setuptools.find_packages" ]
[((831, 857), 'setuptools.find_packages', 'find_packages', ([], {'where': '"""src"""'}), "(where='src')\n", (844, 857), False, 'from setuptools import find_packages, setup\n'), ((96, 110), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (100, 110), False, 'from pathlib import Path\n')]
import json import os import requests data_file = './description.json' with open(data_file) as f: data = json.load(f) home_page = data['homepage'] seqs = data['sequences'] for v in seqs: link = '%s%s' % (home_page,v['annotations']['url']) print('download %s' % link) os.system('wget %s -O %s_ann.zip' % (link, v['name'])) link = '%s%s' % (home_page,v['channels']['color']['url']) print('download %s' % link) os.system('wget %s -O %s_chn.zip' % (link, v['name']))
[ "json.load", "os.system" ]
[((109, 121), 'json.load', 'json.load', (['f'], {}), '(f)\n', (118, 121), False, 'import json\n'), ((285, 339), 'os.system', 'os.system', (["('wget %s -O %s_ann.zip' % (link, v['name']))"], {}), "('wget %s -O %s_ann.zip' % (link, v['name']))\n", (294, 339), False, 'import os\n'), ((438, 492), 'os.system', 'os.system', (["('wget %s -O %s_chn.zip' % (link, v['name']))"], {}), "('wget %s -O %s_chn.zip' % (link, v['name']))\n", (447, 492), False, 'import os\n')]
import hyperion import time import colorsys # Get the parameters rotationTime = float(hyperion.args.get('rotation-time', 2.0)) colorOne = hyperion.args.get('color_one', (255,0,0)) colorTwo = hyperion.args.get('color_two', (0,0,255)) colorsCount = hyperion.args.get('colors_count', hyperion.ledCount/2) reverse = bool(hyperion.args.get('reverse', False)) # Check parameters rotationTime = max(0.1, rotationTime) colorsCount = min(hyperion.ledCount/2, colorsCount) # Initialize the led data hsv1 = colorsys.rgb_to_hsv(colorOne[0]/255.0, colorOne[1]/255.0, colorOne[2]/255.0) hsv2 = colorsys.rgb_to_hsv(colorTwo[0]/255.0, colorTwo[1]/255.0, colorTwo[2]/255.0) colorBlack = (0,0,0) ledData = bytearray() for i in range(hyperion.ledCount): if i <= colorsCount: rgb = colorsys.hsv_to_rgb(hsv1[0], hsv1[1], hsv1[2]) elif (i >= hyperion.ledCount/2-1) & (i < (hyperion.ledCount/2) + colorsCount): rgb = colorsys.hsv_to_rgb(hsv2[0], hsv2[1], hsv2[2]) else: rgb = colorBlack ledData += bytearray((int(255*rgb[0]), int(255*rgb[1]), int(255*rgb[2]))) # Calculate the sleep time and rotation increment increment = 3 sleepTime = rotationTime / hyperion.ledCount while sleepTime < 0.05: increment *= 2 sleepTime *= 2 increment %= hyperion.ledCount # Switch direction if needed if reverse: increment = -increment # Start the write data loop while not hyperion.abort(): hyperion.setColor(ledData) ledData = ledData[-increment:] + ledData[:-increment] time.sleep(sleepTime)
[ "colorsys.rgb_to_hsv", "colorsys.hsv_to_rgb", "hyperion.abort", "hyperion.setColor", "time.sleep", "hyperion.args.get" ]
[((139, 182), 'hyperion.args.get', 'hyperion.args.get', (['"""color_one"""', '(255, 0, 0)'], {}), "('color_one', (255, 0, 0))\n", (156, 182), False, 'import hyperion\n'), ((192, 235), 'hyperion.args.get', 'hyperion.args.get', (['"""color_two"""', '(0, 0, 255)'], {}), "('color_two', (0, 0, 255))\n", (209, 235), False, 'import hyperion\n'), ((248, 304), 'hyperion.args.get', 'hyperion.args.get', (['"""colors_count"""', '(hyperion.ledCount / 2)'], {}), "('colors_count', hyperion.ledCount / 2)\n", (265, 304), False, 'import hyperion\n'), ((499, 585), 'colorsys.rgb_to_hsv', 'colorsys.rgb_to_hsv', (['(colorOne[0] / 255.0)', '(colorOne[1] / 255.0)', '(colorOne[2] / 255.0)'], {}), '(colorOne[0] / 255.0, colorOne[1] / 255.0, colorOne[2] /\n 255.0)\n', (518, 585), False, 'import colorsys\n'), ((583, 669), 'colorsys.rgb_to_hsv', 'colorsys.rgb_to_hsv', (['(colorTwo[0] / 255.0)', '(colorTwo[1] / 255.0)', '(colorTwo[2] / 255.0)'], {}), '(colorTwo[0] / 255.0, colorTwo[1] / 255.0, colorTwo[2] /\n 255.0)\n', (602, 669), False, 'import colorsys\n'), ((87, 126), 'hyperion.args.get', 'hyperion.args.get', (['"""rotation-time"""', '(2.0)'], {}), "('rotation-time', 2.0)\n", (104, 126), False, 'import hyperion\n'), ((318, 353), 'hyperion.args.get', 'hyperion.args.get', (['"""reverse"""', '(False)'], {}), "('reverse', False)\n", (335, 353), False, 'import hyperion\n'), ((1354, 1370), 'hyperion.abort', 'hyperion.abort', ([], {}), '()\n', (1368, 1370), False, 'import hyperion\n'), ((1373, 1399), 'hyperion.setColor', 'hyperion.setColor', (['ledData'], {}), '(ledData)\n', (1390, 1399), False, 'import hyperion\n'), ((1456, 1477), 'time.sleep', 'time.sleep', (['sleepTime'], {}), '(sleepTime)\n', (1466, 1477), False, 'import time\n'), ((768, 814), 'colorsys.hsv_to_rgb', 'colorsys.hsv_to_rgb', (['hsv1[0]', 'hsv1[1]', 'hsv1[2]'], {}), '(hsv1[0], hsv1[1], hsv1[2])\n', (787, 814), False, 'import colorsys\n'), ((903, 949), 'colorsys.hsv_to_rgb', 'colorsys.hsv_to_rgb', (['hsv2[0]', 'hsv2[1]', 'hsv2[2]'], {}), '(hsv2[0], hsv2[1], hsv2[2])\n', (922, 949), False, 'import colorsys\n')]
""" --- title: Attention with Linear Biases (ALiBi) Experiment summary: This experiment trains an Attention with Linear Biases (ALiBi) based model on Tiny Shakespeare dataset. --- # [Attention with Linear Biases (ALiBi)](index.html) Experiment This is an annotated PyTorch experiment to train a [ALiBi model](index.html). This is based on [our GPT model](../gpt/index.html). [![View Run](https://img.shields.io/badge/labml-experiment-brightgreen)](https://app.labml.ai/run/e87bec2a074911ec82cdd1759f10c925) """ import torch from torch.utils.data import DataLoader from labml import experiment, tracker from labml.configs import option, calculate from labml_helpers.datasets.text import SequentialUnBatchedDataset from labml_nn.transformers.alibi import AlibiMultiHeadAttention from labml_nn.experiments.nlp_autoregression import transpose_batch from labml_nn.transformers import TransformerConfigs from labml_nn.transformers.gpt import Configs as GPTConfigs class Configs(GPTConfigs): """ ## Configurations We extend [GPT configurations](../gpt/index.html) and change the attention mechanism. """ # ALiBi based transformer (defined below) transformer: TransformerConfigs = 'GPT_ALiBi' # Longer validation set valid_seq_len: int = 128 valid_loader = 'shuffled_longer_valid_loader' def other_metrics(self, output: torch.Tensor, target: torch.Tensor): """ Log losses at the initial and final tokens """ # If there are more tokens that the training sequence length (during validation), if self.seq_len < output.shape[0]: # Log the loss at training sequence length tracker.add(f'loss.{self.seq_len - 1}.', self.loss_func(output[self.seq_len - 1], target[self.seq_len - 1])) # Log the loss at the first token tracker.add(f'loss.0.', self.loss_func(output[0], target[0])) # Log the loss at the final token tracker.add(f'loss.{int(output.shape[0]) - 1}.', self.loss_func(output[-1], target[-1])) def _alibi_mha(c: TransformerConfigs): """ Create an ALiBi attention module """ return AlibiMultiHeadAttention(c.n_heads, c.d_model, dropout_prob=c.dropout) # Set all attention mechanisms to ALiBi calculate(TransformerConfigs.encoder_attn, 'alibi_mha', _alibi_mha) calculate(TransformerConfigs.decoder_attn, 'alibi_mha', _alibi_mha) calculate(TransformerConfigs.decoder_mem_attn, 'alibi_mha', _alibi_mha) @option(Configs.valid_loader) def shuffled_longer_valid_loader(c: Configs): """ Shuffled validation data loader with `valid_seq_len` sequence length """ return DataLoader(SequentialUnBatchedDataset(text=c.text.valid, dataset=c.text, seq_len=c.valid_seq_len), batch_size=c.batch_size, collate_fn=transpose_batch, shuffle=True) @option(Configs.transformer, 'GPT_ALiBi') def _transformer_configs(c: Configs): """ ### ALiBi based Transformer configurations """ # We use our # [configurable transformer implementation](../configs.html#TransformerConfigs) conf = TransformerConfigs() # Set the vocabulary sizes for embeddings and generating logits conf.n_src_vocab = c.n_tokens conf.n_tgt_vocab = c.n_tokens # GPT uses GELU activation for position wise feedforward conf.ffn.activation = 'GELU' # ALiBi doesn't use positional embeddings conf.src_embed = 'no_pos' conf.tgt_embed = 'no_pos' # Set all attention mechanisms to ALiBi conf.encoder_attn = 'alibi_mha' conf.decoder_attn = 'alibi_mha' conf.decoder_mem_attn = 'alibi_mha' # return conf def main(): # Create experiment experiment.create(name="gpt_alibi") # Create configs conf = Configs() # Override configurations experiment.configs(conf, { # Use character level tokenizer 'tokenizer': 'character', # Prompt separator is blank 'prompt_separator': '', # Starting prompt for sampling 'prompt': 'It is ', # Use Tiny Shakespeare dataset 'text': 'tiny_shakespeare', # 'text': 'tiny_shakespeare_no_split', # Use a context size of $128$ 'seq_len': 64, # Use a context size of $128$ 'valid_seq_len': 80, # Train for $32$ epochs 'epochs': 128, # Batch size $128$ 'batch_size': 128, # Switch between training and validation for $10$ times # per epoch 'inner_iterations': 10, # Transformer configurations 'transformer.d_model': 128, 'transformer.ffn.d_ff': 512, 'transformer.n_heads': 8, 'transformer.n_layers': 4, 'transformer.dropout': 0.1, }) # Set models for saving and loading experiment.add_pytorch_models({'model': conf.model}) # Start the experiment with experiment.start(): # Run training conf.run() # if __name__ == '__main__': main()
[ "labml.configs.option", "labml_nn.transformers.TransformerConfigs", "labml_nn.transformers.alibi.AlibiMultiHeadAttention", "labml.experiment.create", "labml.experiment.configs", "labml.experiment.add_pytorch_models", "labml_helpers.datasets.text.SequentialUnBatchedDataset", "labml.experiment.start", "labml.configs.calculate" ]
[((2260, 2327), 'labml.configs.calculate', 'calculate', (['TransformerConfigs.encoder_attn', '"""alibi_mha"""', '_alibi_mha'], {}), "(TransformerConfigs.encoder_attn, 'alibi_mha', _alibi_mha)\n", (2269, 2327), False, 'from labml.configs import option, calculate\n'), ((2328, 2395), 'labml.configs.calculate', 'calculate', (['TransformerConfigs.decoder_attn', '"""alibi_mha"""', '_alibi_mha'], {}), "(TransformerConfigs.decoder_attn, 'alibi_mha', _alibi_mha)\n", (2337, 2395), False, 'from labml.configs import option, calculate\n'), ((2396, 2467), 'labml.configs.calculate', 'calculate', (['TransformerConfigs.decoder_mem_attn', '"""alibi_mha"""', '_alibi_mha'], {}), "(TransformerConfigs.decoder_mem_attn, 'alibi_mha', _alibi_mha)\n", (2405, 2467), False, 'from labml.configs import option, calculate\n'), ((2471, 2499), 'labml.configs.option', 'option', (['Configs.valid_loader'], {}), '(Configs.valid_loader)\n', (2477, 2499), False, 'from labml.configs import option, calculate\n'), ((2979, 3019), 'labml.configs.option', 'option', (['Configs.transformer', '"""GPT_ALiBi"""'], {}), "(Configs.transformer, 'GPT_ALiBi')\n", (2985, 3019), False, 'from labml.configs import option, calculate\n'), ((2148, 2217), 'labml_nn.transformers.alibi.AlibiMultiHeadAttention', 'AlibiMultiHeadAttention', (['c.n_heads', 'c.d_model'], {'dropout_prob': 'c.dropout'}), '(c.n_heads, c.d_model, dropout_prob=c.dropout)\n', (2171, 2217), False, 'from labml_nn.transformers.alibi import AlibiMultiHeadAttention\n'), ((3234, 3254), 'labml_nn.transformers.TransformerConfigs', 'TransformerConfigs', ([], {}), '()\n', (3252, 3254), False, 'from labml_nn.transformers import TransformerConfigs\n'), ((3814, 3849), 'labml.experiment.create', 'experiment.create', ([], {'name': '"""gpt_alibi"""'}), "(name='gpt_alibi')\n", (3831, 3849), False, 'from labml import experiment, tracker\n'), ((3926, 4302), 'labml.experiment.configs', 'experiment.configs', (['conf', "{'tokenizer': 'character', 'prompt_separator': '', 'prompt': 'It is ',\n 'text': 'tiny_shakespeare', 'seq_len': 64, 'valid_seq_len': 80,\n 'epochs': 128, 'batch_size': 128, 'inner_iterations': 10,\n 'transformer.d_model': 128, 'transformer.ffn.d_ff': 512,\n 'transformer.n_heads': 8, 'transformer.n_layers': 4,\n 'transformer.dropout': 0.1}"], {}), "(conf, {'tokenizer': 'character', 'prompt_separator': '',\n 'prompt': 'It is ', 'text': 'tiny_shakespeare', 'seq_len': 64,\n 'valid_seq_len': 80, 'epochs': 128, 'batch_size': 128,\n 'inner_iterations': 10, 'transformer.d_model': 128,\n 'transformer.ffn.d_ff': 512, 'transformer.n_heads': 8,\n 'transformer.n_layers': 4, 'transformer.dropout': 0.1})\n", (3944, 4302), False, 'from labml import experiment, tracker\n'), ((4906, 4958), 'labml.experiment.add_pytorch_models', 'experiment.add_pytorch_models', (["{'model': conf.model}"], {}), "({'model': conf.model})\n", (4935, 4958), False, 'from labml import experiment, tracker\n'), ((2657, 2748), 'labml_helpers.datasets.text.SequentialUnBatchedDataset', 'SequentialUnBatchedDataset', ([], {'text': 'c.text.valid', 'dataset': 'c.text', 'seq_len': 'c.valid_seq_len'}), '(text=c.text.valid, dataset=c.text, seq_len=c.\n valid_seq_len)\n', (2683, 2748), False, 'from labml_helpers.datasets.text import SequentialUnBatchedDataset\n'), ((4996, 5014), 'labml.experiment.start', 'experiment.start', ([], {}), '()\n', (5012, 5014), False, 'from labml import experiment, tracker\n')]
#coding=utf-8 ''' Created on 2015-9-24 @author: Devuser ''' from doraemon.ci.pagefactory.ci_pageworker import CIPageWorker from doraemon.ci.viewmodels.ci_left_nav_bar import CIServiceLeftNavBar from doraemon.ci.viewmodels.ci_sub_nav_bar import CIServiceSubNavBar from doraemon.ci.viewmodels.vm_ci_deploy_service import VM_CIDeployService from doraemon.ci.pagefactory.ci_template_path import CIServicePath from doraemon.project.pagefactory.project_common_pageworker import ProjectCommonControllPageWorker from business.ci.ci_service import CIService from doraemon.ci.models import CIDeployService class CIServicePageWorker(CIPageWorker): ''' 项目页面生成器 ''' def __init__(self, request): ''' Constructor ''' CIPageWorker.__init__(self, request) self.pagemodel = CIServiceLeftNavBar self.subpage_model = CIServiceSubNavBar def get_ci_service_fullpage(self, request,sub_nav_action): dm_products = CIService.get_products_include_me(request) left_nav_bar = self.get_service_left_bar(request) sub_nav_bar = self.get_service_sub_navbar(request, dm_products, sub_nav_action) ci_service_webpart = self.get_ci_service_list_webpart(request,sub_nav_action) page_fileds = {"left_nav_bar":left_nav_bar, "sub_nav_bar":sub_nav_bar, "ci_service_webpart":ci_service_webpart} return self.get_page(page_fileds,CIServicePath.service_index_path, request) def get_ci_service_config_page(self, request,service_id): dm_products = CIService.get_products_include_me(request) left_nav_bar = self.get_service_left_bar(request) sub_nav_bar = self.get_service_sub_navbar(request, dm_products,0) ci_service_config_webpart = self.ci_service_config_webpart(request,service_id) page_fileds = {"left_nav_bar":left_nav_bar, "sub_nav_bar":sub_nav_bar, "ci_service_config":ci_service_config_webpart} return self.get_page(page_fileds,CIServicePath.service_index_path,request) def ci_service_config_webpart(self, request,service_id): service=CIDeployService.objects.get(int(service_id)) vm_service=VM_CIDeployService(service,0) ci_service_project=ProjectCommonControllPageWorker.get_myproject_dropdown_list(self, request,service.Project) pagefileds = {"service":vm_service,"ci_service_project":ci_service_project} return self.get_webpart(pagefileds, CIServicePath.service_config_page) def get_ci_service_list_webpart(self, request,sub_nav_action): service_list_controll = self.get_ci_service_list_controll(request, sub_nav_action) pagefileds = {"ci_service_listcontroll":service_list_controll} return self.get_webpart(pagefileds, CIServicePath.service_list_webpart) def get_ci_service_list_controll(self, request,sub_nav_action): dm_ci_services = CIService.get_product_ci_services(request,sub_nav_action) ci_services = self.get_ci_services(request, dm_ci_services) pagefileds = {"ci_services":ci_services} return self.get_webpart(pagefileds, CIServicePath.service_list_controll) def get_service_left_bar(self, request): return self.get_left_nav_bar(request, self.pagemodel, CIServicePath.left_nav_template_path) def get_service_sub_navbar(self, request, dm_products, sub_nav_action): return self.get_sub_nav_bar(request, self.subpage_model, CIServicePath.sub_nav_template_path, sub_nav_action=sub_nav_action, products=dm_products) def get_ci_services(self,request,dm_ci_services): result=list() for service in dm_ci_services: temp=VM_CIDeployService(service,0) result.append(temp) return result
[ "business.ci.ci_service.CIService.get_products_include_me", "doraemon.ci.pagefactory.ci_pageworker.CIPageWorker.__init__", "doraemon.project.pagefactory.project_common_pageworker.ProjectCommonControllPageWorker.get_myproject_dropdown_list", "business.ci.ci_service.CIService.get_product_ci_services", "doraemon.ci.viewmodels.vm_ci_deploy_service.VM_CIDeployService" ]
[((754, 790), 'doraemon.ci.pagefactory.ci_pageworker.CIPageWorker.__init__', 'CIPageWorker.__init__', (['self', 'request'], {}), '(self, request)\n', (775, 790), False, 'from doraemon.ci.pagefactory.ci_pageworker import CIPageWorker\n'), ((974, 1016), 'business.ci.ci_service.CIService.get_products_include_me', 'CIService.get_products_include_me', (['request'], {}), '(request)\n', (1007, 1016), False, 'from business.ci.ci_service import CIService\n'), ((1542, 1584), 'business.ci.ci_service.CIService.get_products_include_me', 'CIService.get_products_include_me', (['request'], {}), '(request)\n', (1575, 1584), False, 'from business.ci.ci_service import CIService\n'), ((2164, 2194), 'doraemon.ci.viewmodels.vm_ci_deploy_service.VM_CIDeployService', 'VM_CIDeployService', (['service', '(0)'], {}), '(service, 0)\n', (2182, 2194), False, 'from doraemon.ci.viewmodels.vm_ci_deploy_service import VM_CIDeployService\n'), ((2221, 2316), 'doraemon.project.pagefactory.project_common_pageworker.ProjectCommonControllPageWorker.get_myproject_dropdown_list', 'ProjectCommonControllPageWorker.get_myproject_dropdown_list', (['self', 'request', 'service.Project'], {}), '(self, request,\n service.Project)\n', (2280, 2316), False, 'from doraemon.project.pagefactory.project_common_pageworker import ProjectCommonControllPageWorker\n'), ((2897, 2955), 'business.ci.ci_service.CIService.get_product_ci_services', 'CIService.get_product_ci_services', (['request', 'sub_nav_action'], {}), '(request, sub_nav_action)\n', (2930, 2955), False, 'from business.ci.ci_service import CIService\n'), ((3681, 3711), 'doraemon.ci.viewmodels.vm_ci_deploy_service.VM_CIDeployService', 'VM_CIDeployService', (['service', '(0)'], {}), '(service, 0)\n', (3699, 3711), False, 'from doraemon.ci.viewmodels.vm_ci_deploy_service import VM_CIDeployService\n')]
# Code generated by lark_sdk_gen. DO NOT EDIT. import unittest import pylark import pytest from tests.test_conf import app_all_permission, app_no_permission from tests.test_helper import mock_get_tenant_access_token_failed def mock(*args, **kwargs): raise pylark.PyLarkError(scope="scope", func="func", code=1, msg="mock-failed") def mock_raw_request(*args, **kwargs): raise pylark.PyLarkError( scope="scope", func="func", code=1, msg="mock-raw-request-failed" ) # mock get token class TestBitableSampleMockGetTokenFailed(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestBitableSampleMockGetTokenFailed, self).__init__(*args, **kwargs) self.cli = app_all_permission.ins() self.cli.auth.get_tenant_access_token = mock_get_tenant_access_token_failed self.cli.auth.get_app_access_token = mock_get_tenant_access_token_failed self.module_cli = self.cli.bitable def test_mock_get_token_get_bitable_view_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_view_list(pylark.GetBitableViewListReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_create_bitable_view(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_view(pylark.CreateBitableViewReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_delete_bitable_view(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_view(pylark.DeleteBitableViewReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_get_bitable_record_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_record_list(pylark.GetBitableRecordListReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_get_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_record(pylark.GetBitableRecordReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_create_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_record(pylark.CreateBitableRecordReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_batch_create_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_create_bitable_record( pylark.BatchCreateBitableRecordReq() ) assert "msg=failed" in f"{e}" def test_mock_get_token_update_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.update_bitable_record(pylark.UpdateBitableRecordReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_batch_update_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_update_bitable_record( pylark.BatchUpdateBitableRecordReq() ) assert "msg=failed" in f"{e}" def test_mock_get_token_delete_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_record(pylark.DeleteBitableRecordReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_batch_delete_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_delete_bitable_record( pylark.BatchDeleteBitableRecordReq() ) assert "msg=failed" in f"{e}" def test_mock_get_token_get_bitable_field_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_field_list(pylark.GetBitableFieldListReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_create_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_field(pylark.CreateBitableFieldReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_update_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.update_bitable_field(pylark.UpdateBitableFieldReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_delete_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_field(pylark.DeleteBitableFieldReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_get_bitable_table_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_table_list(pylark.GetBitableTableListReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_create_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_table(pylark.CreateBitableTableReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_batch_create_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_create_bitable_table( pylark.BatchCreateBitableTableReq() ) assert "msg=failed" in f"{e}" def test_mock_get_token_delete_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_table(pylark.DeleteBitableTableReq()) assert "msg=failed" in f"{e}" def test_mock_get_token_batch_delete_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_delete_bitable_table( pylark.BatchDeleteBitableTableReq() ) assert "msg=failed" in f"{e}" def test_mock_get_token_get_bitable_meta(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_meta(pylark.GetBitableMetaReq()) assert "msg=failed" in f"{e}" # mock mock self func class TestBitableSampleMockSelfFuncFailed(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestBitableSampleMockSelfFuncFailed, self).__init__(*args, **kwargs) self.cli = app_all_permission.ins() self.module_cli = self.cli.bitable def test_mock_self_func_get_bitable_view_list(self): origin_func = self.module_cli.get_bitable_view_list self.module_cli.get_bitable_view_list = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_view_list(pylark.GetBitableViewListReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.get_bitable_view_list = origin_func def test_mock_self_func_create_bitable_view(self): origin_func = self.module_cli.create_bitable_view self.module_cli.create_bitable_view = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_view(pylark.CreateBitableViewReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.create_bitable_view = origin_func def test_mock_self_func_delete_bitable_view(self): origin_func = self.module_cli.delete_bitable_view self.module_cli.delete_bitable_view = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_view(pylark.DeleteBitableViewReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.delete_bitable_view = origin_func def test_mock_self_func_get_bitable_record_list(self): origin_func = self.module_cli.get_bitable_record_list self.module_cli.get_bitable_record_list = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_record_list(pylark.GetBitableRecordListReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.get_bitable_record_list = origin_func def test_mock_self_func_get_bitable_record(self): origin_func = self.module_cli.get_bitable_record self.module_cli.get_bitable_record = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_record(pylark.GetBitableRecordReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.get_bitable_record = origin_func def test_mock_self_func_create_bitable_record(self): origin_func = self.module_cli.create_bitable_record self.module_cli.create_bitable_record = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_record(pylark.CreateBitableRecordReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.create_bitable_record = origin_func def test_mock_self_func_batch_create_bitable_record(self): origin_func = self.module_cli.batch_create_bitable_record self.module_cli.batch_create_bitable_record = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_create_bitable_record( pylark.BatchCreateBitableRecordReq() ) assert "msg=mock-failed" in f"{e}" self.module_cli.batch_create_bitable_record = origin_func def test_mock_self_func_update_bitable_record(self): origin_func = self.module_cli.update_bitable_record self.module_cli.update_bitable_record = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.update_bitable_record(pylark.UpdateBitableRecordReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.update_bitable_record = origin_func def test_mock_self_func_batch_update_bitable_record(self): origin_func = self.module_cli.batch_update_bitable_record self.module_cli.batch_update_bitable_record = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_update_bitable_record( pylark.BatchUpdateBitableRecordReq() ) assert "msg=mock-failed" in f"{e}" self.module_cli.batch_update_bitable_record = origin_func def test_mock_self_func_delete_bitable_record(self): origin_func = self.module_cli.delete_bitable_record self.module_cli.delete_bitable_record = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_record(pylark.DeleteBitableRecordReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.delete_bitable_record = origin_func def test_mock_self_func_batch_delete_bitable_record(self): origin_func = self.module_cli.batch_delete_bitable_record self.module_cli.batch_delete_bitable_record = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_delete_bitable_record( pylark.BatchDeleteBitableRecordReq() ) assert "msg=mock-failed" in f"{e}" self.module_cli.batch_delete_bitable_record = origin_func def test_mock_self_func_get_bitable_field_list(self): origin_func = self.module_cli.get_bitable_field_list self.module_cli.get_bitable_field_list = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_field_list(pylark.GetBitableFieldListReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.get_bitable_field_list = origin_func def test_mock_self_func_create_bitable_field(self): origin_func = self.module_cli.create_bitable_field self.module_cli.create_bitable_field = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_field(pylark.CreateBitableFieldReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.create_bitable_field = origin_func def test_mock_self_func_update_bitable_field(self): origin_func = self.module_cli.update_bitable_field self.module_cli.update_bitable_field = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.update_bitable_field(pylark.UpdateBitableFieldReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.update_bitable_field = origin_func def test_mock_self_func_delete_bitable_field(self): origin_func = self.module_cli.delete_bitable_field self.module_cli.delete_bitable_field = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_field(pylark.DeleteBitableFieldReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.delete_bitable_field = origin_func def test_mock_self_func_get_bitable_table_list(self): origin_func = self.module_cli.get_bitable_table_list self.module_cli.get_bitable_table_list = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_table_list(pylark.GetBitableTableListReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.get_bitable_table_list = origin_func def test_mock_self_func_create_bitable_table(self): origin_func = self.module_cli.create_bitable_table self.module_cli.create_bitable_table = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_table(pylark.CreateBitableTableReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.create_bitable_table = origin_func def test_mock_self_func_batch_create_bitable_table(self): origin_func = self.module_cli.batch_create_bitable_table self.module_cli.batch_create_bitable_table = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_create_bitable_table( pylark.BatchCreateBitableTableReq() ) assert "msg=mock-failed" in f"{e}" self.module_cli.batch_create_bitable_table = origin_func def test_mock_self_func_delete_bitable_table(self): origin_func = self.module_cli.delete_bitable_table self.module_cli.delete_bitable_table = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_table(pylark.DeleteBitableTableReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.delete_bitable_table = origin_func def test_mock_self_func_batch_delete_bitable_table(self): origin_func = self.module_cli.batch_delete_bitable_table self.module_cli.batch_delete_bitable_table = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_delete_bitable_table( pylark.BatchDeleteBitableTableReq() ) assert "msg=mock-failed" in f"{e}" self.module_cli.batch_delete_bitable_table = origin_func def test_mock_self_func_get_bitable_meta(self): origin_func = self.module_cli.get_bitable_meta self.module_cli.get_bitable_meta = mock with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_meta(pylark.GetBitableMetaReq()) assert "msg=mock-failed" in f"{e}" self.module_cli.get_bitable_meta = origin_func # mock raw request class TestBitableSampleMockRawRequestFailed(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestBitableSampleMockRawRequestFailed, self).__init__(*args, **kwargs) self.cli = app_all_permission.ins() self.module_cli = self.cli.bitable self.cli.raw_request = mock_raw_request def test_mock_raw_request_get_bitable_view_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_view_list( pylark.GetBitableViewListReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_create_bitable_view(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_view( pylark.CreateBitableViewReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_delete_bitable_view(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_view( pylark.DeleteBitableViewReq( app_token="x", table_id="x", view_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_get_bitable_record_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_record_list( pylark.GetBitableRecordListReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_get_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_record( pylark.GetBitableRecordReq( app_token="x", table_id="x", record_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_create_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_record( pylark.CreateBitableRecordReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_batch_create_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_create_bitable_record( pylark.BatchCreateBitableRecordReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_update_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.update_bitable_record( pylark.UpdateBitableRecordReq( app_token="x", table_id="x", record_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_batch_update_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_update_bitable_record( pylark.BatchUpdateBitableRecordReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_delete_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_record( pylark.DeleteBitableRecordReq( app_token="x", table_id="x", record_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_batch_delete_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_delete_bitable_record( pylark.BatchDeleteBitableRecordReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_get_bitable_field_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_field_list( pylark.GetBitableFieldListReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_create_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_field( pylark.CreateBitableFieldReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_update_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.update_bitable_field( pylark.UpdateBitableFieldReq( app_token="x", table_id="x", field_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_delete_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_field( pylark.DeleteBitableFieldReq( app_token="x", table_id="x", field_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_get_bitable_table_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_table_list( pylark.GetBitableTableListReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_create_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_table( pylark.CreateBitableTableReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_batch_create_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_create_bitable_table( pylark.BatchCreateBitableTableReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_delete_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_table( pylark.DeleteBitableTableReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_batch_delete_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_delete_bitable_table( pylark.BatchDeleteBitableTableReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg def test_mock_raw_request_get_bitable_meta(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_meta( pylark.GetBitableMetaReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 assert "mock-raw-request-failed" in e.value.msg # real request class TestBitableSampleRealRequestFailed(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestBitableSampleRealRequestFailed, self).__init__(*args, **kwargs) self.cli = app_no_permission.ins() self.module_cli = self.cli.bitable def test_real_request_get_bitable_view_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_view_list( pylark.GetBitableViewListReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_create_bitable_view(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_view( pylark.CreateBitableViewReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_delete_bitable_view(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_view( pylark.DeleteBitableViewReq( app_token="x", table_id="x", view_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_get_bitable_record_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_record_list( pylark.GetBitableRecordListReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_get_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_record( pylark.GetBitableRecordReq( app_token="x", table_id="x", record_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_create_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_record( pylark.CreateBitableRecordReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_batch_create_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_create_bitable_record( pylark.BatchCreateBitableRecordReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_update_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.update_bitable_record( pylark.UpdateBitableRecordReq( app_token="x", table_id="x", record_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_batch_update_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_update_bitable_record( pylark.BatchUpdateBitableRecordReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_delete_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_record( pylark.DeleteBitableRecordReq( app_token="x", table_id="x", record_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_batch_delete_bitable_record(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_delete_bitable_record( pylark.BatchDeleteBitableRecordReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_get_bitable_field_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_field_list( pylark.GetBitableFieldListReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_create_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_field( pylark.CreateBitableFieldReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_update_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.update_bitable_field( pylark.UpdateBitableFieldReq( app_token="x", table_id="x", field_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_delete_bitable_field(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_field( pylark.DeleteBitableFieldReq( app_token="x", table_id="x", field_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_get_bitable_table_list(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_table_list( pylark.GetBitableTableListReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_create_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.create_bitable_table( pylark.CreateBitableTableReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_batch_create_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_create_bitable_table( pylark.BatchCreateBitableTableReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_delete_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.delete_bitable_table( pylark.DeleteBitableTableReq( app_token="x", table_id="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_batch_delete_bitable_table(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.batch_delete_bitable_table( pylark.BatchDeleteBitableTableReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0 def test_real_request_get_bitable_meta(self): with pytest.raises(pylark.PyLarkError) as e: self.module_cli.get_bitable_meta( pylark.GetBitableMetaReq( app_token="x", ) ) assert e.type is pylark.PyLarkError assert e.value.code > 0
[ "pylark.GetBitableViewListReq", "pylark.PyLarkError", "pylark.CreateBitableViewReq", "pylark.GetBitableRecordReq", "pylark.DeleteBitableRecordReq", "pylark.GetBitableTableListReq", "pytest.raises", "pylark.UpdateBitableFieldReq", "pylark.DeleteBitableFieldReq", "pylark.GetBitableMetaReq", "pylark.BatchDeleteBitableTableReq", "pylark.DeleteBitableViewReq", "pylark.CreateBitableRecordReq", "pylark.GetBitableFieldListReq", "pylark.BatchCreateBitableRecordReq", "pylark.BatchDeleteBitableRecordReq", "pylark.BatchCreateBitableTableReq", "pylark.BatchUpdateBitableRecordReq", "pylark.UpdateBitableRecordReq", "tests.test_conf.app_all_permission.ins", "pylark.GetBitableRecordListReq", "pylark.CreateBitableTableReq", "pylark.DeleteBitableTableReq", "pylark.CreateBitableFieldReq", "tests.test_conf.app_no_permission.ins" ]
[((263, 336), 'pylark.PyLarkError', 'pylark.PyLarkError', ([], {'scope': '"""scope"""', 'func': '"""func"""', 'code': '(1)', 'msg': '"""mock-failed"""'}), "(scope='scope', func='func', code=1, msg='mock-failed')\n", (281, 336), False, 'import pylark\n'), ((388, 478), 'pylark.PyLarkError', 'pylark.PyLarkError', ([], {'scope': '"""scope"""', 'func': '"""func"""', 'code': '(1)', 'msg': '"""mock-raw-request-failed"""'}), "(scope='scope', func='func', code=1, msg=\n 'mock-raw-request-failed')\n", (406, 478), False, 'import pylark\n'), ((712, 736), 'tests.test_conf.app_all_permission.ins', 'app_all_permission.ins', ([], {}), '()\n', (734, 736), False, 'from tests.test_conf import app_all_permission, app_no_permission\n'), ((6253, 6277), 'tests.test_conf.app_all_permission.ins', 'app_all_permission.ins', ([], {}), '()\n', (6275, 6277), False, 'from tests.test_conf import app_all_permission, app_no_permission\n'), ((15434, 15458), 'tests.test_conf.app_all_permission.ins', 'app_all_permission.ins', ([], {}), '()\n', (15456, 15458), False, 'from tests.test_conf import app_all_permission, app_no_permission\n'), ((25187, 25210), 'tests.test_conf.app_no_permission.ins', 'app_no_permission.ins', ([], {}), '()\n', (25208, 25210), False, 'from tests.test_conf import app_all_permission, app_no_permission\n'), ((1016, 1049), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (1029, 1049), False, 'import pytest\n'), ((1246, 1279), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (1259, 1279), False, 'import pytest\n'), ((1473, 1506), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (1486, 1506), False, 'import pytest\n'), ((1704, 1737), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (1717, 1737), False, 'import pytest\n'), ((1937, 1970), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (1950, 1970), False, 'import pytest\n'), ((2164, 2197), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (2177, 2197), False, 'import pytest\n'), ((2403, 2436), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (2416, 2436), False, 'import pytest\n'), ((2677, 2710), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (2690, 2710), False, 'import pytest\n'), ((2916, 2949), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (2929, 2949), False, 'import pytest\n'), ((3190, 3223), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (3203, 3223), False, 'import pytest\n'), ((3429, 3462), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (3442, 3462), False, 'import pytest\n'), ((3704, 3737), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (3717, 3737), False, 'import pytest\n'), ((3937, 3970), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (3950, 3970), False, 'import pytest\n'), ((4167, 4200), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (4180, 4200), False, 'import pytest\n'), ((4397, 4430), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (4410, 4430), False, 'import pytest\n'), ((4629, 4662), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (4642, 4662), False, 'import pytest\n'), ((4862, 4895), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (4875, 4895), False, 'import pytest\n'), ((5098, 5131), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (5111, 5131), False, 'import pytest\n'), ((5369, 5402), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (5382, 5402), False, 'import pytest\n'), ((5605, 5638), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (5618, 5638), False, 'import pytest\n'), ((5872, 5905), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (5885, 5905), False, 'import pytest\n'), ((6506, 6539), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (6519, 6539), False, 'import pytest\n'), ((6911, 6944), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (6924, 6944), False, 'import pytest\n'), ((7311, 7344), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (7324, 7344), False, 'import pytest\n'), ((7723, 7756), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (7736, 7756), False, 'import pytest\n'), ((8131, 8164), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (8144, 8164), False, 'import pytest\n'), ((8534, 8567), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (8547, 8567), False, 'import pytest\n'), ((8964, 8997), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (8977, 8997), False, 'import pytest\n'), ((9423, 9456), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (9436, 9456), False, 'import pytest\n'), ((9853, 9886), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (9866, 9886), False, 'import pytest\n'), ((10312, 10345), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (10325, 10345), False, 'import pytest\n'), ((10742, 10775), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (10755, 10775), False, 'import pytest\n'), ((11204, 11237), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (11217, 11237), False, 'import pytest\n'), ((11615, 11648), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (11628, 11648), False, 'import pytest\n'), ((12021, 12054), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (12034, 12054), False, 'import pytest\n'), ((12427, 12460), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (12440, 12460), False, 'import pytest\n'), ((12839, 12872), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (12852, 12872), False, 'import pytest\n'), ((13250, 13283), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (13263, 13283), False, 'import pytest\n'), ((13674, 13707), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (13687, 13707), False, 'import pytest\n'), ((14127, 14160), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (14140, 14160), False, 'import pytest\n'), ((14551, 14584), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (14564, 14584), False, 'import pytest\n'), ((14992, 15025), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (15005, 15025), False, 'import pytest\n'), ((15623, 15656), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (15636, 15656), False, 'import pytest\n'), ((16065, 16098), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (16078, 16098), False, 'import pytest\n'), ((16504, 16537), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (16517, 16537), False, 'import pytest\n'), ((16980, 17013), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (16993, 17013), False, 'import pytest\n'), ((17425, 17458), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (17438, 17458), False, 'import pytest\n'), ((17899, 17932), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (17912, 17932), False, 'import pytest\n'), ((18350, 18383), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (18363, 18383), False, 'import pytest\n'), ((18806, 18839), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (18819, 18839), False, 'import pytest\n'), ((19292, 19325), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (19305, 19325), False, 'import pytest\n'), ((19748, 19781), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (19761, 19781), False, 'import pytest\n'), ((20234, 20267), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (20247, 20267), False, 'import pytest\n'), ((20691, 20724), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (20704, 20724), False, 'import pytest\n'), ((21136, 21169), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (21149, 21169), False, 'import pytest\n'), ((21578, 21611), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (21591, 21611), False, 'import pytest\n'), ((22054, 22087), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (22067, 22087), False, 'import pytest\n'), ((22532, 22565), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (22545, 22565), False, 'import pytest\n'), ((22943, 22976), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (22956, 22976), False, 'import pytest\n'), ((23357, 23390), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (23370, 23390), False, 'import pytest\n'), ((23776, 23809), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (23789, 23809), False, 'import pytest\n'), ((24224, 24257), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (24237, 24257), False, 'import pytest\n'), ((24639, 24672), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (24652, 24672), False, 'import pytest\n'), ((25323, 25356), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (25336, 25356), False, 'import pytest\n'), ((25705, 25738), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (25718, 25738), False, 'import pytest\n'), ((26084, 26117), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (26097, 26117), False, 'import pytest\n'), ((26500, 26533), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (26513, 26533), False, 'import pytest\n'), ((26885, 26918), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (26898, 26918), False, 'import pytest\n'), ((27299, 27332), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (27312, 27332), False, 'import pytest\n'), ((27690, 27723), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (27703, 27723), False, 'import pytest\n'), ((28086, 28119), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (28099, 28119), False, 'import pytest\n'), ((28512, 28545), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (28525, 28545), False, 'import pytest\n'), ((28908, 28941), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (28921, 28941), False, 'import pytest\n'), ((29334, 29367), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (29347, 29367), False, 'import pytest\n'), ((29731, 29764), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (29744, 29764), False, 'import pytest\n'), ((30116, 30149), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (30129, 30149), False, 'import pytest\n'), ((30498, 30531), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (30511, 30531), False, 'import pytest\n'), ((30914, 30947), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (30927, 30947), False, 'import pytest\n'), ((31332, 31365), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (31345, 31365), False, 'import pytest\n'), ((31683, 31716), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (31696, 31716), False, 'import pytest\n'), ((32037, 32070), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (32050, 32070), False, 'import pytest\n'), ((32396, 32429), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (32409, 32429), False, 'import pytest\n'), ((32784, 32817), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (32797, 32817), False, 'import pytest\n'), ((33139, 33172), 'pytest.raises', 'pytest.raises', (['pylark.PyLarkError'], {}), '(pylark.PyLarkError)\n', (33152, 33172), False, 'import pytest\n'), ((1106, 1136), 'pylark.GetBitableViewListReq', 'pylark.GetBitableViewListReq', ([], {}), '()\n', (1134, 1136), False, 'import pylark\n'), ((1334, 1363), 'pylark.CreateBitableViewReq', 'pylark.CreateBitableViewReq', ([], {}), '()\n', (1361, 1363), False, 'import pylark\n'), ((1561, 1590), 'pylark.DeleteBitableViewReq', 'pylark.DeleteBitableViewReq', ([], {}), '()\n', (1588, 1590), False, 'import pylark\n'), ((1796, 1828), 'pylark.GetBitableRecordListReq', 'pylark.GetBitableRecordListReq', ([], {}), '()\n', (1826, 1828), False, 'import pylark\n'), ((2024, 2052), 'pylark.GetBitableRecordReq', 'pylark.GetBitableRecordReq', ([], {}), '()\n', (2050, 2052), False, 'import pylark\n'), ((2254, 2285), 'pylark.CreateBitableRecordReq', 'pylark.CreateBitableRecordReq', ([], {}), '()\n', (2283, 2285), False, 'import pylark\n'), ((2516, 2552), 'pylark.BatchCreateBitableRecordReq', 'pylark.BatchCreateBitableRecordReq', ([], {}), '()\n', (2550, 2552), False, 'import pylark\n'), ((2767, 2798), 'pylark.UpdateBitableRecordReq', 'pylark.UpdateBitableRecordReq', ([], {}), '()\n', (2796, 2798), False, 'import pylark\n'), ((3029, 3065), 'pylark.BatchUpdateBitableRecordReq', 'pylark.BatchUpdateBitableRecordReq', ([], {}), '()\n', (3063, 3065), False, 'import pylark\n'), ((3280, 3311), 'pylark.DeleteBitableRecordReq', 'pylark.DeleteBitableRecordReq', ([], {}), '()\n', (3309, 3311), False, 'import pylark\n'), ((3542, 3578), 'pylark.BatchDeleteBitableRecordReq', 'pylark.BatchDeleteBitableRecordReq', ([], {}), '()\n', (3576, 3578), False, 'import pylark\n'), ((3795, 3826), 'pylark.GetBitableFieldListReq', 'pylark.GetBitableFieldListReq', ([], {}), '()\n', (3824, 3826), False, 'import pylark\n'), ((4026, 4056), 'pylark.CreateBitableFieldReq', 'pylark.CreateBitableFieldReq', ([], {}), '()\n', (4054, 4056), False, 'import pylark\n'), ((4256, 4286), 'pylark.UpdateBitableFieldReq', 'pylark.UpdateBitableFieldReq', ([], {}), '()\n', (4284, 4286), False, 'import pylark\n'), ((4486, 4516), 'pylark.DeleteBitableFieldReq', 'pylark.DeleteBitableFieldReq', ([], {}), '()\n', (4514, 4516), False, 'import pylark\n'), ((4720, 4751), 'pylark.GetBitableTableListReq', 'pylark.GetBitableTableListReq', ([], {}), '()\n', (4749, 4751), False, 'import pylark\n'), ((4951, 4981), 'pylark.CreateBitableTableReq', 'pylark.CreateBitableTableReq', ([], {}), '()\n', (4979, 4981), False, 'import pylark\n'), ((5210, 5245), 'pylark.BatchCreateBitableTableReq', 'pylark.BatchCreateBitableTableReq', ([], {}), '()\n', (5243, 5245), False, 'import pylark\n'), ((5458, 5488), 'pylark.DeleteBitableTableReq', 'pylark.DeleteBitableTableReq', ([], {}), '()\n', (5486, 5488), False, 'import pylark\n'), ((5717, 5752), 'pylark.BatchDeleteBitableTableReq', 'pylark.BatchDeleteBitableTableReq', ([], {}), '()\n', (5750, 5752), False, 'import pylark\n'), ((5957, 5983), 'pylark.GetBitableMetaReq', 'pylark.GetBitableMetaReq', ([], {}), '()\n', (5981, 5983), False, 'import pylark\n'), ((6596, 6626), 'pylark.GetBitableViewListReq', 'pylark.GetBitableViewListReq', ([], {}), '()\n', (6624, 6626), False, 'import pylark\n'), ((6999, 7028), 'pylark.CreateBitableViewReq', 'pylark.CreateBitableViewReq', ([], {}), '()\n', (7026, 7028), False, 'import pylark\n'), ((7399, 7428), 'pylark.DeleteBitableViewReq', 'pylark.DeleteBitableViewReq', ([], {}), '()\n', (7426, 7428), False, 'import pylark\n'), ((7815, 7847), 'pylark.GetBitableRecordListReq', 'pylark.GetBitableRecordListReq', ([], {}), '()\n', (7845, 7847), False, 'import pylark\n'), ((8218, 8246), 'pylark.GetBitableRecordReq', 'pylark.GetBitableRecordReq', ([], {}), '()\n', (8244, 8246), False, 'import pylark\n'), ((8624, 8655), 'pylark.CreateBitableRecordReq', 'pylark.CreateBitableRecordReq', ([], {}), '()\n', (8653, 8655), False, 'import pylark\n'), ((9077, 9113), 'pylark.BatchCreateBitableRecordReq', 'pylark.BatchCreateBitableRecordReq', ([], {}), '()\n', (9111, 9113), False, 'import pylark\n'), ((9513, 9544), 'pylark.UpdateBitableRecordReq', 'pylark.UpdateBitableRecordReq', ([], {}), '()\n', (9542, 9544), False, 'import pylark\n'), ((9966, 10002), 'pylark.BatchUpdateBitableRecordReq', 'pylark.BatchUpdateBitableRecordReq', ([], {}), '()\n', (10000, 10002), False, 'import pylark\n'), ((10402, 10433), 'pylark.DeleteBitableRecordReq', 'pylark.DeleteBitableRecordReq', ([], {}), '()\n', (10431, 10433), False, 'import pylark\n'), ((10855, 10891), 'pylark.BatchDeleteBitableRecordReq', 'pylark.BatchDeleteBitableRecordReq', ([], {}), '()\n', (10889, 10891), False, 'import pylark\n'), ((11295, 11326), 'pylark.GetBitableFieldListReq', 'pylark.GetBitableFieldListReq', ([], {}), '()\n', (11324, 11326), False, 'import pylark\n'), ((11704, 11734), 'pylark.CreateBitableFieldReq', 'pylark.CreateBitableFieldReq', ([], {}), '()\n', (11732, 11734), False, 'import pylark\n'), ((12110, 12140), 'pylark.UpdateBitableFieldReq', 'pylark.UpdateBitableFieldReq', ([], {}), '()\n', (12138, 12140), False, 'import pylark\n'), ((12516, 12546), 'pylark.DeleteBitableFieldReq', 'pylark.DeleteBitableFieldReq', ([], {}), '()\n', (12544, 12546), False, 'import pylark\n'), ((12930, 12961), 'pylark.GetBitableTableListReq', 'pylark.GetBitableTableListReq', ([], {}), '()\n', (12959, 12961), False, 'import pylark\n'), ((13339, 13369), 'pylark.CreateBitableTableReq', 'pylark.CreateBitableTableReq', ([], {}), '()\n', (13367, 13369), False, 'import pylark\n'), ((13786, 13821), 'pylark.BatchCreateBitableTableReq', 'pylark.BatchCreateBitableTableReq', ([], {}), '()\n', (13819, 13821), False, 'import pylark\n'), ((14216, 14246), 'pylark.DeleteBitableTableReq', 'pylark.DeleteBitableTableReq', ([], {}), '()\n', (14244, 14246), False, 'import pylark\n'), ((14663, 14698), 'pylark.BatchDeleteBitableTableReq', 'pylark.BatchDeleteBitableTableReq', ([], {}), '()\n', (14696, 14698), False, 'import pylark\n'), ((15077, 15103), 'pylark.GetBitableMetaReq', 'pylark.GetBitableMetaReq', ([], {}), '()\n', (15101, 15103), False, 'import pylark\n'), ((15730, 15787), 'pylark.GetBitableViewListReq', 'pylark.GetBitableViewListReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (15758, 15787), False, 'import pylark\n'), ((16170, 16226), 'pylark.CreateBitableViewReq', 'pylark.CreateBitableViewReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (16197, 16226), False, 'import pylark\n'), ((16609, 16678), 'pylark.DeleteBitableViewReq', 'pylark.DeleteBitableViewReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'view_id': '"""x"""'}), "(app_token='x', table_id='x', view_id='x')\n", (16636, 16678), False, 'import pylark\n'), ((17089, 17148), 'pylark.GetBitableRecordListReq', 'pylark.GetBitableRecordListReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (17119, 17148), False, 'import pylark\n'), ((17529, 17599), 'pylark.GetBitableRecordReq', 'pylark.GetBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'record_id': '"""x"""'}), "(app_token='x', table_id='x', record_id='x')\n", (17555, 17599), False, 'import pylark\n'), ((18006, 18064), 'pylark.CreateBitableRecordReq', 'pylark.CreateBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (18035, 18064), False, 'import pylark\n'), ((18463, 18526), 'pylark.BatchCreateBitableRecordReq', 'pylark.BatchCreateBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (18497, 18526), False, 'import pylark\n'), ((18913, 18986), 'pylark.UpdateBitableRecordReq', 'pylark.UpdateBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'record_id': '"""x"""'}), "(app_token='x', table_id='x', record_id='x')\n", (18942, 18986), False, 'import pylark\n'), ((19405, 19468), 'pylark.BatchUpdateBitableRecordReq', 'pylark.BatchUpdateBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (19439, 19468), False, 'import pylark\n'), ((19855, 19928), 'pylark.DeleteBitableRecordReq', 'pylark.DeleteBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'record_id': '"""x"""'}), "(app_token='x', table_id='x', record_id='x')\n", (19884, 19928), False, 'import pylark\n'), ((20347, 20410), 'pylark.BatchDeleteBitableRecordReq', 'pylark.BatchDeleteBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (20381, 20410), False, 'import pylark\n'), ((20799, 20857), 'pylark.GetBitableFieldListReq', 'pylark.GetBitableFieldListReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (20828, 20857), False, 'import pylark\n'), ((21242, 21299), 'pylark.CreateBitableFieldReq', 'pylark.CreateBitableFieldReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (21270, 21299), False, 'import pylark\n'), ((21684, 21755), 'pylark.UpdateBitableFieldReq', 'pylark.UpdateBitableFieldReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'field_id': '"""x"""'}), "(app_token='x', table_id='x', field_id='x')\n", (21712, 21755), False, 'import pylark\n'), ((22160, 22231), 'pylark.DeleteBitableFieldReq', 'pylark.DeleteBitableFieldReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'field_id': '"""x"""'}), "(app_token='x', table_id='x', field_id='x')\n", (22188, 22231), False, 'import pylark\n'), ((22640, 22684), 'pylark.GetBitableTableListReq', 'pylark.GetBitableTableListReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (22669, 22684), False, 'import pylark\n'), ((23049, 23092), 'pylark.CreateBitableTableReq', 'pylark.CreateBitableTableReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (23077, 23092), False, 'import pylark\n'), ((23469, 23517), 'pylark.BatchCreateBitableTableReq', 'pylark.BatchCreateBitableTableReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (23502, 23517), False, 'import pylark\n'), ((23882, 23939), 'pylark.DeleteBitableTableReq', 'pylark.DeleteBitableTableReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (23910, 23939), False, 'import pylark\n'), ((24336, 24384), 'pylark.BatchDeleteBitableTableReq', 'pylark.BatchDeleteBitableTableReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (24369, 24384), False, 'import pylark\n'), ((24741, 24780), 'pylark.GetBitableMetaReq', 'pylark.GetBitableMetaReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (24765, 24780), False, 'import pylark\n'), ((25430, 25487), 'pylark.GetBitableViewListReq', 'pylark.GetBitableViewListReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (25458, 25487), False, 'import pylark\n'), ((25810, 25866), 'pylark.CreateBitableViewReq', 'pylark.CreateBitableViewReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (25837, 25866), False, 'import pylark\n'), ((26189, 26258), 'pylark.DeleteBitableViewReq', 'pylark.DeleteBitableViewReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'view_id': '"""x"""'}), "(app_token='x', table_id='x', view_id='x')\n", (26216, 26258), False, 'import pylark\n'), ((26609, 26668), 'pylark.GetBitableRecordListReq', 'pylark.GetBitableRecordListReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (26639, 26668), False, 'import pylark\n'), ((26989, 27059), 'pylark.GetBitableRecordReq', 'pylark.GetBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'record_id': '"""x"""'}), "(app_token='x', table_id='x', record_id='x')\n", (27015, 27059), False, 'import pylark\n'), ((27406, 27464), 'pylark.CreateBitableRecordReq', 'pylark.CreateBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (27435, 27464), False, 'import pylark\n'), ((27803, 27866), 'pylark.BatchCreateBitableRecordReq', 'pylark.BatchCreateBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (27837, 27866), False, 'import pylark\n'), ((28193, 28266), 'pylark.UpdateBitableRecordReq', 'pylark.UpdateBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'record_id': '"""x"""'}), "(app_token='x', table_id='x', record_id='x')\n", (28222, 28266), False, 'import pylark\n'), ((28625, 28688), 'pylark.BatchUpdateBitableRecordReq', 'pylark.BatchUpdateBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (28659, 28688), False, 'import pylark\n'), ((29015, 29088), 'pylark.DeleteBitableRecordReq', 'pylark.DeleteBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'record_id': '"""x"""'}), "(app_token='x', table_id='x', record_id='x')\n", (29044, 29088), False, 'import pylark\n'), ((29447, 29510), 'pylark.BatchDeleteBitableRecordReq', 'pylark.BatchDeleteBitableRecordReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (29481, 29510), False, 'import pylark\n'), ((29839, 29897), 'pylark.GetBitableFieldListReq', 'pylark.GetBitableFieldListReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (29868, 29897), False, 'import pylark\n'), ((30222, 30279), 'pylark.CreateBitableFieldReq', 'pylark.CreateBitableFieldReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (30250, 30279), False, 'import pylark\n'), ((30604, 30675), 'pylark.UpdateBitableFieldReq', 'pylark.UpdateBitableFieldReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'field_id': '"""x"""'}), "(app_token='x', table_id='x', field_id='x')\n", (30632, 30675), False, 'import pylark\n'), ((31020, 31091), 'pylark.DeleteBitableFieldReq', 'pylark.DeleteBitableFieldReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""', 'field_id': '"""x"""'}), "(app_token='x', table_id='x', field_id='x')\n", (31048, 31091), False, 'import pylark\n'), ((31440, 31484), 'pylark.GetBitableTableListReq', 'pylark.GetBitableTableListReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (31469, 31484), False, 'import pylark\n'), ((31789, 31832), 'pylark.CreateBitableTableReq', 'pylark.CreateBitableTableReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (31817, 31832), False, 'import pylark\n'), ((32149, 32197), 'pylark.BatchCreateBitableTableReq', 'pylark.BatchCreateBitableTableReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (32182, 32197), False, 'import pylark\n'), ((32502, 32559), 'pylark.DeleteBitableTableReq', 'pylark.DeleteBitableTableReq', ([], {'app_token': '"""x"""', 'table_id': '"""x"""'}), "(app_token='x', table_id='x')\n", (32530, 32559), False, 'import pylark\n'), ((32896, 32944), 'pylark.BatchDeleteBitableTableReq', 'pylark.BatchDeleteBitableTableReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (32929, 32944), False, 'import pylark\n'), ((33241, 33280), 'pylark.GetBitableMetaReq', 'pylark.GetBitableMetaReq', ([], {'app_token': '"""x"""'}), "(app_token='x')\n", (33265, 33280), False, 'import pylark\n')]
import angr from taint import is_tainted, taintedUnconstrainedBits import logging l = logging.getLogger(__name__) class IROpHook(angr.SimStatePlugin): """ Allows hooking the computation of operations performed in the symbolic execution. (requires our fork of angr to actually respect the hook) """ def do_op(self, state, irop, args): """ irop: an angr.vex.engines.SimIROp args: arguments to irop, which will all be claripy objects (instances of claripy.ast.Base) return: claripy object to use as the result of the operation; or None to refrain from hooking the operation, and let angr proceed normally """ if any(is_tainted(a) for a in args): #l.debug("Replacing operation {} on {} with unconstrained secret".format(irop, args)) return taintedUnconstrainedBits(state, "secret", irop._output_size_bits) return None @angr.SimStatePlugin.memo def copy(self, memo): return IROpHook()
[ "taint.taintedUnconstrainedBits", "taint.is_tainted", "logging.getLogger" ]
[((87, 114), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (104, 114), False, 'import logging\n'), ((843, 908), 'taint.taintedUnconstrainedBits', 'taintedUnconstrainedBits', (['state', '"""secret"""', 'irop._output_size_bits'], {}), "(state, 'secret', irop._output_size_bits)\n", (867, 908), False, 'from taint import is_tainted, taintedUnconstrainedBits\n'), ((696, 709), 'taint.is_tainted', 'is_tainted', (['a'], {}), '(a)\n', (706, 709), False, 'from taint import is_tainted, taintedUnconstrainedBits\n')]
import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity def get_title_from_index(index): return df[df.index == index]["title"].values[0] def get_index_from_title(title): return df[df.title.str.lower() == title.lower()]["index"].values[0] def combine_features(row): try: return row['keywords'] +" "+row['cast']+" "+row["genres"]+" "+row["director"] except: print ("Error:", row ) def check_movie(title): if title in all_movies: return True return False def get_recommendations(title, n): names = [] movie_user_likes = title movie_index = get_index_from_title(movie_user_likes) similar_movies = list(enumerate(cosine_sim[movie_index])) sorted_similar_movies = sorted(similar_movies,key=lambda x:x[1],reverse=True) for element in sorted_similar_movies[1:n+1]: names.append(get_title_from_index(element[0])) return names df = pd.read_csv("./data/movie_dataset.csv") features = ['keywords','cast','genres','director'] all_movies = df.original_title.str.lower().tolist() for feature in features: df[feature] = df[feature].fillna('') df["combined_features"] = df.apply(combine_features,axis=1) cv = CountVectorizer() count_matrix = cv.fit_transform(df["combined_features"]) cosine_sim = cosine_similarity(count_matrix)
[ "pandas.read_csv", "sklearn.feature_extraction.text.CountVectorizer", "sklearn.metrics.pairwise.cosine_similarity" ]
[((990, 1029), 'pandas.read_csv', 'pd.read_csv', (['"""./data/movie_dataset.csv"""'], {}), "('./data/movie_dataset.csv')\n", (1001, 1029), True, 'import pandas as pd\n'), ((1264, 1281), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {}), '()\n', (1279, 1281), False, 'from sklearn.feature_extraction.text import CountVectorizer\n'), ((1352, 1383), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['count_matrix'], {}), '(count_matrix)\n', (1369, 1383), False, 'from sklearn.metrics.pairwise import cosine_similarity\n')]
import django_filters from django_filters import CharFilter from .models import * class FoodFilter(django_filters.FilterSet): food_name = CharFilter(field_name = 'name' , lookup_expr = 'icontains',label='search food items') class Meta: model = Food fields = ['food_name']
[ "django_filters.CharFilter" ]
[((140, 226), 'django_filters.CharFilter', 'CharFilter', ([], {'field_name': '"""name"""', 'lookup_expr': '"""icontains"""', 'label': '"""search food items"""'}), "(field_name='name', lookup_expr='icontains', label=\n 'search food items')\n", (150, 226), False, 'from django_filters import CharFilter\n')]
# -*- coding: utf-8 -*- import os from config import Config from flask import Flask, send_from_directory from werkzeug.contrib.fixers import ProxyFix import logging from gtts import gTTS from pydub import AudioSegment import hashlib try: from urllib.parse import unquote_plus except: from urllib import unquote_plus config = Config() app = Flask(__name__) logging.getLogger('flask_tts').setLevel(logging.DEBUG) STORAGE_DIR = os.environ['STORAGE_DIR'] @app.route('/generate/<lang>/<text>') def generate(lang, text): lang = lang.lower() text = unquote_plus(text) tts = gTTS(text=text, lang=lang) filename = lang+'_'+hashlib.sha1(text.encode('punycode')).hexdigest()+'.mp3' if os.path.isfile(STORAGE_DIR+filename): return send_from_directory(STORAGE_DIR, filename) tts.save(STORAGE_DIR+filename) sound = AudioSegment.from_file(STORAGE_DIR+filename, format='mp3') sound = sound.apply_gain(+8.0) sound.export(STORAGE_DIR+filename, format="mp3", bitrate="48k", parameters=['-ac','2','-ar', '16000']) return send_from_directory(STORAGE_DIR, filename) if __name__ == '__main__': # Be sure to set config.debug_mode to False in production port = int(os.environ.get("PORT", config.port)) if port != config.port: config.debug = False app.wsgi_app = ProxyFix(app.wsgi_app) app.run(host='0.0.0.0', debug=config.debug_mode, port=port)
[ "werkzeug.contrib.fixers.ProxyFix", "config.Config", "gtts.gTTS", "flask.Flask", "os.environ.get", "os.path.isfile", "pydub.AudioSegment.from_file", "flask.send_from_directory", "urllib.unquote_plus", "logging.getLogger" ]
[((334, 342), 'config.Config', 'Config', ([], {}), '()\n', (340, 342), False, 'from config import Config\n'), ((350, 365), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (355, 365), False, 'from flask import Flask, send_from_directory\n'), ((563, 581), 'urllib.unquote_plus', 'unquote_plus', (['text'], {}), '(text)\n', (575, 581), False, 'from urllib import unquote_plus\n'), ((592, 618), 'gtts.gTTS', 'gTTS', ([], {'text': 'text', 'lang': 'lang'}), '(text=text, lang=lang)\n', (596, 618), False, 'from gtts import gTTS\n'), ((707, 745), 'os.path.isfile', 'os.path.isfile', (['(STORAGE_DIR + filename)'], {}), '(STORAGE_DIR + filename)\n', (721, 745), False, 'import os\n'), ((851, 911), 'pydub.AudioSegment.from_file', 'AudioSegment.from_file', (['(STORAGE_DIR + filename)'], {'format': '"""mp3"""'}), "(STORAGE_DIR + filename, format='mp3')\n", (873, 911), False, 'from pydub import AudioSegment\n'), ((1114, 1156), 'flask.send_from_directory', 'send_from_directory', (['STORAGE_DIR', 'filename'], {}), '(STORAGE_DIR, filename)\n', (1133, 1156), False, 'from flask import Flask, send_from_directory\n'), ((1376, 1398), 'werkzeug.contrib.fixers.ProxyFix', 'ProxyFix', (['app.wsgi_app'], {}), '(app.wsgi_app)\n', (1384, 1398), False, 'from werkzeug.contrib.fixers import ProxyFix\n'), ((366, 396), 'logging.getLogger', 'logging.getLogger', (['"""flask_tts"""'], {}), "('flask_tts')\n", (383, 396), False, 'import logging\n'), ((760, 802), 'flask.send_from_directory', 'send_from_directory', (['STORAGE_DIR', 'filename'], {}), '(STORAGE_DIR, filename)\n', (779, 802), False, 'from flask import Flask, send_from_directory\n'), ((1263, 1298), 'os.environ.get', 'os.environ.get', (['"""PORT"""', 'config.port'], {}), "('PORT', config.port)\n", (1277, 1298), False, 'import os\n')]
import ctypes import sys from pathlib import Path from .space import SpaceClient _known_tokens = 'ap cons nil neg c b s isnil car eq mul add lt div i t f cdr SCAN number FUN DEF galaxy GG' _Tokens = {s:i for i, s in enumerate(_known_tokens.split(), 1)} class AlienProxy: def __init__(self): pass class MachineImage: TOKENS = dict(_Tokens) def emit_call(self, *args): ap, num, gg = map(self.TOKENS.__getitem__, 'ap number GG'.split()) def emit(fn, args): fringe = [(fn, args)] while fringe: fn, args = fringe.pop() if fn is None: yield from self.encode_lists(args) elif isinstance(args, (list, tuple)) and (len(args) == 0): yield self.TOKENS[fn] else: yield ap fringe.append((None, args[-1])) fringe.append((fn, args[:-1])) return list(emit(args[0], args[1:])) def encode_lists(self, data): ap, cons, num, nil, gg = map(self.TOKENS.__getitem__, 'ap cons number nil GG'.split()) def encode(data): fringe = [data] while fringe: item = fringe.pop() if isinstance(item, tuple) and (len(item) == 1): fringe.append(item[0]) elif isinstance(item, list) and (len(item) == 0): yield nil elif isinstance(item, (list, tuple)): yield ap yield ap yield cons fringe.append(item[1:]) fringe.append(item[0]) else: yield num yield int(item) return list(encode(data)) class _partial: def __init__(self, arg): self.arg = arg def __repr__(self): return f'Partial({repr(self.arg)})' def decode_lists(self, data): ap, cons, num, nil, gg = map(self.TOKENS.__getitem__, 'ap cons number nil GG'.split()) def reduce(stack): while (stack[-3] == '$') and (stack[-2] != '$'): head, tail = stack[-2], stack[-1] if head == cons: xs = self._partial(tail) elif isinstance(head, self._partial): if isinstance(tail, list): xs = [head.arg, *tail] elif isinstance(tail, tuple): xs = (head.arg, *tail) else: xs = (head.arg, tail) else: raise Exception((head, tail)) stack[-3:] = [xs] stack = ['$', '$'] i = 0 while True: # print('** ', i, repr(stack), '--', repr(data[i])) x = data[i] i += 1 if x == gg: break elif x == ap: stack.append('$') elif x == nil: stack.append([]); reduce(stack) elif x == num: stack.append(data[i]); i += 1; reduce(stack) else: stack.append(x) return stack[-1] def run_tests(self): gg, = map(self.TOKENS.__getitem__, 'GG'.split()) test_cases = [ [], [42], (2, 7), [(3, 1)], [[],[],[]], [0, [42, 11, 12], 3, (8, 9)], ] for data in test_cases: image = MachineImage().encode_lists(data) image += [gg] rev = MachineImage().decode_lists(image) assert rev == data, (rev, data) class Galaxy: def __init__(self, target='release', api_host=None, api_key=None): self.state = [] fn = 'libgalaxy' + ('.dylib' if sys.platform == 'darwin' else '.so') build_target = (target + '/') if target else '' fn = next(Path(__file__).parent.resolve().parent.glob('**/' + build_target + fn)) print(repr(str(fn))) self.galexy = ctypes.cdll.LoadLibrary(fn) p64 = ctypes.POINTER(ctypes.c_int64) u32 = ctypes.c_uint32 self.galexy.evaluate.argtypes = (u32, p64) self.galexy.evaluate.restype = p64 self.galexy.load_machine.argtypes = (p64,) self.galexy.load_machine.restype = None self.space = SpaceClient(api_host=api_host, api_key=api_key) def _interact(self, state, event): flag, state, data = self._evaluate(state, event) if (flag == 0): return (state, data) return self._interact(state, self._send_to_alien(data)) def _evaluate(self, state, event): self.galexy.load_machine(None) image = MachineImage().emit_call('galaxy', state, event) data = (ctypes.c_int64 * len(image))(*image) res = self.galexy.evaluate(len(image), data) res = MachineImage().decode_lists(res) # print('<', repr(res)) return res def _send_to_alien(self, data): print('<~', repr(data)) res = self.space.send(data) print('~>', repr(res)) return res def _render_frame(self, images): self.frame = images def eval_step(self, mouse): print('>', (self.state)) print('>', (mouse or (0, 0))) (new_state, images) = self._interact(self.state, mouse or (0, 0)) print('<', (new_state)) # print('<', (images)) self.state = new_state self._render_frame(images) if __name__ == '__main__': g = Galaxy() r = g.eval_step((0,0)) print(repr(r))
[ "pathlib.Path", "ctypes.cdll.LoadLibrary", "ctypes.POINTER" ]
[((4013, 4040), 'ctypes.cdll.LoadLibrary', 'ctypes.cdll.LoadLibrary', (['fn'], {}), '(fn)\n', (4036, 4040), False, 'import ctypes\n'), ((4055, 4085), 'ctypes.POINTER', 'ctypes.POINTER', (['ctypes.c_int64'], {}), '(ctypes.c_int64)\n', (4069, 4085), False, 'import ctypes\n'), ((3890, 3904), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (3894, 3904), False, 'from pathlib import Path\n')]
# Augur: A Step Towards Realistic Drift Detection in Production MLSystems - Code # Copyright 2022 Carnegie Mellon University. # # NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. # # Released under a MIT (SEI)-style license, please see license.txt or contact <EMAIL> for full terms. # # [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution. # # Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. # # This Software includes and/or makes use of the following Third-Party Software subject to its own license: # 1. Tensorflow (https://github.com/tensorflow/tensorflow/blob/master/LICENSE) Copyright 2014 The Regents of the University of California. # 2. Pandas (https://github.com/pandas-dev/pandas/blob/main/LICENSE) Copyright 2021 AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team, and open source contributors. # 3. scikit-learn (https://github.com/scikit-learn/scikit-learn/blob/main/COPYING) Copyright 2021 The scikit-learn developers. # 4. numpy (https://github.com/numpy/numpy/blob/main/LICENSE.txt) Copyright 2021 NumPy Developers. # 5. scipy (https://github.com/scipy/scipy/blob/main/LICENSE.txt) Copyright 2021 SciPy Developers. # 6. statsmodels (https://github.com/statsmodels/statsmodels/blob/main/LICENSE.txt) Copyright 2018 <NAME>, Scipy developers, statsmodels Developers. # 7. matplotlib (https://github.com/matplotlib/matplotlib/blob/main/LICENSE/LICENSE) Copyright 2016 Matplotlib development team. # # DM22-0044 from sklearn.model_selection import KFold import tensorflow.keras.callbacks as tfcb from utils.logging import print_and_log class ModelTrainer: """Has functionalities to train a model""" def __init__(self, model_module, config_params): self.model_module = model_module self.config_params = config_params self.evaluation_input = None self.evaluation_output = None @staticmethod def get_callbacks(patience=2): """Gets helper callbacks to save checkpoints and allow early stopping when needed.""" file_path = ".model_weights.hdf5" es = tfcb.EarlyStopping('val_loss', patience=patience, mode="min") msave = tfcb.ModelCheckpoint(file_path, save_best_only=True) return [es, msave] def train(self, training_set): """Train.""" print_and_log("TRAINING") model = self.model_module.create_model() epochs = self.config_params.get("epochs") batch_size = self.config_params.get("batch_size") print_and_log(f'Starting training with hyper parameters: epochs: {epochs}, batch size: {batch_size}') validation_data = None callbacks = None if training_set.has_validation(): print_and_log("Validation data found") validation_data = (training_set.x_validation, training_set.y_validation) callbacks = self.get_callbacks(patience=5) history = model.fit(training_set.x_train, training_set.y_train, epochs=epochs, validation_data=validation_data, batch_size=batch_size, callbacks=callbacks) print_and_log(f'Final training result ({len(history.history.get("loss"))} epochs): ' f'loss: {history.history.get("loss")[-1]}, ' f'accuracy: {history.history.get("accuracy")[-1]}') if training_set.has_validation(): print_and_log(f'Validation: val_loss: {history.history.get("val_loss")[-1]}, ' f'val_accuracy: {history.history.get("val_accuracy")[-1]}') print("Done training!", flush=True) return model, history def evaluate(self, trained_model, evaluation_input=None, evaluation_output=None): """Does an evaluation.""" print_and_log("EVALUATION") print("Starting evaluation", flush=True) if self.evaluation_input is not None: evaluation_input = self.evaluation_input if self.evaluation_output is not None: evaluation_output = self.evaluation_output if evaluation_input is None or evaluation_output is None: raise Exception("Evaluation input or output not passed properly to evaluate.") batch_size = self.config_params.get("batch_size") scores = trained_model.evaluate(evaluation_input, evaluation_output, batch_size=batch_size) print(f'Done! Evaluation loss and acc: {scores}') return scores def cross_validate(self, full_dataset, num_folds=5): """k-fold cross-validation to check how model is performing by selecting different sets to train/validate.""" # Define the K-fold Cross Validator print_and_log("CROSS VALIDATION") kfold = KFold(n_splits=num_folds, shuffle=True) # K-fold Cross Validation model evaluation acc_per_fold = [] loss_per_fold = [] fold_no = 1 for train_index, test_index in kfold.split(full_dataset.get_single_input(), full_dataset.get_output()): # Generate a print print('------------------------------------------------------------------------') print_and_log(f'Training for fold {fold_no} ...') training_set = self.model_module.get_fold_data(full_dataset, train_index, test_index) # Fit data to model print_and_log(f'Training fold samples: {training_set.num_train_samples}') model, history = self.train(training_set) # Generate generalization metrics print_and_log(f'Evaluation fold samples: {training_set.num_validation_samples}') scores = self.evaluate(model, training_set.x_validation, training_set.y_validation) print_and_log(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; ' f'{model.metrics_names[1]} of {scores[1] * 100}%') acc_per_fold.append(scores[1] * 100) loss_per_fold.append(scores[0]) # Increase fold number fold_no = fold_no + 1 print_and_log("Done with cross-validation!") def split_and_train(self, dataset_instance): """Splits a dataset and trains the configured model, returning it.""" training_set = self.model_module.split_data(dataset_instance, self.config_params.get("validation_size")) print_and_log(f'Dataset samples {dataset_instance.get_number_of_samples()}, ' f'training samples: {len(training_set.x_train[0])}, ' f'validation samples: {len(training_set.x_validation[0])}') trained_model, history = self.train(training_set) # Store evaluation input/outputs as the validation split, in case evaluation is done later. self.evaluation_input = training_set.x_validation self.evaluation_output = training_set.y_validation return trained_model
[ "sklearn.model_selection.KFold", "utils.logging.print_and_log", "tensorflow.keras.callbacks.EarlyStopping", "tensorflow.keras.callbacks.ModelCheckpoint" ]
[((2726, 2787), 'tensorflow.keras.callbacks.EarlyStopping', 'tfcb.EarlyStopping', (['"""val_loss"""'], {'patience': 'patience', 'mode': '"""min"""'}), "('val_loss', patience=patience, mode='min')\n", (2744, 2787), True, 'import tensorflow.keras.callbacks as tfcb\n'), ((2804, 2856), 'tensorflow.keras.callbacks.ModelCheckpoint', 'tfcb.ModelCheckpoint', (['file_path'], {'save_best_only': '(True)'}), '(file_path, save_best_only=True)\n', (2824, 2856), True, 'import tensorflow.keras.callbacks as tfcb\n'), ((2949, 2974), 'utils.logging.print_and_log', 'print_and_log', (['"""TRAINING"""'], {}), "('TRAINING')\n", (2962, 2974), False, 'from utils.logging import print_and_log\n'), ((3142, 3253), 'utils.logging.print_and_log', 'print_and_log', (['f"""Starting training with hyper parameters: epochs: {epochs}, batch size: {batch_size}"""'], {}), "(\n f'Starting training with hyper parameters: epochs: {epochs}, batch size: {batch_size}'\n )\n", (3155, 3253), False, 'from utils.logging import print_and_log\n'), ((4469, 4496), 'utils.logging.print_and_log', 'print_and_log', (['"""EVALUATION"""'], {}), "('EVALUATION')\n", (4482, 4496), False, 'from utils.logging import print_and_log\n'), ((5372, 5405), 'utils.logging.print_and_log', 'print_and_log', (['"""CROSS VALIDATION"""'], {}), "('CROSS VALIDATION')\n", (5385, 5405), False, 'from utils.logging import print_and_log\n'), ((5422, 5461), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'num_folds', 'shuffle': '(True)'}), '(n_splits=num_folds, shuffle=True)\n', (5427, 5461), False, 'from sklearn.model_selection import KFold\n'), ((6740, 6784), 'utils.logging.print_and_log', 'print_and_log', (['"""Done with cross-validation!"""'], {}), "('Done with cross-validation!')\n", (6753, 6784), False, 'from utils.logging import print_and_log\n'), ((3355, 3393), 'utils.logging.print_and_log', 'print_and_log', (['"""Validation data found"""'], {}), "('Validation data found')\n", (3368, 3393), False, 'from utils.logging import print_and_log\n'), ((5836, 5885), 'utils.logging.print_and_log', 'print_and_log', (['f"""Training for fold {fold_no} ..."""'], {}), "(f'Training for fold {fold_no} ...')\n", (5849, 5885), False, 'from utils.logging import print_and_log\n'), ((6030, 6103), 'utils.logging.print_and_log', 'print_and_log', (['f"""Training fold samples: {training_set.num_train_samples}"""'], {}), "(f'Training fold samples: {training_set.num_train_samples}')\n", (6043, 6103), False, 'from utils.logging import print_and_log\n'), ((6217, 6302), 'utils.logging.print_and_log', 'print_and_log', (['f"""Evaluation fold samples: {training_set.num_validation_samples}"""'], {}), "(f'Evaluation fold samples: {training_set.num_validation_samples}'\n )\n", (6230, 6302), False, 'from utils.logging import print_and_log\n'), ((6406, 6547), 'utils.logging.print_and_log', 'print_and_log', (['f"""Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1] * 100}%"""'], {}), "(\n f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1] * 100}%'\n )\n", (6419, 6547), False, 'from utils.logging import print_and_log\n')]
''' utility functions ''' __author__ = '<NAME>' import os from os.path import join from os.path import abspath import json import pandas as pd import numpy as np from configs import config as cf def is_available(filename): ''' [filename] : str ''' return os.path.isfile(filename) def chunks(lst, n): ''' Yield successive n-sized chunks from list [lst] : python list [n] : int ''' for i in range(0, len(lst), n): yield lst[i:i + n] def read_intent_dataset(verbose=True): ''' Load 'Intent' dataset [verbose] : bool, verbosity level ''' # read as a pandas dataframe data = [] for lang in ['en', 'es', 'fr']: for ds in ['train', 'test', 'eval']: path = abspath(join(cf.INTENT_DIR, lang, '{}.tsv'.format(ds))) df = pd.read_csv(path, header=None, sep='\t', names=['text', 'class']) data.append(df) data = pd.concat(data) # merge certain categories (see configs.py) and rename columns data['class'] = data['class'].replace(cf.intent_label_map) # remove trivial (too easy) categories for cat in ['hi', 'okay_thanks']: data = data[data['class'] != 'intent:{}'.format(cat)] if verbose: print('\t"Intent" data shape={}'.format(data.shape)) return data def read_questions_dataset(verbose=True): ''' Load 'Questions' dataset [verbose] : bool, verbosity level ''' # read as a pandas dataframe data_path = abspath(join(cf.QUESTIONS_DIR, 'final_master_dataset.csv')) data = pd.read_csv(data_path, delimiter=',', usecols=['Question', 'Category']) data.rename(columns={'Question': 'text', 'Category': 'class'}, inplace=True) data = data[~data['class'].isna()] # remove unannotated rows # split label into class and subclass, keep only class data[['class', 'subclass']] = data['class'].str.split('-', 1, expand=True) data['class'] = data['class'].str.strip() data.drop(['subclass'], axis=1, inplace=True) data = data[[i in cf.questions_relevant_categories for i in data['class']]] if verbose: print('\t"Questions" data shape={}'.format(data.shape)) return data def merge_datasets(embeddings='labse', verbose=True): ''' Merge 'Intent' and 'Questions' datasets [embeddings] : str, type of embeddings to load ('bert' or 'labse') [verbose] : bool, verbosity level ''' # load datasets intent = read_intent_dataset(verbose=False) questions = read_questions_dataset(verbose=False) merged = pd.concat([intent, questions]) # load corresponding embeddings if embeddings == 'labse': emb_to_load = (cf.intent_embeddings, cf.questions_embeddings) elif embeddings == 'bert': emb_to_load = (cf.intent_embeddings_bert, cf.questions_embeddings_bert) else: raise ValueError("embeddings argument can be 'bert' or 'labse'") print(f'{embeddings} embeddings loaded.') intent_embeddings = np.load(abspath(join(cf.INTENT_DIR, emb_to_load[0]))) questions_embeddings = np.load(abspath(join(cf.QUESTIONS_DIR, emb_to_load[1]))) merged_embeddings = np.vstack([intent_embeddings, questions_embeddings]) assert merged.shape[0] == merged_embeddings.shape[0] if verbose: print('Full data shape={}'.format(merged.shape)) return merged, merged_embeddings # _____________ Logging related functions _____________ def convert(o): if isinstance(o, np.int64): return int(o) raise TypeError def save_logs(logs_dict, dict_name): ''' Save best hyperparameters dictionary to "logs" directory [logs_dict] : dict [dict_name] : str ''' json.dump(logs_dict, open('{}/{}.json'.format(cf.LOGS_DIR, dict_name), 'w'), default=convert) print('Best hyper-parameters saved...') return None def load_logs(dict_name): ''' Load best hyperparameters dictionary from "logs" directory [dict_name] : str ''' log_path = '{}/{}.json'.format(cf.LOGS_DIR, dict_name) if not is_available(log_path): raise ValueError('Hyperparameters are not available. ' 'Please run train.py in "hyper_opt" mode before full ' 'training.') with open() as logs_json: logs = json.load(logs_json) print('Best hyperparameters loaded...') return logs
[ "json.load", "pandas.read_csv", "os.path.isfile", "os.path.join", "pandas.concat", "numpy.vstack" ]
[((278, 302), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (292, 302), False, 'import os\n'), ((965, 980), 'pandas.concat', 'pd.concat', (['data'], {}), '(data)\n', (974, 980), True, 'import pandas as pd\n'), ((1598, 1669), 'pandas.read_csv', 'pd.read_csv', (['data_path'], {'delimiter': '""","""', 'usecols': "['Question', 'Category']"}), "(data_path, delimiter=',', usecols=['Question', 'Category'])\n", (1609, 1669), True, 'import pandas as pd\n'), ((2630, 2660), 'pandas.concat', 'pd.concat', (['[intent, questions]'], {}), '([intent, questions])\n', (2639, 2660), True, 'import pandas as pd\n'), ((3273, 3325), 'numpy.vstack', 'np.vstack', (['[intent_embeddings, questions_embeddings]'], {}), '([intent_embeddings, questions_embeddings])\n', (3282, 3325), True, 'import numpy as np\n'), ((1535, 1585), 'os.path.join', 'join', (['cf.QUESTIONS_DIR', '"""final_master_dataset.csv"""'], {}), "(cf.QUESTIONS_DIR, 'final_master_dataset.csv')\n", (1539, 1585), False, 'from os.path import join\n'), ((4490, 4510), 'json.load', 'json.load', (['logs_json'], {}), '(logs_json)\n', (4499, 4510), False, 'import json\n'), ((831, 896), 'pandas.read_csv', 'pd.read_csv', (['path'], {'header': 'None', 'sep': '"""\t"""', 'names': "['text', 'class']"}), "(path, header=None, sep='\\t', names=['text', 'class'])\n", (842, 896), True, 'import pandas as pd\n'), ((3079, 3114), 'os.path.join', 'join', (['cf.INTENT_DIR', 'emb_to_load[0]'], {}), '(cf.INTENT_DIR, emb_to_load[0])\n', (3083, 3114), False, 'from os.path import join\n'), ((3160, 3198), 'os.path.join', 'join', (['cf.QUESTIONS_DIR', 'emb_to_load[1]'], {}), '(cf.QUESTIONS_DIR, emb_to_load[1])\n', (3164, 3198), False, 'from os.path import join\n')]
from django.contrib import admin from .models import Order # Register your models here. class OrderAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'phone_number', 'submitted') list_filter = ('name', 'submitted') readonly_fields = ('submitted',) fieldsets = ( (None, {'fields': ('name', 'phone_number', 'order_details') }), ('Pick-Up Details', { 'classes': ('collapse',), 'fields': ('pickup_name', 'pickup_address', 'pickup_phone') }), ('Recipient Details', { 'classes': ('collapse',), 'fields': ('recipient_name', 'dropoff_address', 'recipient_phone', 'submitted') }), ('Order Admin', { 'classes': ('collapse',), 'fields': ('username',) }) ) admin.site.register(Order, OrderAdmin)
[ "django.contrib.admin.site.register" ]
[((810, 848), 'django.contrib.admin.site.register', 'admin.site.register', (['Order', 'OrderAdmin'], {}), '(Order, OrderAdmin)\n', (829, 848), False, 'from django.contrib import admin\n')]
import click from rapt.connection import get_vr from rapt.models import query, models from rapt.util import edit_yaml, dump_yaml from pprint import pformat @click.command() def buildpack(): tmpl = { 'repo_url': '', 'repo_type': ['git', 'hg'], 'description': '', 'order': 0, } vr = get_vr() info = { 'available buildpacks': [ bp.repo_url for bp in query('buildpack', vr) ] } config = edit_yaml(dump_yaml(tmpl), dump_yaml(info)) click.echo('Creating buildpack with following config:\n') click.echo(pformat(config)) click.echo() if click.confirm('Create buildpack?'): bp = models.Buildpack(vr, config) bp.create() click.echo('Create %s %s!' % (bp.repo_url, bp.resource_uri))
[ "pprint.pformat", "rapt.models.models.Buildpack", "click.confirm", "rapt.connection.get_vr", "click.echo", "click.command", "rapt.util.dump_yaml", "rapt.models.query" ]
[((161, 176), 'click.command', 'click.command', ([], {}), '()\n', (174, 176), False, 'import click\n'), ((330, 338), 'rapt.connection.get_vr', 'get_vr', ([], {}), '()\n', (336, 338), False, 'from rapt.connection import get_vr\n'), ((546, 603), 'click.echo', 'click.echo', (['"""Creating buildpack with following config:\n"""'], {}), "('Creating buildpack with following config:\\n')\n", (556, 603), False, 'import click\n'), ((640, 652), 'click.echo', 'click.echo', ([], {}), '()\n', (650, 652), False, 'import click\n'), ((661, 695), 'click.confirm', 'click.confirm', (['"""Create buildpack?"""'], {}), "('Create buildpack?')\n", (674, 695), False, 'import click\n'), ((484, 499), 'rapt.util.dump_yaml', 'dump_yaml', (['tmpl'], {}), '(tmpl)\n', (493, 499), False, 'from rapt.util import edit_yaml, dump_yaml\n'), ((524, 539), 'rapt.util.dump_yaml', 'dump_yaml', (['info'], {}), '(info)\n', (533, 539), False, 'from rapt.util import edit_yaml, dump_yaml\n'), ((619, 634), 'pprint.pformat', 'pformat', (['config'], {}), '(config)\n', (626, 634), False, 'from pprint import pformat\n'), ((710, 738), 'rapt.models.models.Buildpack', 'models.Buildpack', (['vr', 'config'], {}), '(vr, config)\n', (726, 738), False, 'from rapt.models import query, models\n'), ((767, 827), 'click.echo', 'click.echo', (["('Create %s %s!' % (bp.repo_url, bp.resource_uri))"], {}), "('Create %s %s!' % (bp.repo_url, bp.resource_uri))\n", (777, 827), False, 'import click\n'), ((421, 443), 'rapt.models.query', 'query', (['"""buildpack"""', 'vr'], {}), "('buildpack', vr)\n", (426, 443), False, 'from rapt.models import query, models\n')]
# -*- coding: utf-8 -*- from django.shortcuts import render from django.contrib.auth.decorators import login_required from geoprisma import views as geoprisma_views @login_required def maprender(request, *args, **kwargs): wsName = kwargs.get('wsName') viewId = kwargs.get('viewId') if not viewId: viewId = "" renderContext = geoprisma_views.maprender(request, wsName, viewId) if isinstance(renderContext, dict): templateName = renderContext.get("templateName") return render(request, "example_project/" + templateName , renderContext) else: return renderContext
[ "django.shortcuts.render", "geoprisma.views.maprender" ]
[((353, 403), 'geoprisma.views.maprender', 'geoprisma_views.maprender', (['request', 'wsName', 'viewId'], {}), '(request, wsName, viewId)\n', (378, 403), True, 'from geoprisma import views as geoprisma_views\n'), ((516, 581), 'django.shortcuts.render', 'render', (['request', "('example_project/' + templateName)", 'renderContext'], {}), "(request, 'example_project/' + templateName, renderContext)\n", (522, 581), False, 'from django.shortcuts import render\n')]
""" @Fire https://github.com/fire717 """ from lib import init, Data, MoveNet, Task from config import cfg from lib.utils.utils import arg_parser # Script to create and save as images all the various outputs of the model def main(cfg): init(cfg) model = MoveNet(num_classes=cfg["num_classes"], width_mult=cfg["width_mult"], mode='train') data = Data(cfg) test_loader = data.getTestDataloader() # _,test_loader = data.getTrainValDataloader() run_task = Task(cfg, model) run_task.modelLoad("/home/ggoyal/data/mpii/output/e300_valacc0.86824.pth") # run_task.modelLoad("/home/ggoyal/data/mpii/output/e1000_valacc0.66665.pth") # run_task.modelLoad("output/mbv2_e105_valacc0.80255.pth") # for coco # run_task.modelLoad(cfg["newest_ckpt"]) run_task.predict(test_loader, cfg["predict_output_path"]) # run_task.predict(test_loader, "output/predict") if __name__ == '__main__': cfg = arg_parser(cfg) main(cfg)
[ "lib.MoveNet", "lib.utils.utils.arg_parser", "lib.Task", "lib.Data", "lib.init" ]
[((246, 255), 'lib.init', 'init', (['cfg'], {}), '(cfg)\n', (250, 255), False, 'from lib import init, Data, MoveNet, Task\n'), ((270, 358), 'lib.MoveNet', 'MoveNet', ([], {'num_classes': "cfg['num_classes']", 'width_mult': "cfg['width_mult']", 'mode': '"""train"""'}), "(num_classes=cfg['num_classes'], width_mult=cfg['width_mult'], mode=\n 'train')\n", (277, 358), False, 'from lib import init, Data, MoveNet, Task\n'), ((415, 424), 'lib.Data', 'Data', (['cfg'], {}), '(cfg)\n', (419, 424), False, 'from lib import init, Data, MoveNet, Task\n'), ((536, 552), 'lib.Task', 'Task', (['cfg', 'model'], {}), '(cfg, model)\n', (540, 552), False, 'from lib import init, Data, MoveNet, Task\n'), ((991, 1006), 'lib.utils.utils.arg_parser', 'arg_parser', (['cfg'], {}), '(cfg)\n', (1001, 1006), False, 'from lib.utils.utils import arg_parser\n')]
#!/usr/bin/env python3 # [rights] Copyright 2020 brianddk at github https://github.com/brianddk # [license] Apache 2.0 License https://www.apache.org/licenses/LICENSE-2.0 # [repo] github.com/brianddk/reddit/blob/master/python/elec-p2sh-hodl.py # [btc] BTC-b32: bc1qwc2203uym96u0nmq04pcgqfs9ldqz9l3mz8fpj # [tipjar] github.com/brianddk/reddit/blob/master/tipjar/tipjar.txt # [txid] a8110bbdd40d65351f615897d98c33cbe33e4ebedb4ba2fc9e8c644423dadc93 # [ref] https://live.blockcypher.com/btc-testnet/tx/{txid}/ # [req] python -m pip install electrum # [note] with open(r"..\reddit\python\hodl.py", 'r') as s: exec(s.read()) from electrum.transaction import TxOutpoint, PartialTxInput, PartialTxOutput, PartialTransaction from electrum.bitcoin import deserialize_privkey, opcodes, push_script from electrum.crypto import hash_160, sha256d from electrum.constants import set_testnet from electrum.ecc import ECPrivkey # The basic bitcoinlib utility scripts x = lambda h: bytes.fromhex(h) lx = lambda h: bytes.fromhex(h)[::-1] b2x = lambda b: (b.hex() if 'hex' in dir(b) else hex(b)).replace('0x','') b2lx = lambda b: b[::-1].hex().replace('0x','') # Very simple bitcoin script comiler compile = lambda s: "".join([ opcodes[i].hex() if i in dir(opcodes) else push_script(i) for i in s]) # Electrum assumes P2SH is multisig, this subclass corrects that class P2SHPartialTransaction(PartialTransaction): def __init__(self): PartialTransaction.__init__(self) @classmethod def get_preimage_script(cls, txin: 'PartialTxInput') -> str: return b2x(txin.redeem_script) # Set testnet set_testnet() # I removed the R-value grinding to use "legacy" sig processing # This is the original TXID we are trying to hit otxid = 'a8110bbdd40d65351f615897d98c33cbe33e4ebedb4ba2fc9e8c644423dadc93' # Basic constants to build the TXNIN wif = 'cQNjiPwYKMBr2oB3bWzf3rgBsu198xb8Nxxe51k6D3zVTA98L25N' txid = x('6d500966f9e494b38a04545f0cea35fc7b3944e341a64b804fed71cdee11d434') vout = 1 sats = 9999 script_type = 'p2sh' binzero = 2**32 sequence = binzero - 3 address = 'tb1qv9hg20f0g08d460l67ph6p4ukwt7m0ttqzj7mk' sats_less_fees = sats - 200 locktime = 1602565200 # Build the Transaction Input _, privkey, compressed = deserialize_privkey(wif) pubkey = ECPrivkey(privkey).get_public_key_hex(compressed=compressed) prevout = TxOutpoint(txid=txid, out_idx=vout) txin = PartialTxInput(prevout=prevout) txin.nsequence = sequence txin.script_type = script_type expiry = b2x(lx(b2x(locktime))) redeem_script = compile([ expiry, 'OP_CHECKLOCKTIMEVERIFY', 'OP_DROP', pubkey, 'OP_CHECKSIG']) txin.redeem_script = x(redeem_script) # Build the Transaction Output txout = PartialTxOutput.from_address_and_value(address, sats_less_fees) # Build and sign the transaction tx = P2SHPartialTransaction.from_io([txin], [txout], locktime=locktime) tx.version = 1 sig = tx.sign_txin(0, privkey) txin.script_sig = x(compile([sig , redeem_script])) # Get the serialized txn and compute txid txn = tx.serialize() txid = b2lx(sha256d(x(txn))) # Ensure we arrived at where we intended if txid != otxid: print("Did not achive target TXID hash") print("Perhaps R-value hashing needs to be reverted") Print("See: https://redd.it/jf97pc") # Display results print("pubk:", pubkey) print("priv:", b2x(privkey)) print("txid:", txid) print("txn:", txn)
[ "electrum.constants.set_testnet", "electrum.bitcoin.deserialize_privkey", "electrum.transaction.PartialTxInput", "electrum.transaction.PartialTxOutput.from_address_and_value", "electrum.ecc.ECPrivkey", "electrum.bitcoin.push_script", "electrum.transaction.TxOutpoint", "electrum.transaction.PartialTransaction.__init__" ]
[((1640, 1653), 'electrum.constants.set_testnet', 'set_testnet', ([], {}), '()\n', (1651, 1653), False, 'from electrum.constants import set_testnet\n'), ((2262, 2286), 'electrum.bitcoin.deserialize_privkey', 'deserialize_privkey', (['wif'], {}), '(wif)\n', (2281, 2286), False, 'from electrum.bitcoin import deserialize_privkey, opcodes, push_script\n'), ((2367, 2402), 'electrum.transaction.TxOutpoint', 'TxOutpoint', ([], {'txid': 'txid', 'out_idx': 'vout'}), '(txid=txid, out_idx=vout)\n', (2377, 2402), False, 'from electrum.transaction import TxOutpoint, PartialTxInput, PartialTxOutput, PartialTransaction\n'), ((2410, 2441), 'electrum.transaction.PartialTxInput', 'PartialTxInput', ([], {'prevout': 'prevout'}), '(prevout=prevout)\n', (2424, 2441), False, 'from electrum.transaction import TxOutpoint, PartialTxInput, PartialTxOutput, PartialTransaction\n'), ((2708, 2771), 'electrum.transaction.PartialTxOutput.from_address_and_value', 'PartialTxOutput.from_address_and_value', (['address', 'sats_less_fees'], {}), '(address, sats_less_fees)\n', (2746, 2771), False, 'from electrum.transaction import TxOutpoint, PartialTxInput, PartialTxOutput, PartialTransaction\n'), ((1465, 1498), 'electrum.transaction.PartialTransaction.__init__', 'PartialTransaction.__init__', (['self'], {}), '(self)\n', (1492, 1498), False, 'from electrum.transaction import TxOutpoint, PartialTxInput, PartialTxOutput, PartialTransaction\n'), ((2296, 2314), 'electrum.ecc.ECPrivkey', 'ECPrivkey', (['privkey'], {}), '(privkey)\n', (2305, 2314), False, 'from electrum.ecc import ECPrivkey\n'), ((1288, 1302), 'electrum.bitcoin.push_script', 'push_script', (['i'], {}), '(i)\n', (1299, 1302), False, 'from electrum.bitcoin import deserialize_privkey, opcodes, push_script\n')]
from django.contrib import admin from app.models import * class TrackAdmin(admin.ModelAdmin): list_display=('title','description',) class SessionAdmin(admin.ModelAdmin): list_display = ('title','status',) search_fields = ['title','abstract'] list_filter = ('track','speaker',) actions = ['make_approved',] def make_approved(self,request,queryset): row_updated = queryset.update(status = 'a') if row_updated == 1: message_bit = "1 session was " else: message_bit = "%s session were "%row_updated self.message_user(request,"%s approved"%message_bit) make_approved.short_description = "Mark session(s) as approved" class SpeakerAdmin(admin.ModelAdmin): list_display = ('name','bio',) fieldsets = ( ("General Information ",{"fields": ("name","bio",)}), ("Social Media",{ "classes":("collapse"), "fields":("twitter","facebook"), "description":"Add social media here"}) ) admin.site.register(Speaker,SpeakerAdmin) admin.site.register(Track,TrackAdmin) admin.site.register(Session,SessionAdmin)
[ "django.contrib.admin.site.register" ]
[((1079, 1121), 'django.contrib.admin.site.register', 'admin.site.register', (['Speaker', 'SpeakerAdmin'], {}), '(Speaker, SpeakerAdmin)\n', (1098, 1121), False, 'from django.contrib import admin\n'), ((1122, 1160), 'django.contrib.admin.site.register', 'admin.site.register', (['Track', 'TrackAdmin'], {}), '(Track, TrackAdmin)\n', (1141, 1160), False, 'from django.contrib import admin\n'), ((1161, 1203), 'django.contrib.admin.site.register', 'admin.site.register', (['Session', 'SessionAdmin'], {}), '(Session, SessionAdmin)\n', (1180, 1203), False, 'from django.contrib import admin\n')]
#!/usr/bin/env python """ Defines unit-tests for the module at hms_core.data_objects. """ ####################################### # Any needed from __future__ imports # # Create an "__all__" list to support # # "from module import member" use # ####################################### __all__ = [ # Test-case classes # Child test-modules ] ####################################### # Module metadata/dunder-names # ####################################### __author__ = '<NAME>' __copyright__ = 'Copyright 2018, all rights reserved' __status__ = 'Development' ####################################### # Standard library imports needed # ####################################### import os import sys import unittest from datetime import datetime from uuid import UUID, uuid4 ####################################### # Third-party imports needed # ####################################### ####################################### # Local imports needed # ####################################### from idic.unit_testing import * ####################################### # Initialization needed before member # # definition can take place # ####################################### ####################################### # Module-level Constants # ####################################### LocalSuite = unittest.TestSuite() ####################################### # Import the module being tested # ####################################### import hms_core.data_objects as data_objects from hms_core.data_objects import * ####################################### # Constants for test-methods # ####################################### GoodBooleanOrIntEquivalents = [ True, False, 1, 0 ] BadBooleanOrIntEquivalents = [ 'true', '', (1,2), tuple() ] GoodDateTimes = [ # - actual datetime values datetime.now(), datetime.fromtimestamp(1234567890), datetime.now().timestamp(), # - timestamp numbers 1234567890, 1234567890.123456, # - strings '2001-01-01 12:34:56', '3001-01-01 12:34:56', '1911-01-01 12:34:56', # - datetimes outside the UNIX epoch, just in case datetime.strptime( '2001-01-01 12:34:56', BaseDataObject._data_time_string ), datetime.strptime( '3001-01-01 12:34:56', BaseDataObject._data_time_string ), datetime.strptime( '1911-01-01 12:34:56', BaseDataObject._data_time_string ), ] BadDateTimes = [ # - invalid types (1,2), tuple(), True, False, object(), # - invalid values 'true', '', '1911-01-01 12:34:56.123456' ] GoodOIDs = [ # - actual UUID values uuid4(), str(uuid4()), UUID('dc3a7fdf-2183-49cc-aa00-af9239950254'), UUID('ffffffff-ffff-ffff-ffff-ffffffffffff'), UUID('00000000-0000-0000-0000-000000000000'), # - strings 'dc3a7fdf-2183-49cc-aa00-af9239950254', 'ffffffff-ffff-ffff-ffff-ffffffffffff', '00000000-0000-0000-0000-000000000000', 'dc3a7fdf218349ccaa00af9239950254', 'ffffffffffffffffffffffffffffffff', '00000000000000000000000000000000', ] BadOIDs = [ # - invalid types (1,2), tuple(), True, False, object(), # - invalid values 'true', '', '1911-01-01 12:34:56.123456' ] ####################################### # Code-coverage test-case and # # decorator-methods # ####################################### class testdata_objectsCodeCoverage(ModuleCoverageTest): _testNamespace = 'hms_core' _testModule = data_objects LocalSuite.addTests( unittest.TestLoader().loadTestsFromTestCase( testdata_objectsCodeCoverage ) ) ####################################### # Test-cases in the module # ####################################### class BaseDataObjectDerived(BaseDataObject): def __init__(self, oid=None, created=None, modified=None, is_active=None, is_deleted=None, is_dirty=None, is_new=None ): BaseDataObject.__init__( self, oid, created, modified, is_active, is_deleted, is_dirty, is_new ) def _create(self): return BaseDataObject._create(self) def _update(self): return BaseDataObject._update(self) def matches(self, **criteria): return BaseDataObject.matches(self, **criteria) def to_data_dict(self): return BaseDataObject.to_data_dict(self) @classmethod def delete(cls, *oids): pass @classmethod def from_data_dict(cls, data_dict): pass @classmethod def get(cls, *oids, **criteria): pass @classmethod def sort(cls, objects, sort_by): pass @testdata_objectsCodeCoverage.AddMethodTesting @testdata_objectsCodeCoverage.AddPropertyTesting class testBaseDataObject(unittest.TestCase): ################################### # Tests of class methods # ################################### def test__init__(self): # Tests the __init__ method of the BaseDataObject class # - All we need to do here is prove that the various # setter- and deleter-method calls are operating as # expected. # - deleters first test_object = BaseDataObjectDerived() self.assertEquals(test_object._created, None) self.assertEquals(test_object._is_active, True) self.assertEquals(test_object._is_deleted, False) self.assertEquals(test_object._is_dirty, False) self.assertEquals(test_object._is_new, True) self.assertEquals(test_object._modified, None) self.assertEquals(test_object._oid, None) # - setters oid = uuid4() created = GoodDateTimes[0] modified = GoodDateTimes[1] is_active = False is_deleted = True is_dirty = True is_new = False test_object = BaseDataObjectDerived( oid, created, modified, is_active, is_deleted, is_dirty, is_new ) self.assertEquals(test_object.oid, oid) self.assertEquals(test_object.created, created) self.assertEquals(test_object.is_active, is_active) self.assertEquals(test_object.is_deleted, is_deleted) self.assertEquals(test_object.is_dirty, is_dirty) self.assertEquals(test_object.is_new, is_new) self.assertEquals(test_object.modified, modified) def test_del_created(self): # Tests the _del_created method of the BaseDataObject class test_object = BaseDataObjectDerived() test_object._created = 'unexpected value' test_object._del_created() self.assertEquals( test_object._created, None, 'BaseDataObject._del_created should leave None in the ' 'underlying storage attribute, but "%s" (%s) was ' 'found instead' % ( test_object._created, type(test_object._created).__name__ ) ) def test_del_is_active(self): # Tests the _del_is_active method of the BaseDataObject class test_object = BaseDataObjectDerived() test_object._is_active = 'unexpected value' test_object._del_is_active() self.assertEquals( test_object._is_active, True, 'BaseDataObject._del_is_active should leave None in the ' 'underlying storage attribute, but "%s" (%s) was ' 'found instead' % ( test_object._is_active, type(test_object._is_active).__name__ ) ) def test_del_is_deleted(self): # Tests the _del_is_deleted method of the BaseDataObject class test_object = BaseDataObjectDerived() test_object._is_deleted = 'unexpected value' test_object._del_is_deleted() self.assertEquals( test_object._is_deleted, False, 'BaseDataObject._del_is_deleted should leave None in the ' 'underlying storage attribute, but "%s" (%s) was ' 'found instead' % ( test_object._is_deleted, type(test_object._is_deleted).__name__ ) ) def test_del_is_dirty(self): # Tests the _del_is_dirty method of the BaseDataObject class test_object = BaseDataObjectDerived() test_object._is_dirty = 'unexpected value' test_object._del_is_dirty() self.assertEquals( test_object._is_dirty, False, 'BaseDataObject._del_is_dirty should leave None in the ' 'underlying storage attribute, but "%s" (%s) was ' 'found instead' % ( test_object._is_dirty, type(test_object._is_dirty).__name__ ) ) def test_del_is_new(self): # Tests the _del_is_new method of the BaseDataObject class test_object = BaseDataObjectDerived() test_object._is_new = 'unexpected value' test_object._del_is_new() self.assertEquals( test_object._is_new, True, 'BaseDataObject._del_is_new should leave None in the ' 'underlying storage attribute, but "%s" (%s) was ' 'found instead' % (test_object._is_new, type(test_object._is_new).__name__) ) def test_del_modified(self): # Tests the _del_modified method of the BaseDataObject class test_object = BaseDataObjectDerived() test_object._modified = 'unexpected value' test_object._del_modified() self.assertEquals( test_object._modified, None, 'BaseDataObject._del_modified should leave None in the ' 'underlying storage attribute, but "%s" (%s) was ' 'found instead' % ( test_object._modified, type(test_object._modified).__name__ ) ) def test_del_oid(self): # Tests the _del_oid method of the BaseDataObject class test_object = BaseDataObjectDerived() test_object._oid = 'unexpected value' test_object._del_oid() self.assertEquals( test_object._oid, None, 'BaseDataObject._del_oid should leave None in the ' 'underlying storage attribute, but "%s" (%s) was ' 'found instead' % (test_object._oid, type(test_object._oid).__name__) ) def test_get_created(self): # Tests the _get_created method of the BaseDataObject class test_object = BaseDataObjectDerived() expected = 'expected value' test_object._created = expected actual = test_object.created self.assertEquals(actual, expected, '_get_created was expected to return "%s" (%s), but ' 'returned "%s" (%s) instead' % ( expected, type(expected).__name__, actual, type(actual).__name__ ) ) test_object._created = None self.assertEqual(type(test_object._get_created()), datetime, 'BaseDataObject._get_created should return a ' 'datetime value if it\'s retrieved from an instance ' 'with an underlying None value' ) def test_get_is_active(self): # Tests the _get_is_active method of the BaseDataObject class test_object = BaseDataObjectDerived() expected = 'expected value' test_object._is_active = expected actual = test_object.is_active self.assertEquals(actual, expected, '_get_is_active was expected to return "%s" (%s), but ' 'returned "%s" (%s) instead' % ( expected, type(expected).__name__, actual, type(actual).__name__ ) ) def test_get_is_deleted(self): # Tests the _get_is_deleted method of the BaseDataObject class test_object = BaseDataObjectDerived() expected = 'expected value' test_object._is_deleted = expected actual = test_object.is_deleted self.assertEquals(actual, expected, '_get_is_deleted was expected to return "%s" (%s), but ' 'returned "%s" (%s) instead' % ( expected, type(expected).__name__, actual, type(actual).__name__ ) ) def test_get_is_dirty(self): # Tests the _get_is_dirty method of the BaseDataObject class test_object = BaseDataObjectDerived() expected = 'expected value' test_object._is_dirty = expected actual = test_object.is_dirty self.assertEquals(actual, expected, '_get_is_dirty was expected to return "%s" (%s), but ' 'returned "%s" (%s) instead' % ( expected, type(expected).__name__, actual, type(actual).__name__ ) ) def test_get_is_new(self): # Tests the _get_is_new method of the BaseDataObject class test_object = BaseDataObjectDerived() expected = 'expected value' test_object._is_new = expected actual = test_object.is_new self.assertEquals(actual, expected, '_get_is_new was expected to return "%s" (%s), but ' 'returned "%s" (%s) instead' % ( expected, type(expected).__name__, actual, type(actual).__name__ ) ) def test_get_modified(self): # Tests the _get_modified method of the BaseDataObject class test_object = BaseDataObjectDerived() expected = 'expected value' test_object._modified = expected actual = test_object.modified self.assertEquals(actual, expected, '_get_modified was expected to return "%s" (%s), but ' 'returned "%s" (%s) instead' % ( expected, type(expected).__name__, actual, type(actual).__name__ ) ) test_object._modified = None self.assertEqual(type(test_object._get_modified()), datetime, 'BaseDataObject._get_modified should return a ' 'datetime value if it\'s retrieved from an instance ' 'with an underlying None value' ) def test_get_oid(self): # Tests the _get_oid method of the BaseDataObject class test_object = BaseDataObjectDerived() expected = 'expected value' test_object._oid = expected actual = test_object.oid self.assertEquals(actual, expected, '_get_oid was expected to return "%s" (%s), but ' 'returned "%s" (%s) instead' % ( expected, type(expected).__name__, actual, type(actual).__name__ ) ) test_object._oid = None self.assertEqual(type(test_object._get_oid()), UUID, 'BaseDataObject._get_oid should return a UUID value ' 'if it\'s retrieved from an instance with an ' 'underlying None value' ) def test_set_created(self): # Tests the _set_created method of the BaseDataObject class test_object = BaseDataObjectDerived() # - Test all "good" values for created in GoodDateTimes: if type(created) == datetime: expected = created elif type(created) in (int, float): expected = datetime.fromtimestamp(created) elif type(created) == str: expected = datetime.strptime( created, BaseDataObject._data_time_string ) test_object._set_created(created) actual = test_object.created self.assertEqual( actual, expected, 'Setting created to "%s" (%s) should return ' '"%s" (%s) through the property, but "%s" (%s) ' 'was returned instead' % ( created, type(created).__name__, expected, type(expected).__name__, actual, type(actual).__name__, ) ) # - Test all "bad" values for created in BadDateTimes: try: test_object._set_created(created) self.fail( 'BaseDataObject objects should not accept "%s" ' '(%s) as created values, but it was allowed to ' 'be set' % (created, type(created).__name__) ) except (TypeError, ValueError): pass except Exception as error: self.fail( 'BaseDataObject objects should raise TypeError ' 'or ValueError if passed a created value of ' '"%s" (%s), but %s was raised instead:\n' ' %s' % ( created, type(created).__name__, error.__class__.__name__, error ) ) def test_set_is_active(self): # Tests the _set_is_active method of the BaseDataObject class test_object = BaseDataObjectDerived() # - Test all "good" values for is_active in GoodBooleanOrIntEquivalents: test_object._set_is_active(is_active) expected = True if is_active else False actual = test_object.is_active self.assertEqual( actual, expected, 'Setting is_active to "%s" (%s) should return ' '"%s" (%s) through the property, but "%s" (%s) ' 'was returned instead' % ( is_active, type(is_active).__name__, expected, type(expected).__name__, actual, type(actual).__name__, ) ) # - Test all "bad" values for is_active in BadBooleanOrIntEquivalents: try: test_object._set_is_active(is_active) self.fail( 'BaseDataObject objects should not accept ' '"%s" (%s) as valid is_active values, but it ' 'was allowed to be set' % (is_active, type(is_active).__name__) ) except (TypeError, ValueError): pass except Exception as error: self.fail( 'BaseDataObject objects should raise TypeError ' 'or ValueError if passed an is_active value ' 'of "%s" (%s), but %s was raised instead:\n' ' %s' % ( is_active, type(is_active).__name__, error.__class__.__name__, error ) ) def test_set_is_deleted(self): # Tests the _set_is_deleted method of the BaseDataObject class test_object = BaseDataObjectDerived() # - Test all "good" values for is_deleted in GoodBooleanOrIntEquivalents: test_object._set_is_deleted(is_deleted) expected = True if is_deleted else False actual = test_object.is_deleted self.assertEqual( actual, expected, 'Setting is_deleted to "%s" (%s) should return ' '"%s" (%s) through the property, but "%s" (%s) ' 'was returned instead' % ( is_deleted, type(is_deleted).__name__, expected, type(expected).__name__, actual, type(actual).__name__, ) ) # - Test all "bad" values for is_deleted in BadBooleanOrIntEquivalents: try: test_object._set_is_deleted(is_deleted) self.fail( 'BaseDataObject objects should not accept ' '"%s" (%s) as valid is_deleted values, but it ' 'was allowed to be set' % (is_deleted, type(is_deleted).__name__) ) except (TypeError, ValueError): pass except Exception as error: self.fail( 'BaseDataObject objects should raise TypeError ' 'or ValueError if passed an is_deleted value ' 'of "%s" (%s), but %s was raised instead:\n' ' %s' % ( is_deleted, type(is_deleted).__name__, error.__class__.__name__, error ) ) def test_set_is_dirty(self): # Tests the _set_is_dirty method of the BaseDataObject class test_object = BaseDataObjectDerived() # - Test all "good" values for is_dirty in GoodBooleanOrIntEquivalents: test_object._set_is_dirty(is_dirty) expected = True if is_dirty else False actual = test_object.is_dirty self.assertEqual( actual, expected, 'Setting is_dirty to "%s" (%s) should return ' '"%s" (%s) through the property, but "%s" (%s) ' 'was returned instead' % ( is_dirty, type(is_dirty).__name__, expected, type(expected).__name__, actual, type(actual).__name__, ) ) # - Test all "bad" values for is_dirty in BadBooleanOrIntEquivalents: try: test_object._set_is_dirty(is_dirty) self.fail( 'BaseDataObject objects should not accept ' '"%s" (%s) as valid is_dirty values, but it ' 'was allowed to be set' % (is_dirty, type(is_dirty).__name__) ) except (TypeError, ValueError): pass except Exception as error: self.fail( 'BaseDataObject objects should raise TypeError ' 'or ValueError if passed an is_dirty value ' 'of "%s" (%s), but %s was raised instead:\n' ' %s' % ( is_dirty, type(is_dirty).__name__, error.__class__.__name__, error ) ) def test_set_is_new(self): # Tests the _set_is_new method of the BaseDataObject class test_object = BaseDataObjectDerived() # - Test all "good" values for is_new in GoodBooleanOrIntEquivalents: test_object._set_is_new(is_new) expected = True if is_new else False actual = test_object.is_new self.assertEqual( actual, expected, 'Setting is_new to "%s" (%s) should return ' '"%s" (%s) through the property, but "%s" (%s) ' 'was returned instead' % ( is_new, type(is_new).__name__, expected, type(expected).__name__, actual, type(actual).__name__, ) ) # - Test all "bad" values for is_new in BadBooleanOrIntEquivalents: try: test_object._set_is_new(is_new) self.fail( 'BaseDataObject objects should not accept ' '"%s" (%s) as valid is_new values, but it ' 'was allowed to be set' % (is_new, type(is_new).__name__) ) except (TypeError, ValueError): pass except Exception as error: self.fail( 'BaseDataObject objects should raise TypeError ' 'or ValueError if passed an is_new value ' 'of "%s" (%s), but %s was raised instead:\n' ' %s' % ( is_new, type(is_new).__name__, error.__class__.__name__, error ) ) def test_set_modified(self): # Tests the _set_modified method of the BaseDataObject class test_object = BaseDataObjectDerived() # - Test all "good" values for modified in GoodDateTimes: if type(modified) == datetime: expected = modified elif type(modified) in (int, float): expected = datetime.fromtimestamp(modified) elif type(modified) == str: expected = datetime.strptime( modified, BaseDataObject._data_time_string ) test_object._set_modified(modified) actual = test_object.modified self.assertEqual( actual, expected, 'Setting modified to "%s" (%s) should return ' '"%s" (%s) through the property, but "%s" (%s) ' 'was returned instead' % ( modified, type(modified).__name__, expected, type(expected).__name__, actual, type(actual).__name__, ) ) # - Test all "bad" values for modified in BadDateTimes: try: test_object._set_modified(modified) self.fail( 'BaseDataObject objects should not accept "%s" ' '(%s) as modified values, but it was allowed to ' 'be set' % (modified, type(modified).__name__) ) except (TypeError, ValueError): pass except Exception as error: self.fail( 'BaseDataObject objects should raise TypeError ' 'or ValueError if passed a modified value of ' '"%s" (%s), but %s was raised instead:\n' ' %s' % ( modified, type(modified).__name__, error.__class__.__name__, error ) ) def test_set_oid(self): # Tests the _set_oid method of the BaseDataObject class test_object = BaseDataObjectDerived() # - Test all "good" values for oid in GoodOIDs: if type(oid) == UUID: expected = oid elif type(oid) == str: expected = UUID(oid) test_object._set_oid(oid) actual = test_object.oid self.assertEqual( actual, expected, 'Setting oid to "%s" (%s) should return ' '"%s" (%s) through the property, but "%s" ' '(%s) was returned instead.' % ( oid, type(oid).__name__, expected, type(expected).__name__, actual, type(actual).__name__, ) ) # - Test all "bad" values for oid in BadOIDs: try: test_object._set_oid(oid) self.fail( 'BaseDatObject objects should not accept ' '"%s" (%s) as a valid oid, but it was ' 'allowed to be set' % (oid, type(oid).__name__) ) except (TypeError, ValueError): pass except Exception as error: self.fail( 'BaseDataObject objects should raise TypeError ' 'or ValueError if passed a value of "%s" (%s) ' 'as an oid, but %s was raised instead:\n' ' %s' % ( oid, type(oid).__name__, error.__class__.__name__, error ) ) def testsave(self): # Tests the save method of the BaseDataObject class test_object = BaseDataObjectDerived() # - Set things up to force a call to _create: test_object._is_new = True for dirty in (True, False, None): test_object._is_dirty = dirty try: test_object.save() except NotImplementedError as error: if str(error) != ( 'BaseDataObjectDerived has not implemented ' '_create, as required by BaseDataObject' ): self.fail( 'Calling _create should return a known ' 'error-message, but the message returned ' 'was not what was expected' ) except Exception as error: self.fail( 'BaseDataObject.save did not raise the ' 'expected error while being tested' ) # - Set things up to force a call to _update: test_object._is_new = False for dirty in (True, False, None): test_object._is_dirty = dirty try: test_object.save() except NotImplementedError as error: if str(error) != ( 'BaseDataObjectDerived has not implemented ' '_update, as required by BaseDataObject' ): self.fail( 'Calling _create should return a known ' 'error-message, but the message returned ' 'was not what was expected' ) except Exception as error: self.fail( 'BaseDataObject.save did not raise the ' 'expected error while being tested' ) ################################### # Tests of class properties # ################################### def testcreated(self): # Tests the created property of the BaseDataObject class # - Assert that the getter is correct: self.assertEqual( BaseDataObject.created.fget, BaseDataObject._get_created, 'BaseDataObject.created is expected to use the ' '_get_created method as its getter-method' ) # - Assert that the setter is correct: self.assertEqual( BaseDataObject.created.fset, BaseDataObject._set_created, 'BaseDataObject.created is expected to use the ' '_set_created method as its setter-method' ) # - Assert that the deleter is correct: self.assertEqual( BaseDataObject.created.fdel, BaseDataObject._del_created, 'BaseDataObject.created is expected to use the ' '_del_created method as its deleter-method' ) def testis_active(self): # Tests the is_active property of the BaseDataObject class # - Assert that the getter is correct: self.assertEqual( BaseDataObject.is_active.fget, BaseDataObject._get_is_active, 'BaseDataObject.is_active is expected to use the ' '_get_is_active method as its getter-method' ) # - Assert that the setter is correct: self.assertEqual( BaseDataObject.is_active.fset, BaseDataObject._set_is_active, 'BaseDataObject.is_active is expected to use the ' '_set_is_active method as its setter-method' ) # - Assert that the deleter is correct: self.assertEqual( BaseDataObject.is_active.fdel, BaseDataObject._del_is_active, 'BaseDataObject.is_active is expected to use the ' '_del_is_active method as its deleter-method' ) def testis_deleted(self): # Tests the is_deleted property of the BaseDataObject class # - Assert that the getter is correct: self.assertEqual( BaseDataObject.is_deleted.fget, BaseDataObject._get_is_deleted, 'BaseDataObject.is_deleted is expected to use the ' '_get_is_deleted method as its getter-method' ) # - Assert that the setter is correct: self.assertEqual( BaseDataObject.is_deleted.fset, BaseDataObject._set_is_deleted, 'BaseDataObject.is_deleted is expected to use the ' '_set_is_deleted method as its setter-method' ) # - Assert that the deleter is correct: self.assertEqual( BaseDataObject.is_deleted.fdel, BaseDataObject._del_is_deleted, 'BaseDataObject.is_deleted is expected to use the ' '_del_is_deleted method as its deleter-method' ) def testis_dirty(self): # Tests the is_dirty property of the BaseDataObject class # - Assert that the getter is correct: self.assertEqual( BaseDataObject.is_dirty.fget, BaseDataObject._get_is_dirty, 'BaseDataObject.is_dirty is expected to use the ' '_get_is_dirty method as its getter-method' ) # - Assert that the setter is correct: self.assertEqual( BaseDataObject.is_dirty.fset, BaseDataObject._set_is_dirty, 'BaseDataObject.is_dirty is expected to use the ' '_set_is_dirty method as its setter-method' ) # - Assert that the deleter is correct: self.assertEqual( BaseDataObject.is_dirty.fdel, BaseDataObject._del_is_dirty, 'BaseDataObject.is_dirty is expected to use the ' '_del_is_dirty method as its deleter-method' ) def testis_new(self): # Tests the is_new property of the BaseDataObject class # - Assert that the getter is correct: self.assertEqual( BaseDataObject.is_new.fget, BaseDataObject._get_is_new, 'BaseDataObject.is_new is expected to use the ' '_get_is_new method as its getter-method' ) # - Assert that the setter is correct: self.assertEqual( BaseDataObject.is_new.fset, BaseDataObject._set_is_new, 'BaseDataObject.is_new is expected to use the ' '_set_is_new method as its setter-method' ) # - Assert that the deleter is correct: self.assertEqual( BaseDataObject.is_new.fdel, BaseDataObject._del_is_new, 'BaseDataObject.is_new is expected to use the ' '_del_is_new method as its deleter-method' ) def testmodified(self): # Tests the modified property of the BaseDataObject class # - Assert that the getter is correct: self.assertEqual( BaseDataObject.modified.fget, BaseDataObject._get_modified, 'BaseDataObject.modified is expected to use the ' '_get_modified method as its getter-method' ) # - Assert that the setter is correct: self.assertEqual( BaseDataObject.modified.fset, BaseDataObject._set_modified, 'BaseDataObject.modified is expected to use the ' '_set_modified method as its setter-method' ) # - Assert that the deleter is correct: self.assertEqual( BaseDataObject.modified.fdel, BaseDataObject._del_modified, 'BaseDataObject.modified is expected to use the ' '_del_modified method as its deleter-method' ) def testoid(self): # Tests the oid property of the BaseDataObject class # - Assert that the getter is correct: self.assertEqual( BaseDataObject.oid.fget, BaseDataObject._get_oid, 'BaseDataObject.oid is expected to use the ' '_get_oid method as its getter-method' ) # - Assert that the setter is correct: self.assertEqual( BaseDataObject.oid.fset, BaseDataObject._set_oid, 'BaseDataObject.oid is expected to use the ' '_set_oid method as its setter-method' ) # - Assert that the deleter is correct: self.assertEqual( BaseDataObject.oid.fdel, BaseDataObject._del_oid, 'BaseDataObject.oid is expected to use the ' '_del_oid method as its deleter-method' ) # def testproperty_name(self): # # Tests the property_name property of the BaseDataObject class # # - Assert that the getter is correct: # self.assertEqual( # BaseDataObject.property_name.fget, # BaseDataObject._get_property_name, # 'BaseDataObject.property_name is expected to use the ' # '_get_property_name method as its getter-method' # ) # # - If property_name is not expected to be publicly settable, # # the second item here (BaseDataObject._set_property_name) should # # be changed to None, and the failure message adjusted # # accordingly: # # - Assert that the setter is correct: # self.assertEqual( # BaseDataObject.property_name.fset, # BaseDataObject._set_property_name, # 'BaseDataObject.property_name is expected to use the ' # '_set_property_name method as its setter-method' # ) # # - If property_name is not expected to be publicly deletable, # # the second item here (BaseDataObject._del_property_name) should # # be changed to None, and the failure message adjusted # # accordingly: # # - Assert that the deleter is correct: # self.assertEqual( # BaseDataObject.property_name.fdel, # BaseDataObject._del_property_name, # 'BaseDataObject.property_name is expected to use the ' # '_del_property_name method as its deleter-method' # ) LocalSuite.addTests( unittest.TestLoader().loadTestsFromTestCase( testBaseDataObject ) ) ####################################### # Child-module test-cases to execute # ####################################### # import child_module # LocalSuite.addTests(child_module.LocalSuite._tests) ####################################### # Imports to resolve circular # # dependencies. Avoid if possible. # ####################################### ####################################### # Initialization that needs to # # happen after member definition. # ####################################### ####################################### # Code to execute if file is called # # or run directly. # ####################################### if __name__ == '__main__': import time results = unittest.TestResult() testStartTime = time.time() LocalSuite.run(results) results.runTime = time.time() - testStartTime PrintTestResults(results) if not results.errors and not results.failures: SaveTestReport(results, 'hms_core.data_objects', 'hms_core.data_objects.test-results')
[ "uuid.uuid4", "unittest.TestSuite", "time.time", "datetime.datetime.strptime", "uuid.UUID", "unittest.TestLoader", "datetime.datetime.fromtimestamp", "datetime.datetime.now", "unittest.TestResult" ]
[((1371, 1391), 'unittest.TestSuite', 'unittest.TestSuite', ([], {}), '()\n', (1389, 1391), False, 'import unittest\n'), ((1891, 1905), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1903, 1905), False, 'from datetime import datetime\n'), ((1907, 1941), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['(1234567890)'], {}), '(1234567890)\n', (1929, 1941), False, 'from datetime import datetime\n'), ((2191, 2265), 'datetime.datetime.strptime', 'datetime.strptime', (['"""2001-01-01 12:34:56"""', 'BaseDataObject._data_time_string'], {}), "('2001-01-01 12:34:56', BaseDataObject._data_time_string)\n", (2208, 2265), False, 'from datetime import datetime\n'), ((2285, 2359), 'datetime.datetime.strptime', 'datetime.strptime', (['"""3001-01-01 12:34:56"""', 'BaseDataObject._data_time_string'], {}), "('3001-01-01 12:34:56', BaseDataObject._data_time_string)\n", (2302, 2359), False, 'from datetime import datetime\n'), ((2379, 2453), 'datetime.datetime.strptime', 'datetime.strptime', (['"""1911-01-01 12:34:56"""', 'BaseDataObject._data_time_string'], {}), "('1911-01-01 12:34:56', BaseDataObject._data_time_string)\n", (2396, 2453), False, 'from datetime import datetime\n'), ((2669, 2676), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (2674, 2676), False, 'from uuid import UUID, uuid4\n'), ((2697, 2741), 'uuid.UUID', 'UUID', (['"""dc3a7fdf-2183-49cc-aa00-af9239950254"""'], {}), "('dc3a7fdf-2183-49cc-aa00-af9239950254')\n", (2701, 2741), False, 'from uuid import UUID, uuid4\n'), ((2747, 2791), 'uuid.UUID', 'UUID', (['"""ffffffff-ffff-ffff-ffff-ffffffffffff"""'], {}), "('ffffffff-ffff-ffff-ffff-ffffffffffff')\n", (2751, 2791), False, 'from uuid import UUID, uuid4\n'), ((2797, 2841), 'uuid.UUID', 'UUID', (['"""00000000-0000-0000-0000-000000000000"""'], {}), "('00000000-0000-0000-0000-000000000000')\n", (2801, 2841), False, 'from uuid import UUID, uuid4\n'), ((39262, 39283), 'unittest.TestResult', 'unittest.TestResult', ([], {}), '()\n', (39281, 39283), False, 'import unittest\n'), ((39304, 39315), 'time.time', 'time.time', ([], {}), '()\n', (39313, 39315), False, 'import time\n'), ((2682, 2689), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (2687, 2689), False, 'from uuid import UUID, uuid4\n'), ((5665, 5672), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (5670, 5672), False, 'from uuid import UUID, uuid4\n'), ((39366, 39377), 'time.time', 'time.time', ([], {}), '()\n', (39375, 39377), False, 'import time\n'), ((1947, 1961), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1959, 1961), False, 'from datetime import datetime\n'), ((3568, 3589), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (3587, 3589), False, 'import unittest\n'), ((38443, 38464), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (38462, 38464), False, 'import unittest\n'), ((15507, 15538), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['created'], {}), '(created)\n', (15529, 15538), False, 'from datetime import datetime\n'), ((24760, 24792), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['modified'], {}), '(modified)\n', (24782, 24792), False, 'from datetime import datetime\n'), ((26780, 26789), 'uuid.UUID', 'UUID', (['oid'], {}), '(oid)\n', (26784, 26789), False, 'from uuid import UUID, uuid4\n'), ((15605, 15665), 'datetime.datetime.strptime', 'datetime.strptime', (['created', 'BaseDataObject._data_time_string'], {}), '(created, BaseDataObject._data_time_string)\n', (15622, 15665), False, 'from datetime import datetime\n'), ((24860, 24921), 'datetime.datetime.strptime', 'datetime.strptime', (['modified', 'BaseDataObject._data_time_string'], {}), '(modified, BaseDataObject._data_time_string)\n', (24877, 24921), False, 'from datetime import datetime\n')]
from __future__ import annotations import argparse import asyncio import getpass import inspect import json import logging import logging.config import os import threading import time import traceback import warnings import webbrowser from dataclasses import dataclass, field from datetime import datetime, timedelta from typing import IO, TYPE_CHECKING, Any, Callable, cast import bakalariapi import platformdirs import requests import rich from bakalariapi.utils import cs_timedelta, parseHTML from prompt_toolkit.input import create_input from prompt_toolkit.key_binding import KeyPress from prompt_toolkit.keys import Keys from rich.console import Console from rich.logging import RichHandler from rich.progress import BarColumn, Progress, TaskID, TimeRemainingColumn from rich.syntax import Syntax from rich.traceback import install as tb_install from urllib3.exceptions import InsecureRequestWarning # Takový hack na to, aby `bakalarishell` šel spustit také přímo ze zdrojové složky # Pokud se `bakalarishell` spustí jako modul (= přes `import`), tak vše proběhne v pořádku # Pokud se ale spustí přes "python main.py" nebo "python bakalarishell" (kde "bakalarishell" # je složka), tak relativní `import` selže ("ImportError: attempted relative import with no # known parent package") a `shell` se naimportuje "přímo" (resp. ne relativně), což už je v pořádku. # Pozn.: Pokud někdo dumá nad tím, proč zde tedy není jen druhá možnost, tak to je # kvůli tomu, že ta zase pro změnu nefugnuje při importu jako modul, jelikož v tom případě # hledá modul `shell` jako "globální" modul (ne jako "lokální" ve složce), tudíž selže. if TYPE_CHECKING: from . import shell else: try: from . import shell except ImportError: import shell tb_install(show_locals=True) cls = shell.cls api: bakalariapi.BakalariAPI shell_instance: shell.Shell dirs = platformdirs.PlatformDirs( appauthor="BakalariAPI", appname="bakalarishell", roaming=True ) CONFIG_FILE = "config.json" TIME_FILE = "_lasttime" @dataclass class Args: url: str | None = None username: str | None = None password: str | None = None browser: str | None = None executable_path: str | None = None verbose: int = 0 test: int | None = None auto_run: bool = False no_init: bool = False no_import: bool = False disable_config: bool = False commands: list[str] = field(default_factory=list) args: Args class RichTask: def __init__(self, progress: Progress, task_id: TaskID) -> None: self.progress = progress self.task_id = task_id def start(self): self.progress.start_task(self.task_id) def update( self, total: float | None = None, completed: float | None = None, advance: float | None = None, description: str | None = None, visible: bool | None = None, refresh: bool = False, **fields, ): self.progress.update( self.task_id, total=total, completed=completed, advance=advance, description=description, visible=visible, refresh=refresh, **fields, ) def finish(self): task = self.progress.tasks[self.task_id] task.finished_time = 0 ################################################## ##### FUNKCE ##### ################################################## def rich_print( *objects: Any, sep: str = " ", end: str = "\n", file: IO[str] | None = None, flush: bool = False, color: str | None = None, **kwargs, ): c = rich.get_console() if file is None else Console(file=file) if color is not None: # Pravděpodobně někdy bude problém, že se vše převádí na string, ale zatím to problém není, tak to neřeším eShrug objects = tuple(map(lambda x: f"[{color}]{x}[/{color}]", objects)) return c.print(*objects, sep=sep, end=end, **kwargs) def partial_init_notice(): rich_print( 'Tuto akci nelze vykonat, jelikož shell se nachází v omezeném módu. Pro přepnutí do online módu můžete zkusit příkaz "init".', color="yellow", ) def dialog_ano_ne( text: str = "", default: bool | None = None, color: str | None = None ) -> bool: message = f"{text} Ano/Ne{'' if default is None else (' (Ano)' if default else ' (Ne)')}: " while True: # ano/true/yes/1 / ne/false/no/0 if color is not None: rich_print(message, end="", color=color) inpt = input() else: inpt = input(message) if len(inpt) == 0: if default is None: continue return default input_letter = inpt[0].lower() if input_letter in "aty1": return True if input_letter in "nf0": return False def dialog_cislo(text: str = "", default: int | None = None): print(text, "" if default is None else f"({default})") while True: inpt = input() if not inpt: if default is None: continue return default if inpt.isdecimal(): return int(inpt) print("Špatná hodnota") def print_keys(keys: list[tuple[str, str] | str], enter_pokracovani=True): output = ["Enter - Pokračování"] if enter_pokracovani else [] for key in keys: if isinstance(key, tuple): if key[1] == "": output.append(key[0]) else: output.append(f"[{key[1]}]{key[0]}[/{key[1]}]") else: output.append(key) rich_print(", ".join(output)) def show(obj: bakalariapi.objects.BakalariObject, title: str | None = None): if title is not None: print(title) if isinstance(obj, bakalariapi.Komens): rich_print(obj.format(True)) print("\n\n") print_keys([("P - Potrvrdí přečtení zprávy", "" if obj.confirmed else "green")]) def komens_key_handler(key_press: KeyPress, done: Callable): if key_press.key == "p": print("Potvrzuji zprávu...") obj.confirm(api) print("Zpráva potvrzena") asyncio.run(keyhandler(komens_key_handler)) elif isinstance(obj, bakalariapi.Grade): rich_print(obj.format(True)) print("\n\n") asyncio.run(keyhandler(None)) elif isinstance(obj, bakalariapi.Meeting): rich_print(obj.format(True)) print("\n\n") is_before = obj.is_before_start delta = obj.start_time_delta color = "" # Delta totiž může být očividně i negativní if not is_before and delta >= timedelta(hours=-1): color = "red" elif is_before and delta <= timedelta(minutes=5): color = "yellow" elif is_before and delta <= timedelta(minutes=30): color = "green" print_keys( [("O - Otevře schůzku v prohlížeči", color), "Z - Zobrazí HTML pozvánky"] ) def meeting_key_handler(key_press: KeyPress, done: Callable): key = key_press.key.lower() if key == "o": webbrowser.open(obj.join_url) elif key == "z": c = Console() c.print(Syntax(str(parseHTML(obj.content).prettify()), "html")) asyncio.run(keyhandler(meeting_key_handler)) # elif isinstance(obj, bakalariapi.Student): # pass elif isinstance(obj, bakalariapi.Homework): rich_print(obj.format(True)) print("\n\n") print_keys( [ ("H - Označí úkol jako hotový", "" if obj.done else "green"), "N - Označí úkol jako nehotový", "Z - Zobrazí HTML úkolu", ] ) def homework_key_handler(key_press: KeyPress, done: Callable): key = key_press.key.lower() if key == "h": obj.mark_as_done(api, True) print("Úkol označen jako hotový") elif key == "n": obj.mark_as_done(api, False) print("Úkol označen jako nehotový") elif key == "z": c = Console() c.print(Syntax(str(parseHTML(obj.content).prettify()), "html")) asyncio.run(keyhandler(homework_key_handler)) else: raise Exception(f"Undefined type '{type(obj)}' to show") async def keyhandler( handler: Callable[[KeyPress, Callable[[], None]], None] | None, *, done_on_enter: bool = True, mask_keyboard_interrupt: bool = False, ): """ Začne zaznamenávat zmáčklé klávesy, které následně passuje do dané funkce. Args: handler: Funkce do které se passují zaznamenané klávesy. Bere 2 argumenty: key_press: Zaznamenaný stisk klávesy. done: Funkce, která při zavolání ukončí záznam kláves. Pokud je `None`, nic se nevolá. Hodnota `None` má smysl pouze pokud parametr `done_on_enter` je `True`. done_on_enter: Pokud True, tak se při klávese Enter ukončí záznam kláves. Pozn.: Pokud True, tak se funkce v parametru handler nevolá. mask_keyboard_interrupt: Pokud `True`, tak `KeyboardInterrupt` bude potlačen. Pokud `False`, `KeyboardInterrupt` bude propagován. Pozn.: Ve skutečnosti je `KeyboardInterrupt` simulován, jelikož z asyncio loopu `KeyboardInterrupt` nepřichází. Příklad: ``` def handler(keys_press: KeyPress, done: Callable): if key_press.key == "q": done() asyncio.run(keyhandler(handler)) ``` Nebo, pokud máme asynchoní funkci, lepší řešení pro poslední řádku je: ``` await keyhandler(handler) ``` """ evnt = asyncio.Event() inpt = create_input() done = lambda: evnt.set() def key_handler_proc(keys: list[KeyPress]): for key_press in keys: if done_on_enter and key_press.key == Keys.Enter: done() # elif key_press.key == Keys.F4: # for key_press in keys: # if key_press.key == Keys.Escape: # raise SystemExit elif not mask_keyboard_interrupt and key_press.key == Keys.ControlC: raise KeyboardInterrupt elif handler is not None: handler(key_press, done) with inpt.raw_mode(): with inpt.attach(lambda: key_handler_proc(inpt.read_keys())): await evnt.wait() def get_io_filepath(file: str) -> str: return os.path.join(dirs.user_data_dir, file) def get_io_file(file: str, create_file: bool, mode: str = "r+") -> IO: """Vrátí file handler na daný soubor `file` v uživatelské (data) složce.""" path = get_io_filepath(file) if not os.path.exists(path): if not create_file: raise FileNotFoundError() os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "x", encoding="utf-8"): pass return open(path, mode, encoding="utf-8") def save_config(): with get_io_file(CONFIG_FILE, True) as f: # Indent, protože chci, aby to šlo přehledně upravit i z editoru (i když k tomu nejspíše nikdy nedojde) # (a navíc alespoň nemusí řešit formátování při "config show") json.dump(args.__dict__, f, indent=4) def disable_ssl(): def patch(f: Callable): def patched(*args, **kwargs): # `cast()` protože jsem zatím nepřišel na způsob, jak dostat hint při patchování metod (pomocí `ParamSpec`u) session = cast(bakalariapi.sessions.RequestsSession, args[0]) bound = inspect.signature(f).bind(*args, **kwargs) bound.apply_defaults() login = bound.arguments["login"] bound.arguments["login"] = False x = f(*bound.args, **bound.kwargs) session.session.verify = False if login: session.login() return x return patched bakalariapi.sessions.RequestsSession.__init__ = patch( bakalariapi.sessions.RequestsSession.__init__ ) # Když nastavíme `verify` na `False` (v `requests` modulu), `urllib3` si začne stěžovat warnings.filterwarnings("ignore", category=InsecureRequestWarning) ################################################## ##### PŘÍKAZO-FUNKCE ##### ################################################## def Init() -> bool: def partial_init_mode(): rich_print( "\nInicilizace neproběhla úspěšně a shell poběží v omezeném módu.\nPro přepnutí do plného módu zkuste opětovat inicializaci pomocí příkazu 'init'.", color="yellow", ) def ask_import() -> bool: try: if args.no_import: if dialog_ano_ne( "Server není dostupný; Chce importovat uložená data?", True, "yellow", ): Command_Import() else: partial_init_mode() else: rich_print( "Server není dostupný; Uložená data byla již importována, je tedy možné pracovat se starými daty", color="yellow", ) partial_init_mode() except KeyboardInterrupt: partial_init_mode() return False if args.url is None: try: args.url = input("URL adresa serveru: ") api.server_info.url = args.url except KeyboardInterrupt: rich_print("\nNebyla zadána adresa serveru", color="red") partial_init_mode() return False if args.username is None: try: args.username = input("Přihlašovací jméno: ") api.username = args.username except KeyboardInterrupt: rich_print("\nNebylo zadáno přihlašovací jméno", color="red") partial_init_mode() return False if args.password is None: try: args.password = getpass.getpass("Heslo: ") except KeyboardInterrupt: rich_print( "\nHeslo nebylo zadáno, předpokládá se prázdné heslo", color="yellow" ) args.password = "" api.password = args.password try: rich_print( f"Kontrola stavu serveru a přihlašovacích údajů pro uživatele [cyan]{api.username}[/cyan]...", highlight=False, ) try: if not api.is_login_valid(): rich_print("Přihlašovací údaje jsou neplatné", color="red") partial_init_mode() return False except requests.exceptions.SSLError: # rich.get_console().print_exception() try: if dialog_ano_ne( "Nepodařilo se navázat zabezpečené připojení k serveru. Chcete pokračovat s nezabezpečeným připojením?", False, "yellow", ): disable_ssl() api.session_manager.kill_all(False) print( "Deaktivovalo se zabezpečené připojení, inicializace nyní proběhne znovu..." ) return Init() else: return ask_import() except KeyboardInterrupt: partial_init_mode() return False except requests.exceptions.RequestException: return ask_import() except KeyboardInterrupt: rich_print("Inicializace byla předčasně ukončena", color="yellow") partial_init_mode() return False rich_print("Server běží a přihlašovací údaje jsou správné", color="green") print("Nastavuji...") try: with warnings.catch_warnings(): # Nechceme dostat `VersionMismatchWarning`, protože v `SeverInfo()` kontrolujeme verzi manuálně warnings.simplefilter("ignore") api.init() except KeyboardInterrupt: rich_print( "Nebyly získány informace o stavu serveru, ale žádné funkce by tímto neměli být ovlivněny", color="yellow", ) return True print("Nastaveno:") ServerInfo() return True def ServerInfo(): rich_print( f"Typ uživatele: {'[bright_black]Není k dispozici[/bright_black]' if api.user_info.type == '' else f'[cyan]{api.user_info.type}[/cyan]'}\n" f"Uživatelký hash: {'[bright_black]Není k dispozici[/bright_black]' if api.user_info.hash == '' else f'[cyan]{api.user_info.hash}[/cyan]'}\n" f"Verze Bakalářů: {'[bright_black]Není k dispozici[/bright_black]' if api.server_info.version is None else f'[cyan]{api.server_info.version}[/cyan]'}\n" f"Datum verze Bakalářů: {'[bright_black]Není k dispozici[/bright_black]' if api.server_info.version_date is None else '[cyan]'+api.server_info.version_date.strftime('%d. %m. %Y')+'[/cyan] [bright_black]('+cs_timedelta((datetime.now() - api.server_info.version_date), 'd')+' stará verze)[/bright_black]'}\n" f"Evidenční číslo verze Bakalářů: {'[bright_black]Není k dispozici[/bright_black]' if api.server_info.evid_number is None else f'[cyan]{api.server_info.evid_number}[/cyan]'}\n", highlight=False, ) if not (api.server_info.version is None) and not api.is_version_supported(): rich_print( "*** Jiná verze Bakalářů! Všechny funkce nemusejí fungovat správně! ***", highlight=False, color="yellow", ) def Command_Komens(limit: int | None = None, force_fresh: bool = False): def fresh() -> list[bakalariapi.Komens]: if api.is_partial_init: partial_init_notice() return [] output: list[bakalariapi.Komens] = [] with Progress() as progress: task = RichTask( progress, progress.add_task("Získávání zpráv", start=False, total=0) ) unresolved = api._parse( bakalariapi.modules.komens.getter_komens_ids(api) ).get(bakalariapi.UnresolvedID)[:limit] task.update(total=len(unresolved)) for unresolved_id in unresolved: output.append(api._resolve(unresolved_id).get(bakalariapi.Komens)[0]) task.update(advance=1) return output if force_fresh: zpravy = fresh() else: zpravy = api.get_komens(bakalariapi.GetMode.CACHED) if len(zpravy) == 0: print("Žádné zprávy v Lootingu, zkouším načíst ze serveru") zpravy = fresh() length = len(zpravy) if length == 0: print("Nebyly nalezeny žádné aktualní schůzky") return cls() count = 1 for zprava in zpravy: try: show(zprava, f"*** Zpráva {count} z {length} ***") count += 1 cls() except KeyboardInterrupt: print("\n") break def Command_Znamky(force_fresh: bool = False): print("Získávám známky...") try: znamky = api.get_grades( bakalariapi.GetMode.FRESH if force_fresh else bakalariapi.GetMode.CACHED_OR_FRESH ) except bakalariapi.exceptions.PartialInitError: partial_init_notice() return length = len(znamky) print(f"Známky získány ({length}), zobrazuji...") cls() count = 1 for znamka in znamky: try: show(znamka, f"*** Známka {count} z {length} ***") count += 1 cls() except KeyboardInterrupt: print("\n") break def Command_Schuzky(force_fresh: bool = False): def fresh(): if api.is_partial_init: partial_init_notice() return [] output = [] with Progress() as progress: task = RichTask( progress, progress.add_task("Získávání schůzek", start=False, total=0) ) unresolved = api._parse( bakalariapi.modules.meetings.getter_future_meetings_ids(api) ).get(bakalariapi.UnresolvedID) task.update(total=len(unresolved)) for unresolved_id in unresolved: output.append(api._resolve(unresolved_id).get(bakalariapi.Meeting)[0]) task.update(advance=1) return output if force_fresh: schuzky = fresh() else: schuzky = api.get_meetings(bakalariapi.GetMode.CACHED) if len(schuzky) == 0: print("Žádné schůzky v Lootingu, zkouším načíst ze serveru") schuzky = fresh() length = len(schuzky) if length == 0: print("Nebyly nalezeny žádné aktualní schůzky") return cls() count = 1 for schuzka in schuzky: try: show(schuzka, f"*** Schůzka {count} z {length} ***") count += 1 cls() except KeyboardInterrupt: print("\n") break def Command_Studenti(force_fresh: bool = False): print("Získávám studenty...") try: studenti = api.get_students( bakalariapi.GetMode.FRESH if force_fresh else bakalariapi.GetMode.CACHED_OR_FRESH ) except bakalariapi.exceptions.PartialInitError: partial_init_notice() return length = len(studenti) print(f"Studenti získáni, počet studentů je {length}") try: count = dialog_cislo("Kolik zobrazit výsledků najednou?", 25) except KeyboardInterrupt: return offset = 0 cls() while offset < length: try: for _ in range(count): if offset >= length: break print(studenti[offset].format()) offset += 1 input( f"Pro pokračování stiskni klávasu... (Již zobrazeno {offset} výsledků z {length})" ) cls() except KeyboardInterrupt: print("\n") break def Command_Ukoly(fast: bool = False, force_fresh: bool = False): print("Načítání úkolů...") try: if fast: ukoly = api.get_homeworks( bakalariapi.GetMode.FRESH if force_fresh else bakalariapi.GetMode.CACHED_OR_FRESH, fast_mode=True, ) else: ukoly = api.get_homeworks( bakalariapi.GetMode.FRESH if force_fresh else bakalariapi.GetMode.CACHED_OR_FRESH, fast_mode=False, unfinished_only=False, only_first_page=False, ) except bakalariapi.exceptions.PartialInitError: partial_init_notice() return hotove = 0 nehotove = 0 for ukol in ukoly: if ukol.done: hotove += 1 else: nehotove += 1 if hotove + nehotove == 0: print("Nebyly nalezeny žádné aktualní úkoly") return print(f"Úkoly načteny (hotové {hotove}, nehotové {nehotove})") zobraz_hotove = fast or dialog_ano_ne("Chte zobrazit již hotové úkoly?") count = 1 for ukol in ukoly: try: if not zobraz_hotove and ukol.done: continue cls() show( ukol, f"*** Domácí úkol {count} z {hotove + nehotove if zobraz_hotove else nehotove} ***", ) count += 1 except KeyboardInterrupt: print("\n") break def Command_Konec(nice: bool = True): shell_instance.stop_loop() api.kill(nice) def Command_Export(file_name: str = "main"): print("Generace JSON dat...") with get_io_file(file_name, True) as f: json.dump(api.looting.export_data(), f, ensure_ascii=False) # Odstraníme data, která jsou případně po JSONu, co jsme teď napsali (třeba pozůstatek po předchozím JSONu, pokud byl delší jak náš současný) f.truncate() print(f"JSON data vygenerována a zapsána do souboru '{file_name}'") def Command_Import(file_name: str = "main"): try: with get_io_file(file_name, False) as f: api.looting.import_data(json.loads(f.read())) except FileNotFoundError: rich_print( f"Data nebyla načtena, jelikož soubor '{file_name}' neexistuje", color="yellow", ) else: print(f"Data ze souboru '{file_name}' byla načtena") def Command_Config(namespace: dict[str, Any]): cmd = namespace["cmd"] config_path = get_io_filepath(CONFIG_FILE) if cmd == "show": if os.path.exists(config_path): with open(config_path, "r") as f: rich_print(Syntax(f.read(), "json")) else: print("Žádná konfigurace není uložená") elif cmd == "save": save_config() print("Konfigurace uložena") elif cmd == "remove": if os.path.exists(config_path): os.remove(config_path) print("Konfigurace byla vymazána") else: print("Nic se nevykonalo, jelikož konfigurace není uložená") elif cmd == "check": if os.path.exists(config_path): s = os.stat(config_path) rich_print( f"Konfigurace je uložená z data {datetime.fromtimestamp(s.st_mtime).strftime('%d. %m. %Y, %H:%M:%S')}, velikost konfigurace je {s.st_size}B" ) else: print("Žádná konfigurace není uložená") elif cmd == "open": dirname = os.path.dirname(config_path) # = dirs.user_data_dir() if os.path.exists(dirname): webbrowser.open(os.path.realpath(dirname)) else: print("Nelze otevřít konfigurační složku, jelikož neexistuje") ################################################## ##### TESTY ##### ################################################## def RunTest(ID: int): m = __import__(__name__) t = f"Test{ID}" if hasattr(m, t): rich_print(f"Zahajuji test {ID}") try: o = getattr(m, t)() rich_print( f"Test {ID} skončil" + ("" if o is None else "; Výsledek testu:") ) if o is not None: rich_print(o) except: rich_print("Test skončil neúspěchem:", color="red") traceback.print_exc() else: rich_print(f"Test {ID} nenalezen", color="red") def Test0(): print("Spouštím testování...") with api.session_manager.get_session_or_create( bakalariapi.sessions.RequestsSession ) as session: try: while True: last = session.get( api.get_endpoint(bakalariapi.bakalari.Endpoint.SESSION_INFO) ).json()["data"]["remainingTime"] print("\r", end="") while True: print( "Současný zbývající čas: " + str(last) + " " * 20, end="\r" ) # Some spaces to rewrite previous text... session.get( api.get_endpoint(bakalariapi.bakalari.Endpoint.SESSION_EXTEND) ) current = float( session.get( api.get_endpoint(bakalariapi.bakalari.Endpoint.SESSION_INFO) ).json()["data"]["remainingTime"] ) if last < current: print("\n") break last = current time.sleep(1) print( "Sezení bylo prodlouženo, když zbývalo " + str(last) + " (+ max 1s) do konce a bylo prodlouženo na " + str(current) ) except KeyboardInterrupt: print("Testování ukončeno") def Test1(): # "Kopírování" print("Vytváření kopie dat skrze export/import...") data = api.looting.export_data() new = bakalariapi.looting.Looting() new.import_data(data) print("Kopie vytvořena") # Porovnávání typ_mismatch = 0 id_len_mismatch = 0 id_mismatch = 0 print("=" * 30) print(f"Počet typů v datech (old): {len(api.looting.data)}") print(f"Počet typů v datech (new): {len(api.looting.data)}") print("Porovnávání zahájeno...") for typ_old, typ_new in zip(api.looting.data.keys(), new.data.keys()): if typ_old != typ_new: print(f"Neshodující se typy! Old: '{typ_old}'; New: '{typ_new}'") typ_mismatch += 1 continue old_id_len = len(api.looting.data[typ_old]) new_id_len = len(new.data[typ_new]) if old_id_len != new_id_len: print( f"Neshodující se počet záznamů pro typ {typ_old}! Old: {old_id_len}; New: {new_id_len}" ) id_len_mismatch += 1 for id_old, obj_old, id_new, obj_new in zip( api.looting.data[typ_old].keys(), api.looting.data[typ_old].values(), new.data[typ_new].keys(), new.data[typ_new].values(), ): if id_old != id_new: print( f"Neshodující se ID! Old: '{id_old}'; New: '{id_new}' (typ: {typ_old}; ID type (old): {type(id_old)}; ID type (new): {type(id_new)})" ) id_mismatch += 1 print( f"Porovnávání dokončeno:\nChyb u typů:\t{typ_mismatch}\nChyb u ID:\t{id_mismatch}" ) return (typ_mismatch, id_mismatch, id_len_mismatch) def Test2(): print("Získávám IDčka online schůzek...") IDs = api._parse( bakalariapi.modules.meetings.getter_meetings_ids( api, datetime(1, 1, 1), datetime(9999, 12, 31, 23, 59, 59) ) ).get(bakalariapi.UnresolvedID) la = len(IDs) print(f"IDčka online schůzek získany ({la})") print() error: list[bakalariapi.UnresolvedID[bakalariapi.Meeting]] = [] try: with Progress() as progress: task = RichTask(progress, progress.add_task("Získávání schůzek", total=la)) for ID in IDs: task.update(description=f"Schůzka {ID.ID}") try: api._resolve(ID) except bakalariapi.exceptions.BakalariQuerrySuccessError as e: progress.log(f"Online schůzku {ID.ID} se nepodařilo načíst") error.append(ID) finally: task.update(advance=1) except KeyboardInterrupt: pass finally: le = len(error) print( f"Úspěšné pokusy: {la - le}; Neúspěšné pokusy: {le}; Chybovost: {le/la*100:.2f}%" ) def Test3(): print("Tento test již není podporován... Sadge") return # return API.GetHomeworksIDs() def Test4(): print("Tento test již není podporován... Sadge") return # return API.MarkHomeworkAsDone(input("ID Úkolu: "), input("ID Studenta: "), True) def Test5(): print("Tento test již není podporován... Sadge") return # homeworks = API.GetHomeworks() # print("Úkoly načteny...") # zobrazHotove = AnoNeDialog("Chte zobrazit již hotové úkoly?") # cls() # for homework in homeworks: # if not zobrazHotove and homework.Done: # continue # print("*** Domácí úkol ***") # print(homework.Format()) # print("\n\n") # input("Pro pokračování stiskni klávasu...") # cls() def Test6(): count_total = 0 count_invalid = 0 try: while True: count_total += 1 output = api.get_homeworks( bakalariapi.GetMode.FRESH, fast_mode=False, unfinished_only=False, only_first_page=False, ) if len(output) <= 20: count_invalid += 1 print("==============================") print(f"Nepodařil se se pokus číslo {count_total}") print(f"Nepodařených pokusů je {count_invalid} z {count_total}") probrallity = (count_total - count_invalid) / count_total * 100 print("Pravděpodobnost úspěšnosti je %.2f%%" % probrallity) print("==============================") time.sleep(5) except KeyboardInterrupt: print("==============================") print(f"Nepodařených pokusů bylo {count_invalid} z celkových {count_total}") probrallity = (count_total - count_invalid) / count_total * 100 print("Konečná ravděpodobnost úspěšnosti je %.2f%%" % probrallity) ################################################## ##### MAIN ##### ################################################## def main(): global api global args def load_args_from_config() -> dict | None: global args with get_io_file(CONFIG_FILE, True) as f: parsed = json.load(f) return parsed parser = argparse.ArgumentParser( description="Shell integrující funkcionalitu BakalářiAPI", epilog="Ano, ano, ano... Actually je to web scraper, ale API zní líp :)", ) if parser.prog == "": parser.prog = "bakalarishell" parser.add_argument( "url", help="URL na bakaláře (př. https://bakalari.skola.cz); Pokud není tento argument přítomen, program se zeptá za běhu", nargs="?", default=None, ) parser.add_argument( metavar="jmeno", help="Přihlašovací jméno; Pokud není tento argument přítomen, program se zeptá za běhu", dest="username", nargs="?", default=None, ) parser.add_argument( metavar="heslo", nargs="?", help="Přihlašovací heslo; Pokud není tento argument přítomen, program se zeptá za běhu", dest="password", default=None, ) parser.add_argument( "-b", "--browser", choices=[x.name.lower() for x in bakalariapi.Browser], type=str.lower, # => case-insensitive help="Specifikuje WebDriver prohlížeče, který použít", default=None, ) parser.add_argument( "-e", "--executablePath", help="Cesta ke spustitelnému webdriveru pro prohlížeč, který je specifikovaný pomocí '-b'", dest="executable_path", default=None, ) parser.add_argument( "-t", "--test", type=int, help="Test, který se má spustit", # dest="test", metavar="ID", default=None, ) parser.add_argument( "-a", "--auto-run", help="Pokud je tato flaga přítomna, spustí se automatické úlohy", action="store_true", dest="auto_run", default=None, ) parser.add_argument( "-n", "--no-init", help="Pokud je tato flaga přítomna, nebude BakalariAPI instance automaticky inicializována", action="store_true", dest="no_init", default=None, ) parser.add_argument( "--no-import", help="Pokud je tato flaga přítomna, nebude proveden import dat (z hlavního souboru)", action="store_true", dest="no_import", default=None, ) parser.add_argument( "-v", "--verbose", help="Zapne shell v 'ukecaném módu'; Lze opakovat vícekrát pro větší 'ukecanost' (max 5)", action="count", default=None, ) parser.add_argument( "-d", "--disable-config", help="Soubor s konfigurací se bude ignorovat, tudíž se brát v potaz pouze argumenty z příkazové řádky", action="store_true", dest="disable_config", default=None, ) parser.add_argument( "-c", "--command", help="Vykoná daný příkaz po zapnutí shellu (po autorunu); Lze opakovat vícekrát", action="append", dest="commands", default=None, ) # Všechny argumenty pro argparse MUSÍ mít "default=None", jinak se neprofiltrují # a nelze pro daný argument načíst hodnotu z configu (protože hodnota z configu # se přepíše hodnotou "None" z argparse) parsed = {k: v for k, v in vars(parser.parse_args()).items() if v is not None} # Jelikož hodnoty filtrujeme, tak pokud i po filtrování je "disable_config" # v "parsed" tak má hodnotu `True`, tudíž se můžeme dotazovat (jen) přes `in` if not ("disable_config" in parsed): from_config = load_args_from_config() if from_config is not None: parsed = from_config | parsed args = Args(**parsed) # Verbose: # 0 - Nic # 1 - Warning; Pouze BakalářiAPI # 2 - Info; Pouze BakalářiAPI # 3 - Debug; Pouze BakalářiAPI # 4 - Info # 5 - NOSET if args.verbose != 0: logging.basicConfig( level=[ None, "WARNING", "INFO", "DEBUG", "INFO", "NOTSET", ][args.verbose], datefmt="[%X]", handlers=[RichHandler()], ) logging.info( "Logging zapnut na levelu %s (%s)", args.verbose, logging.getLevelName(logging.root.level), ) if args.verbose < 4: for logger in [ logging.getLogger(name) for name in logging.root.manager.loggerDict ]: if logger.name.startswith("bakalariapi"): continue logger.propagate = False # logging.getLogger("bakalariapi").propagate = True selenium: bakalariapi.SeleniumHandler | None = None if args.browser is not None: selenium = bakalariapi.SeleniumHandler( bakalariapi.Browser[args.browser.upper()], args.executable_path, ) api = bakalariapi.BakalariAPI(args.url, args.username, args.password, selenium) successful_init = False if not args.no_init: successful_init = Init() if not args.no_import: try: with get_io_file("main", False) as f: api.looting.import_data(json.loads(f.read())) except FileNotFoundError: pass if args.test is not None: RunTest(args.test) prepare_shell() # Chceme `main()` locals, ne `prepare_shell()` locals shell_instance.PYTHON_EXEC_LOCALS = locals() print() rich_print( f"Bakalarishell připraven - verze BakalářiAPI je " + f"[green_yellow]{bakalariapi.__version__}[/green_yellow]" if "dev" in bakalariapi.__version__ else f"[bright_cyan]{bakalariapi.__version__}[/bright_cyan]" ) lasttime: datetime = datetime.max try: with get_io_file(TIME_FILE, False) as f: lasttime = datetime.fromisoformat(f.read()) except FileNotFoundError: pass if args.auto_run: if successful_init: def task_ukoly(api: bakalariapi.BakalariAPI, task: RichTask): length = len( api.get_homeworks(bakalariapi.GetMode.FRESH, fast_mode=True) ) task.update(total=length, completed=length) def task_komens(api: bakalariapi.BakalariAPI, task: RichTask): unresolved = api._parse( bakalariapi.modules.komens.getter_komens_ids( api, from_date=None if lasttime is None else lasttime - timedelta(5), ) ).get(bakalariapi.UnresolvedID) task.update(total=len(unresolved)) task.start() for unresolved_id in unresolved: api._resolve(unresolved_id) task.update(advance=1) def task_znamky(api: bakalariapi.BakalariAPI, task: RichTask): length = len(api.get_all_grades()) task.update(total=length, completed=length) def task_schuzky(api: bakalariapi.BakalariAPI, task: RichTask): unresolved = api._parse( bakalariapi.modules.meetings.getter_future_meetings_ids(api) ).get(bakalariapi.UnresolvedID) task.update(total=len(unresolved)) task.start() for unresolved_id in unresolved: api._resolve(unresolved_id) task.update(advance=1) @dataclass class Task: description: str function: Callable[[bakalariapi.BakalariAPI, RichTask], None] start: bool = True tasks: list[Task] = [ Task("Získání Komens zpráv", task_komens, False), Task("Získání schůzek", task_schuzky, False), Task("Získání úkolů", task_ukoly), Task("Získání známek", task_znamky), ] def autorun(): with Progress( "[progress.description]{task.description}", BarColumn(), "[progress.percentage]{task.percentage:>3.0f}%", "{task.completed}/{task.total}", TimeRemainingColumn(), ) as progress: threads: list[threading.Thread] = [] for task in tasks: thread = threading.Thread( target=task.function, args=( api, RichTask( progress, progress.add_task( task.description, start=task.start, total=0 ), ), ), ) thread.start() threads.append(thread) for thread in threads: thread.join() print() autorun() else: rich_print( "Autorun nebyl spuštěn kvůli nepodařené/nekompletní inicializaci", color="yellow", ) if "exit" not in args.commands and (not args.no_import or args.auto_run): print() today = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0) today_aware = ( datetime.now() .astimezone() .replace(hour=0, minute=0, second=0, microsecond=0) ) first = True for znamka in filter( lambda x: min(lasttime, today - timedelta(5)) < x.date1 and x.grade != "?", api.looting.get(bakalariapi.Grade), ): if first: first = False print("Poslední známky:") note = znamka.note1.strip() or znamka.note2.strip() rich_print( f"Z předmětu [magenta]{znamka.subject}[/magenta] známka [bright_green]{znamka.grade}[/bright_green] ze dne {znamka.date1.strftime('%d. %m. %Y')}" + ("" if note == "" else f" - {note}") ) first = True for komens in filter( lambda x: x.grade == "?", api.looting.get(bakalariapi.Grade) ): if first: first = False print("Nadcházející klasifikace:") rich_print( f"Z předmětu [magenta]{komens.subject}[/magenta] na {komens.date1.strftime('%d. %m. %Y')}" ) first = True for schuzka in filter( lambda x: today_aware < x.start_time and x.start_time < today_aware + timedelta(2), api.looting.get(bakalariapi.Meeting), ): if first: first = False print("Dnešní a zítřejší schůzky:") rich_print( f"{schuzka.start_time.strftime('%H:%M %d. %m. %Y')} - {'[bright_black]Neznámý[/bright_black]' if schuzka.owner is None else f'[magenta]{schuzka.owner.name}[/magenta]'} \"{schuzka.name.strip()}\"" ) first = True for ukol in filter(lambda x: not x.done, api.looting.get(bakalariapi.Homework)): if first: first = False print("Úkoly:") ukol._sort_by_date rich_print( f"Z předmětu [magenta]{ukol.subject}[/magenta] na {ukol.submission_date.strftime('%d. %m.')} - {ukol.content}" ) first = True for znamka in filter( lambda x: (x.need_confirm and not x.confirmed) or min(lasttime, today - timedelta(5)) < x.time, api.looting.get(bakalariapi.Komens), ): if first: first = False print("Komens zprávy:") rich_print( f"Komens zpráva od [magenta]{znamka.sender}[/magenta] z {znamka.time.strftime('%H:%M %d. %m. %Y')}" + ( " [yellow](nepotvrzená)[/yellow]" if (znamka.need_confirm and not znamka.confirmed) else "" ) ) with get_io_file(TIME_FILE, True) as f: f.write(datetime.now().isoformat()) if len(args.commands) != 0: if successful_init: print("Vykonávám zadané příkazy...") for command in args.commands: print(command) shell_instance.proc_string(command) else: rich_print( "Zadané příkazy nebyly spuštěny kvůli nepodařené/nekompletní inicializaci", color="yellow", ) try: shell_instance.start_loop() except (shell.DummyShellError, KeyboardInterrupt): Command_Konec(False) def prepare_shell(): global shell_instance predefined_commands = [x for x in shell.ShellPredefinedCommands] predefined_commands.remove(shell.ShellPredefinedCommands.EXIT) _globals = globals() _globals["p"] = rich_print _globals["i"] = rich.inspect shell_instance = shell.Shell( # prompt="[bright_green]BakalariAPI Shell[/bright_green][yellow]>[/yellow]", prompt="BakalariAPI Shell>", allow_python_exec=True, python_exec_prefix=" ", python_exec_globals=_globals, python_exec_locals=locals(), predefined_commands=predefined_commands, command_exception_traceback=True, command_exception_traceback_locals=True, command_exception_reraise=False, raise_on_ctrlc=True, end_on_ctrlc=True, dummy_shell="exit" in args.commands, ) parser_fresh = shell.ShellArgumentParser(add_help=False) parser_fresh.add_argument( "-f", "--fresh", help="Pokud je tato flaga přítomna, vynutí se získání dat ze serveru", default=False, action="store_true", dest="force_fresh", ) parser = shell.ShellArgumentParser(parents=[parser_fresh]) parser.add_argument( "limit", type=int, nargs="?", default=None, help="Limituje počet zpráv, které se načtou a tím i zrychlí proces", ) shell_instance.add_command( shell.Command( "komens", Command_Komens, short_help="Zobrazí komens zprávy", argparser=parser, spread_arguments=True, aliases=["zpravy"], ) ) shell_instance.add_command( shell.Command( "znamky", Command_Znamky, short_help="Zobrazí známky", argparser=shell.ShellArgumentParser(parents=[parser_fresh]), ) ) shell_instance.add_command( shell.Command( "schuzky", Command_Schuzky, short_help="Zobrazí (nadcházející) schůzky", argparser=shell.ShellArgumentParser(parents=[parser_fresh]), ) ) shell_instance.add_command( shell.Command( "studenti", Command_Studenti, short_help="Zobrazí studenty", argparser=shell.ShellArgumentParser(parents=[parser_fresh]), ) ) parser = shell.ShellArgumentParser() parser.add_argument("ID", help="ID testu, který se má spustit") shell_instance.add_command( shell.Command( "test", RunTest, argparser=parser, short_help="Spustí daný test", spread_arguments=True, ) ) parser = shell.ShellArgumentParser(parents=[parser_fresh]) parser.add_argument( "-s", "--slow", help="Pokud je tato flaga přítomna, úkoly budou získány v 'pomalém módu'", action="store_false", dest="fast", default=True, ) shell_instance.add_command( shell.Command( "ukoly", Command_Ukoly, argparser=parser, short_help="Zobrazí úkoly", spread_arguments=True, ) ) shell_instance.add_command( shell.Command( "server", ServerInfo, short_help="Zobrazí informace o serveru", ) ) parser = shell.ShellArgumentParser() parser.add_argument( "-f", "--force", help="Pokud je tato flaga přítomna, neprovede se odlášení sessionů a aplikace se tedy rychleji ukončí", action="store_false", default=True, dest="nice", ) shell_instance.add_command( shell.Command( "exit", Command_Konec, argparser=parser, short_help="Ukončí shell", spread_arguments=True, ) ) parser = shell.ShellArgumentParser() parser.add_argument( "file_name", nargs="?", help="ID/jméno exportu", default="main", metavar="ID", ) shell_instance.add_command( shell.Command( "export", Command_Export, argparser=parser, short_help="Exportuje data z daného souboru", spread_arguments=True, ) ) parser = shell.ShellArgumentParser() parser.add_argument( "file_name", nargs="?", help="ID/jméno importu", default="main", metavar="ID", ) shell_instance.add_command( shell.Command( "import", Command_Import, argparser=parser, short_help="Importuje data z daného souboru", spread_arguments=True, ) ) shell_instance.add_command( shell.Command("init", Init, short_help="Provede (opětovnou) inicializaci") ) parser = shell.ShellArgumentParser() subparsers = parser.add_subparsers( required=True, metavar="příkaz", dest="cmd", parser_class=shell.ShellArgumentParser, ) subparsers.add_parser( "show", help="Zobrazí uloženou konfiguraci", ) subparsers.add_parser( "save", help="Uloží současnou konfiguraci", ) subparsers.add_parser( "remove", help="Odstraní uloženou konfiguraci", ) subparsers.add_parser( "check", help="Zobrazí údaje o uložené konfiguraci", ) subparsers.add_parser( "open", help="Otevře konfigurační složku", ) shell_instance.add_command( shell.Command( "config", Command_Config, argparser=parser, short_help="Příkaz na práci s uloženou konfigurací", spread_arguments=False, ) ) if __name__ == "__main__": main()
[ "os.remove", "argparse.ArgumentParser", "typing.cast", "rich.traceback.install", "logging.getLevelName", "os.path.join", "rich.logging.RichHandler", "traceback.print_exc", "warnings.simplefilter", "shell.Command", "bakalariapi.BakalariAPI", "os.path.dirname", "prompt_toolkit.input.create_input", "os.path.exists", "warnings.catch_warnings", "inspect.signature", "datetime.timedelta", "platformdirs.PlatformDirs", "rich.progress.Progress", "datetime.datetime.now", "json.dump", "bakalariapi.modules.meetings.getter_future_meetings_ids", "os.stat", "os.path.realpath", "time.sleep", "dataclasses.field", "datetime.datetime", "rich.progress.BarColumn", "bakalariapi.modules.komens.getter_komens_ids", "datetime.datetime.fromtimestamp", "rich.console.Console", "rich.get_console", "webbrowser.open", "json.load", "shell.ShellArgumentParser", "warnings.filterwarnings", "getpass.getpass", "asyncio.Event", "bakalariapi.utils.parseHTML", "bakalariapi.looting.Looting", "rich.progress.TimeRemainingColumn", "logging.getLogger" ]
[((1762, 1790), 'rich.traceback.install', 'tb_install', ([], {'show_locals': '(True)'}), '(show_locals=True)\n', (1772, 1790), True, 'from rich.traceback import install as tb_install\n'), ((1872, 1965), 'platformdirs.PlatformDirs', 'platformdirs.PlatformDirs', ([], {'appauthor': '"""BakalariAPI"""', 'appname': '"""bakalarishell"""', 'roaming': '(True)'}), "(appauthor='BakalariAPI', appname='bakalarishell',\n roaming=True)\n", (1897, 1965), False, 'import platformdirs\n'), ((2399, 2426), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (2404, 2426), False, 'from dataclasses import dataclass, field\n'), ((9897, 9912), 'asyncio.Event', 'asyncio.Event', ([], {}), '()\n', (9910, 9912), False, 'import asyncio\n'), ((9924, 9938), 'prompt_toolkit.input.create_input', 'create_input', ([], {}), '()\n', (9936, 9938), False, 'from prompt_toolkit.input import create_input\n'), ((10698, 10736), 'os.path.join', 'os.path.join', (['dirs.user_data_dir', 'file'], {}), '(dirs.user_data_dir, file)\n', (10710, 10736), False, 'import os\n'), ((12362, 12428), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'InsecureRequestWarning'}), "('ignore', category=InsecureRequestWarning)\n", (12385, 12428), False, 'import warnings\n'), ((28317, 28346), 'bakalariapi.looting.Looting', 'bakalariapi.looting.Looting', ([], {}), '()\n', (28344, 28346), False, 'import bakalariapi\n'), ((33335, 33501), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Shell integrující funkcionalitu BakalářiAPI"""', 'epilog': '"""Ano, ano, ano... Actually je to web scraper, ale API zní líp :)"""'}), "(description=\n 'Shell integrující funkcionalitu BakalářiAPI', epilog=\n 'Ano, ano, ano... Actually je to web scraper, ale API zní líp :)')\n", (33358, 33501), False, 'import argparse\n'), ((38211, 38284), 'bakalariapi.BakalariAPI', 'bakalariapi.BakalariAPI', (['args.url', 'args.username', 'args.password', 'selenium'], {}), '(args.url, args.username, args.password, selenium)\n', (38234, 38284), False, 'import bakalariapi\n'), ((47098, 47139), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {'add_help': '(False)'}), '(add_help=False)\n', (47123, 47139), False, 'import shell\n'), ((47383, 47432), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {'parents': '[parser_fresh]'}), '(parents=[parser_fresh])\n', (47408, 47432), False, 'import shell\n'), ((48625, 48652), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {}), '()\n', (48650, 48652), False, 'import shell\n'), ((48954, 49003), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {'parents': '[parser_fresh]'}), '(parents=[parser_fresh])\n', (48979, 49003), False, 'import shell\n'), ((49631, 49658), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {}), '()\n', (49656, 49658), False, 'import shell\n'), ((50143, 50170), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {}), '()\n', (50168, 50170), False, 'import shell\n'), ((50578, 50605), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {}), '()\n', (50603, 50605), False, 'import shell\n'), ((51135, 51162), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {}), '()\n', (51160, 51162), False, 'import shell\n'), ((3657, 3675), 'rich.get_console', 'rich.get_console', ([], {}), '()\n', (3673, 3675), False, 'import rich\n'), ((3697, 3715), 'rich.console.Console', 'Console', ([], {'file': 'file'}), '(file=file)\n', (3704, 3715), False, 'from rich.console import Console\n'), ((10934, 10954), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (10948, 10954), False, 'import os\n'), ((11449, 11486), 'json.dump', 'json.dump', (['args.__dict__', 'f'], {'indent': '(4)'}), '(args.__dict__, f, indent=4)\n', (11458, 11486), False, 'import json\n'), ((24852, 24879), 'os.path.exists', 'os.path.exists', (['config_path'], {}), '(config_path)\n', (24866, 24879), False, 'import os\n'), ((47657, 47797), 'shell.Command', 'shell.Command', (['"""komens"""', 'Command_Komens'], {'short_help': '"""Zobrazí komens zprávy"""', 'argparser': 'parser', 'spread_arguments': '(True)', 'aliases': "['zpravy']"}), "('komens', Command_Komens, short_help='Zobrazí komens zprávy',\n argparser=parser, spread_arguments=True, aliases=['zpravy'])\n", (47670, 47797), False, 'import shell\n'), ((48761, 48868), 'shell.Command', 'shell.Command', (['"""test"""', 'RunTest'], {'argparser': 'parser', 'short_help': '"""Spustí daný test"""', 'spread_arguments': '(True)'}), "('test', RunTest, argparser=parser, short_help=\n 'Spustí daný test', spread_arguments=True)\n", (48774, 48868), False, 'import shell\n'), ((49263, 49374), 'shell.Command', 'shell.Command', (['"""ukoly"""', 'Command_Ukoly'], {'argparser': 'parser', 'short_help': '"""Zobrazí úkoly"""', 'spread_arguments': '(True)'}), "('ukoly', Command_Ukoly, argparser=parser, short_help=\n 'Zobrazí úkoly', spread_arguments=True)\n", (49276, 49374), False, 'import shell\n'), ((49487, 49564), 'shell.Command', 'shell.Command', (['"""server"""', 'ServerInfo'], {'short_help': '"""Zobrazí informace o serveru"""'}), "('server', ServerInfo, short_help='Zobrazí informace o serveru')\n", (49500, 49564), False, 'import shell\n'), ((49948, 50057), 'shell.Command', 'shell.Command', (['"""exit"""', 'Command_Konec'], {'argparser': 'parser', 'short_help': '"""Ukončí shell"""', 'spread_arguments': '(True)'}), "('exit', Command_Konec, argparser=parser, short_help=\n 'Ukončí shell', spread_arguments=True)\n", (49961, 50057), False, 'import shell\n'), ((50361, 50492), 'shell.Command', 'shell.Command', (['"""export"""', 'Command_Export'], {'argparser': 'parser', 'short_help': '"""Exportuje data z daného souboru"""', 'spread_arguments': '(True)'}), "('export', Command_Export, argparser=parser, short_help=\n 'Exportuje data z daného souboru', spread_arguments=True)\n", (50374, 50492), False, 'import shell\n'), ((50796, 50927), 'shell.Command', 'shell.Command', (['"""import"""', 'Command_Import'], {'argparser': 'parser', 'short_help': '"""Importuje data z daného souboru"""', 'spread_arguments': '(True)'}), "('import', Command_Import, argparser=parser, short_help=\n 'Importuje data z daného souboru', spread_arguments=True)\n", (50809, 50927), False, 'import shell\n'), ((51040, 51114), 'shell.Command', 'shell.Command', (['"""init"""', 'Init'], {'short_help': '"""Provede (opětovnou) inicializaci"""'}), "('init', Init, short_help='Provede (opětovnou) inicializaci')\n", (51053, 51114), False, 'import shell\n'), ((51844, 51983), 'shell.Command', 'shell.Command', (['"""config"""', 'Command_Config'], {'argparser': 'parser', 'short_help': '"""Příkaz na práci s uloženou konfigurací"""', 'spread_arguments': '(False)'}), "('config', Command_Config, argparser=parser, short_help=\n 'Příkaz na práci s uloženou konfigurací', spread_arguments=False)\n", (51857, 51983), False, 'import shell\n'), ((11042, 11063), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (11057, 11063), False, 'import os\n'), ((11717, 11768), 'typing.cast', 'cast', (['bakalariapi.sessions.RequestsSession', 'args[0]'], {}), '(bakalariapi.sessions.RequestsSession, args[0])\n', (11721, 11768), False, 'from typing import IO, TYPE_CHECKING, Any, Callable, cast\n'), ((14228, 14254), 'getpass.getpass', 'getpass.getpass', (['"""Heslo: """'], {}), "('Heslo: ')\n", (14243, 14254), False, 'import getpass\n'), ((16005, 16030), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (16028, 16030), False, 'import warnings\n'), ((16152, 16183), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (16173, 16183), False, 'import warnings\n'), ((18024, 18034), 'rich.progress.Progress', 'Progress', ([], {}), '()\n', (18032, 18034), False, 'from rich.progress import BarColumn, Progress, TaskID, TimeRemainingColumn\n'), ((20037, 20047), 'rich.progress.Progress', 'Progress', ([], {}), '()\n', (20045, 20047), False, 'from rich.progress import BarColumn, Progress, TaskID, TimeRemainingColumn\n'), ((30301, 30311), 'rich.progress.Progress', 'Progress', ([], {}), '()\n', (30309, 30311), False, 'from rich.progress import BarColumn, Progress, TaskID, TimeRemainingColumn\n'), ((32624, 32637), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (32634, 32637), False, 'import time\n'), ((33286, 33298), 'json.load', 'json.load', (['f'], {}), '(f)\n', (33295, 33298), False, 'import json\n'), ((37563, 37603), 'logging.getLevelName', 'logging.getLevelName', (['logging.root.level'], {}), '(logging.root.level)\n', (37583, 37603), False, 'import logging\n'), ((25166, 25193), 'os.path.exists', 'os.path.exists', (['config_path'], {}), '(config_path)\n', (25180, 25193), False, 'import os\n'), ((26613, 26634), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (26632, 26634), False, 'import traceback\n'), ((37688, 37711), 'logging.getLogger', 'logging.getLogger', (['name'], {}), '(name)\n', (37705, 37711), False, 'import logging\n'), ((42736, 42750), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (42748, 42750), False, 'from datetime import datetime, timedelta\n'), ((48051, 48100), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {'parents': '[parser_fresh]'}), '(parents=[parser_fresh])\n', (48076, 48100), False, 'import shell\n'), ((48304, 48353), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {'parents': '[parser_fresh]'}), '(parents=[parser_fresh])\n', (48329, 48353), False, 'import shell\n'), ((48545, 48594), 'shell.ShellArgumentParser', 'shell.ShellArgumentParser', ([], {'parents': '[parser_fresh]'}), '(parents=[parser_fresh])\n', (48570, 48594), False, 'import shell\n'), ((11789, 11809), 'inspect.signature', 'inspect.signature', (['f'], {}), '(f)\n', (11806, 11809), False, 'import inspect\n'), ((25207, 25229), 'os.remove', 'os.remove', (['config_path'], {}), '(config_path)\n', (25216, 25229), False, 'import os\n'), ((25400, 25427), 'os.path.exists', 'os.path.exists', (['config_path'], {}), '(config_path)\n', (25414, 25427), False, 'import os\n'), ((27855, 27868), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (27865, 27868), False, 'import time\n'), ((30031, 30048), 'datetime.datetime', 'datetime', (['(1)', '(1)', '(1)'], {}), '(1, 1, 1)\n', (30039, 30048), False, 'from datetime import datetime, timedelta\n'), ((30050, 30084), 'datetime.datetime', 'datetime', (['(9999)', '(12)', '(31)', '(23)', '(59)', '(59)'], {}), '(9999, 12, 31, 23, 59, 59)\n', (30058, 30084), False, 'from datetime import datetime, timedelta\n'), ((37429, 37442), 'rich.logging.RichHandler', 'RichHandler', ([], {}), '()\n', (37440, 37442), False, 'from rich.logging import RichHandler\n'), ((6712, 6731), 'datetime.timedelta', 'timedelta', ([], {'hours': '(-1)'}), '(hours=-1)\n', (6721, 6731), False, 'from datetime import datetime, timedelta\n'), ((7204, 7233), 'webbrowser.open', 'webbrowser.open', (['obj.join_url'], {}), '(obj.join_url)\n', (7219, 7233), False, 'import webbrowser\n'), ((20244, 20304), 'bakalariapi.modules.meetings.getter_future_meetings_ids', 'bakalariapi.modules.meetings.getter_future_meetings_ids', (['api'], {}), '(api)\n', (20299, 20304), False, 'import bakalariapi\n'), ((25445, 25465), 'os.stat', 'os.stat', (['config_path'], {}), '(config_path)\n', (25452, 25465), False, 'import os\n'), ((25769, 25797), 'os.path.dirname', 'os.path.dirname', (['config_path'], {}), '(config_path)\n', (25784, 25797), False, 'import os\n'), ((25835, 25858), 'os.path.exists', 'os.path.exists', (['dirname'], {}), '(dirname)\n', (25849, 25858), False, 'import os\n'), ((41412, 41423), 'rich.progress.BarColumn', 'BarColumn', ([], {}), '()\n', (41421, 41423), False, 'from rich.progress import BarColumn, Progress, TaskID, TimeRemainingColumn\n'), ((41567, 41588), 'rich.progress.TimeRemainingColumn', 'TimeRemainingColumn', ([], {}), '()\n', (41586, 41588), False, 'from rich.progress import BarColumn, Progress, TaskID, TimeRemainingColumn\n'), ((42838, 42852), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (42850, 42852), False, 'from datetime import datetime, timedelta\n'), ((45653, 45667), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (45665, 45667), False, 'from datetime import datetime, timedelta\n'), ((6795, 6815), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(5)'}), '(minutes=5)\n', (6804, 6815), False, 'from datetime import datetime, timedelta\n'), ((7283, 7292), 'rich.console.Console', 'Console', ([], {}), '()\n', (7290, 7292), False, 'from rich.console import Console\n'), ((18229, 18278), 'bakalariapi.modules.komens.getter_komens_ids', 'bakalariapi.modules.komens.getter_komens_ids', (['api'], {}), '(api)\n', (18273, 18278), False, 'import bakalariapi\n'), ((40465, 40525), 'bakalariapi.modules.meetings.getter_future_meetings_ids', 'bakalariapi.modules.meetings.getter_future_meetings_ids', (['api'], {}), '(api)\n', (40520, 40525), False, 'import bakalariapi\n'), ((44096, 44108), 'datetime.timedelta', 'timedelta', (['(2)'], {}), '(2)\n', (44105, 44108), False, 'from datetime import datetime, timedelta\n'), ((6882, 6903), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(30)'}), '(minutes=30)\n', (6891, 6903), False, 'from datetime import datetime, timedelta\n'), ((25888, 25913), 'os.path.realpath', 'os.path.realpath', (['dirname'], {}), '(dirname)\n', (25904, 25913), False, 'import os\n'), ((43049, 43061), 'datetime.timedelta', 'timedelta', (['(5)'], {}), '(5)\n', (43058, 43061), False, 'from datetime import datetime, timedelta\n'), ((45064, 45076), 'datetime.timedelta', 'timedelta', (['(5)'], {}), '(5)\n', (45073, 45076), False, 'from datetime import datetime, timedelta\n'), ((8235, 8244), 'rich.console.Console', 'Console', ([], {}), '()\n', (8242, 8244), False, 'from rich.console import Console\n'), ((17202, 17216), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (17214, 17216), False, 'from datetime import datetime, timedelta\n'), ((25541, 25575), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['s.st_mtime'], {}), '(s.st_mtime)\n', (25563, 25575), False, 'from datetime import datetime, timedelta\n'), ((39836, 39848), 'datetime.timedelta', 'timedelta', (['(5)'], {}), '(5)\n', (39845, 39848), False, 'from datetime import datetime, timedelta\n'), ((7328, 7350), 'bakalariapi.utils.parseHTML', 'parseHTML', (['obj.content'], {}), '(obj.content)\n', (7337, 7350), False, 'from bakalariapi.utils import cs_timedelta, parseHTML\n'), ((8280, 8302), 'bakalariapi.utils.parseHTML', 'parseHTML', (['obj.content'], {}), '(obj.content)\n', (8289, 8302), False, 'from bakalariapi.utils import cs_timedelta, parseHTML\n')]
import json import codecs import pandas as pd import boto3 csv_path = "./fixed_tweets.csv" save_path = "./fixed_tweets.json" df = pd.read_csv(csv_path, header=None, encoding = "utf-8") df.columns =["tweet"] df_json = df.to_dict(orient='records') resource = boto3.resource('dynamodb', region_name='ap-northeast-1') # Connect to the DynamoDB table table = resource.Table('konomania-tweet') # Load the JSON object created in the step 3 using put_item method for i, tweet in enumerate(df_json): if i > 1: break tweet["id"] = i table.put_item(Item=tweet) # Test # response = table.get_item(Key={'seat_no': 'A 314216'}) # response
[ "pandas.read_csv", "boto3.resource" ]
[((133, 185), 'pandas.read_csv', 'pd.read_csv', (['csv_path'], {'header': 'None', 'encoding': '"""utf-8"""'}), "(csv_path, header=None, encoding='utf-8')\n", (144, 185), True, 'import pandas as pd\n'), ((261, 317), 'boto3.resource', 'boto3.resource', (['"""dynamodb"""'], {'region_name': '"""ap-northeast-1"""'}), "('dynamodb', region_name='ap-northeast-1')\n", (275, 317), False, 'import boto3\n')]
"""Authentication routes.""" from __future__ import annotations from flask import g from flask_accept import accept_fallback from keeper.api import api from keeper.auth import password_auth from keeper.logutils import log_route from ._models import AuthTokenResponse @api.route("/token") @accept_fallback @log_route() @password_auth.login_required def get_auth_token() -> str: """Obtain a token for API users. **Example request** .. code-block:: http GET /token HTTP/1.1 Accept: */* Accept-Encoding: gzip, deflate Authorization: Basic dXNlcjpwYXNz Connection: keep-alive Host: localhost:5000 User-Agent: HTTPie/0.9.3 **Example response** .. code-block:: http HTTP/1.0 200 OK Content-Length: 139 Content-Type: application/json Date: Tue, 09 Feb 2016 20:23:11 GMT Server: Werkzeug/0.11.3 Python/3.5.0 { "token": "<KEY>..." } :reqheader Authorization: ``username:password`` :>json string token: Token string. Use this token in the basic auth ``username`` field. :statuscode 200: No errors. :statuscode 401: Not authenticated. """ return AuthTokenResponse(token=g.user.generate_auth_token()).json()
[ "keeper.logutils.log_route", "keeper.api.api.route", "flask.g.user.generate_auth_token" ]
[((274, 293), 'keeper.api.api.route', 'api.route', (['"""/token"""'], {}), "('/token')\n", (283, 293), False, 'from keeper.api import api\n'), ((312, 323), 'keeper.logutils.log_route', 'log_route', ([], {}), '()\n', (321, 323), False, 'from keeper.logutils import log_route\n'), ((1250, 1278), 'flask.g.user.generate_auth_token', 'g.user.generate_auth_token', ([], {}), '()\n', (1276, 1278), False, 'from flask import g\n')]
""" Test princomp extraction from CLI """ import argparse import os import numpy as np from demo_utils import get_random_data from hebbnets.networks import MultilayerHahNetwork np.set_printoptions(suppress=True) def _argparse(): parser = argparse.ArgumentParser( prog="Testing HebbNet principal components", description="Testing HebbNet principal components by decomposing random data" ) parser.add_argument( "--num_samples", help="Number of samples for synthetic data", default=25, type=int, required=False ) parser.add_argument( "--data_dimension", help="Dimension of synthetic data", default=100, type=int, required=False ) parser.add_argument( "--data_latent_dimension", help="Latent dimension of synthetic data", default=3, type=int, required=False ) parser.add_argument( "--num_pc", help="Number of principle components to extract", default=2, type=int, required=False ) return parser.parse_args() def get_top_princomps(data_array, num_pcs): U, S, V = np.linalg.svd(np.array(data_array)) _idx = np.argsort(S)[-num_pcs:] return V[_idx, :].T def main(args): # Make data demo_data = get_random_data( args.num_samples, args.data_dimension, latent_dim=args.data_latent_dimension ) # Build/train network hah_network = MultilayerHahNetwork( args.data_dimension, [args.num_pc], has_bias=False, act_type='linear', ) hah_network.train(demo_data, num_epochs=1000) # Build/train network real_princomps = get_top_princomps(demo_data, args.num_pc) hebb_princomps = np.squeeze(hah_network.layers[0].input_weights) hebb_princomps /= np.linalg.norm(hebb_princomps, axis=0, keepdims=True) # Show the inner product of top two PCs with learned input weights inner_prod_mat = real_princomps.T.matmul(hebb_princomps) prod_as_string = np.array_str( inner_prod_mat, suppress_small=True, precision=4 ) print(np.array_str(inner_prod_mat, precision=4)) if __name__ == "__main__": args = _argparse() main(args)
[ "numpy.set_printoptions", "demo_utils.get_random_data", "argparse.ArgumentParser", "hebbnets.networks.MultilayerHahNetwork", "numpy.array_str", "numpy.argsort", "numpy.linalg.norm", "numpy.array", "numpy.squeeze" ]
[((186, 220), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (205, 220), True, 'import numpy as np\n'), ((254, 410), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""Testing HebbNet principal components"""', 'description': '"""Testing HebbNet principal components by decomposing random data"""'}), "(prog='Testing HebbNet principal components',\n description=\n 'Testing HebbNet principal components by decomposing random data')\n", (277, 410), False, 'import argparse\n'), ((1348, 1446), 'demo_utils.get_random_data', 'get_random_data', (['args.num_samples', 'args.data_dimension'], {'latent_dim': 'args.data_latent_dimension'}), '(args.num_samples, args.data_dimension, latent_dim=args.\n data_latent_dimension)\n', (1363, 1446), False, 'from demo_utils import get_random_data\n'), ((1517, 1612), 'hebbnets.networks.MultilayerHahNetwork', 'MultilayerHahNetwork', (['args.data_dimension', '[args.num_pc]'], {'has_bias': '(False)', 'act_type': '"""linear"""'}), "(args.data_dimension, [args.num_pc], has_bias=False,\n act_type='linear')\n", (1537, 1612), False, 'from hebbnets.networks import MultilayerHahNetwork\n'), ((1810, 1857), 'numpy.squeeze', 'np.squeeze', (['hah_network.layers[0].input_weights'], {}), '(hah_network.layers[0].input_weights)\n', (1820, 1857), True, 'import numpy as np\n'), ((1880, 1933), 'numpy.linalg.norm', 'np.linalg.norm', (['hebb_princomps'], {'axis': '(0)', 'keepdims': '(True)'}), '(hebb_princomps, axis=0, keepdims=True)\n', (1894, 1933), True, 'import numpy as np\n'), ((2089, 2151), 'numpy.array_str', 'np.array_str', (['inner_prod_mat'], {'suppress_small': '(True)', 'precision': '(4)'}), '(inner_prod_mat, suppress_small=True, precision=4)\n', (2101, 2151), True, 'import numpy as np\n'), ((1215, 1235), 'numpy.array', 'np.array', (['data_array'], {}), '(data_array)\n', (1223, 1235), True, 'import numpy as np\n'), ((1248, 1261), 'numpy.argsort', 'np.argsort', (['S'], {}), '(S)\n', (1258, 1261), True, 'import numpy as np\n'), ((2193, 2234), 'numpy.array_str', 'np.array_str', (['inner_prod_mat'], {'precision': '(4)'}), '(inner_prod_mat, precision=4)\n', (2205, 2234), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ ## Author: <NAME> ## Copyright: Copyright 2018-2019, Packt Publishing Limited ## Version: 0.0.1 ## Maintainer: <NAME> ## Email: <EMAIL> ## Linkedin: https://www.linkedin.com/in/linus1/ ## Contributor : {if you debug, append your name here} ## Contributor Email : {if you debug, append your email here} ## Status: active """ import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures np.random.seed(0) def true_fun(X): """ given X it will provide its mapping to Y by sing function np.cos(1.5 * np.pi * X) :param X: :return: """ return np.cos(1.5 * np.pi * X) if __name__ == '__main__': n_samples = 30 degrees = [1, 3, 9, 15] X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): """ Evaluating and plotting for each degree of freedom """ ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using cross-validation scores = cross_val_score(pipeline, X[:, np.newaxis], y, scoring="neg_mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) # predicting on test data plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") # plotting the True and predicted function plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, edgecolor='b', s=20, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\n TEST MSE = {:.2e}".format( degrees[i], -scores.mean())) plt.show()
[ "matplotlib.pyplot.xlim", "sklearn.pipeline.Pipeline", "numpy.random.seed", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "numpy.random.randn", "sklearn.model_selection.cross_val_score", "matplotlib.pyplot.scatter", "matplotlib.pyplot.legend", "matplotlib.pyplot.setp", "sklearn.linear_model.LinearRegression", "sklearn.preprocessing.PolynomialFeatures", "matplotlib.pyplot.figure", "numpy.cos", "numpy.linspace", "numpy.random.rand", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((618, 635), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (632, 635), True, 'import numpy as np\n'), ((804, 827), 'numpy.cos', 'np.cos', (['(1.5 * np.pi * X)'], {}), '(1.5 * np.pi * X)\n', (810, 827), True, 'import numpy as np\n'), ((1018, 1045), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 5)'}), '(figsize=(14, 5))\n', (1028, 1045), True, 'import matplotlib.pyplot as plt\n'), ((2428, 2438), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2436, 2438), True, 'import matplotlib.pyplot as plt\n'), ((928, 953), 'numpy.random.rand', 'np.random.rand', (['n_samples'], {}), '(n_samples)\n', (942, 953), True, 'import numpy as np\n'), ((1226, 1260), 'matplotlib.pyplot.setp', 'plt.setp', (['ax'], {'xticks': '()', 'yticks': '()'}), '(ax, xticks=(), yticks=())\n', (1234, 1260), True, 'import matplotlib.pyplot as plt\n'), ((1294, 1351), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'degree': 'degrees[i]', 'include_bias': '(False)'}), '(degree=degrees[i], include_bias=False)\n', (1312, 1351), False, 'from sklearn.preprocessing import PolynomialFeatures\n'), ((1431, 1449), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (1447, 1449), False, 'from sklearn.linear_model import LinearRegression\n'), ((1470, 1573), 'sklearn.pipeline.Pipeline', 'Pipeline', (["[('polynomial_features', polynomial_features), ('linear_regression',\n linear_regression)]"], {}), "([('polynomial_features', polynomial_features), (\n 'linear_regression', linear_regression)])\n", (1478, 1573), False, 'from sklearn.pipeline import Pipeline\n'), ((1716, 1808), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['pipeline', 'X[:, np.newaxis]', 'y'], {'scoring': '"""neg_mean_squared_error"""', 'cv': '(10)'}), "(pipeline, X[:, np.newaxis], y, scoring=\n 'neg_mean_squared_error', cv=10)\n", (1731, 1808), False, 'from sklearn.model_selection import cross_val_score\n'), ((1858, 1880), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (1869, 1880), True, 'import numpy as np\n'), ((2131, 2186), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X', 'y'], {'edgecolor': '"""b"""', 's': '(20)', 'label': '"""Samples"""'}), "(X, y, edgecolor='b', s=20, label='Samples')\n", (2142, 2186), True, 'import matplotlib.pyplot as plt\n'), ((2196, 2211), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (2206, 2211), True, 'import matplotlib.pyplot as plt\n'), ((2221, 2236), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (2231, 2236), True, 'import matplotlib.pyplot as plt\n'), ((2246, 2262), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0, 1)'], {}), '((0, 1))\n', (2254, 2262), True, 'import matplotlib.pyplot as plt\n'), ((2272, 2289), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-2, 2)'], {}), '((-2, 2))\n', (2280, 2289), True, 'import matplotlib.pyplot as plt\n'), ((2299, 2321), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (2309, 2321), True, 'import matplotlib.pyplot as plt\n'), ((978, 1004), 'numpy.random.randn', 'np.random.randn', (['n_samples'], {}), '(n_samples)\n', (993, 1004), True, 'import numpy as np\n')]
import numpy as np import argparse from utils import Audio def sample_wav_audio(path): audio = Audio() mel = audio.audio_to_mel(path) samples = audio.mel_sample(mel, width=128, k=5) return samples def save_embeddings(name, samples): audio = Audio() avg_embed = np.zeros(256, dtype=np.float32) for mel in samples: embed = audio.mel_to_embed(mel) avg_embed += embed avg_embed = avg_embed / 5 np.save(f'./embeddings/{name}.npy', avg_embed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path', action='store', type=str, required=True) parser.add_argument('--name', action='store', type=str, required=True) args = parser.parse_args() samples = sample_wav_audio(args.path) save_embeddings(args.name, samples)
[ "utils.Audio", "numpy.save", "numpy.zeros", "argparse.ArgumentParser" ]
[((100, 107), 'utils.Audio', 'Audio', ([], {}), '()\n', (105, 107), False, 'from utils import Audio\n'), ((263, 270), 'utils.Audio', 'Audio', ([], {}), '()\n', (268, 270), False, 'from utils import Audio\n'), ((287, 318), 'numpy.zeros', 'np.zeros', (['(256)'], {'dtype': 'np.float32'}), '(256, dtype=np.float32)\n', (295, 318), True, 'import numpy as np\n'), ((448, 494), 'numpy.save', 'np.save', (['f"""./embeddings/{name}.npy"""', 'avg_embed'], {}), "(f'./embeddings/{name}.npy', avg_embed)\n", (455, 494), True, 'import numpy as np\n'), ((536, 561), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (559, 561), False, 'import argparse\n')]
import argparse import logging import os import pickle import random import ujson import sys import math from ctypes import c_ulong from multiprocessing import Array, Queue from multiprocessing.sharedctypes import RawArray from queue import Empty from time import time import numpy as np import resource from scipy.sparse import csr_matrix from sklearn.metrics import accuracy_score, precision_recall_fscore_support from sklearn.metrics.pairwise import cosine_similarity from data.bug_report_database import BugReportDatabase from data.preprocessing import concatenateSummaryAndDescription from experiments.sparse_vector import TokenizerStemmer from nltk import TreebankWordTokenizer, SnowballStemmer from sklearn.feature_extraction.text import TfidfVectorizer def loadData(filePath): f = open(filePath, 'r') bugIds = set() duplicateByBugId = {} pairs = [] for l in f: l = l.strip() if len(l) == 0: break bug1Id, bug2Id, label = l.split(',') label = int(label) pairs.append((bug1Id, bug2Id, label)) bugIds.add(bug1Id) bugIds.add(bug2Id) if label == 1: duplicateBug1List = duplicateByBugId.get(bug1Id, set()) if len(duplicateBug1List) == 0: duplicateByBugId[bug1Id] = duplicateBug1List duplicateBug1List.add(bug2Id) duplicateBug2List = duplicateByBugId.get(bug2Id, set()) if len(duplicateBug2List) == 0: duplicateByBugId[bug2Id] = duplicateBug2List duplicateBug2List.add(bug1Id) return bugIds, duplicateByBugId, pairs, ujson.loads(f.readline())['validations'] class Obj(object): def __init__(self, dict): for k, v in dict.items(): setattr(self, k, v) def predictDeepLearningModel(bugEmbeddingsById, validationPairs): batchSize = 1024 predictions = [] nBatches = math.ceil(float(len(validationPairs)) / batchSize) firstBugPairs = [] secondBugPairs = [] for bug1, bug2 in validationPairs: firstBugPairs.append(bugEmbeddingsById[bug1]) secondBugPairs.append(bugEmbeddingsById[bug2]) for batchIdx in range(nBatches): batchStart = batchIdx * batchSize bug1s = getVariable(torch.stack(firstBugPairs[batchStart: batchStart + batchSize]), args.cuda) bug2s = getVariable(torch.stack(secondBugPairs[batchStart: batchStart + batchSize]), args.cuda) if arguments.model == 'retrieval': predictionInput = [bug1s, bug2s] elif arguments.model == 'classification': predictionInput = model[1](bug1s, bug2s) output = predictionFunction(predictionInput).data.cpu().numpy() for pr in output: if isinstance(pr, (np.float32, np.uint8)): predictions.append(pr) else: predictions.append(pr[-1]) return predictions def parallel(start, duplicateBugs, q): logger = logging.getLogger() c = time() logger.info( "Process %s started to compute the similarity for %d duplicate bugs. Start idx: %d" % (os.getpid(), len(duplicateBugs), start)) for i, db in enumerate(duplicateBugs): q.put([start + i, calculateSimiliratyScoreTFIDF(str(db), vectorByBug, bugIds)]) if i % 20 == 0 and i != 0: logger.info("TF-IDF: Process %s processed %d Duplicate bug of %d in %f" % ( os.getpid(), i, len(duplicateBugs), time() - c)) c = time() q.put([-1, None]) def calculateSimiliratyScoreTFIDF(duplicateBug, vectorByBug, bugIds): batchSize = 1024 nPairs = len(bugIds) nBatches = math.ceil(float(nPairs) / batchSize) bugEmbedding1 = vectorByBug[duplicateBug] similarityScores = [] nbDim = bugEmbedding1.shape[1] for batchIdx in range(nBatches): batchStart = batchIdx * batchSize data1 = [] indices1 = [] ptrs1 = [0] data2 = [] indices2 = [] ptrs2 = [0] for otherBug in bugIds[batchStart: batchStart + batchSize]: data1.extend(bugEmbedding1.data) indices1.extend(bugEmbedding1.indices) ptrs1.append(len(indices1)) bugEmbedding2 = vectorByBug[otherBug] data2.extend(bugEmbedding2.data) indices2.extend(bugEmbedding2.indices) ptrs2.append(len(indices2)) matrix1 = csr_matrix((data1, indices1, ptrs1), shape=(len(ptrs1) - 1, nbDim)) matrix2 = csr_matrix((data2, indices2, ptrs2), shape=(len(ptrs2) - 1, nbDim)) score = cosine_similarity(matrix1, matrix2) for i in range(score.shape[0]): similarityScores.append(score[i][i]) return similarityScores def predictTFIDF(pairs): batchSize = 8192 nPairs = len(pairs) nBatches = math.ceil(float(nPairs) / batchSize) similarityScores = [] for batchIdx in range(nBatches): batchStart = batchIdx * batchSize data1 = [] indices1 = [] ptrs1 = [0] data2 = [] indices2 = [] ptrs2 = [0] for bug1, bug2 in pairs[batchStart: batchStart + batchSize]: bugEmbedding1 = vectorByBug[bug1] data1.extend(bugEmbedding1.data) indices1.extend(bugEmbedding1.indices) ptrs1.append(len(indices1)) bugEmbedding2 = vectorByBug[bug2] data2.extend(bugEmbedding2.data) indices2.extend(bugEmbedding2.indices) ptrs2.append(len(indices2)) nbDim = vectorByBug[bug1].shape[1] pairBug1 = csr_matrix((data1, indices1, ptrs1), shape=(len(ptrs1) - 1, nbDim)) pairBug2 = csr_matrix((data2, indices2, ptrs2), shape=(len(ptrs2) - 1, nbDim)) score = cosine_similarity(pairBug1, pairBug2) for i in range(score.shape[0]): similarityScores.append(score[i][i]) return (np.asarray(similarityScores) > args.retrieval_threshold).astype(int) def chunks(l, n): chunkSize = int(len(l) / n) remaining = len(l) % n chunks = [] begin = 0 for i in range(n): if remaining != 0: additional = 1 remaining -= 1 else: additional = 0 end = begin + chunkSize + additional chunks.append(l[begin:end]) begin = end return chunks if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--recall_ratio_k', nargs='+', required=True, help="list of the values of k to be used in the recall ratio. If k is empty list so recall rate " "is not calculated") parser.add_argument('--model', help="model") parser.add_argument('--model_type', help="model type") parser.add_argument('--bug_dataset', help="") parser.add_argument('--input', required=True) parser.add_argument('--retrieval_threshold', type=float, default=None, help="") parser.add_argument('--nb_processes', type=int, default=8, help="") parser.add_argument('--cuda', action="store_true", help="enable cuda.") logging.basicConfig(format='%(asctime)s %(levelname)-4s %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S', ) logger = logging.getLogger() args = parser.parse_args() print(args) global bugIds args.recall_ratio_k = [int(k) for k in args.recall_ratio_k] bugIds, duplicateByBugId, pairs, validations = loadData(args.input) biggestValidation = validations[-1] bugReportDataset = BugReportDatabase.fromJson(args.bug_dataset) bugIds = list(bugIds) similarityListByDuplicate = [] if args.model_type == 'tfidf': # Load Model global vectorByBug vectorByBug = {} tfIdfVectorizer = pickle.load(open(args.model, 'rb')) # Generate bag of words representation for each bug texts = [concatenateSummaryAndDescription(bugReportDataset.getBug(bugId)) for bugId in bugIds] vectors = tfIdfVectorizer.transform(texts) for idx, bugId in enumerate(bugIds): vectorByBug[bugId] = vectors[idx] else: # We can't import torch without allocating a GPU in Cedar cluster. from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, \ calculateSimilarityScoresDL, \ CosinePrediction, getDataHandlerLexiconEmb, getModel import torch import torch.nn.functional as F from util.torch_util import softmaxPrediction, getVariable from data.dataset import BugDataExtractor # Load Model and DataHandlers arguments = Obj({ 'load': args.model, 'cuda': args.cuda, 'summary_bidirectional': False, 'classifier_hidden_size': 300, 'classifier_mul_dif': True }) dataHandlers, lexicons, embeddings, arguments = getDataHandlerLexiconEmb(arguments) encoderContainer, model = getModel(dataHandlers, lexicons, embeddings, arguments) encoderContainer.eval() model.eval() # Set the similarity and prediction functions if arguments.model == 'classification': similarityFunction = model[1] if args.cuda: similarityFunction.cuda() predictionFunction = softmaxPrediction elif arguments.model == 'retrieval': similarityFunction = F.cosine_similarity predictionFunction = CosinePrediction(args.retrieval_threshold, args.cuda) if args.cuda: model.cuda() encoderContainer.cuda() # Generate the embedding for each bug logger.info("Generating Embeddings") dataExtractor = BugDataExtractor(bugReportDataset, dataHandlers) bugEmbeddingsById = generateBugEmbeddings(bugIds, dataExtractor, encoderContainer) # Start to calculate all duplicate pairs recommend list c = time() logger.info("Calculating similarity scores") dupDictItems = duplicateByBugId.items() if args.model_type == 'tfidf': # Calculating the score for tf-idf. We had to parallel this step because the sequential version was too slow. import multiprocessing logger.info("Calculating cosine similarity of tf-idf model using %d processes" % (args.nb_processes)) funcArgs = [] duplicateBugs = [duplicateBug for duplicateBug, listOfDuplicates in dupDictItems] q = Queue() processes = [] similarityScoresList = [0] * len(duplicateBugs) startToWrite = 0 for idx, chunk in enumerate(chunks(duplicateBugs, args.nb_processes)): arr = RawArray(c_ulong, [int(bugId) for bugId in chunk]) processes.append(multiprocessing.Process(target=parallel, args=(startToWrite, arr, q))) startToWrite += len(chunk) for p in processes: p.start() count = 0 while True: try: id, scoreList = q.get() if id == -1: # The process send a tuple (-1,None) when it is ending its work. count += 1 # Break the loop when all processes were terminated if count == len(processes): break else: similarityScoresList[id] = scoreList except Empty as e: pass logger.info( "Total time to calculate cosine similarity of %d duplicate bugs: %s " % (len(dupDictItems), time() - c)) c = time() for i, (duplicateBug, listOfDuplicates) in enumerate(dupDictItems): # Calculate the similarity score of duplicate bug with each bug if args.model_type == 'tfidf': similarityScores = similarityScoresList.pop(0) else: similarityScores = calculateSimilarityScoresDL(duplicateBug, similarityFunction, bugEmbeddingsById, bugIds, args.cuda) # Remove pair (duplicateBug, duplicateBug) and create tuples with bug id and its similarity score. bugScores = [(bugId, score) for bugId, score in zip(bugIds, similarityScores) if bugId != duplicateBug] # Sort in descending order the bugs by probability of being duplicate similarityList = sorted(bugScores, key=lambda x: x[1], reverse=True) similarityListByDuplicate.append((duplicateBug, [t[0] for t in similarityList])) if i % 200 == 0 and i != 0: logger.info("Processed %d Duplicate bug of %d in %f" % (i, len(duplicateByBugId), time() - c)) c = time() # For each different proportion, we calculate the recall rate and the precision, recall, accuracy recallKs = sorted([int(k) for k in args.recall_ratio_k]) biggestKValue = recallKs[-1] total = len(duplicateByBugId) for validation in validations: logger.info("Calculating metrics to a validation with proportion: %d" % validation['k']) valitionBugIds = {} # Prepare data to prediction validationPairs = [] targets = [] bugIdsOfValidation = set() for pairIndex in validation['indexes']: bug1, bug2, label = pairs[pairIndex] validationPairs.append((bug1, bug2)) valitionBugIds[bug1] = True valitionBugIds[bug2] = True bugIdsOfValidation.add(bug1) bugIdsOfValidation.add(bug2) targets.append(max(0, label)) logger.debug("Amount of duplicate pairs: %d\tAmount of pairs: %d" % ( np.count_nonzero(np.asarray(targets)), len(targets))) logger.debug("Amount of bugs: %d" % (len(bugIdsOfValidation))) logger.info("Predicting pair labels: %d" % validation['k']) if args.model_type == 'tfidf': predictions = predictTFIDF(validationPairs) else: predictions = predictDeepLearningModel(bugEmbeddingsById, validationPairs) # Calculate Recall Rate hitsPerRateK = [0] * len(recallKs) logger.info("Calculating Recall Rate") for duplicateBug, similarityList in similarityListByDuplicate: pos = biggestKValue + 1 cur = 0 listOfDuplicates = duplicateByBugId[duplicateBug] for bugId in similarityList: if bugId not in bugIdsOfValidation: continue if bugId in listOfDuplicates: pos = cur + 1 break cur += 1 if cur >= biggestKValue: break for idx, k in enumerate(recallKs): if k < pos: continue hitsPerRateK[idx] += 1 logger.info("Recall Rate Results:") for k, hit in zip(recallKs, hitsPerRateK): rate = float(hit) / total logger.info("\t\t k=%d: %.3f (%d/%d) " % (k, rate, hit, total)) # Calculate Acc, precision, recall and f1 accum = accuracy_score(targets, predictions, normalize=False) acc = accum / len(targets) prec, recall, f1, _ = precision_recall_fscore_support(targets, predictions) logger.info("Accuracy: %.3f (%d/%d)" % (acc * 100, accum, len(targets))) logger.info("Precision: {}\tRecall: {}\tF1:{}".format(list(np.around(prec * 100, decimals=3)), list(np.around(recall * 100, decimals=3)), list(np.around(f1 * 100, decimals=3)))) logger.info("")
[ "argparse.ArgumentParser", "experiments.duplicate_bug_detection_deep_learning.getDataHandlerLexiconEmb", "sklearn.metrics.accuracy_score", "numpy.around", "multiprocessing.Queue", "data.bug_report_database.BugReportDatabase.fromJson", "experiments.duplicate_bug_detection_deep_learning.getModel", "sklearn.metrics.precision_recall_fscore_support", "sklearn.metrics.pairwise.cosine_similarity", "experiments.duplicate_bug_detection_deep_learning.calculateSimilarityScoresDL", "data.dataset.BugDataExtractor", "numpy.asarray", "experiments.duplicate_bug_detection_deep_learning.generateBugEmbeddings", "experiments.duplicate_bug_detection_deep_learning.CosinePrediction", "os.getpid", "torch.stack", "logging.basicConfig", "time.time", "multiprocessing.Process", "logging.getLogger" ]
[((2982, 3001), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (2999, 3001), False, 'import logging\n'), ((3010, 3016), 'time.time', 'time', ([], {}), '()\n', (3014, 3016), False, 'from time import time\n'), ((6412, 6437), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6435, 6437), False, 'import argparse\n'), ((7125, 7249), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(levelname)-4s %(message)s"""', 'level': 'logging.DEBUG', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "(format='%(asctime)s %(levelname)-4s %(message)s', level\n =logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S')\n", (7144, 7249), False, 'import logging\n'), ((7285, 7304), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (7302, 7304), False, 'import logging\n'), ((7572, 7616), 'data.bug_report_database.BugReportDatabase.fromJson', 'BugReportDatabase.fromJson', (['args.bug_dataset'], {}), '(args.bug_dataset)\n', (7598, 7616), False, 'from data.bug_report_database import BugReportDatabase\n'), ((9985, 9991), 'time.time', 'time', ([], {}), '()\n', (9989, 9991), False, 'from time import time\n'), ((11632, 11638), 'time.time', 'time', ([], {}), '()\n', (11636, 11638), False, 'from time import time\n'), ((4602, 4637), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['matrix1', 'matrix2'], {}), '(matrix1, matrix2)\n', (4619, 4637), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((5784, 5821), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['pairBug1', 'pairBug2'], {}), '(pairBug1, pairBug2)\n', (5801, 5821), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((8945, 8980), 'experiments.duplicate_bug_detection_deep_learning.getDataHandlerLexiconEmb', 'getDataHandlerLexiconEmb', (['arguments'], {}), '(arguments)\n', (8969, 8980), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((9015, 9070), 'experiments.duplicate_bug_detection_deep_learning.getModel', 'getModel', (['dataHandlers', 'lexicons', 'embeddings', 'arguments'], {}), '(dataHandlers, lexicons, embeddings, arguments)\n', (9023, 9070), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((9776, 9824), 'data.dataset.BugDataExtractor', 'BugDataExtractor', (['bugReportDataset', 'dataHandlers'], {}), '(bugReportDataset, dataHandlers)\n', (9792, 9824), False, 'from data.dataset import BugDataExtractor\n'), ((9853, 9915), 'experiments.duplicate_bug_detection_deep_learning.generateBugEmbeddings', 'generateBugEmbeddings', (['bugIds', 'dataExtractor', 'encoderContainer'], {}), '(bugIds, dataExtractor, encoderContainer)\n', (9874, 9915), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((10507, 10514), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (10512, 10514), False, 'from multiprocessing import Array, Queue\n'), ((15127, 15180), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['targets', 'predictions'], {'normalize': '(False)'}), '(targets, predictions, normalize=False)\n', (15141, 15180), False, 'from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n'), ((15246, 15299), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['targets', 'predictions'], {}), '(targets, predictions)\n', (15277, 15299), False, 'from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n'), ((2278, 2339), 'torch.stack', 'torch.stack', (['firstBugPairs[batchStart:batchStart + batchSize]'], {}), '(firstBugPairs[batchStart:batchStart + batchSize])\n', (2289, 2339), False, 'import torch\n'), ((2381, 2443), 'torch.stack', 'torch.stack', (['secondBugPairs[batchStart:batchStart + batchSize]'], {}), '(secondBugPairs[batchStart:batchStart + batchSize])\n', (2392, 2443), False, 'import torch\n'), ((3507, 3513), 'time.time', 'time', ([], {}), '()\n', (3511, 3513), False, 'from time import time\n'), ((11926, 12029), 'experiments.duplicate_bug_detection_deep_learning.calculateSimilarityScoresDL', 'calculateSimilarityScoresDL', (['duplicateBug', 'similarityFunction', 'bugEmbeddingsById', 'bugIds', 'args.cuda'], {}), '(duplicateBug, similarityFunction,\n bugEmbeddingsById, bugIds, args.cuda)\n', (11953, 12029), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((12710, 12716), 'time.time', 'time', ([], {}), '()\n', (12714, 12716), False, 'from time import time\n'), ((3129, 3140), 'os.getpid', 'os.getpid', ([], {}), '()\n', (3138, 3140), False, 'import os\n'), ((5925, 5953), 'numpy.asarray', 'np.asarray', (['similarityScores'], {}), '(similarityScores)\n', (5935, 5953), True, 'import numpy as np\n'), ((9522, 9575), 'experiments.duplicate_bug_detection_deep_learning.CosinePrediction', 'CosinePrediction', (['args.retrieval_threshold', 'args.cuda'], {}), '(args.retrieval_threshold, args.cuda)\n', (9538, 9575), False, 'from experiments.duplicate_bug_detection_deep_learning import generateBugEmbeddings, calculateSimilarityScoresDL, CosinePrediction, getDataHandlerLexiconEmb, getModel\n'), ((10797, 10866), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'parallel', 'args': '(startToWrite, arr, q)'}), '(target=parallel, args=(startToWrite, arr, q))\n', (10820, 10866), False, 'import multiprocessing\n'), ((15449, 15482), 'numpy.around', 'np.around', (['(prec * 100)'], {'decimals': '(3)'}), '(prec * 100, decimals=3)\n', (15458, 15482), True, 'import numpy as np\n'), ((15552, 15587), 'numpy.around', 'np.around', (['(recall * 100)'], {'decimals': '(3)'}), '(recall * 100, decimals=3)\n', (15561, 15587), True, 'import numpy as np\n'), ((15657, 15688), 'numpy.around', 'np.around', (['(f1 * 100)'], {'decimals': '(3)'}), '(f1 * 100, decimals=3)\n', (15666, 15688), True, 'import numpy as np\n'), ((3442, 3453), 'os.getpid', 'os.getpid', ([], {}), '()\n', (3451, 3453), False, 'import os\n'), ((11610, 11616), 'time.time', 'time', ([], {}), '()\n', (11614, 11616), False, 'from time import time\n'), ((13695, 13714), 'numpy.asarray', 'np.asarray', (['targets'], {}), '(targets)\n', (13705, 13714), True, 'import numpy as np\n'), ((3478, 3484), 'time.time', 'time', ([], {}), '()\n', (3482, 3484), False, 'from time import time\n'), ((12681, 12687), 'time.time', 'time', ([], {}), '()\n', (12685, 12687), False, 'from time import time\n')]
"""Tests for registering custom formatters.""" from pyramid.testing import DummyRequest from pyramid.testing import testConfig def test_add_formatter() -> None: """Test registration of a custom formatter.""" with testConfig() as config: request = DummyRequest() config.include("pyramid_openapi3") config.pyramid_openapi3_add_formatter("foormatter", lambda x: x) formatter = request.registry.settings["pyramid_openapi3_formatters"].get( "foormatter", None ) assert formatter("foo") == "foo"
[ "pyramid.testing.testConfig", "pyramid.testing.DummyRequest" ]
[((225, 237), 'pyramid.testing.testConfig', 'testConfig', ([], {}), '()\n', (235, 237), False, 'from pyramid.testing import testConfig\n'), ((267, 281), 'pyramid.testing.DummyRequest', 'DummyRequest', ([], {}), '()\n', (279, 281), False, 'from pyramid.testing import DummyRequest\n')]
#!/usr/bin/env python """Test USCG specific 8:367:22 area notice message Version 23 samples.""" import datetime import unittest from ais_area_notice import m366_22 # from m366_22 import AreaNotice # from m366_22 import AreaNoticeCircle # from m366_22 import AreaNoticeRectangle # from m366_22 import AreaNoticeSector # from m366_22 import AreaNoticePoly # from m366_22 import AreaNoticeText # from m366_22 import SHAPES class TestAreaNotice(unittest.TestCase): def testEmptyInit(self): self.assertRaises(m366_22.Error, m366_22.AreaNotice) def testInitWithAreaType(self): area_type = 1 now = datetime.datetime.utcnow() an = m366_22.AreaNotice(area_type=area_type, when=now) self.assertFalse(an.areas) self.assertEqual(an.area_type, area_type) self.assertEqual(an.when.year, now.year) self.assertEqual(an.when.month, now.month) self.assertEqual(an.when.day, now.day) self.assertEqual(an.when.hour, now.hour) self.assertEqual(an.when.minute, now.minute) self.assertEqual(an.when.second, 0) self.assertIsNone(an.duration_min) self.assertIsNone(an.link_id) self.assertIsNone(an.mmsi) class TestVersion23Samples(unittest.TestCase): @unittest.skip('TODO(schwehr): Fix this failure.') def testCircle(self): # TODO(grepjohnson): Why are there two messages? aivdm = ( '!AIVDM,1,1,0,A,85M:Ih1KUQU6jAs85`0MK4lh<7=B42l0000,2*7F' #'!AIVDM,1,1,0,A,85M:Ih1KUQU6jAs85`0MKFaH;k4>42l0000,2*0E' ) an = m366_22.AreaNotice(nmea_strings=[aivdm]) # self.assertEqual(an., ) if __name__ == '__main__': unittest.main()
[ "unittest.main", "unittest.skip", "ais_area_notice.m366_22.AreaNotice", "datetime.datetime.utcnow" ]
[((1203, 1252), 'unittest.skip', 'unittest.skip', (['"""TODO(schwehr): Fix this failure."""'], {}), "('TODO(schwehr): Fix this failure.')\n", (1216, 1252), False, 'import unittest\n'), ((1593, 1608), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1606, 1608), False, 'import unittest\n'), ((614, 640), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (638, 640), False, 'import datetime\n'), ((650, 699), 'ais_area_notice.m366_22.AreaNotice', 'm366_22.AreaNotice', ([], {'area_type': 'area_type', 'when': 'now'}), '(area_type=area_type, when=now)\n', (668, 699), False, 'from ais_area_notice import m366_22\n'), ((1492, 1532), 'ais_area_notice.m366_22.AreaNotice', 'm366_22.AreaNotice', ([], {'nmea_strings': '[aivdm]'}), '(nmea_strings=[aivdm])\n', (1510, 1532), False, 'from ais_area_notice import m366_22\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- ######################################################################## # # Copyright 2015 Baidu, Inc. # ######################################################################## """ File: test_create_thumbnail.py Date: 2015/06/10 15:15:40 """ import os import sys import unittest import json import time import media_config import re import mediaBase _NOW_PATH = os.path.dirname(os.path.abspath(__file__)) + '/' _COMMON_PATH = _NOW_PATH + '../../../' sys.path.insert(0, _COMMON_PATH) from baidubce.services.media import media_client from baidubce.exception import BceHttpClientError from baidubce.exception import BceServerError from baidubce.exception import BceClientError import nose from nose import tools from nose.tools import assert_raises from nose.tools import assert_is_none from nose.tools import raises class TestCreateThumbnail(mediaBase.MediaBase): """test create thumbnail""" def __init__(self): """construction """ mediaBase.MediaBase.__init__(self) self.pre = self.prefix + 'createthumb' self.pipeline_name = self.pre self.container = 'mp4' self.capacity = 1 self.key = '10s.mp4' self.key_prefix = '/00mingxioutput' self.target_format = 'jpg' self.sizing_policy = 'keep' self.width_in_pixel = 640 self.height_in_pixel = 400 self.mode = 'manual' self.start_time_in_second = 0 self.end_time_in_second = 50 self.interval_in_second = 10 self.client = media_client.MediaClient(media_config.config) def setUp(self): """create env""" time.sleep(2) succ = True try: resp = self.client.create_pipeline(self.pipeline_name, self.sourceBucket, self.targetBucket) except Exception as e: print(e.message) succ = False finally: nose.tools.assert_true(succ) def tearDown(self): """clear env""" time.sleep(2) resp = self.client.list_pipelines() for each_pipeline in resp.pipelines: pipeline_name = each_pipeline.pipeline_name if (pipeline_name.startswith(self.pre)): resp = self.client.list_thumbnail_jobs_by_pipeline(pipeline_name) if resp.thumbnails: for each_job in resp.thumbnails: while(1): resp = self.client.get_thumbnail_job(each_job.job_id) if resp.job_status != 'SUCCESS' and resp.job_status != 'FAILED': print('please wait ....\n') time.sleep(5) else: break resp = self.client.delete_pipeline(pipeline_name) def test_create_thumbnail_normal(self): """create thumbnail normal""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': self.target_format, 'sizingPolicy': self.sizing_policy, 'widthInPixel': self.width_in_pixel, 'heightInPixel': self.height_in_pixel, } capture = {'mode': self.mode, 'startTimeInSecond': self.start_time_in_second, 'endTimeInSecond': self.end_time_in_second, 'intervalInSecond': self.interval_in_second } resp = self.client.create_thumbnail_job(self.pipeline_name, source, target, capture) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_with_pipeline_deleted(self): """create thumbnail with delete pipeline""" resp = self.client.delete_pipeline(self.pipeline_name) nose.tools.assert_is_not_none(resp) source = {'key': self.key} try: self.client.create_thumbnail_job(self.pipeline_name, source) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('pipeline has been deleted') else: assert True == False, 'not throw BceServerError' def test_create_thumbnail_with_pipeline_not_exist(self): """create thumbnail with pipeline not exist""" source = {'key': self.key} try: self.client.create_thumbnail_job('not_exist_pipeline', source) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('The requested pipeline does not exist') else: assert True == False, 'not throw BceServerError' def test_create_thumbnail_with_pipeline_none(self): """create thumbnail with pipeline none""" source = {'key': self.key} try: self.client.create_thumbnail_job(None, source) except ValueError as e: assert e.message.startswith('arg "pipeline_name" should not be None') def test_create_thumbnail_with_pipeline_empty(self): """create thumbnail with pipeline empty""" source = {'key': self.key} with nose.tools.assert_raises_regexp(BceClientError, 'pipeline_name can\'t be empty string'): self.client.create_thumbnail_job('', source) def test_create_thumbnail_with_key_is_chiness(self): """create thumbnail job with key is chiness""" self.key = 'test--*--中文.mp4' source = {'key': self.key} resp = self.client.create_thumbnail_job(self.pipeline_name, source) nose.tools.assert_is_not_none(resp) def test_create_thumbnail_with_key_is_multiple_chars(self): """create thumbnail job with key is multiple chars""" self.key = 'job_测试_123.mp4' source = {'key': self.key} resp = self.client.create_thumbnail_job(self.pipeline_name, source) nose.tools.assert_is_not_none(resp) def test_create_thumbnail_with_key_not_exist(self): """create thumbnail with key not exist""" source = {'key': 'not_exist.mp4'} try: self.client.create_thumbnail_job(self.pipeline_name, source) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('bos object: not_exist.mp4 does not exist') else: assert True == False, 'not throw BceServerError' def test_create_thumbnail_with_key_include_folder(self): """create thumbnail with key include folder""" source = {'key': 'media/info/jobtest.mp4'} resp = self.client.create_thumbnail_job(self.pipeline_name, source) nose.tools.assert_is_not_none(resp) def test_create_thumbnail_with_key_long_name(self): """create thumbnail with key long name""" source = {'key': 'longname12longname12longname12longname12longname12longname12.mp4'} resp = self.client.create_thumbnail_job(self.pipeline_name, source) nose.tools.assert_is_not_none(resp) def test_create_thumbnail_keyprefix_none(self): """create thumbnail with key prefix is none""" source = {'key': self.key} resp = self.client.create_thumbnail_job(self.pipeline_name, source) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_keyprefix_keydot(self): """create thumbnail with key prefix key dot""" source = {'key': 'test.thumbnail.csdn.mp4'} resp = self.client.create_thumbnail_job(self.pipeline_name, source) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_format_png(self): """create thumbnail with png pic""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': self.sizing_policy, 'widthInPixel': self.width_in_pixel, 'heightInPixel': self.height_in_pixel, } resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_format_not_in_enum(self): """create thumbnail format not in enum""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'txt', 'sizingPolicy': self.sizing_policy, 'widthInPixel': self.width_in_pixel, 'heightInPixel': self.height_in_pixel, } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('Could not read JSON: Can not construct') else: assert True == False def test_create_thumbnail_sizingpolicy_in_enum(self): """create thumbnail with png pic""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': 'shrinkToFit', 'widthInPixel': self.width_in_pixel, 'heightInPixel': self.height_in_pixel, } resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_sizingpolicy_not_in_enum(self): """create thumbnail format not in enum""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': 'notsizing', 'widthInPixel': self.width_in_pixel, 'heightInPixel': self.height_in_pixel, } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('Could not read JSON: Can not construct') else: assert True == False def test_create_thumbnail_widthinpixel_equal_2000(self): """create thumbnail with width pixel equal 2000""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': 'shrinkToFit', 'widthInPixel': 2000, 'heightInPixel': self.height_in_pixel, } resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_widthinpixel_lessthan_10(self): """create thumbnail with width pixel less than 10""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': 'shrinkToFit', 'widthInPixel': 5, 'heightInPixel': self.height_in_pixel, } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('target.widthInPixel:target.widthInPixel=') else: assert True == False def test_create_thumbnail_widthinpixel_morethan_2000(self): """create thumbnail with width pixel more than 2000""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': 'shrinkToFit', 'widthInPixel': 2001, 'heightInPixel': self.height_in_pixel, } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('target.widthInPixel:target.widthInPixel=') else: assert True == False def test_create_thumbnail_heightinpixel_equal_2000(self): """create thumbnail withheight pixel equal 2000""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': 'shrinkToFit', 'widthInPixel': self.width_in_pixel, 'heightInPixel': 2000, } resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_heightinpixel_lessthan_10(self): """create thumbnail with height pixel less than 10""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': 'shrinkToFit', 'widthInPixel': self.width_in_pixel, 'heightInPixel': 5, } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('target.heightInPixel:target.heightInPixel=') else: assert True == False def test_create_thumbnail_heightinpixel_morethan_2000(self): """create thumbnail with height pixel more than 2000""" source = {'key': self.key} target = {'keyPrefix': self.key_prefix, 'format': 'png', 'sizingPolicy': 'shrinkToFit', 'widthInPixel': self.width_in_pixel, 'heightInPixel': 2001, } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, target) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('target.heightInPixel:target.heightInPixel=') else: assert True == False def test_create_thumbnail_mode_is_auto(self): """create thumbnail with mode is auto""" source = {'key': self.key} capture = {'mode': 'auto'} resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_mode_not_in_enum(self): """create thumbnail with mode not in enum""" source = {'key': self.key} capture = {'mode': 'notmode'} try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('Could not read JSON: Can not') else: assert True == False def test_create_thumbnail_start_time_lessthan_0(self): """create thumbnail with start time less than 0""" source = {'key': self.key} capture = {'startTimeInSecond': -1} try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith( 'capture.startTimeInSecond:capture.startTimeInSecond') else: assert True == False def test_create_thumbnail_start_time_float(self): """create thumbnail with start time float""" source = {'key': self.key} capture = { 'mode': 'manual', 'startTimeInSecond': 1.25, 'endTimeInSecond': 50, 'intervalInSecond': 10} resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_mode_manual_none_starttime(self): """create thumbnail mode is manual with start time is none""" source = {'key': self.key} capture = { 'mode': 'manual' } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('start time is required in manual mode') else: assert True == False def test_create_thumbnail_end_time_lessthan_0(self): """create thumbnail with end time less than 0""" source = {'key': self.key} capture = { 'mode': 'auto', 'startTimeInSecond': 0, 'endTimeInSecond': -1, 'intervalInSecond': 10 } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith( 'capture.endTimeInSecond:capture.endTimeInSecond') else: assert True == False def test_create_thumbnail_end_time_float(self): """create thumbnail with end time float""" source = {'key': self.key} capture = { 'mode': 'manual', 'startTimeInSecond': 1, 'endTimeInSecond': 48.34, 'intervalInSecond': 10} resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_mode_auto_with_starttime(self): """create thumbnail mode is auto with end time""" source = {'key': self.key} capture = { 'mode': 'auto', 'startTimeInSecond': 10 } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith( 'cannot specify start time, end time, interval or frame number in auto mode') else: assert True == False def test_create_thumbnail_mode_auto_with_endtime(self): """create thumbnail mode is auto with end time""" source = {'key': self.key} capture = { 'mode': 'auto', 'endTimeInSecond': 10 } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith( 'cannot specify start time, end time, interval or frame number in auto mode') else: assert True == False def test_create_thumbnail_mode_auto_with_interval(self): """create thumbnail mode is auto with interval time""" source = {'key': self.key} capture = { 'mode': 'auto', 'intervalInSecond': 10 } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith( 'cannot specify start time, end time, interval or frame number in auto mode') else: assert True == False def test_create_thumbnail_mode_manual_with_null_endtime(self): """create thumbnail mode is manual with end time none""" source = {'key': self.key} capture = { 'mode': 'manual', 'startTimeInSecond': 10 } resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_mode_manual_with_endtime_less_starttime(self): """create thumbnail mode is manual with endtime less than start time""" source = {'key': self.key} capture = { 'mode': 'manual', 'startTimeInSecond':20, 'endTimeInSecond':10, 'intervalInSecond': 5 } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith('start time cannot larger than end time') else: assert True == False def test_create_thumbnail_mode_manual_endtime_null(self): """create thumbnail mode is manual with endtime null""" source = {'key': self.key} capture = { 'mode': 'manual', 'startTimeInSecond':100, 'intervalInSecond': 5 } resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_mode_manual_interval_null(self): """create thumbnail mode is manual with interval null""" source = {'key': '测试视频.mp4'} capture = { 'mode': 'manual', 'startTimeInSecond':10, 'endTimeInSecond': 20 } resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) print(resp) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_interval_less_0(self): """create thumbnail mode is manual with interver null""" source = {'key': self.key} capture = { 'mode': 'manual', 'startTimeInSecond':1, 'endTimeInSecond':50, 'intervalInSecond': -1 } try: resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) except BceHttpClientError as e: if isinstance(e.last_error, BceServerError): assert e.last_error.message.startswith( 'capture.intervalInSecond:capture.intervalInSecond') else: assert True == False def test_create_thumbnail_interval_float(self): """create thumbnail mode is manual with interver float""" source = {'key': self.key} capture = { 'mode': 'manual', 'startTimeInSecond':1, 'endTimeInSecond':50, 'intervalInSecond': 1.56 } resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) nose.tools.assert_is_not_none(resp.job_id) def test_create_thumbnail_start_equal_end(self): """create thumbnail start time equal end time""" source = {'key': self.key} capture = { 'mode': 'manual', 'startTimeInSecond':10, 'endTimeInSecond':10, 'intervalInSecond': 1.56 } resp = self.client.create_thumbnail_job(self.pipeline_name, source, capture=capture) nose.tools.assert_is_not_none(resp.job_id)
[ "mediaBase.MediaBase.__init__", "os.path.abspath", "nose.tools.assert_true", "nose.tools.assert_raises_regexp", "sys.path.insert", "baidubce.services.media.media_client.MediaClient", "time.sleep", "nose.tools.assert_is_not_none" ]
[((504, 536), 'sys.path.insert', 'sys.path.insert', (['(0)', '_COMMON_PATH'], {}), '(0, _COMMON_PATH)\n', (519, 536), False, 'import sys\n'), ((432, 457), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (447, 457), False, 'import os\n'), ((1010, 1044), 'mediaBase.MediaBase.__init__', 'mediaBase.MediaBase.__init__', (['self'], {}), '(self)\n', (1038, 1044), False, 'import mediaBase\n'), ((1563, 1608), 'baidubce.services.media.media_client.MediaClient', 'media_client.MediaClient', (['media_config.config'], {}), '(media_config.config)\n', (1587, 1608), False, 'from baidubce.services.media import media_client\n'), ((1664, 1677), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (1674, 1677), False, 'import time\n'), ((2037, 2050), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (2047, 2050), False, 'import time\n'), ((3631, 3673), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (3660, 3673), False, 'import nose\n'), ((3861, 3896), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp'], {}), '(resp)\n', (3890, 3896), False, 'import nose\n'), ((5726, 5761), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp'], {}), '(resp)\n', (5755, 5761), False, 'import nose\n'), ((6044, 6079), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp'], {}), '(resp)\n', (6073, 6079), False, 'import nose\n'), ((6848, 6883), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp'], {}), '(resp)\n', (6877, 6883), False, 'import nose\n'), ((7169, 7204), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp'], {}), '(resp)\n', (7198, 7204), False, 'import nose\n'), ((7432, 7474), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (7461, 7474), False, 'import nose\n'), ((7721, 7763), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (7750, 7763), False, 'import nose\n'), ((8252, 8294), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (8281, 8294), False, 'import nose\n'), ((9549, 9591), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (9578, 9591), False, 'import nose\n'), ((10848, 10890), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (10877, 10890), False, 'import nose\n'), ((12908, 12950), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (12937, 12950), False, 'import nose\n'), ((14749, 14791), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (14778, 14791), False, 'import nose\n'), ((16323, 16365), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (16352, 16365), False, 'import nose\n'), ((18078, 18120), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (18107, 18120), False, 'import nose\n'), ((20534, 20576), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (20563, 20576), False, 'import nose\n'), ((21712, 21754), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (21741, 21754), False, 'import nose\n'), ((22184, 22226), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (22213, 22226), False, 'import nose\n'), ((23386, 23428), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (23415, 23428), False, 'import nose\n'), ((23855, 23897), 'nose.tools.assert_is_not_none', 'nose.tools.assert_is_not_none', (['resp.job_id'], {}), '(resp.job_id)\n', (23884, 23897), False, 'import nose\n'), ((1951, 1979), 'nose.tools.assert_true', 'nose.tools.assert_true', (['succ'], {}), '(succ)\n', (1973, 1979), False, 'import nose\n'), ((5290, 5380), 'nose.tools.assert_raises_regexp', 'nose.tools.assert_raises_regexp', (['BceClientError', '"""pipeline_name can\'t be empty string"""'], {}), '(BceClientError,\n "pipeline_name can\'t be empty string")\n', (5321, 5380), False, 'import nose\n'), ((2721, 2734), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (2731, 2734), False, 'import time\n')]
#!/usr/bin/env python3 """ This module specifies class Monitored designated for processing of cryptocurrencies blocks """ import threading import logging from timeit import default_timer as timer from datetime import datetime, timedelta from .coin import BTC, BCH, DASH, ZEC, LTC, ETH from .database import Database from .notifier import Notifier logger = logging.getLogger(__name__) class Monitor(): """ Monitor controls the processing of cryptocurrencies bloks """ stop = threading.Event() coins = [] threads = [] database = None notifier = None def __init__(self, config): """ Construct new Monitor object :param config: configuration dict """ self.config = config self.database = Database(config['db'], self.config) self.notifier = Notifier(config, self.database) for coin in config['coins']: coin_inst = coin(config, self.stop) coin_inst.db_id = self.database.get_coin(coin_inst.__class__.__name__)['id'] self.coins.append(coin_inst) def shutdown(self, signum, frame): """ Terminate threads of each component """ logger.info('Shuting down') self.stop.set() for thread in self.threads: thread.join() self.notifier.process_remaining() def test_connection(self): """ Test connectivity of all components """ self.notifier.test_connection() for coin in self.coins: if not coin.test_connection(): raise ConnectionError('{}: node unreachable'.format(coin.__class__.__name__)) def start(self): """ Start thread for every coin and notifier """ for coin in self.coins: logger.info('%s: monitoring started', coin) thread = threading.Thread(target=self.worker, args=(coin,)) self.threads.append(thread) thread.start() thread = threading.Thread(target=self.notifier.worker, args=(self.stop,)) self.threads.append(thread) thread.start() def set_last_blocks(self): """ Set the current block of each coin as the last processed """ for coin in self.coins: number, block_hash = coin.get_last_block_number() self.database.insert_block(coin, number, block_hash) logger.info('%s: setting %s as last processed block', coin, number) def process_block(self, database, coin, number): """ Process transaction of <coin> in a block of number <number> :param database: Database object :param coin: Coin object :param number: block number :return: number of the next block """ time_start = timer() coin.get_block(number) block_id = database.insert_block(coin, number, coin.get_block_hash()) logger.info('%s: processing block: %s', coin, number) cnt = 0 for tx_hash in coin.get_block_transactions(): addresses = coin.get_transaction_io(tx_hash) self.notifier.add_transaction(coin, number, block_id, tx_hash, addresses) cnt += 1 time_total = timer() - time_start logger.debug('%s: processed %d transactions in %.4fs', coin, cnt, time_total) return number + 1 def last_processed_block(self, database, coin): """ Get the last block procesesd of <coin> :param database: Database object :param coin: Coin object :return: number of last processed block """ number = database.get_last_block_number(coin) while True: hash_saved = database.get_block_hash(coin, number) hash_node = coin.get_block_hash(number) if hash_saved == hash_node or hash_saved is None: break database.delete_block(coin, number) number -= 1 #print("last_processed_block> ", number) return number def worker(self, coin): """ Process new blocks of cryptocurrency <coin> until stop event is set. :param coin: a class inherited from Coin """ database = Database(self.config['db'], self.config) while not self.stop.is_set(): current_number = self.last_processed_block(database, coin) + 1 last_number, _ = coin.get_last_block_number() #print(current_number, last_number) while current_number <= last_number: if self.stop.is_set(): break try: current_number = self.process_block(database, coin, current_number) except InterruptedError: break until_next_block = (coin.get_block_creation_time() + coin.get_block_time() - datetime.now()).total_seconds() if until_next_block < 0: # should be already generated until_next_block = (coin.get_block_time() * 0.05).total_seconds() # wait only brief time (5% of block time) before trying again self.stop.wait(timeout=until_next_block) logger.info('%s: terminating', coin)
[ "threading.Thread", "timeit.default_timer", "threading.Event", "datetime.datetime.now", "logging.getLogger" ]
[((357, 384), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (374, 384), False, 'import logging\n'), ((492, 509), 'threading.Event', 'threading.Event', ([], {}), '()\n', (507, 509), False, 'import threading\n'), ((2015, 2079), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.notifier.worker', 'args': '(self.stop,)'}), '(target=self.notifier.worker, args=(self.stop,))\n', (2031, 2079), False, 'import threading\n'), ((2819, 2826), 'timeit.default_timer', 'timer', ([], {}), '()\n', (2824, 2826), True, 'from timeit import default_timer as timer\n'), ((1871, 1921), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.worker', 'args': '(coin,)'}), '(target=self.worker, args=(coin,))\n', (1887, 1921), False, 'import threading\n'), ((3255, 3262), 'timeit.default_timer', 'timer', ([], {}), '()\n', (3260, 3262), True, 'from timeit import default_timer as timer\n'), ((4909, 4923), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4921, 4923), False, 'from datetime import datetime, timedelta\n')]
import threading class MultiThreading(object): def __init__(self, scrapers): self.scrapers = scrapers def run(self): threads = [] for i in range(len(self.scrapers)): t = threading.Thread(target=self.scrapers[i].start) t.start() threads.append(t) for thread in threads: thread.join()
[ "threading.Thread" ]
[((218, 265), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.scrapers[i].start'}), '(target=self.scrapers[i].start)\n', (234, 265), False, 'import threading\n')]
import glob import numpy as np from matplotlib import pyplot as plt for filename in glob.glob("*.dat"): print(filename) name = filename.split(".")[0] data = np.loadtxt(filename, delimiter=",") size = int(np.sqrt(len(data))) data = data.reshape((size, size)) fig, ax = plt.subplots(figsize=(5.12, 5.12)) ax.imshow(data) plt.tick_params( bottom=False, left=False, right=False, top=False, labelbottom=False, labelleft=False, labelright=False, labeltop=False ) plt.tight_layout() plt.savefig(name + ".png") plt.close()
[ "matplotlib.pyplot.close", "matplotlib.pyplot.subplots", "numpy.loadtxt", "glob.glob", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.savefig" ]
[((85, 103), 'glob.glob', 'glob.glob', (['"""*.dat"""'], {}), "('*.dat')\n", (94, 103), False, 'import glob\n'), ((170, 205), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'delimiter': '""","""'}), "(filename, delimiter=',')\n", (180, 205), True, 'import numpy as np\n'), ((293, 327), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5.12, 5.12)'}), '(figsize=(5.12, 5.12))\n', (305, 327), True, 'from matplotlib import pyplot as plt\n'), ((352, 491), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'bottom': '(False)', 'left': '(False)', 'right': '(False)', 'top': '(False)', 'labelbottom': '(False)', 'labelleft': '(False)', 'labelright': '(False)', 'labeltop': '(False)'}), '(bottom=False, left=False, right=False, top=False,\n labelbottom=False, labelleft=False, labelright=False, labeltop=False)\n', (367, 491), True, 'from matplotlib import pyplot as plt\n'), ((514, 532), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (530, 532), True, 'from matplotlib import pyplot as plt\n'), ((537, 563), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(name + '.png')"], {}), "(name + '.png')\n", (548, 563), True, 'from matplotlib import pyplot as plt\n'), ((568, 579), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (577, 579), True, 'from matplotlib import pyplot as plt\n')]
# -*- coding: utf-8 -*- """ Created on Sun Aug 6 00:25:27 2017 @author: Wayne """ import pandas as pd import xgboost as xgb import numpy as np from sklearn.model_selection import train_test_split import pickle #%% mydf1= mydf[outliers.outliers==False] z = np.log(data.trip_duration+1) X = mydf1 Xtest = testdf data_test = xgb.DMatrix(Xtest) #%% rmse = lambda z,zp:np.sqrt(np.mean((z-zp)**2)) #%% parms = {'max_depth':14, #maximum depth of a tree 'objective':'reg:linear', 'eta' :0.025, 'subsample':0.8,#SGD will use this percentage of data 'lambda ' :4, #L2 regularization term,>1 more conservative 'colsample_bytree ':0.9, 'colsample_bylevel':1, 'min_child_weight': 10, 'nthread' :3} #number of cpu core to use #%% split training set to validation set Xtrain, Xval, Ztrain, Zval = train_test_split(X, z, test_size=0.2, random_state=1) #Xcv,Xv,Zcv,Zv = train_test_split(Xval, Zval, test_size=0.5, random_state=1) data_tr = xgb.DMatrix(Xtrain, label=Ztrain) data_val = xgb.DMatrix(Xval , label=Zval) evallist = [(data_tr, 'train'), (data_val, 'valid')] model = xgb.train(parms, data_tr, num_boost_round=881, evals = evallist, early_stopping_rounds=30, maximize=False, verbose_eval=100) print('score = %1.5f, n_boost_round =%d.'%(model.best_score,model.best_iteration)) #%% training all the data data_train = xgb.DMatrix(X, label=z) evallist = [(data_train, 'train')] model = xgb.train(parms, data_train, num_boost_round=880, evals = evallist, maximize=False, verbose_eval=100) #%% #%% ztest = model.predict(data_test) #%% ytest = np.exp(ztest)-1 submission = pd.DataFrame({'id': test.id, 'trip_duration': ytest}) submission.to_csv('submission_1.csv', index=False) #%% with open('filename.pickle', 'rb') as handle: b = pickle.load(handle) #%% for d in (mydf,testdf): print(d.Temp.mean()) #%% print('Id is unique.') if train.id.nunique() == train.shape[0] else print('oops') print('Train and test sets are distinct.') if len(np.intersect1d(train.id.values, test.id.values))== 0 else print('oops') print('We do not need to worry about missing values.') if train.count().min() == train.shape[0] and test.count().min() == test.shape[0] else print('oops') print('The store_and_fwd_flag has only two values {}.'.format(str(set(train.store_and_fwd_flag.unique()) | set(test.store_and_fwd_flag.unique())))) #%% Kmeans from sklearn.cluster import MiniBatchKMeans coords = np.vstack((mydf[['pickup_latitude', 'pickup_longitude']].values, mydf[['dropoff_latitude', 'dropoff_longitude']].values, testdf[['pickup_latitude', 'pickup_longitude']].values, testdf[['dropoff_latitude', 'dropoff_longitude']].values)) sample_ind = np.random.permutation(len(coords))[:500000] kmeans = MiniBatchKMeans(n_clusters=20, batch_size=10000).fit(coords[sample_ind]) for df in (mydf,testdf): df.loc[:, 'pickup_loc'] = kmeans.predict(df[['pickup_latitude', 'pickup_longitude']]) df.loc[:, 'dropoff_loc'] = kmeans.predict(df[['dropoff_latitude', 'dropoff_longitude']]) #%% train_loc = [None]*2;test_loc=[None]*2 for i,loc in enumerate(['pickup_loc','dropoff_loc']): train_loc[i]= pd.get_dummies(mydf[loc], prefix=loc, prefix_sep='_') test_loc[i] = pd.get_dummies(testdf[loc], prefix=loc, prefix_sep='_') train_loc = pd.concat(train_loc,axis=1) test_loc = pd.concat(test_loc,axis=1) #%% mydf1 = pd.concat([mydf,train_loc],axis = 1) testdf1 = pd.concat([testdf,test_loc],axis = 1) #%% mydf1 = mydf1[mydf1['outliers']==False] mydf1 = mydf1.drop(['id','outliers'],axis=1) z = mydf1.log_trip_duration X = mydf1.drop(['log_trip_duration'],axis=1) Xtest = testdf1.drop('id',axis=1) #%% X = X.drop(['pickup_loc','dropoff_loc'],axis=1) #%% Xtest=Xtest.drop(['pickup_loc','dropoff_loc'],axis=1)
[ "pandas.DataFrame", "sklearn.cluster.MiniBatchKMeans", "numpy.log", "xgboost.train", "sklearn.model_selection.train_test_split", "pandas.get_dummies", "pickle.load", "numpy.mean", "numpy.exp", "numpy.intersect1d", "pandas.concat", "xgboost.DMatrix", "numpy.vstack" ]
[((273, 303), 'numpy.log', 'np.log', (['(data.trip_duration + 1)'], {}), '(data.trip_duration + 1)\n', (279, 303), True, 'import numpy as np\n'), ((342, 360), 'xgboost.DMatrix', 'xgb.DMatrix', (['Xtest'], {}), '(Xtest)\n', (353, 360), True, 'import xgboost as xgb\n'), ((899, 952), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'z'], {'test_size': '(0.2)', 'random_state': '(1)'}), '(X, z, test_size=0.2, random_state=1)\n', (915, 952), False, 'from sklearn.model_selection import train_test_split\n'), ((1043, 1076), 'xgboost.DMatrix', 'xgb.DMatrix', (['Xtrain'], {'label': 'Ztrain'}), '(Xtrain, label=Ztrain)\n', (1054, 1076), True, 'import xgboost as xgb\n'), ((1090, 1119), 'xgboost.DMatrix', 'xgb.DMatrix', (['Xval'], {'label': 'Zval'}), '(Xval, label=Zval)\n', (1101, 1119), True, 'import xgboost as xgb\n'), ((1188, 1314), 'xgboost.train', 'xgb.train', (['parms', 'data_tr'], {'num_boost_round': '(881)', 'evals': 'evallist', 'early_stopping_rounds': '(30)', 'maximize': '(False)', 'verbose_eval': '(100)'}), '(parms, data_tr, num_boost_round=881, evals=evallist,\n early_stopping_rounds=30, maximize=False, verbose_eval=100)\n', (1197, 1314), True, 'import xgboost as xgb\n'), ((1480, 1503), 'xgboost.DMatrix', 'xgb.DMatrix', (['X'], {'label': 'z'}), '(X, label=z)\n', (1491, 1503), True, 'import xgboost as xgb\n'), ((1551, 1655), 'xgboost.train', 'xgb.train', (['parms', 'data_train'], {'num_boost_round': '(880)', 'evals': 'evallist', 'maximize': '(False)', 'verbose_eval': '(100)'}), '(parms, data_train, num_boost_round=880, evals=evallist, maximize=\n False, verbose_eval=100)\n', (1560, 1655), True, 'import xgboost as xgb\n'), ((1784, 1837), 'pandas.DataFrame', 'pd.DataFrame', (["{'id': test.id, 'trip_duration': ytest}"], {}), "({'id': test.id, 'trip_duration': ytest})\n", (1796, 1837), True, 'import pandas as pd\n'), ((2610, 2860), 'numpy.vstack', 'np.vstack', (["(mydf[['pickup_latitude', 'pickup_longitude']].values, mydf[[\n 'dropoff_latitude', 'dropoff_longitude']].values, testdf[[\n 'pickup_latitude', 'pickup_longitude']].values, testdf[[\n 'dropoff_latitude', 'dropoff_longitude']].values)"], {}), "((mydf[['pickup_latitude', 'pickup_longitude']].values, mydf[[\n 'dropoff_latitude', 'dropoff_longitude']].values, testdf[[\n 'pickup_latitude', 'pickup_longitude']].values, testdf[[\n 'dropoff_latitude', 'dropoff_longitude']].values))\n", (2619, 2860), True, 'import numpy as np\n'), ((3526, 3554), 'pandas.concat', 'pd.concat', (['train_loc'], {'axis': '(1)'}), '(train_loc, axis=1)\n', (3535, 3554), True, 'import pandas as pd\n'), ((3567, 3594), 'pandas.concat', 'pd.concat', (['test_loc'], {'axis': '(1)'}), '(test_loc, axis=1)\n', (3576, 3594), True, 'import pandas as pd\n'), ((3610, 3646), 'pandas.concat', 'pd.concat', (['[mydf, train_loc]'], {'axis': '(1)'}), '([mydf, train_loc], axis=1)\n', (3619, 3646), True, 'import pandas as pd\n'), ((3658, 3695), 'pandas.concat', 'pd.concat', (['[testdf, test_loc]'], {'axis': '(1)'}), '([testdf, test_loc], axis=1)\n', (3667, 3695), True, 'import pandas as pd\n'), ((1754, 1767), 'numpy.exp', 'np.exp', (['ztest'], {}), '(ztest)\n', (1760, 1767), True, 'import numpy as np\n'), ((1951, 1970), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (1962, 1970), False, 'import pickle\n'), ((3380, 3433), 'pandas.get_dummies', 'pd.get_dummies', (['mydf[loc]'], {'prefix': 'loc', 'prefix_sep': '"""_"""'}), "(mydf[loc], prefix=loc, prefix_sep='_')\n", (3394, 3433), True, 'import pandas as pd\n'), ((3457, 3512), 'pandas.get_dummies', 'pd.get_dummies', (['testdf[loc]'], {'prefix': 'loc', 'prefix_sep': '"""_"""'}), "(testdf[loc], prefix=loc, prefix_sep='_')\n", (3471, 3512), True, 'import pandas as pd\n'), ((394, 416), 'numpy.mean', 'np.mean', (['((z - zp) ** 2)'], {}), '((z - zp) ** 2)\n', (401, 416), True, 'import numpy as np\n'), ((2977, 3025), 'sklearn.cluster.MiniBatchKMeans', 'MiniBatchKMeans', ([], {'n_clusters': '(20)', 'batch_size': '(10000)'}), '(n_clusters=20, batch_size=10000)\n', (2992, 3025), False, 'from sklearn.cluster import MiniBatchKMeans\n'), ((2166, 2213), 'numpy.intersect1d', 'np.intersect1d', (['train.id.values', 'test.id.values'], {}), '(train.id.values, test.id.values)\n', (2180, 2213), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import cPickle import ipdb class Detector(): def __init__(self,weight_file_path,n_labels): self.image_mean=[103.939,116.779,123.68] self.n_labels=n_labels with open(weight_file_path)as f: self.pretrained_weights=cPickle.load(f) def get_weight(self,layer_name): layer=self.pretrained_weights[layer_name] return layer[0] def get_bias(self,layer_name): layer=self.pretrained_weights[layer_name] return layer[1] def get_conv_weight(self,name): f=self.get_weight(name) return f.transpose((2,3,1,0)) def conv_layer(self,bottom,name): with tf.variable_scope(name)as scope: w=self.get_conv_weight(name) b=self.get_bias(name) conv_weights=tf.get_variable("W",shape=w.shape,initializer=tf.constant_initializer(w)) conv_biases=tf.get_variable("b",shape=b.shape,initializer=tf.constant_initializer(b)) conv=tf.nn.conv2d(bottom,conv_weights,[1,1,1,1],padding='SAME') bias=tf.nn.bias_add(conv,conv_biases) relu=tf.nn.relu(bias,name=name) return relu def new_conv_layer(self,bottom,filter_shape,name): with tf.variable_scope(name)as scope: w=tf.get_variable("W",shape=filter_shape,initializer=tf.random_normal_initializer(0.,0.01)) b=tf.get_variable("b",shape=filter_shape[-1],initializer=tf.constant_initializer(0.)) conv=tf.nn.conv2d(bottom,w,[1,1,1,1],padding='SAME') bias=tf.nn.bias_add(conv,b) return bias def fc_layer(self,bottom,name,create=False): shape=bottom.get_shape().as_list() dim=np.prod(shape[1:]) x=tf.reshape(bottom,[-1,dim]) cw=self.get_weight(name) b=self.get_bias(name) if name=="fc6": cw=cw.reshape((4096,512,7,7)) cw=cw.transpose((2,3,1,0)) cw=cw.reshape((25088,4096)) else: cw=cw.transpose((1,0)) with tf.variable_scope(name)as scope: cw=tf.get_variable("W",shape=cw.shape,initializer=tf.constant_initializer(cw)) b=tf.get_variable("b",shape=b.shape,initializer=tf.constant_initializer(b)) fc=tf.nn.bias_add(tf.matmul(x,cw),b,name=scope) return fc def new_fc_layer(self,bottom,input_size,output_size,name): shape=bottom.get_shape().to_list() dim=np.prod(shape[1:]) x=tf.reshape(bottom,[-1,dim]) with tf.variable_scope(name)as scope: w=tf.get_variable("W",shape=[input_size,output_size],initializer=tf.random_normal_initializer(0.,0.01)) b=tf.get_variable("b",shape=[output_size],initializer=tf.constant_initializer(0.)) fc=tf.nn.bias_add(tf.matmul(x,w),b,name=scope) return fc def inference(self,rgb,train=False): rgb*=255. r,g,b=tf.split(rgb,3,3) bgr=tf.concat([b-self.image_mean[0],g-self.image_mean[1],r-self.image_mean[2]],3) relu1_1=self.conv_layer(bgr,"conv1_1") relu1_2=self.conv_layer(relu1_1,"conv1_2") pool1=tf.nn.max_pool(relu1_2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME',name='pool1') relu2_1=self.conv_layer(pool1,"conv2_1") relu2_2=self.conv_layer(relu2_1,"conv2_2") pool2=tf.nn.max_pool(relu2_2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME',name='pool2') relu3_1=self.conv_layer(pool2,"conv3_1") relu3_2=self.conv_layer(relu3_1,"conv3_2") relu3_3=self.conv_layer(relu3_2,"conv3_3") pool3=tf.nn.max_pool(relu3_3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME',name='pool3') relu4_1=self.conv_layer(pool3,"conv4_1") relu4_2=self.conv_layer(relu4_1,"conv4_2") relu4_3=self.conv_layer(relu4_2,"conv4_3") pool4=tf.nn.max_pool(relu4_3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME',name='pool4') relu5_1=self.conv_layer(pool4,"conv5_1") relu5_2=self.conv_layer(relu5_1,"conv5_2") relu5_3=self.conv_layer(relu5_2,"conv5_3") conv6=self.new_conv_layer(relu5_3,[3,3,512,1024],"conv6") gap=tf.reduce_mean(conv6,[1,2]) with tf.variable_scope("GAP"): gap_w=tf.get_variable("W",shape=[1024,self.n_labels],initializer=tf.random_normal_initializer(0.,0.01)) output=tf.matmul(gap,gap_w) return pool1,pool2,pool3,pool4,relu5_3,conv6,gap,output def get_classmap(self,label,conv6): conv6_resized=tf.image.resize_bilinear(conv6,[224,224]) with tf.variable_scope("GAP",reuse=True): label_w=tf.gather(tf.transpose(tf.get_variable("W")),label) label_w=tf.reshape(label_w,[-1,1024,1]) conv6_resized=tf.reshape(conv6_resized,[-1,224*224,1024]) classmap=tf.matmul(conv6_resized,label_w) classmap=tf.reshape(classmap,[-1,224,224]) return classmap
[ "tensorflow.nn.relu", "tensorflow.constant_initializer", "tensorflow.reshape", "tensorflow.reduce_mean", "tensorflow.concat", "cPickle.load", "tensorflow.variable_scope", "tensorflow.nn.bias_add", "tensorflow.nn.max_pool", "tensorflow.matmul", "tensorflow.get_variable", "tensorflow.random_normal_initializer", "tensorflow.nn.conv2d", "tensorflow.split", "numpy.prod", "tensorflow.image.resize_bilinear" ]
[((1521, 1539), 'numpy.prod', 'np.prod', (['shape[1:]'], {}), '(shape[1:])\n', (1528, 1539), True, 'import numpy as np\n'), ((1544, 1573), 'tensorflow.reshape', 'tf.reshape', (['bottom', '[-1, dim]'], {}), '(bottom, [-1, dim])\n', (1554, 1573), True, 'import tensorflow as tf\n'), ((2136, 2154), 'numpy.prod', 'np.prod', (['shape[1:]'], {}), '(shape[1:])\n', (2143, 2154), True, 'import numpy as np\n'), ((2159, 2188), 'tensorflow.reshape', 'tf.reshape', (['bottom', '[-1, dim]'], {}), '(bottom, [-1, dim])\n', (2169, 2188), True, 'import tensorflow as tf\n'), ((2540, 2559), 'tensorflow.split', 'tf.split', (['rgb', '(3)', '(3)'], {}), '(rgb, 3, 3)\n', (2548, 2559), True, 'import tensorflow as tf\n'), ((2564, 2655), 'tensorflow.concat', 'tf.concat', (['[b - self.image_mean[0], g - self.image_mean[1], r - self.image_mean[2]]', '(3)'], {}), '([b - self.image_mean[0], g - self.image_mean[1], r - self.\n image_mean[2]], 3)\n', (2573, 2655), True, 'import tensorflow as tf\n'), ((2736, 2836), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['relu1_2'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': '"""pool1"""'}), "(relu1_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\n 'SAME', name='pool1')\n", (2750, 2836), True, 'import tensorflow as tf\n'), ((2918, 3018), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['relu2_2'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': '"""pool2"""'}), "(relu2_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\n 'SAME', name='pool2')\n", (2932, 3018), True, 'import tensorflow as tf\n'), ((3145, 3245), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['relu3_3'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': '"""pool3"""'}), "(relu3_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\n 'SAME', name='pool3')\n", (3159, 3245), True, 'import tensorflow as tf\n'), ((3372, 3472), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['relu4_3'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""', 'name': '"""pool4"""'}), "(relu4_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\n 'SAME', name='pool4')\n", (3386, 3472), True, 'import tensorflow as tf\n'), ((3657, 3686), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['conv6', '[1, 2]'], {}), '(conv6, [1, 2])\n', (3671, 3686), True, 'import tensorflow as tf\n'), ((3834, 3855), 'tensorflow.matmul', 'tf.matmul', (['gap', 'gap_w'], {}), '(gap, gap_w)\n', (3843, 3855), True, 'import tensorflow as tf\n'), ((3966, 4009), 'tensorflow.image.resize_bilinear', 'tf.image.resize_bilinear', (['conv6', '[224, 224]'], {}), '(conv6, [224, 224])\n', (3990, 4009), True, 'import tensorflow as tf\n'), ((4174, 4222), 'tensorflow.reshape', 'tf.reshape', (['conv6_resized', '[-1, 224 * 224, 1024]'], {}), '(conv6_resized, [-1, 224 * 224, 1024])\n', (4184, 4222), True, 'import tensorflow as tf\n'), ((4229, 4262), 'tensorflow.matmul', 'tf.matmul', (['conv6_resized', 'label_w'], {}), '(conv6_resized, label_w)\n', (4238, 4262), True, 'import tensorflow as tf\n'), ((4273, 4309), 'tensorflow.reshape', 'tf.reshape', (['classmap', '[-1, 224, 224]'], {}), '(classmap, [-1, 224, 224])\n', (4283, 4309), True, 'import tensorflow as tf\n'), ((289, 304), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (301, 304), False, 'import cPickle\n'), ((628, 651), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (645, 651), True, 'import tensorflow as tf\n'), ((905, 969), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['bottom', 'conv_weights', '[1, 1, 1, 1]'], {'padding': '"""SAME"""'}), "(bottom, conv_weights, [1, 1, 1, 1], padding='SAME')\n", (917, 969), True, 'import tensorflow as tf\n'), ((972, 1005), 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['conv', 'conv_biases'], {}), '(conv, conv_biases)\n', (986, 1005), True, 'import tensorflow as tf\n'), ((1013, 1040), 'tensorflow.nn.relu', 'tf.nn.relu', (['bias'], {'name': 'name'}), '(bias, name=name)\n', (1023, 1040), True, 'import tensorflow as tf\n'), ((1113, 1136), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (1130, 1136), True, 'import tensorflow as tf\n'), ((1338, 1391), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['bottom', 'w', '[1, 1, 1, 1]'], {'padding': '"""SAME"""'}), "(bottom, w, [1, 1, 1, 1], padding='SAME')\n", (1350, 1391), True, 'import tensorflow as tf\n'), ((1394, 1417), 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['conv', 'b'], {}), '(conv, b)\n', (1408, 1417), True, 'import tensorflow as tf\n'), ((1776, 1799), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (1793, 1799), True, 'import tensorflow as tf\n'), ((2194, 2217), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (2211, 2217), True, 'import tensorflow as tf\n'), ((3692, 3716), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""GAP"""'], {}), "('GAP')\n", (3709, 3716), True, 'import tensorflow as tf\n'), ((4015, 4051), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""GAP"""'], {'reuse': '(True)'}), "('GAP', reuse=True)\n", (4032, 4051), True, 'import tensorflow as tf\n'), ((4126, 4160), 'tensorflow.reshape', 'tf.reshape', (['label_w', '[-1, 1024, 1]'], {}), '(label_w, [-1, 1024, 1])\n', (4136, 4160), True, 'import tensorflow as tf\n'), ((1991, 2007), 'tensorflow.matmul', 'tf.matmul', (['x', 'cw'], {}), '(x, cw)\n', (2000, 2007), True, 'import tensorflow as tf\n'), ((2441, 2456), 'tensorflow.matmul', 'tf.matmul', (['x', 'w'], {}), '(x, w)\n', (2450, 2456), True, 'import tensorflow as tf\n'), ((780, 806), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['w'], {}), '(w)\n', (803, 806), True, 'import tensorflow as tf\n'), ((869, 895), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['b'], {}), '(b)\n', (892, 895), True, 'import tensorflow as tf\n'), ((1202, 1241), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', (['(0.0)', '(0.01)'], {}), '(0.0, 0.01)\n', (1230, 1241), True, 'import tensorflow as tf\n'), ((1301, 1329), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(0.0)'], {}), '(0.0)\n', (1324, 1329), True, 'import tensorflow as tf\n'), ((1862, 1889), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['cw'], {}), '(cw)\n', (1885, 1889), True, 'import tensorflow as tf\n'), ((1942, 1968), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['b'], {}), '(b)\n', (1965, 1968), True, 'import tensorflow as tf\n'), ((2295, 2334), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', (['(0.0)', '(0.01)'], {}), '(0.0, 0.01)\n', (2323, 2334), True, 'import tensorflow as tf\n'), ((2391, 2419), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(0.0)'], {}), '(0.0)\n', (2414, 2419), True, 'import tensorflow as tf\n'), ((3786, 3825), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', (['(0.0)', '(0.01)'], {}), '(0.0, 0.01)\n', (3814, 3825), True, 'import tensorflow as tf\n'), ((4086, 4106), 'tensorflow.get_variable', 'tf.get_variable', (['"""W"""'], {}), "('W')\n", (4101, 4106), True, 'import tensorflow as tf\n')]
# -*- coding: utf-8 -*- import os from unittest import TestCase import tempfile from server import db def use_temp_db(filename): def _use_temp_db(fn): def wrapper(obj): with tempfile.TemporaryDirectory() as dirname: fn(obj, os.path.join(dirname, filename)) return wrapper return _use_temp_db class TestMatchResultDBController(TestCase): def test_get_from_blank(self): with tempfile.NamedTemporaryFile() as f: logger = db.MatchResultDBController(f.name) results = logger.get() self.assertEqual(results, []) @use_temp_db('test.db') def test_add_one(self, filename): logger = db.MatchResultDBController(filename) with logger as lg: lg.add(0, 1, 2, 0) lg.add(1, 2, 3, 0) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, }) self.assertEqual(logger.current_id, 1) @use_temp_db('test.db') def test_add_list(self, filename): logger = db.MatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 2), (2, 3), (0, 0)) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, }) @use_temp_db('test.db') def test_add_list2(self, filename): logger = db.MatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 2), (2, 3), 0) results = logger.get(ordered=True) self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, }) @use_temp_db('test.db') def test_delete(self, filename): logger = db.MatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 3), (2, 4), 0) lg.add((2, 3), (5, 7), (6, 8), 2) with logger as lg: deleted = lg.delete(0) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 3, 'winner': 7, 'loser': 8, 'trigger_id': 2, }) self.assertEqual(len(deleted), 2) self.assertEqual(deleted[1], { 'id': 1, 'winner': 3, 'loser': 4, 'trigger_id': 0, }) class TestRatedMatchResultDBController(TestCase): def test_get_from_blank(self): with tempfile.NamedTemporaryFile() as f: logger = db.RatedMatchResultDBController(f.name) results = logger.get() self.assertEqual(results, []) @use_temp_db('test.db') def test_add_one(self, filename): logger = db.RatedMatchResultDBController(filename) with logger as lg: lg.add(0, 1, 2, 0, 1400.0, 1600.0) lg.add(1, 2, 3, 0, 1550, 1450) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, 'winner_rate': 1550.0, 'loser_rate': 1450.0, }) @use_temp_db('test.db') def test_add_list(self, filename): logger = db.RatedMatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 2), (2, 3), 0, (1400, 1550), (1600, 1450)) results = logger.get(ordered=True) self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, 'winner_rate': 1550.0, 'loser_rate': 1450.0, }) @use_temp_db('test.db') def test_add_delete(self, filename): logger = db.RatedMatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 2), (2, 3), 0, (1400, 1550), (1600, 1450)) lg.add((2, 3), (5, 6), (7, 8), 2, (1300, 1700), (1510, 1490)) with logger as lg: deleted = lg.delete(0) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 3, 'winner': 6, 'loser': 8, 'trigger_id': 2, 'winner_rate': 1700.0, 'loser_rate': 1490.0, }) self.assertEqual(len(deleted), 2) self.assertEqual(deleted[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, 'winner_rate': 1550.0, 'loser_rate': 1450.0, }) class TestItemLabelDBController(TestCase): def test_get_from_blank(self): with tempfile.NamedTemporaryFile() as f: logger = db.ItemLabelDBController(f.name) results = logger.get() self.assertEqual(results, []) @use_temp_db('test.db') def test_add_one(self, filename): logger = db.ItemLabelDBController(filename) with logger as lg: lg.add(0, 'foo') lg.add(1, 'bar') results = logger.get() self.assertEqual(results, [ {'id': 0, 'label': 'foo'}, {'id': 1, 'label': 'bar'}, ]) @use_temp_db('test.db') def test_add_list(self, filename): logger = db.ItemLabelDBController(filename) with logger as lg: lg.add((0, 1), ('foo', 'bar')) results = logger.get(ordered=True) self.assertEqual(results, [ {'id': 0, 'label': 'foo'}, {'id': 1, 'label': 'bar'}, ]) @use_temp_db('test.db') def test_delete(self, filename): logger = db.ItemLabelDBController(filename) with logger as lg: lg.add((0, 1), ('foo', 'bar')) with logger as lg: deleted = lg.delete('foo') results = logger.get() self.assertEqual(results, [ {'id': 1, 'label': 'bar'}, ]) self.assertEqual(deleted, [ {'id': 0, 'label': 'foo'} ])
[ "tempfile.NamedTemporaryFile", "tempfile.TemporaryDirectory", "server.db.ItemLabelDBController", "server.db.MatchResultDBController", "os.path.join", "server.db.RatedMatchResultDBController" ]
[((695, 731), 'server.db.MatchResultDBController', 'db.MatchResultDBController', (['filename'], {}), '(filename)\n', (721, 731), False, 'from server import db\n'), ((1176, 1212), 'server.db.MatchResultDBController', 'db.MatchResultDBController', (['filename'], {}), '(filename)\n', (1202, 1212), False, 'from server import db\n'), ((1600, 1636), 'server.db.MatchResultDBController', 'db.MatchResultDBController', (['filename'], {}), '(filename)\n', (1626, 1636), False, 'from server import db\n'), ((2028, 2064), 'server.db.MatchResultDBController', 'db.MatchResultDBController', (['filename'], {}), '(filename)\n', (2054, 2064), False, 'from server import db\n'), ((3019, 3060), 'server.db.RatedMatchResultDBController', 'db.RatedMatchResultDBController', (['filename'], {}), '(filename)\n', (3050, 3060), False, 'from server import db\n'), ((3555, 3596), 'server.db.RatedMatchResultDBController', 'db.RatedMatchResultDBController', (['filename'], {}), '(filename)\n', (3586, 3596), False, 'from server import db\n'), ((4089, 4130), 'server.db.RatedMatchResultDBController', 'db.RatedMatchResultDBController', (['filename'], {}), '(filename)\n', (4120, 4130), False, 'from server import db\n'), ((5265, 5299), 'server.db.ItemLabelDBController', 'db.ItemLabelDBController', (['filename'], {}), '(filename)\n', (5289, 5299), False, 'from server import db\n'), ((5627, 5661), 'server.db.ItemLabelDBController', 'db.ItemLabelDBController', (['filename'], {}), '(filename)\n', (5651, 5661), False, 'from server import db\n'), ((5984, 6018), 'server.db.ItemLabelDBController', 'db.ItemLabelDBController', (['filename'], {}), '(filename)\n', (6008, 6018), False, 'from server import db\n'), ((442, 471), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {}), '()\n', (469, 471), False, 'import tempfile\n'), ((499, 533), 'server.db.MatchResultDBController', 'db.MatchResultDBController', (['f.name'], {}), '(f.name)\n', (525, 533), False, 'from server import db\n'), ((2761, 2790), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {}), '()\n', (2788, 2790), False, 'import tempfile\n'), ((2818, 2857), 'server.db.RatedMatchResultDBController', 'db.RatedMatchResultDBController', (['f.name'], {}), '(f.name)\n', (2849, 2857), False, 'from server import db\n'), ((5014, 5043), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {}), '()\n', (5041, 5043), False, 'import tempfile\n'), ((5071, 5103), 'server.db.ItemLabelDBController', 'db.ItemLabelDBController', (['f.name'], {}), '(f.name)\n', (5095, 5103), False, 'from server import db\n'), ((201, 230), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (228, 230), False, 'import tempfile\n'), ((267, 298), 'os.path.join', 'os.path.join', (['dirname', 'filename'], {}), '(dirname, filename)\n', (279, 298), False, 'import os\n')]
"""Quantitative Proteomic Service Usage: pyqp api pyqp cli <proteomicTSV> <proteomeXML> [--field=<quantity_column>] [--adress=<apiAdress>] [--port=<apiPort>] [--verbose] [--topScore=<pathway_number>] Options: -h --help Show this screen. --field=<quantity column> csv column header featuring signal --purb=purb aa --intg=intg bbb --alpha=alpha ccc --ncore=ncore ddd --sizelim=sizelim eee --prot=<proteomeXML> ggg --adress=<apiAdress> aaa --port=<apiPort> aaa --verbose iiii --topScore=<pathway_number> aaaa """ # TEST W/ mycoplasma proteome # The test this #python -m pyqp cli previous/wt2_subset.tsv unigo/src/unigo/data/uniprot-proteome_UP000000625.xml.gz from docopt import docopt #from pyT2GA import analysis from unigo import Unigo as createUniGOTree from unigo import uloads as createGOTreeFromAPI from .utils import proteomicWrapper from pyproteinsExt.uniprot import EntrySet as createUniprotCollection from requests import get from .api import app import time arguments = docopt(__doc__) #print(arguments) abnd_field = arguments['--field'] if arguments['--field'] else "Corrected Abundance ratio (1,526968203)" nTop = int(arguments['--topScore']) if arguments['--topScore'] else 20 if arguments['cli']: quantProteomic = proteomicWrapper( csv_file = arguments['<proteomicTSV>'], abnd_label = abnd_field) uColl = createUniprotCollection(collectionXML = arguments['<proteomeXML>'] ) missingProt = [] for x in quantProteomic.uniprot: if not uColl.has(x): print(f"{x} not found in proteome") missingProt.append(x) for x in missingProt: quantProteomic.remove(x) taxid = uColl.taxids[0] apiAdress = arguments['--adress'] if arguments['--adress'] else "127.0.0.1" apiPort = arguments['--port'] if arguments['--port'] else "5000" url = f"http://{apiAdress}:{apiPort}/unigo/{taxid}" print(f"Fetching universal annotation tree from {url}") expUniprotID = [ _ for _ in quantProteomic.uniprot ] resp = get(url) if resp.status_code == 404: print(f"{url} returned 404, provided proteome XML {taxid} may not be registred") else: unigoTree = createGOTreeFromAPI(resp.text, expUniprotID) x,y = unigoTree.dimensions print("Unigo Object successfully buildt w/ following dimensions:") print(f"\txpTree => nodes:{x[0]} children_links:{x[1]}, total_protein_occurences:{x[2]}, protein_set:{x[3]}") print(f"\t universeTree => nodes:{y[0]} children_links:{y[1]}, total_protein_occurences:{y[2]}, protein_set:{y[3]}") nDelta=int(0.1 * len(quantProteomic)) print(f"{len(quantProteomic)} proteins available in quantitative records, taking first {nDelta} as of quantity modified") print("Computing ORA") deltaUniprotID = expUniprotID[:nDelta] rankingsORA = unigoTree.computeORA(deltaUniprotID, verbose = arguments['--verbose']) print(f"Test Top - {nTop}\n{rankingsORA[:nTop]}") if arguments['api']: app.run(port=1234) """ unigoTree = createUniGOTree( backgroundUniColl = uColl, proteinList = [ x for x in quantProteomic.uniprot ], fetchLatest = False) start = time.perf_counter() # Taking 10% w/ highest qtty value rankingsORA = unigoTree.computeORA( [ _ for _ in quantProteomic[nTop].uniprot ] , verbose = False) stop = time.perf_counter() print(f"Test Top - {5}\n{rankingsORA[5]}") print(f"Execution time is {stop-start} sc") """ # Unnecssary def typeGuardTaxID(proteomicData, uColl): taxids = {} for uID in proteomicData.uniprot: uObj = uColl.get(uID) if not uObj.taxid in taxids: taxids[uObj.taxid] = 0 taxids[uObj.taxid] += 1 return sorted( [ (k,v) for k,v in taxids.items() ], key=lambda x:x[1] ) #r = pyt2ga.analysis(proteoRes, GOpwRes, STRINGRes, mapperRes, intg=False, # abnd_label = "Corrected Abundance ratio (1,526968203)", ncore=3)
[ "unigo.uloads", "pyproteinsExt.uniprot.EntrySet", "requests.get", "docopt.docopt" ]
[((1037, 1052), 'docopt.docopt', 'docopt', (['__doc__'], {}), '(__doc__)\n', (1043, 1052), False, 'from docopt import docopt\n'), ((1406, 1471), 'pyproteinsExt.uniprot.EntrySet', 'createUniprotCollection', ([], {'collectionXML': "arguments['<proteomeXML>']"}), "(collectionXML=arguments['<proteomeXML>'])\n", (1429, 1471), True, 'from pyproteinsExt.uniprot import EntrySet as createUniprotCollection\n'), ((2091, 2099), 'requests.get', 'get', (['url'], {}), '(url)\n', (2094, 2099), False, 'from requests import get\n'), ((2251, 2295), 'unigo.uloads', 'createGOTreeFromAPI', (['resp.text', 'expUniprotID'], {}), '(resp.text, expUniprotID)\n', (2270, 2295), True, 'from unigo import uloads as createGOTreeFromAPI\n')]
from kafka import KafkaConsumer, TopicPartition from json import loads from sqlalchemy import create_engine, Table, Column, Integer, String from sqlalchemy.ext.declarative import declarative_base import os user = os.getenv('MYSQL_user') pw = os.getenv('MYSQL') str_sql = 'mysql+mysqlconnector://' + user + ':' + pw + '@localhost/ZipBank' engine = create_engine(str_sql) Base = declarative_base(bind=engine) class XactionConsumer: def __init__(self): self.consumer = KafkaConsumer('bank-customer-new', bootstrap_servers=['localhost:9092'], # auto_offset_reset='earliest', value_deserializer=lambda m: loads(m.decode('ascii'))) ## These are two python dictionaries # Ledger is the one where all the transaction get posted self.customer = {} self.customer_list = [] #Go back to the readme. def handleMessages(self): self.CustDb() for message in self.consumer: message = message.value print('{} received'.format(message)) self.customer[message['custid']] = message # add message to the transaction table in your SQL usinf SQLalchemy if message['custid'] in self.customer_list: print("Already a customer") else: with engine.connect() as connection: connection.execute("insert into person (custid, createdate, fname, lname) values(%s, %s, %s, %s)", (message['custid'], message['createdate'], message['fname'], message['lname'])) print(self.customer) def CustDb(self): with engine.connect() as connection: cust = connection.execute("select custid from person") cust_list = cust.fetchall() for row in range(len(cust_list)): self.customer_list.append(row) class Transaction(Base): __tablename__ = 'person' # Here we define columns for the table person # Notice that each column is also a normal Python instance attribute. custid = Column(Integer, primary_key=True) createdate = Column(Integer) fname = Column(String(50)) lname = Column(String(50)) if __name__ == "__main__": Base.metadata.create_all(engine) c = XactionConsumer() c.handleMessages()
[ "sqlalchemy.String", "sqlalchemy.ext.declarative.declarative_base", "sqlalchemy.Column", "sqlalchemy.create_engine", "os.getenv" ]
[((214, 237), 'os.getenv', 'os.getenv', (['"""MYSQL_user"""'], {}), "('MYSQL_user')\n", (223, 237), False, 'import os\n'), ((243, 261), 'os.getenv', 'os.getenv', (['"""MYSQL"""'], {}), "('MYSQL')\n", (252, 261), False, 'import os\n'), ((348, 370), 'sqlalchemy.create_engine', 'create_engine', (['str_sql'], {}), '(str_sql)\n', (361, 370), False, 'from sqlalchemy import create_engine, Table, Column, Integer, String\n'), ((378, 407), 'sqlalchemy.ext.declarative.declarative_base', 'declarative_base', ([], {'bind': 'engine'}), '(bind=engine)\n', (394, 407), False, 'from sqlalchemy.ext.declarative import declarative_base\n'), ((2053, 2086), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (2059, 2086), False, 'from sqlalchemy import create_engine, Table, Column, Integer, String\n'), ((2104, 2119), 'sqlalchemy.Column', 'Column', (['Integer'], {}), '(Integer)\n', (2110, 2119), False, 'from sqlalchemy import create_engine, Table, Column, Integer, String\n'), ((2139, 2149), 'sqlalchemy.String', 'String', (['(50)'], {}), '(50)\n', (2145, 2149), False, 'from sqlalchemy import create_engine, Table, Column, Integer, String\n'), ((2170, 2180), 'sqlalchemy.String', 'String', (['(50)'], {}), '(50)\n', (2176, 2180), False, 'from sqlalchemy import create_engine, Table, Column, Integer, String\n')]
import os from google.cloud import speech_v1p1beta1 as speech import io #Set env variable, because it resets every shell session os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/home/robin_jf_andersson/mbox_speaker_diarization/mbox1-28508a73fde1.json" def speaker_diarization(audio_file, channels, sample_rate, nbr_of_persons): client = speech.SpeechClient() speech_file = audio_file with open(speech_file, "rb") as audio_file: content = audio_file.read() audio = speech.RecognitionAudio(content=content) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=sample_rate, language_code="en-US", enable_speaker_diarization=True, diarization_speaker_count=nbr_of_persons, audio_channel_count=channels, enable_separate_recognition_per_channel=True, #change this if respeaker is configured correctly model="video", ) print("Waiting for operation to complete...") response = client.recognize(config=config, audio=audio) # The transcript within each result is separate and sequential per result. # However, the words list within an alternative includes all the words # from all the results thus far. Thus, to get all the words with speaker # tags, you only have to take the words list from the last result: result = response.results[-1] words_info = result.alternatives[0].words output_result = {} #saving each word with corresponding speaker tag into a dictionary of word lists for i in range(nbr_of_persons): word_counter = 0 speaker_data = {} words = [] for word_info in words_info: if(word_info.speaker_tag == (i+1)): words.append(word_info.word) word_counter += 1 speaker_data["number_of_words"] = word_counter speaker_data["words"] = words output_result[(i+1)] = speaker_data #print(output_result) return output_result #test #diarization_service("audiofiles/Test7.wav")
[ "google.cloud.speech_v1p1beta1.RecognitionConfig", "google.cloud.speech_v1p1beta1.RecognitionAudio", "google.cloud.speech_v1p1beta1.SpeechClient" ]
[((343, 364), 'google.cloud.speech_v1p1beta1.SpeechClient', 'speech.SpeechClient', ([], {}), '()\n', (362, 364), True, 'from google.cloud import speech_v1p1beta1 as speech\n'), ((492, 532), 'google.cloud.speech_v1p1beta1.RecognitionAudio', 'speech.RecognitionAudio', ([], {'content': 'content'}), '(content=content)\n', (515, 532), True, 'from google.cloud import speech_v1p1beta1 as speech\n'), ((547, 867), 'google.cloud.speech_v1p1beta1.RecognitionConfig', 'speech.RecognitionConfig', ([], {'encoding': 'speech.RecognitionConfig.AudioEncoding.LINEAR16', 'sample_rate_hertz': 'sample_rate', 'language_code': '"""en-US"""', 'enable_speaker_diarization': '(True)', 'diarization_speaker_count': 'nbr_of_persons', 'audio_channel_count': 'channels', 'enable_separate_recognition_per_channel': '(True)', 'model': '"""video"""'}), "(encoding=speech.RecognitionConfig.AudioEncoding.\n LINEAR16, sample_rate_hertz=sample_rate, language_code='en-US',\n enable_speaker_diarization=True, diarization_speaker_count=\n nbr_of_persons, audio_channel_count=channels,\n enable_separate_recognition_per_channel=True, model='video')\n", (571, 867), True, 'from google.cloud import speech_v1p1beta1 as speech\n')]
from manimlib.imports import * from ManimProjects.utils.Parabola import Parabola from ManimProjects.utils.geometry import CText class Prob1(Parabola): CONFIG = { 'x_min' : -5 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.7) focusLabel.next_to(focus, RIGHT) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) y_val = ValueTracker(8) p1 = Dot() p1.set_color(DARK_BLUE) p1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(y_val.get_value()), y_val.get_value() ))) p1.plot_depth = 1 p1Label = TexMobject('P_1').scale(0.7) p1Label.add_updater(lambda m:\ m.next_to(p1, RIGHT, buff=SMALL_BUFF)) p2 = Dot() p2.set_color(DARK_BLUE) p2.add_updater(lambda m:\ m.move_to(self.get_opposite(p1))) p2.plot_depth = 1 p2Label = TexMobject('P_2').scale(0.7) p2Label.add_updater(lambda m:\ m.next_to(p2, RIGHT, buff=SMALL_BUFF)) focus_chord = Line() focus_chord.add_updater(lambda m:\ m.put_start_and_end_on( p1.get_center(), self.get_opposite(p1) )) self.play(ShowCreation(p1), ShowCreation(p1Label)) self.play(ShowCreation(focus_chord)) self.play(ShowCreation(p2), ShowCreation(p2Label)) fc_def = CText('焦点弦') fc_def.move_to(focus_chord.get_center()) fc_def.shift(0.2 * RIGHT + 0.1 * DOWN) self.play(Write(fc_def)) self.wait(2) self.play(FadeOut(fc_def)) q_y = ValueTracker(2) q = Dot() q.set_fill(DARK_BLUE) q.plot_depth = 1 q.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(q_y.get_value()), q_y.get_value() ))) qLabel = TexMobject('Q').scale(0.7) qLabel.add_updater(lambda m:\ m.next_to(q, LEFT, buff=SMALL_BUFF)) k1 = Dot() k1.set_fill(BLUE_E) k1.plot_depth = 1 k1.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p1, q))) k1Label = TexMobject('K_1').scale(0.7) k1Label.add_updater(lambda m:\ m.next_to(k1, LEFT, buff=SMALL_BUFF)) k2 = Dot() k2.set_fill(BLUE_E) k2.plot_depth = 1 k2.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p2, q))) k2Label = TexMobject('K_2').scale(0.7) k2Label.add_updater(lambda m:\ m.next_to(k2, LEFT, buff=SMALL_BUFF)) l1 = Line() l1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q), self.chord_to_directrix(p1, q) )) l2 = Line() l2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q), self.chord_to_directrix(p2, q) )) self.play(ShowCreation(q), ShowCreation(qLabel)) self.play(ShowCreation(l1), ShowCreation(l2)) self.play(*[ShowCreation(e) for e in [k1, k2, k1Label, k2Label]]) k1f = Line() k1f.add_updater(lambda m:\ m.put_start_and_end_on( k1.get_center(), focus.get_center() )) k2f = Line() k2f.add_updater(lambda m:\ m.put_start_and_end_on( k2.get_center(), focus.get_center() )) self.play(ShowCreation(k1f), ShowCreation(k2f)) self.wait(1) self.play(ApplyMethod(y_val.set_value, 5)) summary = TexMobject('K_1F \\perp K_2F').scale(2) summary.to_edge(RIGHT) self.wait(1) self.play(Write(summary)) self.wait(5) qf = Line() qf.add_updater(lambda m:\ m.put_start_and_end_on(q.get_center(), focus.get_center())) self.play(ShowCreation(qf)) self.wait(1) self.play(ApplyMethod(q_y.set_value, -1)) self.wait(1) self.play(ApplyMethod(y_val.set_value, 0.5)) self.wait(1) self.play(ApplyMethod(y_val.set_value, 3), ApplyMethod(q_y.set_value, 0.5)) self.wait(10) class Prob2(Parabola): CONFIG = { 'focus': 2, 'x_min': -4 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.7) focusLabel.next_to(focus, RIGHT) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) q1_y = ValueTracker(9) q1 = Dot() q1.set_fill(DARK_BLUE) q1.plot_depth = 1 q1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(q1_y.get_value()), q1_y.get_value() ))) q1_label = TexMobject('Q_1').scale(0.5) q1_label.add_updater(lambda m:\ m.next_to(q1, RIGHT, buff=SMALL_BUFF)) self.play(ShowCreation(q1), ShowCreation(q1_label)) q2 = Dot() q2.set_fill(DARK_BLUE) q2.plot_depth = 1 q2.add_updater(lambda m:\ m.move_to(self.get_opposite(q1))) q2_label = TexMobject('Q_2').scale(0.5) q2_label.add_updater(lambda m:\ m.next_to(q2, RIGHT, buff=SMALL_BUFF)) q1q2 = Line() q1q2.add_updater(lambda m:\ m.put_start_and_end_on( q1.get_center(), self.get_opposite(q1) )) self.play(*[ShowCreation(e) for e in\ [q2, q2_label, q1q2]]) p1_y = ValueTracker(2) p1 = Dot() p1.set_fill(DARK_BLUE) p1.plot_depth = 1 p1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(p1_y.get_value()), p1_y.get_value() ))) p1_label = TexMobject('P_1').scale(0.5) p1_label.add_updater(lambda m:\ m.next_to(p1, RIGHT, buff=SMALL_BUFF)) self.play(ShowCreation(p1), ShowCreation(p1_label)) p2 = Dot() p2.set_fill(DARK_BLUE) p2.plot_depth = 1 p2.add_updater(lambda m:\ m.move_to(self.get_opposite(p1))) p2_label = TexMobject('P_2').scale(0.5) p2_label.add_updater(lambda m:\ m.next_to(p2, RIGHT, buff=SMALL_BUFF)) p1p2 = Line() p1p2.add_updater(lambda m:\ m.put_start_and_end_on( p1.get_center(), self.get_opposite(p1) )) self.play(*[ShowCreation(e) for e in\ [p2, p2_label, p1p2]]) k1 = Dot() k1.set_fill(DARK_BROWN) k1.plot_depth = 1 k1.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p1, q1))) k1_label = TexMobject('K_1').scale(0.5) k1_label.add_updater(lambda m:\ m.next_to(k1, LEFT, buff=SMALL_BUFF)) p1q1 = Line() p1q1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q1), self.chord_to_directrix(p1, q1) )) p2q2 = Line() p2q2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q2), self.chord_to_directrix(p2, q2) )) self.play(*[ShowCreation(e) for e in \ [k1, k1_label, p1q1, p2q2]]) k2 = Dot() k2.set_fill(DARK_BROWN) k2.plot_depth = 1 k2.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p2, q1))) k2_label = TexMobject('K_2').scale(0.5) k2_label.add_updater(lambda m:\ m.next_to(k2, LEFT, buff=SMALL_BUFF)) p2q1 = Line() p2q1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q1), self.chord_to_directrix(p2, q1) )) p1q2 = Line() p1q2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q2), self.chord_to_directrix(p1, q2) )) self.play(*[ShowCreation(e) for e in \ [k2, k2_label, p2q1, p1q2]]) explain = CText('这些交点在准线上').scale(0.3) explain.to_edge(RIGHT) self.wait(2) self.play(Write(explain)) self.wait(5) self.play(ApplyMethod(q1_y.set_value, 0.5), ApplyMethod(p1_y.set_value, -3)) self.wait(3) self.play(ApplyMethod(q1_y.set_value, 3), ApplyMethod(p1_y.set_value, -9)) self.wait(10) class Prob3(Parabola): CONFIG = { 'focus': 2, 'x_min': -4 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.7) focusLabel.next_to(focus, RIGHT) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) q1_y = ValueTracker(9) q1 = Dot() q1.set_fill(DARK_BLUE) q1.plot_depth = 1 q1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(q1_y.get_value()), q1_y.get_value() ))) q1_label = TexMobject('Q_1').scale(0.5) q1_label.add_updater(lambda m:\ m.next_to(q1, RIGHT, buff=SMALL_BUFF)) self.play(ShowCreation(q1), ShowCreation(q1_label)) q2 = Dot() q2.set_fill(DARK_BLUE) q2.plot_depth = 1 q2.add_updater(lambda m:\ m.move_to(self.get_opposite(q1))) q2_label = TexMobject('Q_2').scale(0.5) q2_label.add_updater(lambda m:\ m.next_to(q2, RIGHT, buff=SMALL_BUFF)) q1q2 = Line() q1q2.add_updater(lambda m:\ m.put_start_and_end_on( q1.get_center(), self.get_opposite(q1) )) self.play(*[ShowCreation(e) for e in\ [q2, q2_label, q1q2]]) p1_y = ValueTracker(2) p1 = Dot() p1.set_fill(DARK_BLUE) p1.plot_depth = 1 p1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(p1_y.get_value()), p1_y.get_value() ))) p1_label = TexMobject('P_1').scale(0.5) p1_label.add_updater(lambda m:\ m.next_to(p1, RIGHT, buff=SMALL_BUFF)) self.play(ShowCreation(p1), ShowCreation(p1_label)) p2 = Dot() p2.set_fill(DARK_BLUE) p2.plot_depth = 1 p2.add_updater(lambda m:\ m.move_to(self.get_opposite(p1))) p2_label = TexMobject('P_2').scale(0.5) p2_label.add_updater(lambda m:\ m.next_to(p2, RIGHT, buff=SMALL_BUFF)) p1p2 = Line() p1p2.add_updater(lambda m:\ m.put_start_and_end_on( p1.get_center(), self.get_opposite(p1) )) self.play(*[ShowCreation(e) for e in\ [p2, p2_label, p1p2]]) k1 = Dot() k1.set_fill(DARK_BROWN) k1.plot_depth = 1 k1.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p1, q1))) k1_label = TexMobject('K_1').scale(0.5) k1_label.add_updater(lambda m:\ m.next_to(k1, LEFT, buff=SMALL_BUFF)) p1q1 = Line() p1q1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q1), self.chord_to_directrix(p1, q1) )) p2q2 = Line() p2q2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q2), self.chord_to_directrix(p2, q2) )) self.play(*[ShowCreation(e) for e in \ [k1, k1_label, p1q1, p2q2]]) k2 = Dot() k2.set_fill(DARK_BROWN) k2.plot_depth = 1 k2.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p2, q1))) k2_label = TexMobject('K_2').scale(0.5) k2_label.add_updater(lambda m:\ m.next_to(k2, LEFT, buff=SMALL_BUFF)) p2q1 = Line() p2q1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q1), self.chord_to_directrix(p2, q1) )) p1q2 = Line() p1q2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q2), self.chord_to_directrix(p1, q2) )) self.play(*[ShowCreation(e) for e in \ [k2, k2_label, p2q1, p1q2]]) k1f = Line() k1f.add_updater(lambda m:\ m.put_start_and_end_on( k1.get_center(), focus.get_center() )) k2f = Line() k2f.add_updater(lambda m:\ m.put_start_and_end_on( k2.get_center(), focus.get_center() )) explain = TexMobject('K_1F \\perp K_2F') explain.to_edge(RIGHT) self.wait(2) self.play(ShowCreation(k1f), ShowCreation(k2f)) self.wait(3) self.play(Write(explain)) self.wait(5) self.play(ApplyMethod(q1_y.set_value, 0.5), ApplyMethod(p1_y.set_value, -3)) self.wait(3) self.play(ApplyMethod(q1_y.set_value, 3), ApplyMethod(p1_y.set_value, -9)) self.wait(10) class Prob4(Parabola): CONFIG = { 'focus': 3, 'x_min': -10 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.5) focusLabel.next_to(focus, RIGHT) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) a = Dot() a.set_fill(DARK_BROWN) a.move_to(self.coords_to_point(0, 0)) a.plot_depth = 1 a_label = TexMobject('A').scale(0.5) a_label.next_to(a, RIGHT) self.play(*[ShowCreation(e) for e in [a, a_label]]) y_val = ValueTracker(8) m = Dot() m.set_fill(DARK_BLUE) m.plot_depth = 1 m.add_updater(lambda m:\ m.move_to(self.coords_to_point( -self.focus, y_val.get_value() ))) m_label = TexMobject('M').scale(0.5) m_label.add_updater(lambda l:\ l.next_to(m, LEFT)) p = Dot() p.set_fill(DARK_BLUE) p.plot_depth = 1 p.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(y_val.get_value()), y_val.get_value() ))) p_label = TexMobject('P').scale(0.5) p_label.add_updater(lambda m:\ m.next_to(p, RIGHT)) self.play(*[ShowCreation(e) for e in\ [m, m_label, p, p_label]]) k = Dot() k.set_fill(DARK_BLUE) k.plot_depth = 1 k.add_updater(lambda m:\ m.move_to(self.chord_to_directrix( p, a ))) k_label = TexMobject('K').scale(0.5) k_label.add_updater(lambda m:\ m.next_to(k, LEFT)) pk = Line() pk.add_updater(lambda l:\ l.put_start_and_end_on( p.get_center(), self.chord_to_directrix(p, a) )) mp = Line() mp.add_updater(lambda l:\ l.put_start_and_end_on( m.get_center(), p.get_center() )) self.play(*[ShowCreation(e) for e in\ [k, k_label, pk, mp]]) kf = Line() kf.add_updater(lambda l:\ l.put_start_and_end_on( k.get_center(), focus.get_center() )) mf = Line() mf.add_updater(lambda l:\ l.put_start_and_end_on( m.get_center(), focus.get_center() )) self.play(ShowCreation(kf), ShowCreation(mf)) form = TexMobject('KF \\perp MF') form.scale(0.7) form.to_edge(RIGHT) self.play(Write(form)) af = DashedLine(a.get_center(), focus.get_center()) pf = DashedLine() def get_pf_extent(): vec = focus.get_center() - p.get_center() vec = normalize(vec) return focus.get_center() + 2 * vec pf.add_updater(lambda m:\ m.put_start_and_end_on( p.get_center(), get_pf_extent() )) self.play(ShowCreation(af), ShowCreation(pf)) self.wait(3) self.play(ApplyMethod(y_val.set_value, 2)) self.wait(3) self.play(ApplyMethod(y_val.set_value, -2)) self.wait(3) self.play(ApplyMethod(y_val.set_value, -8)) self.wait(10) class Prob5(Parabola): CONFIG = { 'focus': 3, 'x_min': -10 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.5) focusLabel.next_to(focus, RIGHT + UP) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) h_line = self.get_horizontal() x = Dot() x.set_fill(DARK_BROWN) x.plot_depth = 1 x.move_to(self.coords_to_point(-self.focus, 0)) x_label = TexMobject('X').scale(0.5) x_label.next_to(x, LEFT + UP) self.play(ShowCreation(h_line)) self.play(ShowCreation(x), ShowCreation(x_label)) y_val = ValueTracker(8) p = Dot() p.set_fill(DARK_BLUE) p.plot_depth = 1 p.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(y_val.get_value()), y_val.get_value() ))) q = Dot() q.set_fill(DARK_BLUE) q.plot_depth = 1 q.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(-y_val.get_value()), -y_val.get_value() ))) t = Dot() t.set_fill(DARK_BLUE) t.plot_depth = 1 t.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(y_val.get_value()), 0 ))) p_label = TexMobject('P').scale(0.5) p_label.add_updater(lambda m:\ m.next_to(p, RIGHT)) q_label = TexMobject('Q').scale(0.5) q_label.add_updater(lambda m:\ m.next_to(q, RIGHT)) t_label = TexMobject('T').scale(0.5) t_label.add_updater(lambda m:\ m.next_to(t, RIGHT + UP)) pq = Line() pq.add_updater(lambda m:\ m.put_start_and_end_on( p.get_center(), self.coords_to_point( self.func(-y_val.get_value()), -y_val.get_value() ))) pt = Line() pt.add_updater(lambda m:\ m.put_start_and_end_on( p.get_center(), self.coords_to_point( self.func(y_val.get_value()), 0 ))) self.play(ShowCreation(p), ShowCreation(p_label)) self.play(ShowCreation(pt)) self.play(ShowCreation(t), ShowCreation(t_label)) label1 = CText('纵标线').scale(0.3)\ .next_to(pt, RIGHT) self.play(ShowCreation(label1)) self.wait() self.play(FadeOut(label1)) self.play(ShowCreation(pq)) self.remove(pt) self.play(ShowCreation(q), ShowCreation(q_label)) label2 = CText('双纵标线').scale(0.3)\ .next_to(t, RIGHT+DOWN) self.play(ShowCreation(label2)) self.wait() self.play(FadeOut(label2)) self.wait() inter = Dot() inter.set_fill(DARK_BLUE) inter.plot_depth = 1 inter.add_updater(lambda m:\ m.move_to( self.coords_to_point( 4*(self.focus**3)/(y_val.get_value()**2), 4*self.focus**2/y_val.get_value() ) if y_val.get_value() != 0 else self.coords_to_point(0, 0) )) inter_label = TexMobject("P'").scale(0.5) inter_label.add_updater(lambda m:\ m.next_to(inter, LEFT + UP, buff=SMALL_BUFF)) px = Line() px.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p, inter), x.get_center() )) self.play(ShowCreation(px)) self.play(ShowCreation(inter), ShowCreation(inter_label)) self.wait() form = CText("P'Q经过焦点").shift(UP) form.scale(0.5) form.to_edge(RIGHT) self.play(Write(form)) interq = Line() interq.add_updater(lambda m:\ m.put_start_and_end_on( inter.get_center(), q.get_center() )) self.play(ShowCreation(interq)) self.wait(2) self.play(ApplyMethod(y_val.set_value, 4)) self.wait(2) self.play(ApplyMethod(y_val.set_value, -4)) self.wait(2) self.play(ApplyMethod(y_val.set_value, -9)) self.wait(2) self.play(ApplyMethod(y_val.set_value, 9)) self.wait(10)
[ "ManimProjects.utils.geometry.CText" ]
[((1736, 1748), 'ManimProjects.utils.geometry.CText', 'CText', (['"""焦点弦"""'], {}), "('焦点弦')\n", (1741, 1748), False, 'from ManimProjects.utils.geometry import CText\n'), ((8883, 8900), 'ManimProjects.utils.geometry.CText', 'CText', (['"""这些交点在准线上"""'], {}), "('这些交点在准线上')\n", (8888, 8900), False, 'from ManimProjects.utils.geometry import CText\n'), ((21899, 21915), 'ManimProjects.utils.geometry.CText', 'CText', (['"""P\'Q经过焦点"""'], {}), '("P\'Q经过焦点")\n', (21904, 21915), False, 'from ManimProjects.utils.geometry import CText\n'), ((20522, 20534), 'ManimProjects.utils.geometry.CText', 'CText', (['"""纵标线"""'], {}), "('纵标线')\n", (20527, 20534), False, 'from ManimProjects.utils.geometry import CText\n'), ((20813, 20826), 'ManimProjects.utils.geometry.CText', 'CText', (['"""双纵标线"""'], {}), "('双纵标线')\n", (20818, 20826), False, 'from ManimProjects.utils.geometry import CText\n')]
'''faça um programa que mostre a tabuada de vários números, um de cada vez, para cada valor digitado pelo usuário. O programa será interrompido quando o valor solicitado for negativo.''' from time import sleep n = 0 cont = 0 while n >= 0: print('--' * 15) print('\033[33mPara cancelar, digite um número negativo.\033[m') n = int(input('Qual número deseja saber a tabuada ? ')) print('--' * 15) if n < 0: print('\033[31mFinalizando o programa...\033[m') sleep(1) break else: for c in range (0,11): print(f'{n} x {c} = {n*c}')
[ "time.sleep" ]
[((489, 497), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (494, 497), False, 'from time import sleep\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import json import os from contextlib import contextmanager import click import crayons def open_url(url): click.echo("Opening {}.".format(crayons.white(url, bold=True))) click.launch(url) def get_config_file_path(): home = os.path.expanduser("~") return os.path.realpath('{}/.commands.json'.format(home)) @contextmanager def get_config_file(mode='r'): """ Return the file storing the commands. :param str mode: the mode the file with be opened with. Default: r :return: the file object. :rtype: file """ path = get_config_file_path() if not os.path.exists(path): generate_empty_config_file() with open(path, mode) as datafile: yield datafile def generate_empty_config_file(): """ Reset the config file.""" with open(get_config_file_path(), 'w') as datafile: json.dump({}, datafile) def build_command(name, url): """ Build a click command according the arguments. :param str name: label that the user will use to trigger the command. :param str url: the url that will be opened. :rtype: click.Command """ return click.Command( name, callback=lambda: open_url(url), help='Open {}'.format(url) )
[ "json.dump", "crayons.white", "os.path.exists", "click.launch", "os.path.expanduser" ]
[((228, 245), 'click.launch', 'click.launch', (['url'], {}), '(url)\n', (240, 245), False, 'import click\n'), ((287, 310), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (305, 310), False, 'import os\n'), ((640, 660), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (654, 660), False, 'import os\n'), ((896, 919), 'json.dump', 'json.dump', (['{}', 'datafile'], {}), '({}, datafile)\n', (905, 919), False, 'import json\n'), ((192, 221), 'crayons.white', 'crayons.white', (['url'], {'bold': '(True)'}), '(url, bold=True)\n', (205, 221), False, 'import crayons\n')]
import json import requests import ccxt import time import os import pandas as pd from datetime import datetime, timedelta import operator import csv import cfg liquid = ccxt.liquid(cfg.liquid_misc_credential) exchange = liquid since = exchange.milliseconds() - 86400000 # -1 day from now def save_and_get_str(): # SAVE all_orders = [] since = exchange.milliseconds() - 86400000 * 5 # -1 day from now while since < exchange.milliseconds(): symbol = 'ETH/JPY' # change for your symbol limit = 100 # change for your limit orders = exchange.fetch_my_trades(symbol, since, limit) if len(orders) > 1: since = orders[len(orders) - 1]['timestamp'] all_orders += orders else: break df = pd.DataFrame( columns=['utc', 'time', 'type', 'amount', 'price', 'fee', 'takerOrMaker']) for element in all_orders: trade = element['info'] trade_utc = datetime.utcfromtimestamp( float(trade['created_at'])).strftime('%Y-%m-%d %H:%M:%S.%f') trades_to_append = str(int(float(trade['created_at']) * 1000)) + ',' + str(trade_utc) + ',' + str(trade['my_side']) + ',' + str(abs( float(trade['quantity']))) + ',' + str(float(trade['price'])) + ',' + str(element['fee']) + ',' + str(element['takerOrMaker']) df.loc[len(df.index)] = trades_to_append.split(",") # df.to_csv('transaction_liquid.csv') if not os.path.isfile("transaction_liquid.csv"): csv_content = df.to_csv(index=False) else: csv_content = df.to_csv( index=False, header=None) with open('transaction_liquid.csv', 'a') as csvfile: csvfile.write(csv_content) def sort_csv(): x = pd.read_csv("transaction_liquid.csv") print(x.iloc[0]) x = x.drop_duplicates().sort_values('time', ascending=False) x.to_csv('transaction_liquid.csv', index=False) print('sorted') while True: save_and_get_str() sort_csv() time.sleep(23 * 60)
[ "pandas.DataFrame", "pandas.read_csv", "time.sleep", "ccxt.liquid", "os.path.isfile" ]
[((172, 211), 'ccxt.liquid', 'ccxt.liquid', (['cfg.liquid_misc_credential'], {}), '(cfg.liquid_misc_credential)\n', (183, 211), False, 'import ccxt\n'), ((784, 875), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['utc', 'time', 'type', 'amount', 'price', 'fee', 'takerOrMaker']"}), "(columns=['utc', 'time', 'type', 'amount', 'price', 'fee',\n 'takerOrMaker'])\n", (796, 875), True, 'import pandas as pd\n'), ((1745, 1782), 'pandas.read_csv', 'pd.read_csv', (['"""transaction_liquid.csv"""'], {}), "('transaction_liquid.csv')\n", (1756, 1782), True, 'import pandas as pd\n'), ((1998, 2017), 'time.sleep', 'time.sleep', (['(23 * 60)'], {}), '(23 * 60)\n', (2008, 2017), False, 'import time\n'), ((1458, 1498), 'os.path.isfile', 'os.path.isfile', (['"""transaction_liquid.csv"""'], {}), "('transaction_liquid.csv')\n", (1472, 1498), False, 'import os\n')]
import re from datetime import datetime from datetime import timedelta import dateutil.parser import pytz import tzlocal # datetime objct for beginning of epoch T_EPOCH = datetime(1970, 1, 1, tzinfo=pytz.utc) DEFAULT = object() # singleton, for args with default values class DateTimeError(Exception): """ custom exception """ class DateTime(object): single_delta = r'(?:\s*([+-]\d+(?:\.\d*)?)(?:\s*([shMdw])?)\s*)' single_delta = r'(?:\s*([+-]\d+(?:\.\d*)?)\s*([shMdw]?)\s*)' # attempt to handle comma separated list of deltas # multi_delta = r'^%s(?:,%s)*$' % (single_delta, single_delta) delta_rex = re.compile('^' + single_delta + '$') delta_units = { 's': (0, 1), 'M': (0, 60), 'h': (0, 3600), 'd': (1, 0), 'w': (7, 0), '': (1, 0), # default unit = days } @classmethod def strptimedelta(cls, deltastr, info=None, raise_on_error=True): """ parses a date time string and returns a datetime timedelta object Supported Formats: '+-<num><unit>' where unit = s for seconds h for hours M for minutes d for days w for weeks default = days """ # not implemented so far # and rounding (use by strptime) = # d for days # default no rounding # """ # TODO: think about using dateutil.parser.relativedelta rslt = datetime.now(pytz.utc) fields = (val.strip() for val in deltastr.split(',')) delta_rex = cls.delta_rex for field in fields: match = delta_rex.match(field) if not match: raise DateTimeError("can't parse %r as delta" % field) value, unit = match.groups() value = float(value) days, seconds = cls.delta_units[unit] rslt += timedelta(days * value, seconds * value) return rslt @classmethod def strptime(cls, datestr=None, fmt=None, tzinfo=DEFAULT): """ parses a date time string and returns a date time object Supported Formats: - formats as supported by dateutil.parser - None, '', 0, '0' and 'now' -> datetime.now() - if fmt is passed same as datetime.strptime :param datestr: date string to be passed :param fmt: if passedm then use datetime's normal strptime BUT add a time zone info :param tzinfo: if no tz info is specified in the string, then this param decides which time zone shall be used. DEFAULT: use local time zone None: return naive time zone object other: use other time zone """ # NOT IMPLEMENTED SO FAR # - delta format with +-num units[rounding], # where unit = # s for seconds # M for minutes # h for hours # d for days # w for weeks # and rounding = # d for days # default no rounding tzinfo = tzinfo if tzinfo is not DEFAULT else tzlocal.get_localzone() if fmt: rslt = datetime.strptime(datestr, fmt) else: if isinstance(datestr, (int, float)): datestr = str(datestr) datestr = datestr.strip() if datestr else datestr if datestr in (None, '', '0', 'now'): return datetime.now(tzinfo) if datestr[:1] in "+-" or ',' in datestr: return cls.strptimedelta(datestr, tzinfo) rslt = dateutil.parser.parse(datestr) if rslt.tzinfo is None and tzinfo: rslt = tzinfo.localize(rslt) return rslt @classmethod def parse_range(cls, rangestr=None, default_from='-1d', default_to='now'): """ parses a time range string a time range string is a comma separated list of a start time and a end time """ if rangestr is None: from_str = default_from to_str = default_to else: from_str, to_str = [v.strip() for v in rangestr.split(',', 1)] from_str = from_str if from_str else default_from to_str = to_str if to_str else default_to t_from = cls.strptime(from_str) t_to = cls.strptime(to_str) return t_from, t_to class Time(DateTime): @classmethod def strptime(cls, datestr): pass class Date(DateTime): @classmethod def strptime(cls, datestr): pass def fname_to_time(fname, use_ctime=False, use_mtime=False, tz=None): """ extracts date time from an fname examples of supported formats: "fnameYYYYMMDD" just a date "fnameYYYY-MM-DD" date with separators "fnameYYYYMMDD_HHmmss" date and time "fnameYYYYMMDD-HHmmss" date and time "fnameYYYYMMDD-HH-mm-ss" date and time "fnameYYYYMMDD-ssssssssss" date and time(in seconds since epoche) :param fname: file name to parse :param use_ctime: if file name contains no string use file's ctime :param use_mtime: if file name contains no string use file's mtime """ def to_timestamp(t): """ convert a datetime object to seconds since epoch """ return (t - T_EPOCH).total_seconds()
[ "tzlocal.get_localzone", "datetime.datetime", "datetime.datetime.strptime", "datetime.timedelta", "datetime.datetime.now", "re.compile" ]
[((173, 210), 'datetime.datetime', 'datetime', (['(1970)', '(1)', '(1)'], {'tzinfo': 'pytz.utc'}), '(1970, 1, 1, tzinfo=pytz.utc)\n', (181, 210), False, 'from datetime import datetime\n'), ((634, 670), 're.compile', 're.compile', (["('^' + single_delta + '$')"], {}), "('^' + single_delta + '$')\n", (644, 670), False, 'import re\n'), ((1600, 1622), 'datetime.datetime.now', 'datetime.now', (['pytz.utc'], {}), '(pytz.utc)\n', (1612, 1622), False, 'from datetime import datetime\n'), ((2032, 2072), 'datetime.timedelta', 'timedelta', (['(days * value)', '(seconds * value)'], {}), '(days * value, seconds * value)\n', (2041, 2072), False, 'from datetime import timedelta\n'), ((3378, 3401), 'tzlocal.get_localzone', 'tzlocal.get_localzone', ([], {}), '()\n', (3399, 3401), False, 'import tzlocal\n'), ((3437, 3468), 'datetime.datetime.strptime', 'datetime.strptime', (['datestr', 'fmt'], {}), '(datestr, fmt)\n', (3454, 3468), False, 'from datetime import datetime\n'), ((3707, 3727), 'datetime.datetime.now', 'datetime.now', (['tzinfo'], {}), '(tzinfo)\n', (3719, 3727), False, 'from datetime import datetime\n')]
""" This module implements connections for CUBRIDdb. Presently there is only one class: Connection. Others are unlikely. However, you might want to make your own subclasses. In most cases, you will probably override Connection.default_cursor with a non-standard Cursor class. """ from CUBRIDdb.cursors import * import types, _cubrid class Connection(object): """CUBRID Database Connection Object""" def __init__(self, *args, **kwargs): 'Create a connecton to the database.' self.charset = '' kwargs2 = kwargs.copy() self.charset = kwargs2.pop('charset', 'utf8') self.connection = _cubrid.connect(*args, **kwargs2) def __del__(self): pass def cursor(self, dictCursor = None): if dictCursor: cursorClass = DictCursor else: cursorClass = Cursor return cursorClass(self) def set_autocommit(self, value): if not isinstance(value, bool): raise ValueError("Parameter should be a boolean value") if value: switch = 'TRUE' else: switch = 'FALSE' self.connection.set_autocommit(switch) def get_autocommit(self): if self.connection.autocommit == 'TRUE': return True else: return False autocommit = property(get_autocommit, set_autocommit, doc = "autocommit value for current Cubrid session") def commit(self): self.connection.commit() def rollback(self): self.connection.rollback() def close(self): self.connection.close() def escape_string(self, buf): return self.connection.escape_string(buf)
[ "_cubrid.connect" ]
[((634, 667), '_cubrid.connect', '_cubrid.connect', (['*args'], {}), '(*args, **kwargs2)\n', (649, 667), False, 'import types, _cubrid\n')]
from setuptools import setup setup(name='tutorials', version='POC', url='https://github.com/pyomeca/tutorials.git', author='pyomeca', packages=['src'], zip_safe=False)
[ "setuptools.setup" ]
[((30, 178), 'setuptools.setup', 'setup', ([], {'name': '"""tutorials"""', 'version': '"""POC"""', 'url': '"""https://github.com/pyomeca/tutorials.git"""', 'author': '"""pyomeca"""', 'packages': "['src']", 'zip_safe': '(False)'}), "(name='tutorials', version='POC', url=\n 'https://github.com/pyomeca/tutorials.git', author='pyomeca', packages=\n ['src'], zip_safe=False)\n", (35, 178), False, 'from setuptools import setup\n')]
import random import json import math async def battle_attack(x, y, u, e, call): if x == y: await call.answer("❗ Противник увернулся от удара", show_alert=True) return e.health, e.defence else: if e.defence <= 0: e.health -= u.damage return e.health, e.defence else: if u.damage > e.defence: miss_dmg = u.damage - e.defence e.health -= miss_dmg e.defence = 0 return e.health, e.defence else: e.defence -= u.damage return e.health, e.defence async def battle_defence(x, y, u, e, call): if x == y: await call.answer("❗ Ты увернулся от удара", show_alert=True) return u.health, u.defence else: if u.defence <= 0: u.health -= e.damage return u.health, u.defence else: if e.damage > u.defence: miss_dmg = e.damage - u.defence u.health -= miss_dmg u.defence = 0 return u.health, u.defence else: u.defence -= e.damage return u.health, u.defence def power(obj, maximal=False): if maximal is True: hp = obj.max_health + obj.max_defence else: hp = obj.health + obj.defence return hp * obj.damage def exam_choose(user): from app.models.examinators import exams for i in range(len(exams)): if user.rank == '-': return exams[0] elif exams[i].rank == user.rank: try: return exams[i + 1] except IndexError: return 'Максимальный ранг!' def set_difficulty(m, u): if m * 3 <= u: difficulty = 'Оч. легко' elif m * 2.5 <= u: difficulty = 'Легко' elif m * 2 < u: difficulty = 'Нормально' elif m * 1.5 < u: difficulty = 'Сложно' elif m < u: difficulty = 'Очень сложно' elif m > u * 3: difficulty = 'Верная смерть' elif m >= u: difficulty = 'Невозможно' else: return return difficulty def get_xp(lvl): """ Returns total XP according to gain level """ total_xp = int((lvl * 10) ** 1.1) return total_xp * lvl # def json_inv(u): # """ # Converts string from database to list # Example: '[3, 2]' => [3, 2] # :param u: User # :return: User's inventory as list # """ # inventory = json.loads(u['inventory']) if u['inventory'] != '[]' else [] # return inventory def item_drop(chance): """ :param chance: Mob's chance of drop :return: True/False """ c = random.randint(1, 100) if c <= chance: return True return False def round_down(n, decimals=0): """ Rounds a number down to a specified number of digits. :param decimals: Specified number of digits :param n: Float """ multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier def enemy_calc(u_attack, u_health, u_defence, lvl): enemy, result = [], [] if lvl != 1: multiplier = round_down(random.uniform(0.4, 1.1), 1) else: multiplier = 0.4 print(multiplier) for stat in (u_attack, u_health, u_defence): enemy.append(round(stat*multiplier) if stat != 0 else 0) e_power = enemy[0]*(enemy[1]+enemy[2]) formulae = int((e_power/(lvl**1.45))*2) result = [enemy, formulae if formulae > 1 else 2] return result
[ "math.floor", "random.randint", "random.uniform" ]
[((2701, 2723), 'random.randint', 'random.randint', (['(1)', '(100)'], {}), '(1, 100)\n', (2715, 2723), False, 'import random\n'), ((3000, 3026), 'math.floor', 'math.floor', (['(n * multiplier)'], {}), '(n * multiplier)\n', (3010, 3026), False, 'import math\n'), ((3170, 3194), 'random.uniform', 'random.uniform', (['(0.4)', '(1.1)'], {}), '(0.4, 1.1)\n', (3184, 3194), False, 'import random\n')]
import pandas as pd from news_classifier.database import db def load_data(projection: dict) -> pd.DataFrame: """ Load the data from the Mongo collection and transform into a pandas dataframe :projection: A dictionary with the fields to load from database :return: A pandas dataframe with the data """ articles = db.read_articles( projection=projection ) return pd.DataFrame(articles)
[ "pandas.DataFrame", "news_classifier.database.db.read_articles" ]
[((343, 382), 'news_classifier.database.db.read_articles', 'db.read_articles', ([], {'projection': 'projection'}), '(projection=projection)\n', (359, 382), False, 'from news_classifier.database import db\n'), ((408, 430), 'pandas.DataFrame', 'pd.DataFrame', (['articles'], {}), '(articles)\n', (420, 430), True, 'import pandas as pd\n')]
#!/usr/bin/env python import argparse import sys from collections import defaultdict DEFAULT_OUT = "stackcollapse-merged.txt" def merge(files, dst): data = defaultdict(lambda: 0) for file in files: with open(file, "r") as fp: for line in fp.readlines(): stack, hits = line.rsplit(" ", 1) hits = int(hits) data[stack] += hits with open(dst, "w") as fp: for stack, hits in data.items(): print(stack, hits, file=fp) def main(): parser = argparse.ArgumentParser(sys.argv[0]) parser = argparse.ArgumentParser( description="merge multiple stackcollapes into a single one" ) parser.add_argument( "files", metavar="FILE", type=str, nargs="+", help="a stackcollapse file" ) parser.add_argument( "-o", "--out", default=DEFAULT_OUT, help=f"write resulting stackcollapse to this file (default: {DEFAULT_OUT})", ) opts = parser.parse_args(sys.argv[1:]) merge(opts.files, opts.out) if __name__ == "__main__": main()
[ "collections.defaultdict", "argparse.ArgumentParser" ]
[((164, 187), 'collections.defaultdict', 'defaultdict', (['(lambda : 0)'], {}), '(lambda : 0)\n', (175, 187), False, 'from collections import defaultdict\n'), ((546, 582), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (569, 582), False, 'import argparse\n'), ((596, 686), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""merge multiple stackcollapes into a single one"""'}), "(description=\n 'merge multiple stackcollapes into a single one')\n", (619, 686), False, 'import argparse\n')]
import os from fastapi import Depends, FastAPI, Response, status from fastapi.middleware.cors import CORSMiddleware from fastapi_users import FastAPIUsers from fastapi_users.authentication import JWTAuthentication from sqlalchemy.orm import Session from .database.session import database, user_db from .deps import db_session from .models.disability import Disability as DisabilityModel from .models.education import Education as EducationModel from .models.experience import Experience as ExperienceModel from .models.language import Language as LanguageModel from .schemas.disability import Disability as DisabilitySchema from .schemas.disability import DisabilityDB from .schemas.education import Education as EducationSchema from .schemas.education import EducationDB from .schemas.experience import Experience as ExperienceSchema from .schemas.experience import ExperienceDB from .schemas.language import Language as LanguageSchema from .schemas.language import LanguageDB from .schemas.user import User, UserCreate, UserDB, UserUpdate APP_SECRET = os.getenv("APP_SECRET") jwt_authentication = JWTAuthentication(secret=APP_SECRET, lifetime_seconds=3600, tokenUrl="/auth/jwt/login") app = FastAPI() fastapi_users = FastAPIUsers( user_db, [jwt_authentication], User, UserCreate, UserUpdate, UserDB, ) app.include_router(fastapi_users.get_auth_router(jwt_authentication), prefix="/auth/jwt", tags=["auth"]) app.include_router(fastapi_users.get_register_router(), prefix="/auth", tags=["auth"]) app.include_router(fastapi_users.get_reset_password_router(APP_SECRET), prefix="/auth", tags=["auth"]) app.include_router(fastapi_users.get_verify_router(APP_SECRET), prefix="/auth", tags=["auth"]) app.include_router(fastapi_users.get_users_router(), prefix="/users", tags=["users"]) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) @app.on_event("startup") async def startup(): await database.connect() @app.on_event("shutdown") async def shutdown(): await database.disconnect() @app.get("/user/experience", tags=["experience"], response_model=list[ExperienceDB]) def get_user_experience(user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session)): experiences = session.query(ExperienceModel).filter(ExperienceModel.user_id == user.id).all() return [ ExperienceDB( id=exp.id, position=exp.position, employer=exp.employer, city=exp.city, start_date=exp.start_date, end_date=exp.end_date, description=exp.description, ) for exp in experiences ] @app.post("/user/experience", tags=["experience"], status_code=status.HTTP_201_CREATED) def add_user_experience( request: ExperienceSchema, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): experience = ExperienceModel(**request.dict(), user_id=user.id) session.add(experience) session.commit() session.refresh(experience) @app.put("/user/experience", tags=["experience"]) def edit_user_experience( id: int, request: ExperienceSchema, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): experience = ( session.query(ExperienceModel) .filter(ExperienceModel.user_id == user.id) .filter(ExperienceModel.id == id) .one_or_none() ) if experience: experience.position = request.position experience.employer = request.employer experience.city = request.city experience.start_date = request.start_date experience.end_date = request.end_date experience.description = request.description session.commit() session.refresh(experience) return response.status_code = status.HTTP_404_NOT_FOUND @app.delete("/user/experience", tags=["experience"]) def remove_user_experience( id: int, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): deleted = ( session.query(ExperienceModel) .filter(ExperienceModel.user_id == user.id) .filter(ExperienceModel.id == id) .delete() ) if not deleted: response.status_code = status.HTTP_404_NOT_FOUND return session.commit() @app.get("/user/education", tags=["education"], response_model=list[EducationDB]) def get_user_education(user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session)): educations = session.query(EducationModel).filter(EducationModel.user_id == user.id).all() return [ EducationDB( id=edu.id, edu_type=edu.edu_type.value, name=edu.name, city=edu.city, start_date=edu.start_date, end_date=edu.end_date, ) for edu in educations ] @app.post("/user/education", tags=["education"], status_code=status.HTTP_201_CREATED) def add_user_education( request: EducationSchema, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): edu = EducationModel(**request.dict(), user_id=user.id) session.add(edu) session.commit() session.refresh(edu) @app.put("/user/education", tags=["education"]) def edit_user_education( id: int, request: EducationSchema, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): education = ( session.query(EducationModel) .filter(EducationModel.user_id == user.id) .filter(EducationModel.id == id) .one_or_none() ) if education: education.edu_type = request.edu_type education.name = request.name education.city = request.city education.start_date = request.start_date education.end_date = request.end_date session.commit() session.refresh(education) return response.status_code = status.HTTP_404_NOT_FOUND @app.delete("/user/education", tags=["education"]) def remove_user_education( id: int, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): deleted = ( session.query(EducationModel).filter(EducationModel.user_id == user.id).filter(EducationModel.id == id).delete() ) if not deleted: response.status_code = status.HTTP_404_NOT_FOUND return session.commit() @app.get("/user/language", tags=["language"], response_model=list[LanguageDB]) def get_user_language(user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session)): languages = session.query(LanguageModel).filter(LanguageModel.user_id == user.id).all() return [LanguageDB(id=lang.id, language=lang.language, level=lang.level.value) for lang in languages] @app.post("/user/language", tags=["language"], status_code=status.HTTP_201_CREATED) def add_user_language( request: LanguageSchema, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): edu = LanguageModel(**request.dict(), user_id=user.id) session.add(edu) session.commit() session.refresh(edu) @app.put("/user/language", tags=["language"]) def edit_user_language( id: int, request: LanguageSchema, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): lang = ( session.query(LanguageModel) .filter(LanguageModel.user_id == user.id) .filter(LanguageModel.id == id) .one_or_none() ) if lang: lang.level = request.level lang.language = request.language session.commit() session.refresh(lang) return response.status_code = status.HTTP_404_NOT_FOUND @app.delete("/user/language", tags=["language"]) def remove_user_language( id: int, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): deleted = ( session.query(LanguageModel).filter(LanguageModel.user_id == user.id).filter(LanguageModel.id == id).delete() ) if not deleted: response.status_code = status.HTTP_404_NOT_FOUND return session.commit() @app.get("/user/disability", tags=["disability"], response_model=list[DisabilityDB]) def get_user_language(user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session)): disabilities = session.query(DisabilityModel).filter(DisabilityModel.user_id == user.id).all() return [DisabilityDB(id=dis.id, type=dis.type.value, level=dis.level.value) for dis in disabilities] @app.post("/user/disability", tags=["disability"], status_code=status.HTTP_201_CREATED) def add_user_language( request: DisabilitySchema, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): edu = DisabilityModel(**request.dict(), user_id=user.id) session.add(edu) session.commit() session.refresh(edu) @app.put("/user/disability", tags=["disability"]) def edit_user_language( id: int, request: DisabilitySchema, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): dis = ( session.query(DisabilityModel) .filter(DisabilityModel.user_id == user.id) .filter(DisabilityModel.id == id) .one_or_none() ) if dis: dis.level = request.level dis.type = request.type session.commit() session.refresh(dis) return response.status_code = status.HTTP_404_NOT_FOUND @app.delete("/user/disability", tags=["disability"]) def remove_user_language( id: int, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): deleted = ( session.query(DisabilityModel) .filter(DisabilityModel.user_id == user.id) .filter(DisabilityModel.id == id) .delete() ) if not deleted: response.status_code = status.HTTP_404_NOT_FOUND return session.commit()
[ "fastapi_users.authentication.JWTAuthentication", "fastapi_users.FastAPIUsers", "fastapi.Depends", "os.getenv", "fastapi.FastAPI" ]
[((1057, 1080), 'os.getenv', 'os.getenv', (['"""APP_SECRET"""'], {}), "('APP_SECRET')\n", (1066, 1080), False, 'import os\n'), ((1103, 1195), 'fastapi_users.authentication.JWTAuthentication', 'JWTAuthentication', ([], {'secret': 'APP_SECRET', 'lifetime_seconds': '(3600)', 'tokenUrl': '"""/auth/jwt/login"""'}), "(secret=APP_SECRET, lifetime_seconds=3600, tokenUrl=\n '/auth/jwt/login')\n", (1120, 1195), False, 'from fastapi_users.authentication import JWTAuthentication\n'), ((1198, 1207), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (1205, 1207), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((1224, 1309), 'fastapi_users.FastAPIUsers', 'FastAPIUsers', (['user_db', '[jwt_authentication]', 'User', 'UserCreate', 'UserUpdate', 'UserDB'], {}), '(user_db, [jwt_authentication], User, UserCreate, UserUpdate,\n UserDB)\n', (1236, 1309), False, 'from fastapi_users import FastAPIUsers\n'), ((2278, 2297), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (2285, 2297), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((2940, 2959), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (2947, 2959), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((3338, 3357), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (3345, 3357), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((4175, 4194), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (4182, 4194), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((4665, 4684), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (4672, 4684), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((5275, 5294), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (5282, 5294), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((5647, 5666), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (5654, 5666), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((6409, 6428), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (6416, 6428), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((6865, 6884), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (6872, 6884), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((7302, 7321), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (7309, 7321), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((7669, 7688), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (7676, 7688), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((8268, 8287), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (8275, 8287), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((8727, 8746), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (8734, 8746), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((9176, 9195), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (9183, 9195), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((9551, 9570), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (9558, 9570), False, 'from fastapi import Depends, FastAPI, Response, status\n'), ((10147, 10166), 'fastapi.Depends', 'Depends', (['db_session'], {}), '(db_session)\n', (10154, 10166), False, 'from fastapi import Depends, FastAPI, Response, status\n')]
"""Utility functions.""" import subprocess import logging import os import shutil import stat import itertools from collections import OrderedDict from pkg_resources import resource_string import pandas as pd from genometools.expression import ExpGeneTable from genometools import gtf import singlecell _LOGGER = logging.getLogger(__name__) def get_readable_gene_identifiers(gene_table: ExpGeneTable): """Return unique gene identifiers that primarily use the genes' names.""" # count occurrences for each of gene name counts = gene_table['name'].value_counts() gene_counts = counts.loc[gene_table['name']] gene_ids = gene_table.index.tolist() gene_ids = [name if c == 1 else '%s_%s' % (name, gene_ids[i]) for i, (name, c) in enumerate(gene_counts.items())] return gene_ids def get_edit_sequences(seq, num_edits, bases=None): """Return all nucleotide sequences with a given hamming distance.""" if num_edits > len(seq): raise ValueError('Asked to make make more edits (%d) than the length ' 'of the sequence (%d nt).' % (num_edits, len(seq))) if bases is None: bases = set('ACGT') length = len(seq) all_bases = [bases for i in range(num_edits)] seq_list = [nt for nt in seq] mismatch = [] for comb in itertools.combinations(range(length), num_edits): for subs in itertools.product(*all_bases): mut = seq_list[:] valid = True for pos, nt in zip(comb, subs): if mut[pos] == nt: valid = False break mut[pos] = nt if valid: mismatch.append(''.join(mut)) return sorted(mismatch) def concatenate_files(input_files, output_file, append=False): write_mode = 'wb' if append: write_mode = 'ab' with open(output_file, write_mode) as ofh: for f in input_files: with open(f, 'rb') as ifh: shutil.copyfileobj(ifh, ofh, 16*1024*1024) def make_file_executable(path): """Sets the user executable flag for a file.""" st = os.stat(path) os.chmod(path, st.st_mode | stat.S_IEXEC) def zcat_subproc(path): """Creates a subprocess for decompressing a gzip file. TODO: docstring""" subproc = subprocess.Popen('gunzip -c "%s"' % path, shell=True, stdout=subprocess.PIPE) return subproc def get_all_kmers(k, kmer='', kmer_list=None): """Returns all possible k-mer sequences (for A/C/G/T alphabet). TODO: docstring""" if kmer_list is None: kmer_list = [] if len(kmer) == k: kmer_list.append(kmer) else: for nuc in ['A', 'C', 'G', 'T']: var = kmer + nuc get_all_kmers(k, var, kmer_list) if not kmer: return kmer_list def get_mismatch_sequences(seq): """Generates all nucleotide sequences with hamming distance 1 to `seq`. TODO: docstring""" for pos in range(len(seq)): for nuc in ['A', 'C', 'G', 'T']: if nuc != seq[pos]: mm = seq[:pos] + nuc + seq[(pos+1):] yield mm def get_reverse_complement(seq): """Returns the reverse complement of a nucleotide sequence. TODO: docstring""" rc = { 'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G' } compseq = ''.join([rc[nuc] for nuc in seq[::-1]]) return compseq def get_gene_exons(gene_table, genome_annotation_file, chunksize=10000): """Parse GTF file and get a dictionary of gene=>list of exon intervals. (Only for protein-coding genes.) TODO: docstring""" # get gene names that are guaranteed to be unique #gene_names = get_readable_gene_identifiers(gene_table) # series with index = Ensembl ID, value = unique gene name #genes = pd.Series(index=gene_table.index, data=gene_names) # sort genes by chromosome, strand, and then position sorted_gene_ids = sorted( [id_ for id_ in gene_table.index], key=lambda id_: [gene_table.loc[id_, 'chromosome'], gene_table.loc[id_, 'position'] < 0, abs(gene_table.loc[id_, 'position'])]) #genes = genes.loc[sorted_gene_ids] gene_table = gene_table.loc[sorted_gene_ids] # dictionary for holding list of intervals for each gene gene_exons = OrderedDict([id_, []] for id_ in gene_table.index) valid = 0 total = 0 _LOGGER.info('Parsing GTF file "%s" in chunks...', genome_annotation_file) for i, df in enumerate(pd.read_csv( genome_annotation_file, dtype={0: str}, sep='\t', comment='#', header=None, chunksize=chunksize)): # select only exon entries df_sel = df.loc[df.iloc[:, 2] == 'exon'] # extract gene IDs gene_ids = df_sel.iloc[:, 8].apply( lambda x: gtf.parse_attributes(x)['gene_id']) for id_, chrom, start, end in zip( gene_ids, df_sel.iloc[:, 0], df_sel.iloc[:, 3], df_sel.iloc[:, 4]): total += 1 try: gene = gene_table.loc[id_] except KeyError: # this gene is not contained in the gene table continue gene_chrom = gene_table.loc[id_, 'chromosome'] if chrom != gene_chrom: _LOGGER.warning('%s exon ignored (wrong chromosome: ' '%s instead of %s).', id_, chrom, gene_chrom) else: valid += 1 gene_exons[id_].append([start-1, end]) _LOGGER.info('%d / %d exons from valid genes (%.1f %%).', valid, total, 100*(valid/float(total))) return gene_exons def merge_intervals(intervals): """Merge overlapping intervals. TODO: docstring""" if not intervals: return [] # sort intervals by start position intervals = sorted(intervals, key=lambda x:x[0]) merged = [] cur = list(intervals[0]) for iv in intervals[1:]: # interval starts inside/right after current interval if iv[0] <= cur[1]: if iv[1] > cur[1]: # interval ends after current interval cur[1] = iv[1] else: merged.append(cur) cur = list(iv) merged.append(cur) return merged def get_mitochondrial_genes(species='human'): """Get a list of all mitochondrial genes for a given species. "Mitochondrial genes" are defined here as all genes on the mitochondrial chromosome. TODO: docstring """ path = os.path.join(singlecell._root, 'data', 'gene_lists', 'mitochondrial_%s.tsv' % species) with open(path) as fh: return fh.read().split('\n') def get_ribosomal_genes(species='human'): """Get a list of all ribosomal genes for a given species. "Ribosomal genes" are defined here as all protein-coding genes whose protein products are a structural component of the small or large ribosomal subunit (including fusion genes). TODO: docstring """ path = os.path.join(singlecell._root, 'data', 'gene_lists', 'ribosomal_%s.tsv' % species) with open(path) as fh: return fh.read().split('\n') def get_plotly_js(): """Return the plotly javascript code. TODO: docstring """ # resource_string? path = 'package_data/plotly.min.js' return resource_string('plotly', path).decode('utf-8') def is_empty_dir(dir_): """Tests whether a directory is empty. Note: Also returns True if the directory doesn't exist. TODO: docstring """ is_empty = True try: _, dirnames, filenames = next(os.walk(dir_)) if dirnames or filenames: is_empty = False except StopIteration: pass return is_empty
[ "subprocess.Popen", "os.chmod", "os.stat", "pandas.read_csv", "os.walk", "pkg_resources.resource_string", "itertools.product", "collections.OrderedDict", "genometools.gtf.parse_attributes", "shutil.copyfileobj", "os.path.join", "logging.getLogger" ]
[((318, 345), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (335, 345), False, 'import logging\n'), ((2162, 2175), 'os.stat', 'os.stat', (['path'], {}), '(path)\n', (2169, 2175), False, 'import os\n'), ((2180, 2221), 'os.chmod', 'os.chmod', (['path', '(st.st_mode | stat.S_IEXEC)'], {}), '(path, st.st_mode | stat.S_IEXEC)\n', (2188, 2221), False, 'import os\n'), ((2349, 2426), 'subprocess.Popen', 'subprocess.Popen', (['(\'gunzip -c "%s"\' % path)'], {'shell': '(True)', 'stdout': 'subprocess.PIPE'}), '(\'gunzip -c "%s"\' % path, shell=True, stdout=subprocess.PIPE)\n', (2365, 2426), False, 'import subprocess\n'), ((4457, 4507), 'collections.OrderedDict', 'OrderedDict', (['([id_, []] for id_ in gene_table.index)'], {}), '([id_, []] for id_ in gene_table.index)\n', (4468, 4507), False, 'from collections import OrderedDict\n'), ((6748, 6838), 'os.path.join', 'os.path.join', (['singlecell._root', '"""data"""', '"""gene_lists"""', "('mitochondrial_%s.tsv' % species)"], {}), "(singlecell._root, 'data', 'gene_lists', 'mitochondrial_%s.tsv' %\n species)\n", (6760, 6838), False, 'import os\n'), ((7266, 7352), 'os.path.join', 'os.path.join', (['singlecell._root', '"""data"""', '"""gene_lists"""', "('ribosomal_%s.tsv' % species)"], {}), "(singlecell._root, 'data', 'gene_lists', 'ribosomal_%s.tsv' %\n species)\n", (7278, 7352), False, 'import os\n'), ((1408, 1437), 'itertools.product', 'itertools.product', (['*all_bases'], {}), '(*all_bases)\n', (1425, 1437), False, 'import itertools\n'), ((4649, 4763), 'pandas.read_csv', 'pd.read_csv', (['genome_annotation_file'], {'dtype': '{(0): str}', 'sep': '"""\t"""', 'comment': '"""#"""', 'header': 'None', 'chunksize': 'chunksize'}), "(genome_annotation_file, dtype={(0): str}, sep='\\t', comment='#',\n header=None, chunksize=chunksize)\n", (4660, 4763), True, 'import pandas as pd\n'), ((7609, 7640), 'pkg_resources.resource_string', 'resource_string', (['"""plotly"""', 'path'], {}), "('plotly', path)\n", (7624, 7640), False, 'from pkg_resources import resource_string\n'), ((7883, 7896), 'os.walk', 'os.walk', (['dir_'], {}), '(dir_)\n', (7890, 7896), False, 'import os\n'), ((2024, 2070), 'shutil.copyfileobj', 'shutil.copyfileobj', (['ifh', 'ofh', '(16 * 1024 * 1024)'], {}), '(ifh, ofh, 16 * 1024 * 1024)\n', (2042, 2070), False, 'import shutil\n'), ((4964, 4987), 'genometools.gtf.parse_attributes', 'gtf.parse_attributes', (['x'], {}), '(x)\n', (4984, 4987), False, 'from genometools import gtf\n')]
import os import frida from flask import Flask, jsonify, request from hook import start_hook REMOTE_DEVICE = os.getenv('REMOTE_DEVICE', '') app = Flask(__name__) api = start_hook(REMOTE_DEVICE) @app.route('/sign') def sign(): global api url = request.args.get('url', '') headers = dict(request.headers) try: data = api.exports.sign(url, headers) except frida.InvalidOperationError as e: print(f'app crash: {e}') api = start_hook(REMOTE_DEVICE) data = api.exports.sign(url, headers) return jsonify({ 'url': url, 'headers': headers, 'sign': data, }) if __name__ == '__main__': app.run()
[ "flask.request.args.get", "flask.Flask", "flask.jsonify", "os.getenv", "hook.start_hook" ]
[((111, 141), 'os.getenv', 'os.getenv', (['"""REMOTE_DEVICE"""', '""""""'], {}), "('REMOTE_DEVICE', '')\n", (120, 141), False, 'import os\n'), ((150, 165), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (155, 165), False, 'from flask import Flask, jsonify, request\n'), ((172, 197), 'hook.start_hook', 'start_hook', (['REMOTE_DEVICE'], {}), '(REMOTE_DEVICE)\n', (182, 197), False, 'from hook import start_hook\n'), ((257, 284), 'flask.request.args.get', 'request.args.get', (['"""url"""', '""""""'], {}), "('url', '')\n", (273, 284), False, 'from flask import Flask, jsonify, request\n'), ((551, 606), 'flask.jsonify', 'jsonify', (["{'url': url, 'headers': headers, 'sign': data}"], {}), "({'url': url, 'headers': headers, 'sign': data})\n", (558, 606), False, 'from flask import Flask, jsonify, request\n'), ((468, 493), 'hook.start_hook', 'start_hook', (['REMOTE_DEVICE'], {}), '(REMOTE_DEVICE)\n', (478, 493), False, 'from hook import start_hook\n')]
import PySimpleGUI as sg from ..model.objectdata import ObjectData from ..model.search import SearchableList from ..view import newproduction from . import get_string_unit, RACES, filter_listbox from myconfigparser import Section def open_window(data): options = SearchableList() for u in data: unit = Section(data[u]) if 'peon' in unit['type'].lower() and u != 'e000' and u != 'udr' and 'A00J' not in unit['abilList']: options.append('{name} [{code}]'.format(code=u, name=unit['Name'][1:-1])) window = sg.Window('New Production', newproduction.get_layout(), default_element_size=(40, 1), grab_anywhere=False).Finalize() window.find_element('Options').Update(sorted(options)) while True: event, values = window.read() if event is None: break elif event == 'Submit': try: ObjectData(data).create_production(values['Name'], get_string_unit(values['Options'][0]), RACES[values['ProdRace']]) sg.popup('Success') except Exception as e: sg.popup(str(e),title='Error') filter_listbox(data, window, values, '', options)
[ "myconfigparser.Section", "PySimpleGUI.popup" ]
[((320, 336), 'myconfigparser.Section', 'Section', (['data[u]'], {}), '(data[u])\n', (327, 336), False, 'from myconfigparser import Section\n'), ((1030, 1049), 'PySimpleGUI.popup', 'sg.popup', (['"""Success"""'], {}), "('Success')\n", (1038, 1049), True, 'import PySimpleGUI as sg\n')]
# Generated by Django 3.2.3 on 2021-08-10 02:38 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('artists', '0002_artist_bio'), ('beats', '0002_instrumental_img_file'), ] operations = [ migrations.AlterField( model_name='instrumental', name='producer', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='+', to='artists.artist'), ), migrations.AlterField( model_name='instrumentalcollection', name='instrumentals', field=models.ManyToManyField(blank=True, related_name='_beats_instrumentalcollection_instrumentals_+', to='beats.Instrumental'), ), ]
[ "django.db.models.ForeignKey", "django.db.models.ManyToManyField" ]
[((435, 567), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.DO_NOTHING', 'related_name': '"""+"""', 'to': '"""artists.artist"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.DO_NOTHING, related_name='+', to='artists.artist')\n", (452, 567), False, 'from django.db import migrations, models\n'), ((712, 838), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'blank': '(True)', 'related_name': '"""_beats_instrumentalcollection_instrumentals_+"""', 'to': '"""beats.Instrumental"""'}), "(blank=True, related_name=\n '_beats_instrumentalcollection_instrumentals_+', to='beats.Instrumental')\n", (734, 838), False, 'from django.db import migrations, models\n')]
import os import sys sys.path.append(os.path.join(sys.path[0], '../')) from smart_pipeline import Pipeline data = [1,2,3,4,5] # Define a data function def onlyOdd(item): return False if item%2==0 else True pl = Pipeline() # Adds function into pipeline pl.addDataPipe(onlyOdd) res = pl(data) for item in res: print(item)
[ "os.path.join", "smart_pipeline.Pipeline" ]
[((220, 230), 'smart_pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (228, 230), False, 'from smart_pipeline import Pipeline\n'), ((38, 70), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""../"""'], {}), "(sys.path[0], '../')\n", (50, 70), False, 'import os\n')]
import tensorflow as tf batch_size = 4 feature_num = 3 csv1 = [ "harden|james|curry", "wrestbrook|harden|durant", "paul|towns", ] csv2 = [ "curry", "wrestbrook|harden|durant", "paul|towns", ] csv3 = [ "harden|james|curry", "durant", "paul|towns", ] csv4 = [ "wrestbrook|harden|durant", "wrestbrook|harden|durant", "wrestbrook|harden|durant" ] csv_s= [csv1,csv2,csv3,csv4] X = tf.placeholder(shape=[None,feature_num],dtype=tf.string) one_feature = tf.contrib.layers.sparse_column_with_hash_bucket( column_name="zhengquan_test", hash_bucket_size=10, combiner="sum", dtype=tf.string # dtype=tf.dtypes.int32 ) res = tf.contrib.layers.embedding_column(one_feature, # initializer=my_initializer, combiner="mean", dimension=3) #除了有下面这种方法还有tf.unstack的方法 # for i in range(batch_size): # for j in range(feature_num): # one_feature = X[i][j] # one_feature = tf.reshape(one_feature,shape=[1]) # split_tag = tf.string_split(one_feature, "|") # one_sparse = tf.SparseTensor( # indices=split_tag.indices, # values= split_tag.values, # dense_shape=split_tag.dense_shape # ) # # current_mapping = {'zhengquan_test': one_sparse} # one_feature_embedding_res = tf.feature_column.input_layer(current_mapping, res) # #[[ 0.08187684, 0.22063671, -0.16549297]] #用unstack证明也是可行的,但是placeholder的第一个dimension不能是None,需要是一个确切的数值,不然unstack函数不能解析 # exp_X = tf.expand_dims(X,axis=-1) # example_list = tf.unstack(exp_X,axis = 0) # for one_example in example_list: # features = tf.unstack(one_example,axis = 0) # feature = features[0] # for one_feature in features: # # one_feature = tf.reshape(one_feature,shape=[1]) # split_tag = tf.string_split(one_feature, "|") # one_sparse = tf.SparseTensor( # indices=split_tag.indices, # values= split_tag.values, # dense_shape=split_tag.dense_shape # ) # # current_mapping = {'zhengquan_test': one_sparse} # one_feature_embedding_res = tf.feature_column.input_layer(current_mapping, res) #[[-0.10367388, 0.25915673, -0.00741819]] def my_function(one_example): features = tf.unstack(one_example,axis = 0) for one_feature in features: split_tag = tf.string_split(one_feature, "|") one_sparse = tf.SparseTensor( indices=split_tag.indices, values= split_tag.values, dense_shape=split_tag.dense_shape ) current_mapping = {'zhengquan_test': one_sparse} one_feature_embedding_res = tf.feature_column.input_layer(current_mapping, res) return one_feature_embedding_res exp_X = tf.expand_dims(X,axis=-1) res = tf.map_fn(fn=my_function,elems=exp_X,dtype=tf.float32) print(tf.shape(res)) import pdb pdb.set_trace() # res_seq = tf.squeeze(res,squeeze_dims=[-1]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess_res = sess.run([res],feed_dict={X:csv_s}) print(type(sess_res)) print(sess_res)
[ "tensorflow.contrib.layers.sparse_column_with_hash_bucket", "tensorflow.global_variables_initializer", "tensorflow.contrib.layers.embedding_column", "tensorflow.Session", "tensorflow.string_split", "tensorflow.feature_column.input_layer", "tensorflow.placeholder", "tensorflow.shape", "pdb.set_trace", "tensorflow.SparseTensor", "tensorflow.map_fn", "tensorflow.unstack", "tensorflow.expand_dims" ]
[((392, 450), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '[None, feature_num]', 'dtype': 'tf.string'}), '(shape=[None, feature_num], dtype=tf.string)\n', (406, 450), True, 'import tensorflow as tf\n'), ((464, 601), 'tensorflow.contrib.layers.sparse_column_with_hash_bucket', 'tf.contrib.layers.sparse_column_with_hash_bucket', ([], {'column_name': '"""zhengquan_test"""', 'hash_bucket_size': '(10)', 'combiner': '"""sum"""', 'dtype': 'tf.string'}), "(column_name=\n 'zhengquan_test', hash_bucket_size=10, combiner='sum', dtype=tf.string)\n", (512, 601), True, 'import tensorflow as tf\n'), ((698, 775), 'tensorflow.contrib.layers.embedding_column', 'tf.contrib.layers.embedding_column', (['one_feature'], {'combiner': '"""mean"""', 'dimension': '(3)'}), "(one_feature, combiner='mean', dimension=3)\n", (732, 775), True, 'import tensorflow as tf\n'), ((2888, 2914), 'tensorflow.expand_dims', 'tf.expand_dims', (['X'], {'axis': '(-1)'}), '(X, axis=-1)\n', (2902, 2914), True, 'import tensorflow as tf\n'), ((2920, 2976), 'tensorflow.map_fn', 'tf.map_fn', ([], {'fn': 'my_function', 'elems': 'exp_X', 'dtype': 'tf.float32'}), '(fn=my_function, elems=exp_X, dtype=tf.float32)\n', (2929, 2976), True, 'import tensorflow as tf\n'), ((3007, 3022), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (3020, 3022), False, 'import pdb\n'), ((2406, 2437), 'tensorflow.unstack', 'tf.unstack', (['one_example'], {'axis': '(0)'}), '(one_example, axis=0)\n', (2416, 2437), True, 'import tensorflow as tf\n'), ((2981, 2994), 'tensorflow.shape', 'tf.shape', (['res'], {}), '(res)\n', (2989, 2994), True, 'import tensorflow as tf\n'), ((3076, 3088), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (3086, 3088), True, 'import tensorflow as tf\n'), ((2492, 2525), 'tensorflow.string_split', 'tf.string_split', (['one_feature', '"""|"""'], {}), "(one_feature, '|')\n", (2507, 2525), True, 'import tensorflow as tf\n'), ((2547, 2653), 'tensorflow.SparseTensor', 'tf.SparseTensor', ([], {'indices': 'split_tag.indices', 'values': 'split_tag.values', 'dense_shape': 'split_tag.dense_shape'}), '(indices=split_tag.indices, values=split_tag.values,\n dense_shape=split_tag.dense_shape)\n', (2562, 2653), True, 'import tensorflow as tf\n'), ((2790, 2841), 'tensorflow.feature_column.input_layer', 'tf.feature_column.input_layer', (['current_mapping', 'res'], {}), '(current_mapping, res)\n', (2819, 2841), True, 'import tensorflow as tf\n'), ((3111, 3144), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3142, 3144), True, 'import tensorflow as tf\n')]
""" Commands for index operations """ import os import re import sys import time from typing import List from zipfile import ZipFile, ZIP_DEFLATED from datetime import datetime as DateTime import click from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data from mnotes.notes.index import NoteIndex from mnotes.notes.markdown_notes import NoteInfo valid_chars_pattern = re.compile(r"[^a-z0-9\-]") @click.group(name="index", invoke_without_command=True) @click.pass_context @pass_env def main(env: MnoteEnvironment, ctx: click.core.Context): """ Manage M-Notes' global directory of indices. Indices represent folders containing indexed notes.""" style = env.config.styles env.global_index.load_all() echo_line(" * index mode") if len(env.global_index.indices) == 0 and ctx.invoked_subcommand != "create": echo_line(" * there are ", style.warning("no indices"), " in the global directory") echo_line(" -> to create an index navigate to the folder containing notes you want to add") echo_line(" -> then use the 'mnote index create <name>' command") sys.exit() else: echo_line(" * there are ", style.visible(f"{len(env.global_index.indices)}"), " indices in the global directory") if ctx.invoked_subcommand is None: # Update the global index start_time = time.time() env.global_index.load_all() end_time = time.time() click.echo(style.success(f" * updated all indices, took {end_time - start_time:0.2f} seconds")) click.echo() echo_line(click.style("Current Indices in Global Directory:", bold=True)) for index in env.global_index.indices.values(): echo_line(" * ", style.visible(index.name), f" ({len(index.notes)} notes): {index.path}") echo_line() echo_line(style.visible(" (use 'mnote index reload' to rebuild with checksums)")) @main.command(name="zip") @click.argument("names", type=str, nargs=-1) @pass_env def zip_cmd(env: MnoteEnvironment, names: List[str]): """ Archive an index or multiple/all indices in zip files Creates archives of the markdown notes (text files only, no resources) of the indices by compressing them into zip files. The files will be named with the index name and the current date and time and saved in the current directory. This command can be run from anywhere on the machine, it does not need to be run from inside any of the index folders. You can specify a single index by name, several indices, or leave the 'name' argument blank in order to back up all of them at once. """ style = env.config.styles click.echo() failed = False for index_name in names: if index_name not in env.global_index.indices: echo_line(style.fail(f"There is no index named '{index_name}' to archive!")) failed = True if failed: return if not names: echo_line(style.visible("No index(s) specified, so zipping all of them...")) names = [i.name for i in env.global_index.indices.values()] start = time.time() for name in names: echo_line() echo_line(click.style("Zipping index ", bold=True), style.visible(f"'{name}'", bold=True)) index: NoteIndex = env.global_index.indices[name] now = DateTime.now().strftime("%Y-%m-%d-%H-%M-%S") output_name = os.path.join(env.cwd, f"{name}-{now}.zip") with ZipFile(output_name, "w") as zip_handle: with click.progressbar(index.notes.values()) as notes: for note in notes: note: NoteInfo zip_handle.write(note.file_path, arcname=os.path.relpath(note.file_path, start=index.path), compress_type=ZIP_DEFLATED) end = time.time() echo_line() echo_line(style.success(f"Operation completed in {end - start:0.1f} seconds")) @main.command(name="reload") @pass_env def reload(env: MnoteEnvironment): """ Rebuild all indices using checksums. M-Notes by default will verify the integrity of its cached data by looking at the file size and last modified timestamp to guess at whether the file has changed since it was last read (this is similar to the method which rsync uses) However, it's up to the file system to report these values accurately, so this option uses the SHA1 checksum to rebuild the indicies. It's faster than re-reading all of the files, but slower than simply looking at the file size and timestamps. """ style = env.config.styles start_time = time.time() env.global_index.load_all(True) end_time = time.time() click.echo(style.success(f"Updated all indices with checksums, took {end_time - start_time:0.2f} seconds")) @main.command(name="delete") @click.argument("name", type=str) @pass_env def delete(env: MnoteEnvironment, name: str): """ Delete an index from the global directory. """ style = env.config.styles click.echo() if name not in env.global_index.indices: echo_line(style.fail(f"There is no index named '{name}' to remove!")) return # If we got to this point we can create the index! click.echo() echo_line(style.warning(f"You are about to remove the index named '{name}'", bold=True)) echo_line(style.warning(f"which maps to the folder '{env.cwd}'", bold=True)) click.echo() if click.confirm(click.style(f"Apply this change?", bold=True)): click.echo(style.success("User deleted index")) del env.global_index.index_directory[name] save_global_index_data(env.global_index) else: click.echo(style.fail("User rejected index creation")) @main.command(name="create") @click.argument("name", type=str) @pass_env def create(env: MnoteEnvironment, name: str): """ Create a new index in the global directory with the specified name. """ style = env.config.styles click.echo() # Check if this folder is already part of another index if env.index_of_cwd is not None: echo_line(style.fail(f"The current working directory is already part of an index named " f"'{env.index_of_cwd.name}'. Indexes cannot be contained by other indexes")) return # Check if this index would contain another index contained = env.indices_in_cwd if contained: echo_line(style.fail("The following already-existing indices are subdirectories of the current working " "directory. You can't create an index here because indexes cannot be contained by other " "indexes.")) for index in contained: echo_line(f" * {index.name}: {index.path}") return # Check if the name given is valid if valid_chars_pattern.findall(name): echo_line("The name ", style.fail(f"'{name}'"), " contains invalid characters for an index name") click.echo() echo_line("Index names may contain numbers, lowercase letters, and dashes only. Also consider that shorter " "names are faster to type. Think of the index name as a nickname or an alias for the folder you" "are adding to the global directory.") return if name in env.global_index.indices: echo_line("The name ", style.fail(f"'{name}'"), " is already used by another index.") click.echo() echo_line("Index names may contain numbers, lowercase letters, and dashes only. Also consider that shorter " "names are faster to type. Think of the index name as a nickname or an alias for the folder you" "are adding to the global directory.") # Check for conflicts before allowing M-Notes to add this as an index conflicts = env.global_index.find_conflicts(env.cwd) if conflicts: echo_line(style.fail("There are ID conflicts which would be created if this folder is merged into the global" "directory as it is.")) for id_, conflict in conflicts.items(): click.echo() echo_line(style.warning(f"Conflict for ID {id_}:", bold=True)) for e in conflict.existing: echo_line(style.visible(f" * Already in global: {e.file_path}")) for c in conflict.conflicting: echo_line(style.warning(f" * In this directory: {c.file_path}")) return # If we got to this point we can create the index! click.echo() echo_line(style.warning(f"You are about to create an index named '{name}'", bold=True)) echo_line(style.warning(f"which will be located in the folder '{env.cwd}'", bold=True)) click.echo() if click.confirm(click.style(f"Apply this change?", bold=True)): click.echo(style.success("User created index")) env.global_index.index_directory[name] = {"path": env.cwd} save_global_index_data(env.global_index) else: click.echo(style.fail("User rejected index creation"))
[ "mnotes.environment.save_global_index_data", "mnotes.environment.echo_line", "zipfile.ZipFile", "click.argument", "click.echo", "click.style", "datetime.datetime.now", "time.time", "os.path.relpath", "click.group", "os.path.join", "sys.exit", "re.compile" ]
[((413, 439), 're.compile', 're.compile', (['"""[^a-z0-9\\\\-]"""'], {}), "('[^a-z0-9\\\\-]')\n", (423, 439), False, 'import re\n'), ((443, 497), 'click.group', 'click.group', ([], {'name': '"""index"""', 'invoke_without_command': '(True)'}), "(name='index', invoke_without_command=True)\n", (454, 497), False, 'import click\n'), ((1992, 2035), 'click.argument', 'click.argument', (['"""names"""'], {'type': 'str', 'nargs': '(-1)'}), "('names', type=str, nargs=-1)\n", (2006, 2035), False, 'import click\n'), ((4929, 4961), 'click.argument', 'click.argument', (['"""name"""'], {'type': 'str'}), "('name', type=str)\n", (4943, 4961), False, 'import click\n'), ((5853, 5885), 'click.argument', 'click.argument', (['"""name"""'], {'type': 'str'}), "('name', type=str)\n", (5867, 5885), False, 'import click\n'), ((761, 787), 'mnotes.environment.echo_line', 'echo_line', (['""" * index mode"""'], {}), "(' * index mode')\n", (770, 787), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((2719, 2731), 'click.echo', 'click.echo', ([], {}), '()\n', (2729, 2731), False, 'import click\n'), ((3166, 3177), 'time.time', 'time.time', ([], {}), '()\n', (3175, 3177), False, 'import time\n'), ((3920, 3931), 'time.time', 'time.time', ([], {}), '()\n', (3929, 3931), False, 'import time\n'), ((3936, 3947), 'mnotes.environment.echo_line', 'echo_line', ([], {}), '()\n', (3945, 3947), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((4710, 4721), 'time.time', 'time.time', ([], {}), '()\n', (4719, 4721), False, 'import time\n'), ((4773, 4784), 'time.time', 'time.time', ([], {}), '()\n', (4782, 4784), False, 'import time\n'), ((5107, 5119), 'click.echo', 'click.echo', ([], {}), '()\n', (5117, 5119), False, 'import click\n'), ((5319, 5331), 'click.echo', 'click.echo', ([], {}), '()\n', (5329, 5331), False, 'import click\n'), ((5510, 5522), 'click.echo', 'click.echo', ([], {}), '()\n', (5520, 5522), False, 'import click\n'), ((6056, 6068), 'click.echo', 'click.echo', ([], {}), '()\n', (6066, 6068), False, 'import click\n'), ((8622, 8634), 'click.echo', 'click.echo', ([], {}), '()\n', (8632, 8634), False, 'import click\n'), ((8823, 8835), 'click.echo', 'click.echo', ([], {}), '()\n', (8833, 8835), False, 'import click\n'), ((970, 1074), 'mnotes.environment.echo_line', 'echo_line', (['""" -> to create an index navigate to the folder containing notes you want to add"""'], {}), "(\n ' -> to create an index navigate to the folder containing notes you want to add'\n )\n", (979, 1074), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((1073, 1141), 'mnotes.environment.echo_line', 'echo_line', (['""" -> then use the \'mnote index create <name>\' command"""'], {}), '(" -> then use the \'mnote index create <name>\' command")\n', (1082, 1141), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((1150, 1160), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1158, 1160), False, 'import sys\n'), ((1407, 1418), 'time.time', 'time.time', ([], {}), '()\n', (1416, 1418), False, 'import time\n'), ((1474, 1485), 'time.time', 'time.time', ([], {}), '()\n', (1483, 1485), False, 'import time\n'), ((1599, 1611), 'click.echo', 'click.echo', ([], {}), '()\n', (1609, 1611), False, 'import click\n'), ((1861, 1872), 'mnotes.environment.echo_line', 'echo_line', ([], {}), '()\n', (1870, 1872), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((3209, 3220), 'mnotes.environment.echo_line', 'echo_line', ([], {}), '()\n', (3218, 3220), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((3461, 3503), 'os.path.join', 'os.path.join', (['env.cwd', 'f"""{name}-{now}.zip"""'], {}), "(env.cwd, f'{name}-{now}.zip')\n", (3473, 3503), False, 'import os\n'), ((5544, 5589), 'click.style', 'click.style', (['f"""Apply this change?"""'], {'bold': '(True)'}), "(f'Apply this change?', bold=True)\n", (5555, 5589), False, 'import click\n'), ((5707, 5747), 'mnotes.environment.save_global_index_data', 'save_global_index_data', (['env.global_index'], {}), '(env.global_index)\n', (5729, 5747), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((7066, 7078), 'click.echo', 'click.echo', ([], {}), '()\n', (7076, 7078), False, 'import click\n'), ((7087, 7336), 'mnotes.environment.echo_line', 'echo_line', (['"""Index names may contain numbers, lowercase letters, and dashes only. Also consider that shorter names are faster to type. Think of the index name as a nickname or an alias for the folder youare adding to the global directory."""'], {}), "(\n 'Index names may contain numbers, lowercase letters, and dashes only. Also consider that shorter names are faster to type. Think of the index name as a nickname or an alias for the folder youare adding to the global directory.'\n )\n", (7096, 7336), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((7528, 7540), 'click.echo', 'click.echo', ([], {}), '()\n', (7538, 7540), False, 'import click\n'), ((7549, 7798), 'mnotes.environment.echo_line', 'echo_line', (['"""Index names may contain numbers, lowercase letters, and dashes only. Also consider that shorter names are faster to type. Think of the index name as a nickname or an alias for the folder youare adding to the global directory."""'], {}), "(\n 'Index names may contain numbers, lowercase letters, and dashes only. Also consider that shorter names are faster to type. Think of the index name as a nickname or an alias for the folder youare adding to the global directory.'\n )\n", (7558, 7798), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((8857, 8902), 'click.style', 'click.style', (['f"""Apply this change?"""'], {'bold': '(True)'}), "(f'Apply this change?', bold=True)\n", (8868, 8902), False, 'import click\n'), ((9036, 9076), 'mnotes.environment.save_global_index_data', 'save_global_index_data', (['env.global_index'], {}), '(env.global_index)\n', (9058, 9076), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((1630, 1692), 'click.style', 'click.style', (['"""Current Indices in Global Directory:"""'], {'bold': '(True)'}), "('Current Indices in Global Directory:', bold=True)\n", (1641, 1692), False, 'import click\n'), ((3239, 3279), 'click.style', 'click.style', (['"""Zipping index """'], {'bold': '(True)'}), "('Zipping index ', bold=True)\n", (3250, 3279), False, 'import click\n'), ((3517, 3542), 'zipfile.ZipFile', 'ZipFile', (['output_name', '"""w"""'], {}), "(output_name, 'w')\n", (3524, 3542), False, 'from zipfile import ZipFile, ZIP_DEFLATED\n'), ((6811, 6854), 'mnotes.environment.echo_line', 'echo_line', (['f""" * {index.name}: {index.path}"""'], {}), "(f' * {index.name}: {index.path}')\n", (6820, 6854), False, 'from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data\n'), ((8212, 8224), 'click.echo', 'click.echo', ([], {}), '()\n', (8222, 8224), False, 'import click\n'), ((3394, 3408), 'datetime.datetime.now', 'DateTime.now', ([], {}), '()\n', (3406, 3408), True, 'from datetime import datetime as DateTime\n'), ((3793, 3842), 'os.path.relpath', 'os.path.relpath', (['note.file_path'], {'start': 'index.path'}), '(note.file_path, start=index.path)\n', (3808, 3842), False, 'import os\n')]
import numpy as np import os import torch import torch.nn as nn import pytorch_lightning as pl from data.VOCdevkit.vocdata import VOCDataset from torch.utils.data import DataLoader from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur from torchvision.transforms.functional import InterpolationMode from skimage.measure import label class EvaluateAttnMaps(pl.callbacks.Callback): def __init__(self, voc_root: str, train_input_height: int, attn_batch_size: int, num_workers: int, threshold: float = 0.6): # Setup transforms and dataloader pvoc image_transforms = Compose([Resize((train_input_height, train_input_height)), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) target_transforms = Compose([Resize((train_input_height, train_input_height), interpolation=InterpolationMode.NEAREST), ToTensor()]) self.dataset = VOCDataset(root=os.path.join(voc_root, "VOCSegmentation"), image_set="val", transform=image_transforms, target_transform=target_transforms) self.loader = DataLoader(self.dataset, batch_size=attn_batch_size, shuffle=False, num_workers=num_workers, drop_last=True, pin_memory=True) self.threshold = threshold def on_validation_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule): # Evaluate attention maps. if pl_module.global_rank == 0 and pl_module.local_rank == 0: print("\n" + "#" * 20 + "Evaluating attention maps on VOC2012 with threshold: " + str(self.threshold) + "#" * 20) jacs_merged_attn = 0 jacs_all_heads = 0 # If teacher is present use teacher attention as it is also used during training if hasattr(pl_module, 'teacher'): patch_size = pl_module.teacher.patch_size model = pl_module.teacher else: patch_size = pl_module.model.patch_size model = pl_module.model model.eval() for i, (imgs, maps) in enumerate(self.loader): w_featmap = imgs.shape[-2] // patch_size h_featmap = imgs.shape[-1] // patch_size with torch.no_grad(): attentions = model.get_last_selfattention(imgs.to(pl_module.device)) bs = attentions.shape[0] attentions = attentions[..., 0, 1:] # Evaluate two different protocols: merged attention and best head jacs_merged_attn += self.evaluate_merged_attentions(attentions, bs, w_featmap, h_featmap, patch_size, maps) jacs_all_heads += self.evaluate_best_head(attentions, bs, w_featmap, h_featmap, patch_size, maps) jacs_merged_attn /= len(self.dataset) jacs_all_heads /= len(self.dataset) print(f"Merged Jaccard on VOC12: {jacs_merged_attn.item()}") print(f"All heads Jaccard on VOC12: {jacs_all_heads.item()}") pl_module.logger.experiment.log_metric('attn_jacs_voc', jacs_merged_attn.item()) pl_module.logger.experiment.log_metric('all_heads_jacs_voc', jacs_all_heads.item()) def evaluate_best_head(self, attentions: torch.Tensor, bs: int, w_featmap: int, h_featmap: int, patch_size: int, maps: torch.Tensor) -> torch.Tensor: jacs = 0 nh = attentions.shape[1] # number of heads # we keep only a certain percentage of the mass val, idx = torch.sort(attentions) val /= torch.sum(val, dim=-1, keepdim=True) cumval = torch.cumsum(val, dim=-1) th_attn = cumval > (1 - self.threshold) idx2 = torch.argsort(idx) for head in range(nh): th_attn[:, head] = torch.gather(th_attn[:, head], dim=1, index=idx2[:, head]) th_attn = th_attn.reshape(bs, nh, w_featmap, h_featmap).float() # interpolate th_attn = nn.functional.interpolate(th_attn, scale_factor=patch_size, mode="nearest").cpu().numpy() # Calculate IoU for each image for k, map in enumerate(maps): jac = 0 objects = np.unique(map) objects = np.delete(objects, [0, -1]) for o in objects: masko = map == o intersection = masko * th_attn[k] intersection = torch.sum(torch.sum(intersection, dim=-1), dim=-1) union = (masko + th_attn[k]) > 0 union = torch.sum(torch.sum(union, dim=-1), dim=-1) jaco = intersection / union jac += max(jaco) if len(objects) != 0: jac /= len(objects) jacs += jac return jacs def evaluate_merged_attentions(self, attentions: torch.Tensor, bs: int, w_featmap: int, h_featmap: int, patch_size: int, maps: torch.Tensor) -> torch.Tensor: jacs = 0 # Average attentions attentions = sum(attentions[:, i] * 1 / attentions.size(1) for i in range(attentions.size(1))) nh = 1 # number of heads is one as we merged all heads # Gaussian blurring attentions = GaussianBlur(7, sigma=(.6))(attentions.reshape(bs * nh, 1, w_featmap, h_featmap))\ .reshape(bs, nh, -1) # we keep only a certain percentage of the mass val, idx = torch.sort(attentions) val /= torch.sum(val, dim=-1, keepdim=True) cumval = torch.cumsum(val, dim=-1) th_attn = cumval > (1 - self.threshold) idx2 = torch.argsort(idx) th_attn[:, 0] = torch.gather(th_attn[:, 0], dim=1, index=idx2[:, 0]) th_attn = th_attn.reshape(bs, nh, w_featmap, h_featmap).float() # remove components that are less then 3 pixels for j, th_att in enumerate(th_attn): labelled = label(th_att.cpu().numpy()) for k in range(1, np.max(labelled) + 1): mask = labelled == k if np.sum(mask) <= 2: th_attn[j, 0][mask] = 0 # interpolate th_attn = nn.functional.interpolate(th_attn, scale_factor=patch_size, mode="nearest").cpu().numpy() # Calculate IoU for each image for k, map in enumerate(maps): gt_fg_mask = (map != 0.).float() intersection = gt_fg_mask * th_attn[k] intersection = torch.sum(torch.sum(intersection, dim=-1), dim=-1) union = (gt_fg_mask + th_attn[k]) > 0 union = torch.sum(torch.sum(union, dim=-1), dim=-1) jacs += intersection / union return jacs
[ "numpy.delete", "torch.gather", "torch.utils.data.DataLoader", "os.path.join", "numpy.sum", "torch.argsort", "torchvision.transforms.ToTensor", "torch.cumsum", "numpy.max", "torch.nn.functional.interpolate", "torchvision.transforms.GaussianBlur", "torchvision.transforms.Normalize", "torch.no_grad", "torch.sum", "torch.sort", "numpy.unique", "torchvision.transforms.Resize" ]
[((1354, 1483), 'torch.utils.data.DataLoader', 'DataLoader', (['self.dataset'], {'batch_size': 'attn_batch_size', 'shuffle': '(False)', 'num_workers': 'num_workers', 'drop_last': '(True)', 'pin_memory': '(True)'}), '(self.dataset, batch_size=attn_batch_size, shuffle=False,\n num_workers=num_workers, drop_last=True, pin_memory=True)\n', (1364, 1483), False, 'from torch.utils.data import DataLoader\n'), ((3871, 3893), 'torch.sort', 'torch.sort', (['attentions'], {}), '(attentions)\n', (3881, 3893), False, 'import torch\n'), ((3909, 3945), 'torch.sum', 'torch.sum', (['val'], {'dim': '(-1)', 'keepdim': '(True)'}), '(val, dim=-1, keepdim=True)\n', (3918, 3945), False, 'import torch\n'), ((3963, 3988), 'torch.cumsum', 'torch.cumsum', (['val'], {'dim': '(-1)'}), '(val, dim=-1)\n', (3975, 3988), False, 'import torch\n'), ((4052, 4070), 'torch.argsort', 'torch.argsort', (['idx'], {}), '(idx)\n', (4065, 4070), False, 'import torch\n'), ((5736, 5758), 'torch.sort', 'torch.sort', (['attentions'], {}), '(attentions)\n', (5746, 5758), False, 'import torch\n'), ((5774, 5810), 'torch.sum', 'torch.sum', (['val'], {'dim': '(-1)', 'keepdim': '(True)'}), '(val, dim=-1, keepdim=True)\n', (5783, 5810), False, 'import torch\n'), ((5828, 5853), 'torch.cumsum', 'torch.cumsum', (['val'], {'dim': '(-1)'}), '(val, dim=-1)\n', (5840, 5853), False, 'import torch\n'), ((5917, 5935), 'torch.argsort', 'torch.argsort', (['idx'], {}), '(idx)\n', (5930, 5935), False, 'import torch\n'), ((5960, 6012), 'torch.gather', 'torch.gather', (['th_attn[:, 0]'], {'dim': '(1)', 'index': 'idx2[:, 0]'}), '(th_attn[:, 0], dim=1, index=idx2[:, 0])\n', (5972, 6012), False, 'import torch\n'), ((4133, 4191), 'torch.gather', 'torch.gather', (['th_attn[:, head]'], {'dim': '(1)', 'index': 'idx2[:, head]'}), '(th_attn[:, head], dim=1, index=idx2[:, head])\n', (4145, 4191), False, 'import torch\n'), ((4515, 4529), 'numpy.unique', 'np.unique', (['map'], {}), '(map)\n', (4524, 4529), True, 'import numpy as np\n'), ((4552, 4579), 'numpy.delete', 'np.delete', (['objects', '[0, -1]'], {}), '(objects, [0, -1])\n', (4561, 4579), True, 'import numpy as np\n'), ((712, 760), 'torchvision.transforms.Resize', 'Resize', (['(train_input_height, train_input_height)'], {}), '((train_input_height, train_input_height))\n', (718, 760), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((798, 808), 'torchvision.transforms.ToTensor', 'ToTensor', ([], {}), '()\n', (806, 808), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((846, 910), 'torchvision.transforms.Normalize', 'Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (855, 910), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((950, 1044), 'torchvision.transforms.Resize', 'Resize', (['(train_input_height, train_input_height)'], {'interpolation': 'InterpolationMode.NEAREST'}), '((train_input_height, train_input_height), interpolation=\n InterpolationMode.NEAREST)\n', (956, 1044), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((1122, 1132), 'torchvision.transforms.ToTensor', 'ToTensor', ([], {}), '()\n', (1130, 1132), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((1174, 1215), 'os.path.join', 'os.path.join', (['voc_root', '"""VOCSegmentation"""'], {}), "(voc_root, 'VOCSegmentation')\n", (1186, 1215), False, 'import os\n'), ((6753, 6784), 'torch.sum', 'torch.sum', (['intersection'], {'dim': '(-1)'}), '(intersection, dim=-1)\n', (6762, 6784), False, 'import torch\n'), ((6874, 6898), 'torch.sum', 'torch.sum', (['union'], {'dim': '(-1)'}), '(union, dim=-1)\n', (6883, 6898), False, 'import torch\n'), ((2522, 2537), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2535, 2537), False, 'import torch\n'), ((4734, 4765), 'torch.sum', 'torch.sum', (['intersection'], {'dim': '(-1)'}), '(intersection, dim=-1)\n', (4743, 4765), False, 'import torch\n'), ((4858, 4882), 'torch.sum', 'torch.sum', (['union'], {'dim': '(-1)'}), '(union, dim=-1)\n', (4867, 4882), False, 'import torch\n'), ((5544, 5570), 'torchvision.transforms.GaussianBlur', 'GaussianBlur', (['(7)'], {'sigma': '(0.6)'}), '(7, sigma=0.6)\n', (5556, 5570), False, 'from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur\n'), ((6268, 6284), 'numpy.max', 'np.max', (['labelled'], {}), '(labelled)\n', (6274, 6284), True, 'import numpy as np\n'), ((6347, 6359), 'numpy.sum', 'np.sum', (['mask'], {}), '(mask)\n', (6353, 6359), True, 'import numpy as np\n'), ((4304, 4379), 'torch.nn.functional.interpolate', 'nn.functional.interpolate', (['th_attn'], {'scale_factor': 'patch_size', 'mode': '"""nearest"""'}), "(th_attn, scale_factor=patch_size, mode='nearest')\n", (4329, 4379), True, 'import torch.nn as nn\n'), ((6451, 6526), 'torch.nn.functional.interpolate', 'nn.functional.interpolate', (['th_attn'], {'scale_factor': 'patch_size', 'mode': '"""nearest"""'}), "(th_attn, scale_factor=patch_size, mode='nearest')\n", (6476, 6526), True, 'import torch.nn as nn\n')]
import socket, threading server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host = "127.0.0.1" port = 9090 server.bind((host, port)) server.listen(5) clients = list() end = list() def get(): while True: client, addr = server.accept() clients.append(client) print(f'сервер подключен через {addr}: количество клиентов: {len (clients)}', end = '\n') def recv_data(client): while True: try: indata = client.recv(1024) except Exception: clients.remove(client) end.remove(client) print( f'Сервер отключен: количество клиентов: {len (clients)}', end = '\n') break print(indata.decode('utf-8')) for i in clients: if i != client: i.send(indata) def send_mes(): while True: print('') outdata = input('') print() for client in clients: client.send(f"Сервер: {outdata}".encode('utf-8)')) def get_mes(): while True: for i in clients: if i in end: continue index = threading.Thread(target=recv_data, args=(i,)) index.start() end.append(i) t1 = threading.Thread(target=send_mes, name='input') t1.start() t2 = threading.Thread(target=get_mes, name='out') t2.start() t3 = threading.Thread(target=get(), name='get') t3.start() t2.join() for i in clients: i.close()
[ "threading.Thread", "socket.socket" ]
[((35, 84), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (48, 84), False, 'import socket, threading\n'), ((1215, 1262), 'threading.Thread', 'threading.Thread', ([], {'target': 'send_mes', 'name': '"""input"""'}), "(target=send_mes, name='input')\n", (1231, 1262), False, 'import socket, threading\n'), ((1279, 1323), 'threading.Thread', 'threading.Thread', ([], {'target': 'get_mes', 'name': '"""out"""'}), "(target=get_mes, name='out')\n", (1295, 1323), False, 'import socket, threading\n'), ((1111, 1156), 'threading.Thread', 'threading.Thread', ([], {'target': 'recv_data', 'args': '(i,)'}), '(target=recv_data, args=(i,))\n', (1127, 1156), False, 'import socket, threading\n')]
# Autoencoder using convolutional layers # Dataset : MNIST # Requires : PIL, matplotlib # Inspired by https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html # To compress data : net.encode(data) # To decompress data : net.decode(data) # To mutate data : net(data) import os import numpy as np import matplotlib.pyplot as plt import torch as T from torch import nn from torch import cuda import torch.nn.functional as F from torchvision import transforms import torchvision from torchvision.datasets import MNIST from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d import PIL.Image as im from utils import dataset_dir, models_dir # Displays an image (1 dim tensor) # t has values in [0, 1] def imshow(t): transforms.ToPILImage()(t).show() # Show in matplotlib def gridshow(img): npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() class Net(nn.Module): def __init__(self, hidden_size, latent_size): super().__init__() self.latent_size = latent_size self.encodeConv1 = Conv2d(1, 16, 4) self.encodeConv2 = Conv2d(16, 32, 2) self.encodeFC1 = Linear(800, hidden_size) self.encodeFC2 = Linear(hidden_size, self.latent_size) self.decodeFC1 = Linear(self.latent_size, 13 * 13) self.decodeConv1 = ConvTranspose2d(1, 1, 2) self.decodeFC2 = Linear(14 * 14, 28 * 28) def encode(self, x): x = MaxPool2d(2)(F.relu(self.encodeConv1(x))) x = MaxPool2d(2)(F.relu(self.encodeConv2(x))) x = x.view(-1, 800) x = F.relu(self.encodeFC1(x)) x = T.sigmoid(self.encodeFC2(x)) return x def decode(self, x): x = F.relu(self.decodeFC1(x)) x = x.view(-1, 1, 13, 13) x = F.relu(self.decodeConv1(x)) x = x.view(-1, 14 * 14) x = T.sigmoid(self.decodeFC2(x)) x = x.view(-1, 1, 28, 28) return x def forward(self, x): return self.decode(self.encode(x)) # Hyper params latent_size = 10 hidden_size = 256 epochs = 3 batch_size = 10 learning_rate = .0002 train_or_test = 'test' path = models_dir + '/deep_autoencoder' # Training device device = T.device('cuda:0' if cuda.is_available() else 'cpu') # Dataset trans = transforms.ToTensor() dataset = MNIST(root=dataset_dir, train=True, download=True, transform=trans) loader = T.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0) # Model net = Net(hidden_size, latent_size) net.to(device) if train_or_test == 'train': # Load if os.path.exists(path): net.load_state_dict(T.load(path)) print('Model loaded') # Train optim = T.optim.Adam(net.parameters(), lr=learning_rate, betas=(.9, .999)) criterion = nn.MSELoss() for e in range(epochs): avg_loss = 0 for i, data in enumerate(loader, 0): # Only inputs (no labels) inputs, _ = data # Zero the parameter gradients optim.zero_grad() # Predictions x = inputs.to(device) y = net(x) # Back prop loss = criterion(y, x) loss.backward() optim.step() avg_loss += loss.item() # Stats print_freq = 100 if i % print_freq == print_freq - 1: print(f'Epoch {e + 1:2d}, Batch {i + 1:5d}, Loss {avg_loss / print_freq:.3f}') avg_loss = 0.0 # Save T.save(net.state_dict(), path) print('Model trained and saved') else: # Load net.load_state_dict(T.load(path)) # Test dataiter = iter(loader) images, _ = dataiter.next() # Show ground truth gridshow(torchvision.utils.make_grid(images)) # Show predictions with T.no_grad(): preds = T.cat([net(images[i].view(1, 1, 28, 28).to(device)).view(1, 1, 28, 28).cpu() for i in range(batch_size)]) preds = T.tensor(preds) gridshow(torchvision.utils.make_grid(preds))
[ "torch.nn.MSELoss", "matplotlib.pyplot.show", "torch.nn.ConvTranspose2d", "torch.utils.data.DataLoader", "torch.load", "torch.nn.Conv2d", "os.path.exists", "numpy.transpose", "torchvision.transforms.ToPILImage", "torchvision.utils.make_grid", "torch.cuda.is_available", "torch.nn.Linear", "torch.nn.MaxPool2d", "torch.no_grad", "torchvision.datasets.MNIST", "torch.tensor", "torchvision.transforms.ToTensor" ]
[((2274, 2295), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2293, 2295), False, 'from torchvision import transforms\n'), ((2306, 2373), 'torchvision.datasets.MNIST', 'MNIST', ([], {'root': 'dataset_dir', 'train': '(True)', 'download': '(True)', 'transform': 'trans'}), '(root=dataset_dir, train=True, download=True, transform=trans)\n', (2311, 2373), False, 'from torchvision.datasets import MNIST\n'), ((2383, 2471), 'torch.utils.data.DataLoader', 'T.utils.data.DataLoader', (['dataset'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(0)'}), '(dataset, batch_size=batch_size, shuffle=True,\n num_workers=0)\n', (2406, 2471), True, 'import torch as T\n'), ((901, 911), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (909, 911), True, 'import matplotlib.pyplot as plt\n'), ((2576, 2596), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (2590, 2596), False, 'import os\n'), ((2778, 2790), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (2788, 2790), False, 'from torch import nn\n'), ((3978, 3993), 'torch.tensor', 'T.tensor', (['preds'], {}), '(preds)\n', (3986, 3993), True, 'import torch as T\n'), ((865, 895), 'numpy.transpose', 'np.transpose', (['npimg', '(1, 2, 0)'], {}), '(npimg, (1, 2, 0))\n', (877, 895), True, 'import numpy as np\n'), ((1081, 1097), 'torch.nn.Conv2d', 'Conv2d', (['(1)', '(16)', '(4)'], {}), '(1, 16, 4)\n', (1087, 1097), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1125, 1142), 'torch.nn.Conv2d', 'Conv2d', (['(16)', '(32)', '(2)'], {}), '(16, 32, 2)\n', (1131, 1142), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1168, 1192), 'torch.nn.Linear', 'Linear', (['(800)', 'hidden_size'], {}), '(800, hidden_size)\n', (1174, 1192), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1218, 1255), 'torch.nn.Linear', 'Linear', (['hidden_size', 'self.latent_size'], {}), '(hidden_size, self.latent_size)\n', (1224, 1255), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1282, 1315), 'torch.nn.Linear', 'Linear', (['self.latent_size', '(13 * 13)'], {}), '(self.latent_size, 13 * 13)\n', (1288, 1315), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1343, 1367), 'torch.nn.ConvTranspose2d', 'ConvTranspose2d', (['(1)', '(1)', '(2)'], {}), '(1, 1, 2)\n', (1358, 1367), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1393, 1417), 'torch.nn.Linear', 'Linear', (['(14 * 14)', '(28 * 28)'], {}), '(14 * 14, 28 * 28)\n', (1399, 1417), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((2223, 2242), 'torch.cuda.is_available', 'cuda.is_available', ([], {}), '()\n', (2240, 2242), False, 'from torch import cuda\n'), ((3637, 3649), 'torch.load', 'T.load', (['path'], {}), '(path)\n', (3643, 3649), True, 'import torch as T\n'), ((3761, 3796), 'torchvision.utils.make_grid', 'torchvision.utils.make_grid', (['images'], {}), '(images)\n', (3788, 3796), False, 'import torchvision\n'), ((3831, 3842), 'torch.no_grad', 'T.no_grad', ([], {}), '()\n', (3840, 3842), True, 'import torch as T\n'), ((4007, 4041), 'torchvision.utils.make_grid', 'torchvision.utils.make_grid', (['preds'], {}), '(preds)\n', (4034, 4041), False, 'import torchvision\n'), ((1456, 1468), 'torch.nn.MaxPool2d', 'MaxPool2d', (['(2)'], {}), '(2)\n', (1465, 1468), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((1510, 1522), 'torch.nn.MaxPool2d', 'MaxPool2d', (['(2)'], {}), '(2)\n', (1519, 1522), False, 'from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d\n'), ((2626, 2638), 'torch.load', 'T.load', (['path'], {}), '(path)\n', (2632, 2638), True, 'import torch as T\n'), ((750, 773), 'torchvision.transforms.ToPILImage', 'transforms.ToPILImage', ([], {}), '()\n', (771, 773), False, 'from torchvision import transforms\n')]
# Monocyte - Search and Destroy unwanted AWS Resources relentlessly. # Copyright 2015 Immobilien Scout GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from boto import ec2 from boto.exception import EC2ResponseError from monocyte.handler import Resource, Handler class Instance(Handler): VALID_TARGET_STATES = ["terminated", "shutting-down"] def fetch_region_names(self): return [region.name for region in ec2.regions()] def fetch_unwanted_resources(self): for region_name in self.region_names: connection = ec2.connect_to_region(region_name) resources = connection.get_only_instances() or [] for resource in resources: resource_wrapper = Resource(resource=resource, resource_type=self.resource_type, resource_id=resource.id, creation_date=resource.launch_time, region=region_name) if resource.id in self.ignored_resources: self.logger.info('IGNORE ' + self.to_string(resource_wrapper)) continue yield resource_wrapper def to_string(self, resource): return "ec2 instance found in {region.name}, " \ "with identifier {id}, instance type is {instance_type}, created {launch_time}, " \ "dnsname is {public_dns_name}, key {key_name}, with state {_state}".format(**vars(resource.wrapped)) def delete(self, resource): if resource.wrapped.state in Instance.VALID_TARGET_STATES: raise Warning("state '{0}' is a valid target state, skipping".format( resource.wrapped.state)) connection = ec2.connect_to_region(resource.region) if self.dry_run: try: connection.terminate_instances([resource.wrapped.id], dry_run=True) except EC2ResponseError as exc: if exc.status == 412: # Precondition Failed raise Warning("Termination {message}".format(**vars(exc))) raise else: instances = connection.terminate_instances([resource.wrapped.id], dry_run=False) self.logger.info("Initiating shutdown sequence for {0}".format(instances)) return instances class Volume(Handler): def fetch_region_names(self): return [region.name for region in ec2.regions()] def fetch_unwanted_resources(self): for region_name in self.region_names: connection = ec2.connect_to_region(region_name) resources = connection.get_all_volumes() or [] for resource in resources: resource_wrapper = Resource(resource=resource, resource_type=self.resource_type, resource_id=resource.id, creation_date=resource.create_time, region=region_name) if resource.id in self.ignored_resources: self.logger.info('IGNORE ' + self.to_string(resource_wrapper)) continue yield resource_wrapper def to_string(self, resource): return "ebs volume found in {region.name}, " \ "with identifier {id}, created {create_time}, " \ "with state {status}".format(**vars(resource.wrapped)) def delete(self, resource): connection = ec2.connect_to_region(resource.region) if self.dry_run: try: connection.delete_volume(resource.wrapped.id, dry_run=True) except EC2ResponseError as exc: if exc.status == 412: # Precondition Failed warnings.warn(Warning("Termination {message}".format(**vars(exc)))) raise else: self.logger.info("Initiating deletion of EBS volume {0}".format(resource.wrapped.id)) connection.delete_volume(resource.wrapped.id, dry_run=False)
[ "monocyte.handler.Resource", "boto.ec2.regions", "boto.ec2.connect_to_region" ]
[((2322, 2360), 'boto.ec2.connect_to_region', 'ec2.connect_to_region', (['resource.region'], {}), '(resource.region)\n', (2343, 2360), False, 'from boto import ec2\n'), ((4121, 4159), 'boto.ec2.connect_to_region', 'ec2.connect_to_region', (['resource.region'], {}), '(resource.region)\n', (4142, 4159), False, 'from boto import ec2\n'), ((1071, 1105), 'boto.ec2.connect_to_region', 'ec2.connect_to_region', (['region_name'], {}), '(region_name)\n', (1092, 1105), False, 'from boto import ec2\n'), ((3145, 3179), 'boto.ec2.connect_to_region', 'ec2.connect_to_region', (['region_name'], {}), '(region_name)\n', (3166, 3179), False, 'from boto import ec2\n'), ((944, 957), 'boto.ec2.regions', 'ec2.regions', ([], {}), '()\n', (955, 957), False, 'from boto import ec2\n'), ((1242, 1389), 'monocyte.handler.Resource', 'Resource', ([], {'resource': 'resource', 'resource_type': 'self.resource_type', 'resource_id': 'resource.id', 'creation_date': 'resource.launch_time', 'region': 'region_name'}), '(resource=resource, resource_type=self.resource_type, resource_id=\n resource.id, creation_date=resource.launch_time, region=region_name)\n', (1250, 1389), False, 'from monocyte.handler import Resource, Handler\n'), ((3018, 3031), 'boto.ec2.regions', 'ec2.regions', ([], {}), '()\n', (3029, 3031), False, 'from boto import ec2\n'), ((3313, 3460), 'monocyte.handler.Resource', 'Resource', ([], {'resource': 'resource', 'resource_type': 'self.resource_type', 'resource_id': 'resource.id', 'creation_date': 'resource.create_time', 'region': 'region_name'}), '(resource=resource, resource_type=self.resource_type, resource_id=\n resource.id, creation_date=resource.create_time, region=region_name)\n', (3321, 3460), False, 'from monocyte.handler import Resource, Handler\n')]
from pathlib import Path import requests import string import urllib import random import json import sys def acapyla(quote, voicename="willfromafar"): try: voiceid = "enu_" + voicename + "_22k_ns.bvcu" except IndexError: voiceid = "enu_willfromafar_22k_ns.bvcu" letters = string.ascii_lowercase premail = ''.join(random.choice(letters) for i in range(64)) email = premail + "@gmail.com" noncerl = "https://acapelavoices.acapela-group.com/index/getnonce/" noncedata = {'googleid':email} noncer = requests.post(url = noncerl, data = noncedata) nonce = noncer.text[10:50] synthrl = "http://www.acapela-group.com:8080/webservices/1-34-01-Mobility/Synthesizer" synthdata = "req_voice=" + voiceid + "&cl_pwd=&cl_vers=1-30&req_echo=ON&cl_login=AcapelaGroup&req_comment=%7B%22nonce%22%3A%22" + nonce + "%22%2C%22user%22%3A%22" + email + "%22%7D&req_text=" + quote + "&cl_env=ACAPELA_VOICES&prot_vers=2&cl_app=AcapelaGroup_WebDemo_Android" headers = {'content-type': 'application/x-www-form-urlencoded'} synthr = requests.post(url = synthrl, data = synthdata, headers = headers) minuspre = synthr.text[synthr.text.find('http://'):] minussuf = minuspre.split(".mp3", 1)[0] synthresult = minussuf + ".mp3" urllib.request.urlretrieve(synthresult, str(Path.home()) + "/.dominae/out/tts/" + email[:8] + ".mp3") return email[:8]
[ "requests.post", "random.choice", "pathlib.Path.home" ]
[((545, 587), 'requests.post', 'requests.post', ([], {'url': 'noncerl', 'data': 'noncedata'}), '(url=noncerl, data=noncedata)\n', (558, 587), False, 'import requests\n'), ((1074, 1133), 'requests.post', 'requests.post', ([], {'url': 'synthrl', 'data': 'synthdata', 'headers': 'headers'}), '(url=synthrl, data=synthdata, headers=headers)\n', (1087, 1133), False, 'import requests\n'), ((347, 369), 'random.choice', 'random.choice', (['letters'], {}), '(letters)\n', (360, 369), False, 'import random\n'), ((1325, 1336), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (1334, 1336), False, 'from pathlib import Path\n')]
# -*- coding: utf-8 -*- """ This module """ import attr import typing from ..core.model import ( Property, Resource, Tag, GetAtt, TypeHint, TypeCheck, ) from ..core.constant import AttrMeta #--- Property declaration --- @attr.s class PropJobDefinitionAuthorizationConfig(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.AuthorizationConfig" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html Property Document: - ``p_AccessPointId``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html#cfn-batch-jobdefinition-authorizationconfig-accesspointid - ``p_Iam``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html#cfn-batch-jobdefinition-authorizationconfig-iam """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.AuthorizationConfig" p_AccessPointId: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "AccessPointId"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html#cfn-batch-jobdefinition-authorizationconfig-accesspointid""" p_Iam: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Iam"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html#cfn-batch-jobdefinition-authorizationconfig-iam""" @attr.s class PropJobDefinitionResourceRequirement(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.ResourceRequirement" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html Property Document: - ``p_Type``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html#cfn-batch-jobdefinition-resourcerequirement-type - ``p_Value``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html#cfn-batch-jobdefinition-resourcerequirement-value """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.ResourceRequirement" p_Type: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Type"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html#cfn-batch-jobdefinition-resourcerequirement-type""" p_Value: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Value"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html#cfn-batch-jobdefinition-resourcerequirement-value""" @attr.s class PropJobDefinitionEnvironment(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Environment" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html Property Document: - ``p_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html#cfn-batch-jobdefinition-environment-name - ``p_Value``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html#cfn-batch-jobdefinition-environment-value """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Environment" p_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html#cfn-batch-jobdefinition-environment-name""" p_Value: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Value"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html#cfn-batch-jobdefinition-environment-value""" @attr.s class PropJobDefinitionVolumesHost(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.VolumesHost" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumeshost.html Property Document: - ``p_SourcePath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumeshost.html#cfn-batch-jobdefinition-volumeshost-sourcepath """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.VolumesHost" p_SourcePath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "SourcePath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumeshost.html#cfn-batch-jobdefinition-volumeshost-sourcepath""" @attr.s class PropJobQueueComputeEnvironmentOrder(Property): """ AWS Object Type = "AWS::Batch::JobQueue.ComputeEnvironmentOrder" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html Property Document: - ``rp_ComputeEnvironment``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html#cfn-batch-jobqueue-computeenvironmentorder-computeenvironment - ``rp_Order``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html#cfn-batch-jobqueue-computeenvironmentorder-order """ AWS_OBJECT_TYPE = "AWS::Batch::JobQueue.ComputeEnvironmentOrder" rp_ComputeEnvironment: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "ComputeEnvironment"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html#cfn-batch-jobqueue-computeenvironmentorder-computeenvironment""" rp_Order: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "Order"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html#cfn-batch-jobqueue-computeenvironmentorder-order""" @attr.s class PropJobDefinitionSecret(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Secret" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html Property Document: - ``rp_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html#cfn-batch-jobdefinition-secret-name - ``rp_ValueFrom``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html#cfn-batch-jobdefinition-secret-valuefrom """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Secret" rp_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html#cfn-batch-jobdefinition-secret-name""" rp_ValueFrom: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "ValueFrom"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html#cfn-batch-jobdefinition-secret-valuefrom""" @attr.s class PropJobDefinitionNetworkConfiguration(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.NetworkConfiguration" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-networkconfiguration.html Property Document: - ``p_AssignPublicIp``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-networkconfiguration.html#cfn-batch-jobdefinition-containerproperties-networkconfiguration-assignpublicip """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.NetworkConfiguration" p_AssignPublicIp: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "AssignPublicIp"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-networkconfiguration.html#cfn-batch-jobdefinition-containerproperties-networkconfiguration-assignpublicip""" @attr.s class PropJobDefinitionLogConfiguration(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.LogConfiguration" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html Property Document: - ``rp_LogDriver``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-logdriver - ``p_Options``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-options - ``p_SecretOptions``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-secretoptions """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.LogConfiguration" rp_LogDriver: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "LogDriver"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-logdriver""" p_Options: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Options"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-options""" p_SecretOptions: typing.List[typing.Union['PropJobDefinitionSecret', dict]] = attr.ib( default=None, converter=PropJobDefinitionSecret.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionSecret), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "SecretOptions"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-secretoptions""" @attr.s class PropComputeEnvironmentLaunchTemplateSpecification(Property): """ AWS Object Type = "AWS::Batch::ComputeEnvironment.LaunchTemplateSpecification" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html Property Document: - ``p_LaunchTemplateId``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-launchtemplateid - ``p_LaunchTemplateName``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-launchtemplatename - ``p_Version``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-version """ AWS_OBJECT_TYPE = "AWS::Batch::ComputeEnvironment.LaunchTemplateSpecification" p_LaunchTemplateId: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "LaunchTemplateId"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-launchtemplateid""" p_LaunchTemplateName: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "LaunchTemplateName"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-launchtemplatename""" p_Version: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Version"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-version""" @attr.s class PropJobDefinitionMountPoints(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.MountPoints" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html Property Document: - ``p_ContainerPath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-containerpath - ``p_ReadOnly``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-readonly - ``p_SourceVolume``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-sourcevolume """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.MountPoints" p_ContainerPath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ContainerPath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-containerpath""" p_ReadOnly: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "ReadOnly"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-readonly""" p_SourceVolume: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "SourceVolume"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-sourcevolume""" @attr.s class PropSchedulingPolicyShareAttributes(Property): """ AWS Object Type = "AWS::Batch::SchedulingPolicy.ShareAttributes" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html Property Document: - ``p_ShareIdentifier``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html#cfn-batch-schedulingpolicy-shareattributes-shareidentifier - ``p_WeightFactor``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html#cfn-batch-schedulingpolicy-shareattributes-weightfactor """ AWS_OBJECT_TYPE = "AWS::Batch::SchedulingPolicy.ShareAttributes" p_ShareIdentifier: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ShareIdentifier"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html#cfn-batch-schedulingpolicy-shareattributes-shareidentifier""" p_WeightFactor: float = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(float)), metadata={AttrMeta.PROPERTY_NAME: "WeightFactor"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html#cfn-batch-schedulingpolicy-shareattributes-weightfactor""" @attr.s class PropJobDefinitionEvaluateOnExit(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.EvaluateOnExit" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html Property Document: - ``rp_Action``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-action - ``p_OnExitCode``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onexitcode - ``p_OnReason``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onreason - ``p_OnStatusReason``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onstatusreason """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.EvaluateOnExit" rp_Action: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Action"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-action""" p_OnExitCode: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "OnExitCode"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onexitcode""" p_OnReason: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "OnReason"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onreason""" p_OnStatusReason: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "OnStatusReason"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onstatusreason""" @attr.s class PropJobDefinitionUlimit(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Ulimit" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html Property Document: - ``rp_HardLimit``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-hardlimit - ``rp_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-name - ``rp_SoftLimit``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-softlimit """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Ulimit" rp_HardLimit: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "HardLimit"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-hardlimit""" rp_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-name""" rp_SoftLimit: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "SoftLimit"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-softlimit""" @attr.s class PropJobDefinitionFargatePlatformConfiguration(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.FargatePlatformConfiguration" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-fargateplatformconfiguration.html Property Document: - ``p_PlatformVersion``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-fargateplatformconfiguration.html#cfn-batch-jobdefinition-containerproperties-fargateplatformconfiguration-platformversion """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.FargatePlatformConfiguration" p_PlatformVersion: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "PlatformVersion"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-fargateplatformconfiguration.html#cfn-batch-jobdefinition-containerproperties-fargateplatformconfiguration-platformversion""" @attr.s class PropJobDefinitionTimeout(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Timeout" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-timeout.html Property Document: - ``p_AttemptDurationSeconds``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-timeout.html#cfn-batch-jobdefinition-timeout-attemptdurationseconds """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Timeout" p_AttemptDurationSeconds: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "AttemptDurationSeconds"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-timeout.html#cfn-batch-jobdefinition-timeout-attemptdurationseconds""" @attr.s class PropJobDefinitionTmpfs(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Tmpfs" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html Property Document: - ``rp_ContainerPath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-containerpath - ``rp_Size``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-size - ``p_MountOptions``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-mountoptions """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Tmpfs" rp_ContainerPath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "ContainerPath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-containerpath""" rp_Size: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "Size"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-size""" p_MountOptions: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "MountOptions"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-mountoptions""" @attr.s class PropJobDefinitionEfsVolumeConfiguration(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.EfsVolumeConfiguration" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html Property Document: - ``rp_FileSystemId``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-filesystemid - ``p_AuthorizationConfig``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-authorizationconfig - ``p_RootDirectory``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-rootdirectory - ``p_TransitEncryption``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-transitencryption - ``p_TransitEncryptionPort``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-transitencryptionport """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.EfsVolumeConfiguration" rp_FileSystemId: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "FileSystemId"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-filesystemid""" p_AuthorizationConfig: typing.Union['PropJobDefinitionAuthorizationConfig', dict] = attr.ib( default=None, converter=PropJobDefinitionAuthorizationConfig.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionAuthorizationConfig)), metadata={AttrMeta.PROPERTY_NAME: "AuthorizationConfig"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-authorizationconfig""" p_RootDirectory: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "RootDirectory"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-rootdirectory""" p_TransitEncryption: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "TransitEncryption"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-transitencryption""" p_TransitEncryptionPort: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "TransitEncryptionPort"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-transitencryptionport""" @attr.s class PropJobDefinitionDevice(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Device" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html Property Document: - ``p_ContainerPath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-containerpath - ``p_HostPath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-hostpath - ``p_Permissions``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-permissions """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Device" p_ContainerPath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ContainerPath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-containerpath""" p_HostPath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "HostPath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-hostpath""" p_Permissions: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Permissions"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-permissions""" @attr.s class PropComputeEnvironmentEc2ConfigurationObject(Property): """ AWS Object Type = "AWS::Batch::ComputeEnvironment.Ec2ConfigurationObject" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html Property Document: - ``rp_ImageType``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html#cfn-batch-computeenvironment-ec2configurationobject-imagetype - ``p_ImageIdOverride``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html#cfn-batch-computeenvironment-ec2configurationobject-imageidoverride """ AWS_OBJECT_TYPE = "AWS::Batch::ComputeEnvironment.Ec2ConfigurationObject" rp_ImageType: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "ImageType"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html#cfn-batch-computeenvironment-ec2configurationobject-imagetype""" p_ImageIdOverride: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ImageIdOverride"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html#cfn-batch-computeenvironment-ec2configurationobject-imageidoverride""" @attr.s class PropJobDefinitionVolumes(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Volumes" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html Property Document: - ``p_EfsVolumeConfiguration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-efsvolumeconfiguration - ``p_Host``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-host - ``p_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-name """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Volumes" p_EfsVolumeConfiguration: typing.Union['PropJobDefinitionEfsVolumeConfiguration', dict] = attr.ib( default=None, converter=PropJobDefinitionEfsVolumeConfiguration.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionEfsVolumeConfiguration)), metadata={AttrMeta.PROPERTY_NAME: "EfsVolumeConfiguration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-efsvolumeconfiguration""" p_Host: typing.Union['PropJobDefinitionVolumesHost', dict] = attr.ib( default=None, converter=PropJobDefinitionVolumesHost.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionVolumesHost)), metadata={AttrMeta.PROPERTY_NAME: "Host"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-host""" p_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-name""" @attr.s class PropSchedulingPolicyFairsharePolicy(Property): """ AWS Object Type = "AWS::Batch::SchedulingPolicy.FairsharePolicy" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html Property Document: - ``p_ComputeReservation``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-computereservation - ``p_ShareDecaySeconds``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-sharedecayseconds - ``p_ShareDistribution``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-sharedistribution """ AWS_OBJECT_TYPE = "AWS::Batch::SchedulingPolicy.FairsharePolicy" p_ComputeReservation: float = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(float)), metadata={AttrMeta.PROPERTY_NAME: "ComputeReservation"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-computereservation""" p_ShareDecaySeconds: float = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(float)), metadata={AttrMeta.PROPERTY_NAME: "ShareDecaySeconds"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-sharedecayseconds""" p_ShareDistribution: typing.List[typing.Union['PropSchedulingPolicyShareAttributes', dict]] = attr.ib( default=None, converter=PropSchedulingPolicyShareAttributes.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropSchedulingPolicyShareAttributes), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "ShareDistribution"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-sharedistribution""" @attr.s class PropComputeEnvironmentComputeResources(Property): """ AWS Object Type = "AWS::Batch::ComputeEnvironment.ComputeResources" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html Property Document: - ``rp_MaxvCpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-maxvcpus - ``rp_Subnets``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-subnets - ``rp_Type``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-type - ``p_AllocationStrategy``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-allocationstrategy - ``p_BidPercentage``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-bidpercentage - ``p_DesiredvCpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-desiredvcpus - ``p_Ec2Configuration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-ec2configuration - ``p_Ec2KeyPair``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-ec2keypair - ``p_ImageId``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-imageid - ``p_InstanceRole``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-instancerole - ``p_InstanceTypes``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-instancetypes - ``p_LaunchTemplate``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-launchtemplate - ``p_MinvCpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-minvcpus - ``p_PlacementGroup``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-placementgroup - ``p_SecurityGroupIds``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-securitygroupids - ``p_SpotIamFleetRole``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-spotiamfleetrole - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-tags """ AWS_OBJECT_TYPE = "AWS::Batch::ComputeEnvironment.ComputeResources" rp_MaxvCpus: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "MaxvCpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-maxvcpus""" rp_Subnets: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list)), metadata={AttrMeta.PROPERTY_NAME: "Subnets"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-subnets""" rp_Type: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Type"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-type""" p_AllocationStrategy: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "AllocationStrategy"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-allocationstrategy""" p_BidPercentage: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "BidPercentage"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-bidpercentage""" p_DesiredvCpus: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "DesiredvCpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-desiredvcpus""" p_Ec2Configuration: typing.List[typing.Union['PropComputeEnvironmentEc2ConfigurationObject', dict]] = attr.ib( default=None, converter=PropComputeEnvironmentEc2ConfigurationObject.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropComputeEnvironmentEc2ConfigurationObject), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Ec2Configuration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-ec2configuration""" p_Ec2KeyPair: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Ec2KeyPair"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-ec2keypair""" p_ImageId: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ImageId"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-imageid""" p_InstanceRole: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "InstanceRole"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-instancerole""" p_InstanceTypes: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "InstanceTypes"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-instancetypes""" p_LaunchTemplate: typing.Union['PropComputeEnvironmentLaunchTemplateSpecification', dict] = attr.ib( default=None, converter=PropComputeEnvironmentLaunchTemplateSpecification.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropComputeEnvironmentLaunchTemplateSpecification)), metadata={AttrMeta.PROPERTY_NAME: "LaunchTemplate"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-launchtemplate""" p_MinvCpus: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "MinvCpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-minvcpus""" p_PlacementGroup: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "PlacementGroup"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-placementgroup""" p_SecurityGroupIds: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "SecurityGroupIds"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-securitygroupids""" p_SpotIamFleetRole: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "SpotIamFleetRole"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-spotiamfleetrole""" p_Tags: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-tags""" @attr.s class PropJobDefinitionRetryStrategy(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.RetryStrategy" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html Property Document: - ``p_Attempts``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html#cfn-batch-jobdefinition-retrystrategy-attempts - ``p_EvaluateOnExit``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html#cfn-batch-jobdefinition-retrystrategy-evaluateonexit """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.RetryStrategy" p_Attempts: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "Attempts"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html#cfn-batch-jobdefinition-retrystrategy-attempts""" p_EvaluateOnExit: typing.List[typing.Union['PropJobDefinitionEvaluateOnExit', dict]] = attr.ib( default=None, converter=PropJobDefinitionEvaluateOnExit.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionEvaluateOnExit), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "EvaluateOnExit"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html#cfn-batch-jobdefinition-retrystrategy-evaluateonexit""" @attr.s class PropJobDefinitionLinuxParameters(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.LinuxParameters" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html Property Document: - ``p_Devices``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-devices - ``p_InitProcessEnabled``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-initprocessenabled - ``p_MaxSwap``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-maxswap - ``p_SharedMemorySize``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-sharedmemorysize - ``p_Swappiness``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-swappiness - ``p_Tmpfs``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-tmpfs """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.LinuxParameters" p_Devices: typing.List[typing.Union['PropJobDefinitionDevice', dict]] = attr.ib( default=None, converter=PropJobDefinitionDevice.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionDevice), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Devices"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-devices""" p_InitProcessEnabled: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "InitProcessEnabled"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-initprocessenabled""" p_MaxSwap: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "MaxSwap"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-maxswap""" p_SharedMemorySize: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "SharedMemorySize"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-sharedmemorysize""" p_Swappiness: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "Swappiness"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-swappiness""" p_Tmpfs: typing.List[typing.Union['PropJobDefinitionTmpfs', dict]] = attr.ib( default=None, converter=PropJobDefinitionTmpfs.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionTmpfs), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Tmpfs"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-tmpfs""" @attr.s class PropJobDefinitionContainerProperties(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.ContainerProperties" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html Property Document: - ``rp_Image``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-image - ``p_Command``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-command - ``p_Environment``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-environment - ``p_ExecutionRoleArn``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-executionrolearn - ``p_FargatePlatformConfiguration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-fargateplatformconfiguration - ``p_InstanceType``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-instancetype - ``p_JobRoleArn``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-jobrolearn - ``p_LinuxParameters``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-linuxparameters - ``p_LogConfiguration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-logconfiguration - ``p_Memory``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-memory - ``p_MountPoints``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-mountpoints - ``p_NetworkConfiguration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-networkconfiguration - ``p_Privileged``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-privileged - ``p_ReadonlyRootFilesystem``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-readonlyrootfilesystem - ``p_ResourceRequirements``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-resourcerequirements - ``p_Secrets``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-secrets - ``p_Ulimits``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-ulimits - ``p_User``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-user - ``p_Vcpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-vcpus - ``p_Volumes``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-volumes """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.ContainerProperties" rp_Image: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Image"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-image""" p_Command: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Command"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-command""" p_Environment: typing.List[typing.Union['PropJobDefinitionEnvironment', dict]] = attr.ib( default=None, converter=PropJobDefinitionEnvironment.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionEnvironment), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Environment"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-environment""" p_ExecutionRoleArn: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ExecutionRoleArn"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-executionrolearn""" p_FargatePlatformConfiguration: typing.Union['PropJobDefinitionFargatePlatformConfiguration', dict] = attr.ib( default=None, converter=PropJobDefinitionFargatePlatformConfiguration.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionFargatePlatformConfiguration)), metadata={AttrMeta.PROPERTY_NAME: "FargatePlatformConfiguration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-fargateplatformconfiguration""" p_InstanceType: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "InstanceType"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-instancetype""" p_JobRoleArn: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "JobRoleArn"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-jobrolearn""" p_LinuxParameters: typing.Union['PropJobDefinitionLinuxParameters', dict] = attr.ib( default=None, converter=PropJobDefinitionLinuxParameters.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionLinuxParameters)), metadata={AttrMeta.PROPERTY_NAME: "LinuxParameters"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-linuxparameters""" p_LogConfiguration: typing.Union['PropJobDefinitionLogConfiguration', dict] = attr.ib( default=None, converter=PropJobDefinitionLogConfiguration.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionLogConfiguration)), metadata={AttrMeta.PROPERTY_NAME: "LogConfiguration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-logconfiguration""" p_Memory: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "Memory"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-memory""" p_MountPoints: typing.List[typing.Union['PropJobDefinitionMountPoints', dict]] = attr.ib( default=None, converter=PropJobDefinitionMountPoints.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionMountPoints), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "MountPoints"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-mountpoints""" p_NetworkConfiguration: typing.Union['PropJobDefinitionNetworkConfiguration', dict] = attr.ib( default=None, converter=PropJobDefinitionNetworkConfiguration.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionNetworkConfiguration)), metadata={AttrMeta.PROPERTY_NAME: "NetworkConfiguration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-networkconfiguration""" p_Privileged: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "Privileged"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-privileged""" p_ReadonlyRootFilesystem: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "ReadonlyRootFilesystem"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-readonlyrootfilesystem""" p_ResourceRequirements: typing.List[typing.Union['PropJobDefinitionResourceRequirement', dict]] = attr.ib( default=None, converter=PropJobDefinitionResourceRequirement.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionResourceRequirement), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "ResourceRequirements"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-resourcerequirements""" p_Secrets: typing.List[typing.Union['PropJobDefinitionSecret', dict]] = attr.ib( default=None, converter=PropJobDefinitionSecret.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionSecret), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Secrets"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-secrets""" p_Ulimits: typing.List[typing.Union['PropJobDefinitionUlimit', dict]] = attr.ib( default=None, converter=PropJobDefinitionUlimit.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionUlimit), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Ulimits"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-ulimits""" p_User: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "User"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-user""" p_Vcpus: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "Vcpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-vcpus""" p_Volumes: typing.List[typing.Union['PropJobDefinitionVolumes', dict]] = attr.ib( default=None, converter=PropJobDefinitionVolumes.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionVolumes), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Volumes"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-volumes""" @attr.s class PropJobDefinitionNodeRangeProperty(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.NodeRangeProperty" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html Property Document: - ``rp_TargetNodes``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html#cfn-batch-jobdefinition-noderangeproperty-targetnodes - ``p_Container``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html#cfn-batch-jobdefinition-noderangeproperty-container """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.NodeRangeProperty" rp_TargetNodes: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "TargetNodes"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html#cfn-batch-jobdefinition-noderangeproperty-targetnodes""" p_Container: typing.Union['PropJobDefinitionContainerProperties', dict] = attr.ib( default=None, converter=PropJobDefinitionContainerProperties.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionContainerProperties)), metadata={AttrMeta.PROPERTY_NAME: "Container"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html#cfn-batch-jobdefinition-noderangeproperty-container""" @attr.s class PropJobDefinitionNodeProperties(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.NodeProperties" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html Property Document: - ``rp_MainNode``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-mainnode - ``rp_NodeRangeProperties``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-noderangeproperties - ``rp_NumNodes``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-numnodes """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.NodeProperties" rp_MainNode: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "MainNode"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-mainnode""" rp_NodeRangeProperties: typing.List[typing.Union['PropJobDefinitionNodeRangeProperty', dict]] = attr.ib( default=None, converter=PropJobDefinitionNodeRangeProperty.from_list, validator=attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionNodeRangeProperty), iterable_validator=attr.validators.instance_of(list)), metadata={AttrMeta.PROPERTY_NAME: "NodeRangeProperties"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-noderangeproperties""" rp_NumNodes: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "NumNodes"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-numnodes""" #--- Resource declaration --- @attr.s class JobQueue(Resource): """ AWS Object Type = "AWS::Batch::JobQueue" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html Property Document: - ``rp_ComputeEnvironmentOrder``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-computeenvironmentorder - ``rp_Priority``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-priority - ``p_JobQueueName``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-jobqueuename - ``p_SchedulingPolicyArn``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-schedulingpolicyarn - ``p_State``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-state - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-tags """ AWS_OBJECT_TYPE = "AWS::Batch::JobQueue" rp_ComputeEnvironmentOrder: typing.List[typing.Union['PropJobQueueComputeEnvironmentOrder', dict]] = attr.ib( default=None, converter=PropJobQueueComputeEnvironmentOrder.from_list, validator=attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobQueueComputeEnvironmentOrder), iterable_validator=attr.validators.instance_of(list)), metadata={AttrMeta.PROPERTY_NAME: "ComputeEnvironmentOrder"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-computeenvironmentorder""" rp_Priority: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "Priority"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-priority""" p_JobQueueName: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "JobQueueName"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-jobqueuename""" p_SchedulingPolicyArn: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "SchedulingPolicyArn"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-schedulingpolicyarn""" p_State: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "State"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-state""" p_Tags: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-tags""" @attr.s class JobDefinition(Resource): """ AWS Object Type = "AWS::Batch::JobDefinition" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html Property Document: - ``rp_Type``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-type - ``p_ContainerProperties``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-containerproperties - ``p_JobDefinitionName``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-jobdefinitionname - ``p_NodeProperties``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-nodeproperties - ``p_Parameters``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-parameters - ``p_PlatformCapabilities``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-platformcapabilities - ``p_PropagateTags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-propagatetags - ``p_RetryStrategy``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-retrystrategy - ``p_SchedulingPriority``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-schedulingpriority - ``p_Timeout``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-timeout - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-tags """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition" rp_Type: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Type"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-type""" p_ContainerProperties: typing.Union['PropJobDefinitionContainerProperties', dict] = attr.ib( default=None, converter=PropJobDefinitionContainerProperties.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionContainerProperties)), metadata={AttrMeta.PROPERTY_NAME: "ContainerProperties"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-containerproperties""" p_JobDefinitionName: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "JobDefinitionName"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-jobdefinitionname""" p_NodeProperties: typing.Union['PropJobDefinitionNodeProperties', dict] = attr.ib( default=None, converter=PropJobDefinitionNodeProperties.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionNodeProperties)), metadata={AttrMeta.PROPERTY_NAME: "NodeProperties"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-nodeproperties""" p_Parameters: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Parameters"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-parameters""" p_PlatformCapabilities: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "PlatformCapabilities"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-platformcapabilities""" p_PropagateTags: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "PropagateTags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-propagatetags""" p_RetryStrategy: typing.Union['PropJobDefinitionRetryStrategy', dict] = attr.ib( default=None, converter=PropJobDefinitionRetryStrategy.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionRetryStrategy)), metadata={AttrMeta.PROPERTY_NAME: "RetryStrategy"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-retrystrategy""" p_SchedulingPriority: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "SchedulingPriority"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-schedulingpriority""" p_Timeout: typing.Union['PropJobDefinitionTimeout', dict] = attr.ib( default=None, converter=PropJobDefinitionTimeout.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionTimeout)), metadata={AttrMeta.PROPERTY_NAME: "Timeout"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-timeout""" p_Tags: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-tags""" @attr.s class SchedulingPolicy(Resource): """ AWS Object Type = "AWS::Batch::SchedulingPolicy" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html Property Document: - ``p_FairsharePolicy``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy - ``p_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-name - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-tags """ AWS_OBJECT_TYPE = "AWS::Batch::SchedulingPolicy" p_FairsharePolicy: typing.Union['PropSchedulingPolicyFairsharePolicy', dict] = attr.ib( default=None, converter=PropSchedulingPolicyFairsharePolicy.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropSchedulingPolicyFairsharePolicy)), metadata={AttrMeta.PROPERTY_NAME: "FairsharePolicy"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy""" p_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-name""" p_Tags: typing.Dict[str, TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_mapping(key_validator=attr.validators.instance_of(str), value_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type))), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-tags""" @property def rv_Arn(self) -> GetAtt: """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#aws-resource-batch-schedulingpolicy-return-values""" return GetAtt(resource=self, attr_name="Arn") @attr.s class ComputeEnvironment(Resource): """ AWS Object Type = "AWS::Batch::ComputeEnvironment" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html Property Document: - ``rp_Type``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-type - ``p_ComputeEnvironmentName``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-computeenvironmentname - ``p_ComputeResources``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-computeresources - ``p_ServiceRole``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-servicerole - ``p_State``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-state - ``p_UnmanagedvCpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-unmanagedvcpus - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-tags """ AWS_OBJECT_TYPE = "AWS::Batch::ComputeEnvironment" rp_Type: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Type"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-type""" p_ComputeEnvironmentName: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ComputeEnvironmentName"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-computeenvironmentname""" p_ComputeResources: typing.Union['PropComputeEnvironmentComputeResources', dict] = attr.ib( default=None, converter=PropComputeEnvironmentComputeResources.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropComputeEnvironmentComputeResources)), metadata={AttrMeta.PROPERTY_NAME: "ComputeResources"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-computeresources""" p_ServiceRole: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ServiceRole"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-servicerole""" p_State: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "State"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-state""" p_UnmanagedvCpus: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "UnmanagedvCpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-unmanagedvcpus""" p_Tags: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-tags"""
[ "attr.validators.instance_of" ]
[((6867, 6924), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (6894, 6924), False, 'import attr\n'), ((7264, 7296), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (7291, 7296), False, 'import attr\n'), ((8313, 8370), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (8340, 8370), False, 'import attr\n'), ((8681, 8738), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (8708, 8738), False, 'import attr\n'), ((11330, 11387), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (11357, 11387), False, 'import attr\n'), ((20333, 20390), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (20360, 20390), False, 'import attr\n'), ((22833, 22865), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (22860, 22865), False, 'import attr\n'), ((23181, 23238), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (23208, 23238), False, 'import attr\n'), ((23530, 23562), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (23557, 23562), False, 'import attr\n'), ((26930, 26987), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (26957, 26987), False, 'import attr\n'), ((27290, 27322), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (27317, 27322), False, 'import attr\n'), ((29670, 29727), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (29697, 29727), False, 'import attr\n'), ((35083, 35140), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (35110, 35140), False, 'import attr\n'), ((44730, 44762), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (44757, 44762), False, 'import attr\n'), ((45623, 45680), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (45650, 45680), False, 'import attr\n'), ((63736, 63793), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (63763, 63793), False, 'import attr\n'), ((74840, 74897), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (74867, 74897), False, 'import attr\n'), ((76724, 76756), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (76751, 76756), False, 'import attr\n'), ((77714, 77746), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (77741, 77746), False, 'import attr\n'), ((79922, 79954), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (79949, 79954), False, 'import attr\n'), ((83849, 83906), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (83876, 83906), False, 'import attr\n'), ((92531, 92588), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (92558, 92588), False, 'import attr\n'), ((1141, 1198), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (1168, 1198), False, 'import attr\n'), ((1572, 1629), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (1599, 1629), False, 'import attr\n'), ((2763, 2820), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (2790, 2820), False, 'import attr\n'), ((3178, 3235), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (3205, 3235), False, 'import attr\n'), ((4309, 4366), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (4336, 4366), False, 'import attr\n'), ((4708, 4765), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (4735, 4765), False, 'import attr\n'), ((5666, 5723), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (5693, 5723), False, 'import attr\n'), ((9762, 9819), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (9789, 9819), False, 'import attr\n'), ((11772, 11805), 'attr.validators.instance_of', 'attr.validators.instance_of', (['dict'], {}), '(dict)\n', (11799, 11805), False, 'import attr\n'), ((14029, 14086), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (14056, 14086), False, 'import attr\n'), ((14507, 14564), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (14534, 14564), False, 'import attr\n'), ((14978, 15035), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (15005, 15035), False, 'import attr\n'), ((16361, 16418), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (16388, 16418), False, 'import attr\n'), ((16763, 16796), 'attr.validators.instance_of', 'attr.validators.instance_of', (['bool'], {}), '(bool)\n', (16790, 16796), False, 'import attr\n'), ((17153, 17210), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (17180, 17210), False, 'import attr\n'), ((18385, 18442), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (18412, 18442), False, 'import attr\n'), ((18810, 18844), 'attr.validators.instance_of', 'attr.validators.instance_of', (['float'], {}), '(float)\n', (18837, 18844), False, 'import attr\n'), ((20746, 20803), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (20773, 20803), False, 'import attr\n'), ((21166, 21223), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (21193, 21223), False, 'import attr\n'), ((21588, 21645), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (21615, 21645), False, 'import attr\n'), ((24637, 24694), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (24664, 24694), False, 'import attr\n'), ((25682, 25714), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (25709, 25714), False, 'import attr\n'), ((30222, 30287), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionAuthorizationConfig'], {}), '(PropJobDefinitionAuthorizationConfig)\n', (30249, 30287), False, 'import attr\n'), ((30689, 30746), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (30716, 30746), False, 'import attr\n'), ((31140, 31197), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (31167, 31197), False, 'import attr\n'), ((31584, 31616), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (31611, 31616), False, 'import attr\n'), ((32898, 32955), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (32925, 32955), False, 'import attr\n'), ((33308, 33365), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (33335, 33365), False, 'import attr\n'), ((35533, 35590), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (35560, 35590), False, 'import attr\n'), ((36993, 37061), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionEfsVolumeConfiguration'], {}), '(PropJobDefinitionEfsVolumeConfiguration)\n', (37020, 37061), False, 'import attr\n'), ((37516, 37573), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionVolumesHost'], {}), '(PropJobDefinitionVolumesHost)\n', (37543, 37573), False, 'import attr\n'), ((37906, 37963), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (37933, 37963), False, 'import attr\n'), ((39329, 39363), 'attr.validators.instance_of', 'attr.validators.instance_of', (['float'], {}), '(float)\n', (39356, 39363), False, 'import attr\n'), ((39742, 39776), 'attr.validators.instance_of', 'attr.validators.instance_of', (['float'], {}), '(float)\n', (39769, 39776), False, 'import attr\n'), ((46054, 46111), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (46081, 46111), False, 'import attr\n'), ((46490, 46522), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (46517, 46522), False, 'import attr\n'), ((46890, 46922), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (46917, 46922), False, 'import attr\n'), ((48008, 48065), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (48035, 48065), False, 'import attr\n'), ((48441, 48498), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (48468, 48498), False, 'import attr\n'), ((48873, 48930), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (48900, 48930), False, 'import attr\n'), ((50005, 50083), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropComputeEnvironmentLaunchTemplateSpecification'], {}), '(PropComputeEnvironmentLaunchTemplateSpecification)\n', (50032, 50083), False, 'import attr\n'), ((50449, 50481), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (50476, 50481), False, 'import attr\n'), ((50860, 50917), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (50887, 50917), False, 'import attr\n'), ((51879, 51936), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (51906, 51936), False, 'import attr\n'), ((52303, 52336), 'attr.validators.instance_of', 'attr.validators.instance_of', (['dict'], {}), '(dict)\n', (52330, 52336), False, 'import attr\n'), ((53439, 53471), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (53466, 53471), False, 'import attr\n'), ((56910, 56943), 'attr.validators.instance_of', 'attr.validators.instance_of', (['bool'], {}), '(bool)\n', (56937, 56943), False, 'import attr\n'), ((57344, 57376), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (57371, 57376), False, 'import attr\n'), ((57764, 57796), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (57791, 57796), False, 'import attr\n'), ((58196, 58228), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (58223, 58228), False, 'import attr\n'), ((65337, 65394), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (65364, 65394), False, 'import attr\n'), ((65919, 65993), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionFargatePlatformConfiguration'], {}), '(PropJobDefinitionFargatePlatformConfiguration)\n', (65946, 65993), False, 'import attr\n'), ((66406, 66463), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (66433, 66463), False, 'import attr\n'), ((66842, 66899), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (66869, 66899), False, 'import attr\n'), ((67373, 67434), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionLinuxParameters'], {}), '(PropJobDefinitionLinuxParameters)\n', (67400, 67434), False, 'import attr\n'), ((67921, 67983), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionLogConfiguration'], {}), '(PropJobDefinitionLogConfiguration)\n', (67948, 67983), False, 'import attr\n'), ((68347, 68379), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (68374, 68379), False, 'import attr\n'), ((69496, 69562), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionNetworkConfiguration'], {}), '(PropJobDefinitionNetworkConfiguration)\n', (69523, 69562), False, 'import attr\n'), ((69939, 69972), 'attr.validators.instance_of', 'attr.validators.instance_of', (['bool'], {}), '(bool)\n', (69966, 69972), False, 'import attr\n'), ((70341, 70374), 'attr.validators.instance_of', 'attr.validators.instance_of', (['bool'], {}), '(bool)\n', (70368, 70374), False, 'import attr\n'), ((72672, 72729), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (72699, 72729), False, 'import attr\n'), ((73068, 73100), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (73095, 73100), False, 'import attr\n'), ((75370, 75435), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionContainerProperties'], {}), '(PropJobDefinitionContainerProperties)\n', (75397, 75435), False, 'import attr\n'), ((80274, 80331), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (80301, 80331), False, 'import attr\n'), ((80667, 80724), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (80694, 80724), False, 'import attr\n'), ((81060, 81117), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (81087, 81117), False, 'import attr\n'), ((81406, 81439), 'attr.validators.instance_of', 'attr.validators.instance_of', (['dict'], {}), '(dict)\n', (81433, 81439), False, 'import attr\n'), ((84337, 84402), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionContainerProperties'], {}), '(PropJobDefinitionContainerProperties)\n', (84364, 84402), False, 'import attr\n'), ((84760, 84817), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (84787, 84817), False, 'import attr\n'), ((85260, 85320), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionNodeProperties'], {}), '(PropJobDefinitionNodeProperties)\n', (85287, 85320), False, 'import attr\n'), ((85643, 85676), 'attr.validators.instance_of', 'attr.validators.instance_of', (['dict'], {}), '(dict)\n', (85670, 85676), False, 'import attr\n'), ((86529, 86562), 'attr.validators.instance_of', 'attr.validators.instance_of', (['bool'], {}), '(bool)\n', (86556, 86562), False, 'import attr\n'), ((86994, 87053), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionRetryStrategy'], {}), '(PropJobDefinitionRetryStrategy)\n', (87021, 87053), False, 'import attr\n'), ((87381, 87413), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (87408, 87413), False, 'import attr\n'), ((87837, 87890), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionTimeout'], {}), '(PropJobDefinitionTimeout)\n', (87864, 87890), False, 'import attr\n'), ((88193, 88226), 'attr.validators.instance_of', 'attr.validators.instance_of', (['dict'], {}), '(dict)\n', (88220, 88226), False, 'import attr\n'), ((89466, 89530), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropSchedulingPolicyFairsharePolicy'], {}), '(PropSchedulingPolicyFairsharePolicy)\n', (89493, 89530), False, 'import attr\n'), ((89873, 89930), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (89900, 89930), False, 'import attr\n'), ((92930, 92987), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (92957, 92987), False, 'import attr\n'), ((93466, 93533), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropComputeEnvironmentComputeResources'], {}), '(PropComputeEnvironmentComputeResources)\n', (93493, 93533), False, 'import attr\n'), ((93889, 93946), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (93916, 93946), False, 'import attr\n'), ((94286, 94343), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (94313, 94343), False, 'import attr\n'), ((94661, 94693), 'attr.validators.instance_of', 'attr.validators.instance_of', (['int'], {}), '(int)\n', (94688, 94693), False, 'import attr\n'), ((95020, 95053), 'attr.validators.instance_of', 'attr.validators.instance_of', (['dict'], {}), '(dict)\n', (95047, 95053), False, 'import attr\n'), ((45169, 45226), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (45196, 45226), False, 'import attr\n'), ((45247, 45280), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (45274, 45280), False, 'import attr\n'), ((77259, 77322), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionNodeRangeProperty'], {}), '(PropJobDefinitionNodeRangeProperty)\n', (77286, 77322), False, 'import attr\n'), ((77343, 77376), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (77370, 77376), False, 'import attr\n'), ((79500, 79564), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobQueueComputeEnvironmentOrder'], {}), '(PropJobQueueComputeEnvironmentOrder)\n', (79527, 79564), False, 'import attr\n'), ((79585, 79618), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (79612, 79618), False, 'import attr\n'), ((12347, 12399), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionSecret'], {}), '(PropJobDefinitionSecret)\n', (12374, 12399), False, 'import attr\n'), ((12420, 12453), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (12447, 12453), False, 'import attr\n'), ((27718, 27775), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (27745, 27775), False, 'import attr\n'), ((27796, 27829), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (27823, 27829), False, 'import attr\n'), ((33771, 33828), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (33798, 33828), False, 'import attr\n'), ((33849, 33882), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (33876, 33882), False, 'import attr\n'), ((40330, 40394), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropSchedulingPolicyShareAttributes'], {}), '(PropSchedulingPolicyShareAttributes)\n', (40357, 40394), False, 'import attr\n'), ((40415, 40448), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (40442, 40448), False, 'import attr\n'), ((47489, 47562), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropComputeEnvironmentEc2ConfigurationObject'], {}), '(PropComputeEnvironmentEc2ConfigurationObject)\n', (47516, 47562), False, 'import attr\n'), ((47583, 47616), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (47610, 47616), False, 'import attr\n'), ((49376, 49433), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (49403, 49433), False, 'import attr\n'), ((49454, 49487), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (49481, 49487), False, 'import attr\n'), ((51370, 51427), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (51397, 51427), False, 'import attr\n'), ((51448, 51481), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (51475, 51481), False, 'import attr\n'), ((53986, 54046), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionEvaluateOnExit'], {}), '(PropJobDefinitionEvaluateOnExit)\n', (54013, 54046), False, 'import attr\n'), ((54067, 54100), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (54094, 54100), False, 'import attr\n'), ((56412, 56464), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionDevice'], {}), '(PropJobDefinitionDevice)\n', (56439, 56464), False, 'import attr\n'), ((56485, 56518), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (56512, 56518), False, 'import attr\n'), ((58764, 58815), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionTmpfs'], {}), '(PropJobDefinitionTmpfs)\n', (58791, 58815), False, 'import attr\n'), ((58836, 58869), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (58863, 58869), False, 'import attr\n'), ((64214, 64271), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (64241, 64271), False, 'import attr\n'), ((64292, 64325), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (64319, 64325), False, 'import attr\n'), ((64842, 64899), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionEnvironment'], {}), '(PropJobDefinitionEnvironment)\n', (64869, 64899), False, 'import attr\n'), ((64920, 64953), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (64947, 64953), False, 'import attr\n'), ((68893, 68950), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionMountPoints'], {}), '(PropJobDefinitionMountPoints)\n', (68920, 68950), False, 'import attr\n'), ((68971, 69004), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (68998, 69004), False, 'import attr\n'), ((70945, 71010), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionResourceRequirement'], {}), '(PropJobDefinitionResourceRequirement)\n', (70972, 71010), False, 'import attr\n'), ((71031, 71064), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (71058, 71064), False, 'import attr\n'), ((71593, 71645), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionSecret'], {}), '(PropJobDefinitionSecret)\n', (71620, 71645), False, 'import attr\n'), ((71666, 71699), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (71693, 71699), False, 'import attr\n'), ((72202, 72254), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionUlimit'], {}), '(PropJobDefinitionUlimit)\n', (72229, 72254), False, 'import attr\n'), ((72275, 72308), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (72302, 72308), False, 'import attr\n'), ((73600, 73653), 'attr.validators.instance_of', 'attr.validators.instance_of', (['PropJobDefinitionVolumes'], {}), '(PropJobDefinitionVolumes)\n', (73627, 73653), False, 'import attr\n'), ((73674, 73707), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (73701, 73707), False, 'import attr\n'), ((86079, 86136), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (86106, 86136), False, 'import attr\n'), ((86157, 86190), 'attr.validators.instance_of', 'attr.validators.instance_of', (['list'], {}), '(list)\n', (86184, 86190), False, 'import attr\n'), ((90312, 90344), 'attr.validators.instance_of', 'attr.validators.instance_of', (['str'], {}), '(str)\n', (90339, 90344), False, 'import attr\n'), ((90362, 90419), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TypeCheck.intrinsic_str_type'], {}), '(TypeCheck.intrinsic_str_type)\n', (90389, 90419), False, 'import attr\n')]
#!/usr/bin/env python # coding: utf-8 # __buildin__ modules import smtplib from email.mime.text import MIMEText from monitor.utils.settings import EMAIL_SERVER from monitor.utils.settings import EMAIL_PORT from monitor.utils.settings import EMAIL_USER from monitor.utils.settings import EMAIL_PASS from monitor.utils.settings import EMAIL_FROM_ADDR from monitor.utils.email_list import EMAIL_LIST def _sendmail(to_list, subject, content): """ params: to_addr[list]: subject[str]: content[str]: plain content """ msg = MIMEText(content, 'plain', 'utf-8') msg['Subject'] = subject msg['From'] = EMAIL_FROM_ADDR msg['To'] = ', '.join(to_list) smtp = smtplib.SMTP_SSL() smtp.set_debuglevel(0) smtp.connect(EMAIL_SERVER, EMAIL_PORT) smtp.login(EMAIL_USER, EMAIL_PASS) smtp.sendmail(EMAIL_FROM_ADDR, to_list, msg.as_string()) smtp.quit() def sendmail(subject, content): """ params: subject[str]: content[str]: plain content """ if EMAIL_LIST: _sendmail(EMAIL_LIST, subject, content) else: raise ValueError('email list is empty')
[ "email.mime.text.MIMEText", "smtplib.SMTP_SSL" ]
[((562, 597), 'email.mime.text.MIMEText', 'MIMEText', (['content', '"""plain"""', '"""utf-8"""'], {}), "(content, 'plain', 'utf-8')\n", (570, 597), False, 'from email.mime.text import MIMEText\n'), ((708, 726), 'smtplib.SMTP_SSL', 'smtplib.SMTP_SSL', ([], {}), '()\n', (724, 726), False, 'import smtplib\n')]
# Copyright (c) 2018 <NAME> # Copyright (c) 2018 <NAME> # # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) from phylanx import Phylanx import numpy as np @Phylanx def foo(): local_a = np.array((2, 1)) local_a[0] += 55 return local_a assert (np.array((57, 1)) == foo()).any()
[ "numpy.array" ]
[((297, 313), 'numpy.array', 'np.array', (['(2, 1)'], {}), '((2, 1))\n', (305, 313), True, 'import numpy as np\n'), ((364, 381), 'numpy.array', 'np.array', (['(57, 1)'], {}), '((57, 1))\n', (372, 381), True, 'import numpy as np\n')]
import importlib import json import os import sys from pprint import pprint as pp import pytest import utils as util from ixload import IxLoadTestSettings as TestSettings from ixload import IxLoadUtils as IxLoadUtils from ixload import IxRestUtils as IxRestUtils from ixnetwork_restpy import SessionAssistant from ixnetwork_restpy.testplatform.testplatform import TestPlatform targets_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "targets")) sys.path.insert(0, targets_dir) @pytest.fixture(scope="session") def tbinfo(request): """Create and return testbed information""" from credentials import CREDENTIALS as CR from testbed import TESTBED as TB TB["CR"] = CR return TB @pytest.fixture(name="smartnics", scope="session") def fixture_smartnics(tbinfo): test_type = tbinfo['stateless'][0]['dpu'][0]['type'] if test_type: modname = test_type.lower() + "." + test_type.lower() else: raise Exception('Fail to load module %s' % modname) try: imod = importlib.import_module(modname) cls = getattr(imod, test_type.title() + "Test") return cls(**tbinfo) except: raise Exception('Fail to load module %s' % modname) @pytest.fixture(scope="session") def utils(): return util @pytest.fixture def create_ixload_session_url(tbinfo): ixload_settings = {} tb = tbinfo['stateful'][0] tg = { 'chassis_list': tb['server'], 'tgen': tb['tgen'], 'vxlan': tb['vxlan'], 'dpu': tb } # Helper Functions def create_test_settings(): # TEST CONFIG test_settings = TestSettings.IxLoadTestSettings() test_settings.gatewayServer = tbinfo['stateful'][0]['server'][0]['addr'] test_settings.apiVersion = "v0" test_settings.ixLoadVersion = "9.20.0.279" slot1 = tg['tgen'][0][1] port1 = tg['tgen'][0][2] slot2 = tg['tgen'][1][1] port2 = tg['tgen'][1][2] test_settings.portListPerCommunity = { # format: { community name : [ port list ] } "Traffic1@Network1": [(1, slot1, port1)], "Traffic2@Network2": [(1, slot2, port2)] } chassisList = tg['tgen'][0][0] test_settings.chassisList = [chassisList] #test_settings.chassisList = ["10.36.79.165"] return test_settings def create_session(test_settings): connection = IxRestUtils.getConnection( test_settings.gatewayServer, test_settings.gatewayPort, httpRedirect=test_settings.httpRedirect, version=test_settings.apiVersion ) return connection test_settings = create_test_settings() connection = create_session(test_settings) connection.setApiKey(test_settings.apiKey) ixload_settings['connection'] = connection #ixload_settings['session_url'] = session_url ixload_settings['test_settings'] = test_settings yield ixload_settings def getTestClass(*args, **kwargs): if test_type: modname = test_type.lower() + "." + test_type.lower() else: raise Exception('Fail to load module %s' % modname) try: imod = importlib.import_module(modname) cls = getattr(imod, test_type.title() + "Test") return cls(*args, **kwargs) except: raise Exception('Fail to load module %s' % modname)
[ "ixload.IxRestUtils.getConnection", "ixload.IxLoadTestSettings.IxLoadTestSettings", "importlib.import_module", "os.path.dirname", "pytest.fixture", "sys.path.insert" ]
[((467, 498), 'sys.path.insert', 'sys.path.insert', (['(0)', 'targets_dir'], {}), '(0, targets_dir)\n', (482, 498), False, 'import sys\n'), ((502, 533), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (516, 533), False, 'import pytest\n'), ((722, 771), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""smartnics"""', 'scope': '"""session"""'}), "(name='smartnics', scope='session')\n", (736, 771), False, 'import pytest\n'), ((1227, 1258), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1241, 1258), False, 'import pytest\n'), ((422, 447), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (437, 447), False, 'import os\n'), ((1034, 1066), 'importlib.import_module', 'importlib.import_module', (['modname'], {}), '(modname)\n', (1057, 1066), False, 'import importlib\n'), ((1635, 1668), 'ixload.IxLoadTestSettings.IxLoadTestSettings', 'TestSettings.IxLoadTestSettings', ([], {}), '()\n', (1666, 1668), True, 'from ixload import IxLoadTestSettings as TestSettings\n'), ((2432, 2598), 'ixload.IxRestUtils.getConnection', 'IxRestUtils.getConnection', (['test_settings.gatewayServer', 'test_settings.gatewayPort'], {'httpRedirect': 'test_settings.httpRedirect', 'version': 'test_settings.apiVersion'}), '(test_settings.gatewayServer, test_settings.\n gatewayPort, httpRedirect=test_settings.httpRedirect, version=\n test_settings.apiVersion)\n', (2457, 2598), True, 'from ixload import IxRestUtils as IxRestUtils\n'), ((3201, 3233), 'importlib.import_module', 'importlib.import_module', (['modname'], {}), '(modname)\n', (3224, 3233), False, 'import importlib\n')]
import matplotlib.pyplot as plt import matplotlib import numpy as np import datetime from dateutil.tz import tzutc def plot_water_levels(station, dates, levels): """Task 2E: Plots water level against time""" #Assign variables range_high = [station.typical_range[1]]*len(dates) range_low = [station.typical_range[0]]*len(dates) # Plot plt.plot(dates, levels, label="Water Level") plt.plot(dates, range_high, label="Typical High") plt.plot(dates, range_low, label="Typical Low") # Add axis labels, add legend, rotate date labels and add plot title plt.xlabel('Date') plt.ylabel('Water Level (m)') plt.legend() plt.xticks(rotation=45) plt.title(station.name) # Display plot plt.tight_layout() # This makes sure plot does not cut off date labels return plt.show() def plot_water_level_with_fit(station, dates, levels, p): """Task 2F: Plots the water level data and the best-fit polynomial""" # Convert dates to floats dates_float = matplotlib.dates.date2num(dates) # Create a shifted time list dates_shifted = [] for i in range(len(dates_float)): dates_shifted.append(dates_float[i] - dates_float[0]) # Find coefficients of best-fit polynomial f(x) of degree p p_coeff = np.polyfit(dates_shifted, levels, p) # Convert coefficient into a polynomial that can be evaluated, # e.g. poly(0.3) poly = np.poly1d(p_coeff) # Plot original data points plt.plot(dates_shifted, levels, '.', label='Data Points') # Plot polynomial fit and typical range low/high at 30 points along interval # (note that polynomial is evaluated using the date shift) x = np.linspace(dates_shifted[0], dates_shifted[-1], 30) range_high = [station.typical_range[1]]*len(x) range_low = [station.typical_range[0]]*len(x) plt.plot(x, poly(x - x[0]), label="Polynomial Fit") plt.plot(x, range_high, label="Typical High") plt.plot(x, range_low, label="Typical Low") # Add axis labels, add legend, rotate date labels and add plot title plt.xlabel('Dates from {}'.format(dates[-1])) plt.ylabel('Water Level (m)') plt.legend() plt.xticks(rotation=45) plt.title(station.name) # Display plot plt.tight_layout() # This makes sure plot does not cut off date labels return plt.show()
[ "matplotlib.pyplot.title", "numpy.poly1d", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.polyfit", "matplotlib.pyplot.legend", "matplotlib.pyplot.xticks", "numpy.linspace", "matplotlib.dates.date2num", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout" ]
[((363, 407), 'matplotlib.pyplot.plot', 'plt.plot', (['dates', 'levels'], {'label': '"""Water Level"""'}), "(dates, levels, label='Water Level')\n", (371, 407), True, 'import matplotlib.pyplot as plt\n'), ((412, 461), 'matplotlib.pyplot.plot', 'plt.plot', (['dates', 'range_high'], {'label': '"""Typical High"""'}), "(dates, range_high, label='Typical High')\n", (420, 461), True, 'import matplotlib.pyplot as plt\n'), ((466, 513), 'matplotlib.pyplot.plot', 'plt.plot', (['dates', 'range_low'], {'label': '"""Typical Low"""'}), "(dates, range_low, label='Typical Low')\n", (474, 513), True, 'import matplotlib.pyplot as plt\n'), ((592, 610), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Date"""'], {}), "('Date')\n", (602, 610), True, 'import matplotlib.pyplot as plt\n'), ((615, 644), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Water Level (m)"""'], {}), "('Water Level (m)')\n", (625, 644), True, 'import matplotlib.pyplot as plt\n'), ((649, 661), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (659, 661), True, 'import matplotlib.pyplot as plt\n'), ((666, 689), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)'}), '(rotation=45)\n', (676, 689), True, 'import matplotlib.pyplot as plt\n'), ((694, 717), 'matplotlib.pyplot.title', 'plt.title', (['station.name'], {}), '(station.name)\n', (703, 717), True, 'import matplotlib.pyplot as plt\n'), ((742, 760), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (758, 760), True, 'import matplotlib.pyplot as plt\n'), ((826, 836), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (834, 836), True, 'import matplotlib.pyplot as plt\n'), ((1019, 1051), 'matplotlib.dates.date2num', 'matplotlib.dates.date2num', (['dates'], {}), '(dates)\n', (1044, 1051), False, 'import matplotlib\n'), ((1288, 1324), 'numpy.polyfit', 'np.polyfit', (['dates_shifted', 'levels', 'p'], {}), '(dates_shifted, levels, p)\n', (1298, 1324), True, 'import numpy as np\n'), ((1425, 1443), 'numpy.poly1d', 'np.poly1d', (['p_coeff'], {}), '(p_coeff)\n', (1434, 1443), True, 'import numpy as np\n'), ((1481, 1538), 'matplotlib.pyplot.plot', 'plt.plot', (['dates_shifted', 'levels', '"""."""'], {'label': '"""Data Points"""'}), "(dates_shifted, levels, '.', label='Data Points')\n", (1489, 1538), True, 'import matplotlib.pyplot as plt\n'), ((1692, 1744), 'numpy.linspace', 'np.linspace', (['dates_shifted[0]', 'dates_shifted[-1]', '(30)'], {}), '(dates_shifted[0], dates_shifted[-1], 30)\n', (1703, 1744), True, 'import numpy as np\n'), ((1911, 1956), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'range_high'], {'label': '"""Typical High"""'}), "(x, range_high, label='Typical High')\n", (1919, 1956), True, 'import matplotlib.pyplot as plt\n'), ((1961, 2004), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'range_low'], {'label': '"""Typical Low"""'}), "(x, range_low, label='Typical Low')\n", (1969, 2004), True, 'import matplotlib.pyplot as plt\n'), ((2133, 2162), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Water Level (m)"""'], {}), "('Water Level (m)')\n", (2143, 2162), True, 'import matplotlib.pyplot as plt\n'), ((2167, 2179), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2177, 2179), True, 'import matplotlib.pyplot as plt\n'), ((2184, 2207), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)'}), '(rotation=45)\n', (2194, 2207), True, 'import matplotlib.pyplot as plt\n'), ((2212, 2235), 'matplotlib.pyplot.title', 'plt.title', (['station.name'], {}), '(station.name)\n', (2221, 2235), True, 'import matplotlib.pyplot as plt\n'), ((2260, 2278), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2276, 2278), True, 'import matplotlib.pyplot as plt\n'), ((2344, 2354), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2352, 2354), True, 'import matplotlib.pyplot as plt\n')]
from app import database def get_single_json_entity(entity_query): query_result_proxy = database.session.execute(entity_query) database.session.commit() row_proxies = [r for r in query_result_proxy] if len(row_proxies) == 1: json_entity = {k: v for k, v in row_proxies[0].items()} else: json_entity = {} return json_entity
[ "app.database.session.commit", "app.database.session.execute" ]
[((94, 132), 'app.database.session.execute', 'database.session.execute', (['entity_query'], {}), '(entity_query)\n', (118, 132), False, 'from app import database\n'), ((137, 162), 'app.database.session.commit', 'database.session.commit', ([], {}), '()\n', (160, 162), False, 'from app import database\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2020 Huawei Device Co., Ltd. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys def resource_file_to_bytecode(input_dir, input_file, output_path): with open(os.path.join(input_dir, input_file), 'rb')\ as resource_file_object: with open(output_path, 'a') as cpp_file_object: length = 0; all_the_content = resource_file_object.read(); template0 = "#include <stdint.h>\n"; template1 = "const uint8_t _binary_$1_start[$2] = {$3};\n"; template2 = \ "const uint8_t* _binary_$1_end = _binary_$1_start + $2;"; formats = "," seq = [] for content in all_the_content: seq.append(str(hex(content))) length = length + 1 byte_code = formats.join(seq); input_file = input_file.replace(".", "_") template1 = template1.replace("$1", str(input_file)) \ .replace("$2", str(length)) \ .replace("$3", str(byte_code)) template2 = template2.replace("$1", str(input_file)) \ .replace("$2", str(length)) cpp_file_object.seek(0) cpp_file_object.truncate(); cpp_file_object.write(template0 + template1 + template2); def main(): parser = argparse.ArgumentParser() parser.add_argument('--objcopy', type=str, required=False) parser.add_argument('--input', type=str, required=True) parser.add_argument('--output', type=str, required=True) parser.add_argument('--arch', type=str, required=False) args = parser.parse_args() input_dir, input_file = os.path.split(args.input) output_path = os.path.abspath(args.output) resource_file_to_bytecode(input_dir, input_file, output_path) if __name__ == '__main__': sys.exit(main())
[ "os.path.abspath", "os.path.split", "os.path.join", "argparse.ArgumentParser" ]
[((1913, 1938), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1936, 1938), False, 'import argparse\n'), ((2244, 2269), 'os.path.split', 'os.path.split', (['args.input'], {}), '(args.input)\n', (2257, 2269), False, 'import os\n'), ((2288, 2316), 'os.path.abspath', 'os.path.abspath', (['args.output'], {}), '(args.output)\n', (2303, 2316), False, 'import os\n'), ((756, 791), 'os.path.join', 'os.path.join', (['input_dir', 'input_file'], {}), '(input_dir, input_file)\n', (768, 791), False, 'import os\n')]
from basicts.utils.registry import SCALER_REGISTRY """ data normalization and re-normalization """ # ====================================== re-normalizations ====================================== # @SCALER_REGISTRY.register() def re_max_min_normalization(x, **kwargs): _min, _max = kwargs['min'], kwargs['max'] x = (x + 1.) / 2. x = 1. * x * (_max - _min) + _min return x @SCALER_REGISTRY.register() def standard_re_transform(x, **kwargs): mean, std = kwargs['mean'], kwargs['std'] x = x * std x = x + mean return x # ====================================== normalizations ====================================== # # omitted to avoid redundancy, as they should only be used in data preprocessing in `scripts/data_preparation`
[ "basicts.utils.registry.SCALER_REGISTRY.register" ]
[((202, 228), 'basicts.utils.registry.SCALER_REGISTRY.register', 'SCALER_REGISTRY.register', ([], {}), '()\n', (226, 228), False, 'from basicts.utils.registry import SCALER_REGISTRY\n'), ((393, 419), 'basicts.utils.registry.SCALER_REGISTRY.register', 'SCALER_REGISTRY.register', ([], {}), '()\n', (417, 419), False, 'from basicts.utils.registry import SCALER_REGISTRY\n')]
from jinja2 import Environment, PackageLoader, select_autoescape import yaml import json import pkg_resources import os env = Environment( loader=PackageLoader('kite_metrics', 'schemas'), ) cache = {} def _schema_exists(filename): return pkg_resources.resource_exists('kite_metrics', 'schemas/{}'.format(filename)) def _schema_open(filename): return pkg_resources.resource_stream('kite_metrics', 'schemas/{}'.format(filename)) def load_context(key): filename = '{}.ctx.yaml'.format(key) if filename not in cache: ctx = {} if _schema_exists(filename): ctx = yaml.load(_schema_open(filename), yaml.FullLoader) cache[filename] = ctx return cache[filename] def load_schema(key): filename = '{}.yaml.tmpl'.format(key) if filename not in cache: ctx = load_context(key) cache[filename] = yaml.load(env.get_template(filename).render(ctx), Loader=yaml.FullLoader) return cache[filename] def load_json_schema(key, extra_ctx=None): filename = '{}.schema.json'.format(key) if filename not in cache: if _schema_exists(filename): cache[filename] = json.load(_schema_open(filename)) else: tmpl_filename = '{}.schema.json.tmpl'.format(key) ctx = {'schema': load_schema(key)} if extra_ctx: ctx.update(extra_ctx) rendered = env.get_template(tmpl_filename).render(ctx) try: cache[filename] = json.loads(rendered) except json.decoder.JSONDecodeError: print("Error decoding schema JSON:\n{}".format(rendered)) return cache[filename]
[ "jinja2.PackageLoader", "json.loads" ]
[((152, 192), 'jinja2.PackageLoader', 'PackageLoader', (['"""kite_metrics"""', '"""schemas"""'], {}), "('kite_metrics', 'schemas')\n", (165, 192), False, 'from jinja2 import Environment, PackageLoader, select_autoescape\n'), ((1501, 1521), 'json.loads', 'json.loads', (['rendered'], {}), '(rendered)\n', (1511, 1521), False, 'import json\n')]
############################################################################### # Copyright (c) 2017-2020 <NAME> (Cisco Systems), # # <NAME> (Cisco Systems), <NAME> (Cisco Systems) and others # # # # All rights reserved. This program and the accompanying materials # # are made available under the terms of the Apache License, Version 2.0 # # which accompanies this distribution, and is available at # # http://www.apache.org/licenses/LICENSE-2.0 # ############################################################################### from base.utils.configuration import Configuration from base.utils.origins import Origin from scan.link_finders.find_links import FindLinks class FindLinksForDisks(FindLinks): # per future ceph releases this might need revisions DB_PARTITION_PATH_ATT = 'bluefs_db_partition_path' BLK_PARTITION_PATH_ATT = 'bluestore_bdev_partition_path' def __init__(self): super().__init__() self.environment_type = None self.hosts = [] self.osds = [] self.disks = [] self.partitions = [] def setup(self, env, origin: Origin = None): super().setup(env, origin) self.configuration = Configuration() self.environment_type = self.configuration.get_env_type() def add_links(self): self.log.info("adding links of types: host-osd, osd-partition, partition-disk") self.hosts = self.inv.find_items({ "environment": self.configuration.env_name, "type": "host" }) self.osds = self.inv.find_items({ "environment": self.get_env(), "type": "osd" }) self.partitions = self.inv.find_items({ "environment": self.get_env(), "type": "partition" }) self.disks = self.inv.find_items({ "environment": self.get_env(), "type": "disk" }) for osd in self.osds: self.add_link_for_hosts(osd) for partition in self.partitions: self.add_link_for_osds(partition) for disk in self.disks: self.add_link_for_partitions(disk) def add_link_for_hosts(self, osd): # link_type: "host-osd" metadata = osd.get('metadata', '') for host in self.hosts: if host.get('id', 'None') == osd.get('host', ''): self.add_links_with_specifics(host, osd, extra_att={"osd_data": metadata.get('osd_data', '')}) def add_link_for_osds(self, partition): # link_type: "osd-partition" for osd in self.osds: metadata = osd.get('metadata', '') if ((metadata.get(self.DB_PARTITION_PATH_ATT, 'None') == partition.get('device', '')) and ( osd.get('host', 'None') == partition.get('host', ''))) or (( metadata.get(self.BLK_PARTITION_PATH_ATT, 'None') == partition.get('device', '')) and ( osd.get('host', 'None') == partition.get('host', ''))) or ( metadata.get('osd_data', 'None') == partition.get('mount_point', '')): self.add_links_with_specifics(osd, partition, extra_att={"osd_objectstore": metadata.get('osd_objectstore', '')}) def add_link_for_partitions(self, disk): # link_type: "partition-disk" for partition in self.partitions: if (partition.get('master_disk', 'None') == disk.get('name', '')) and ( partition.get('host', 'None') == disk.get('host', 'None')): self.add_links_with_specifics(partition, disk, extra_att={"partition_type": partition.get('label', '')}) def add_links_with_specifics(self, source, target, extra_att=None): link_name = '{}-{}'.format(source.get('name', 'None'), target.get('name', '')) source_label = '{}-{}-{}'.format(source.get('cvim_region', ''), source.get('cvim_metro', ''), source.get('id', '')) target_label = target.get('id', '') extra = {"source_label": source_label, "target_label": target_label} if extra_att: extra.update(extra_att) self.link_items(source, target, link_name=link_name, extra_attributes=extra)
[ "base.utils.configuration.Configuration" ]
[((1360, 1375), 'base.utils.configuration.Configuration', 'Configuration', ([], {}), '()\n', (1373, 1375), False, 'from base.utils.configuration import Configuration\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.11.17 on 2020-11-02 11:30 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('activities', '0027_contributionvalue'), ('time_based', '0019_auto_20201030_1317'), ] operations = [ migrations.CreateModel( name='OnADateApplication', fields=[ ('contribution_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='activities.Contribution')), ], options={ 'verbose_name': 'On a date application', 'verbose_name_plural': 'On a date application', 'permissions': (('api_read_onadateapplication', 'Can view application through the API'), ('api_add_onadateapplication', 'Can add application through the API'), ('api_change_onadateapplication', 'Can change application through the API'), ('api_delete_onadateapplication', 'Can delete application through the API'), ('api_read_own_onadateapplication', 'Can view own application through the API'), ('api_add_own_onadateapplication', 'Can add own application through the API'), ('api_change_own_onadateapplication', 'Can change own application through the API'), ('api_delete_own_onadateapplication', 'Can delete own application through the API')), }, bases=('activities.contribution',), ), migrations.CreateModel( name='PeriodApplication', fields=[ ('contribution_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='activities.Contribution')), ('current_period', models.DateField(blank=True, null=True)), ], options={ 'verbose_name': 'Period application', 'verbose_name_plural': 'Period application', 'permissions': (('api_read_periodapplication', 'Can view application through the API'), ('api_add_periodapplication', 'Can add application through the API'), ('api_change_periodapplication', 'Can change application through the API'), ('api_delete_periodapplication', 'Can delete application through the API'), ('api_read_own_periodapplication', 'Can view own application through the API'), ('api_add_own_periodapplication', 'Can add own application through the API'), ('api_change_own_periodapplication', 'Can change own application through the API'), ('api_delete_own_periodapplication', 'Can delete own application through the API')), }, bases=('activities.contribution',), ), migrations.RemoveField( model_name='application', name='current_period', ), ]
[ "django.db.migrations.RemoveField", "django.db.models.OneToOneField", "django.db.models.DateField" ]
[((2833, 2904), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""application"""', 'name': '"""current_period"""'}), "(model_name='application', name='current_period')\n", (2855, 2904), False, 'from django.db import migrations, models\n'), ((508, 685), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'auto_created': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'parent_link': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'to': '"""activities.Contribution"""'}), "(auto_created=True, on_delete=django.db.models.deletion\n .CASCADE, parent_link=True, primary_key=True, serialize=False, to=\n 'activities.Contribution')\n", (528, 685), False, 'from django.db import migrations, models\n'), ((1699, 1876), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'auto_created': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'parent_link': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'to': '"""activities.Contribution"""'}), "(auto_created=True, on_delete=django.db.models.deletion\n .CASCADE, parent_link=True, primary_key=True, serialize=False, to=\n 'activities.Contribution')\n", (1719, 1876), False, 'from django.db import migrations, models\n'), ((1904, 1943), 'django.db.models.DateField', 'models.DateField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (1920, 1943), False, 'from django.db import migrations, models\n')]
from __future__ import annotations from amulet.world_interface.chunk.interfaces.leveldb.leveldb_14.interface import ( LevelDB14Interface, ) class LevelDB15Interface(LevelDB14Interface): def __init__(self): LevelDB14Interface.__init__(self) self.features["chunk_version"] = 15 INTERFACE_CLASS = LevelDB15Interface
[ "amulet.world_interface.chunk.interfaces.leveldb.leveldb_14.interface.LevelDB14Interface.__init__" ]
[((225, 258), 'amulet.world_interface.chunk.interfaces.leveldb.leveldb_14.interface.LevelDB14Interface.__init__', 'LevelDB14Interface.__init__', (['self'], {}), '(self)\n', (252, 258), False, 'from amulet.world_interface.chunk.interfaces.leveldb.leveldb_14.interface import LevelDB14Interface\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import sys import jobson_systemtests def main(argv=None): if argv is None: argv = sys.argv parser = argparse.ArgumentParser(description='Run jobson system tests') parser.add_argument( 'specs_dir', type=str, help='Path to directory containing jobson specs (and tests)') parser.add_argument( 'host', type=str, help='The host running the server (e.g. localhost)') parser.add_argument( 'port', type=int, help='The port the Jobson API is listening on (e.g. 8080)') parser.add_argument( 'login', type=str, help='The login to use to access the API') parser.add_argument( 'password', type=str, help='The password to use the access the API') args = parser.parse_args(argv[1:]) jobson_systemtests.run( specs_dir=args.specs_dir, host=args.host, port=args.port, login=args.login, password=args.password) return 0 if __name__ == "__main__": sys.exit(main())
[ "jobson_systemtests.run", "argparse.ArgumentParser" ]
[((727, 789), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Run jobson system tests"""'}), "(description='Run jobson system tests')\n", (750, 789), False, 'import argparse\n'), ((1446, 1573), 'jobson_systemtests.run', 'jobson_systemtests.run', ([], {'specs_dir': 'args.specs_dir', 'host': 'args.host', 'port': 'args.port', 'login': 'args.login', 'password': 'args.password'}), '(specs_dir=args.specs_dir, host=args.host, port=args.\n port, login=args.login, password=args.password)\n', (1468, 1573), False, 'import jobson_systemtests\n')]
from discord.ext import commands import discord import yaml import os class Bot(commands.Bot): async def get_prefix(self, bot, message): """Fetches the current prefix in the guild from the database.""" return commands.when_mentioned_or("onyx ") def __init__(self): """Initialize the bot and load all extensions.""" with open("C:/onyx/config.yml", encoding = "UTF-8") as f: self.config = yaml.safe_load(f) super().__init__( command_prefix = self.get_prefix, intents = discord.Intents.default() ) client = Bot() client.load_extension("jishaku") # Load the debugging cog. @client.check async def check(ctx): return True token = os.getenv("TOKEN") client.run(token)
[ "discord.ext.commands.when_mentioned_or", "discord.Intents.default", "yaml.safe_load", "os.getenv" ]
[((728, 746), 'os.getenv', 'os.getenv', (['"""TOKEN"""'], {}), "('TOKEN')\n", (737, 746), False, 'import os\n'), ((230, 265), 'discord.ext.commands.when_mentioned_or', 'commands.when_mentioned_or', (['"""onyx """'], {}), "('onyx ')\n", (256, 265), False, 'from discord.ext import commands\n'), ((442, 459), 'yaml.safe_load', 'yaml.safe_load', (['f'], {}), '(f)\n', (456, 459), False, 'import yaml\n'), ((555, 580), 'discord.Intents.default', 'discord.Intents.default', ([], {}), '()\n', (578, 580), False, 'import discord\n')]
import urllib.parse from django.shortcuts import render #from ckan_model import stub as ckan from ckan_model import production as ckan #from ..ckan_model import production as ckan import django.http def index(request: django.http.HttpRequest): payload = {} google = ckan.Search() payload['top_tags'] = google.top_tags() return render(request, 'index.html', context=payload) def search(request: django.http.HttpRequest): # it's a search engine! google = ckan.Search() payload = {} payload['tags'] = google.tags_list() payload['unis'] = google.university_list() page = int(request.GET.get('page', 1)) page_size = 10 start_pos = (page - 1) * page_size if request.GET: response = google.students(request.GET.getlist('selected_tags'), request.GET.getlist('selected_unis'), start=start_pos, rows=page_size ) else: response = google.students() total = response['total'] pages_count = total//10+bool(total%10) actual_page = start_pos//page_size + 1 parsed_url = list(urllib.parse.urlparse(request.get_full_path())) options = dict(urllib.parse.parse_qsl(parsed_url[4])) def change_url(n): options['page'] = n parsed_url[4] = urllib.parse.urlencode(options) return urllib.parse.urlunparse(parsed_url) pages = [{'number': n, 'url': change_url(n), 'active': n == actual_page} for n in range(1, pages_count)] payload["pagination"] = { "pages": pages, "prev": actual_page > 1, "next": actual_page < pages_count, } payload['results'] = response['results'] return render(request, 'search.html', payload)
[ "django.shortcuts.render", "ckan_model.production.Search" ]
[((280, 293), 'ckan_model.production.Search', 'ckan.Search', ([], {}), '()\n', (291, 293), True, 'from ckan_model import production as ckan\n'), ((349, 395), 'django.shortcuts.render', 'render', (['request', '"""index.html"""'], {'context': 'payload'}), "(request, 'index.html', context=payload)\n", (355, 395), False, 'from django.shortcuts import render\n'), ((485, 498), 'ckan_model.production.Search', 'ckan.Search', ([], {}), '()\n', (496, 498), True, 'from ckan_model import production as ckan\n'), ((1857, 1896), 'django.shortcuts.render', 'render', (['request', '"""search.html"""', 'payload'], {}), "(request, 'search.html', payload)\n", (1863, 1896), False, 'from django.shortcuts import render\n')]
import numpy as np from scipy.integrate import quad import matplotlib.pyplot as plt def Redshift(n0, n1, n2, z1=3.6, z=np.linspace(0,10,num=1001)): Rlow = np.power((1.0 + z), n1) Rhigh = np.power((1.0 + z), n2) rbrk = np.power((1.0 + z1), n1 - n2) R = Rlow * (z <= z1) + rbrk * Rhigh * (z > z1) R *= n0 / R[0] return z, R z, R = Redshift(0.84, 2.07, -0.7) plt.plot(z,R,'-k') plt.xlabel(r'$z$') plt.ylabel(r'$\mathcal{R}(z)$') plt.grid() #plt.gca().set_yscale('log') plt.show() #### This computes E(z) and int_0^z dz'/E(z') and saves to file def Efunc(z): Omega_m = 0.274 Omega_lambda = 0.726 E = np.sqrt(Omega_m * np.power((1 + z), 3) + Omega_lambda) return E def Efuncinv(z): return 1.0 / Efunc(z) z = np.linspace(0,10,num=1001) dz = z[1] - z[0] E = Efunc(z) Eics = np.zeros(E.shape) for i in range(len(Eics)): Eics[i] = (quad(Efuncinv, 0, z[i])[0])**2.0 #Eics = np.square(np.cumsum(1.0 / E) * dz) #Eics[1:] = Eics[:-1] #Eics[0] = 0 Eall = Eics / E; z = z.reshape(z.shape[0],1) E = E.reshape(E.shape[0],1) Eics = Eics.reshape(Eics.shape[0],1) Eall = Eall.reshape(Eall.shape[0],1) d = np.concatenate((z,E,Eics,Eall),axis=1) np.savetxt('support_data/splines_Ez.txt',d,fmt='%0.9lf') z2, R = Redshift(0.84, 2.07, -0.7, z=z) Rp = R / (1+z) * Eall plt.plot(z,Rp,'-k') plt.plot(z,R/(1+z),'--b') plt.plot(z,Eall,'-.r') #plt.plot(z,np.cumsum(Eall),'-g') plt.xlabel(r'$z$') plt.grid() plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "scipy.integrate.quad", "numpy.power", "numpy.savetxt", "numpy.zeros", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "numpy.concatenate" ]
[((365, 385), 'matplotlib.pyplot.plot', 'plt.plot', (['z', 'R', '"""-k"""'], {}), "(z, R, '-k')\n", (373, 385), True, 'import matplotlib.pyplot as plt\n'), ((384, 401), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$z$"""'], {}), "('$z$')\n", (394, 401), True, 'import matplotlib.pyplot as plt\n'), ((403, 434), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\mathcal{R}(z)$"""'], {}), "('$\\\\mathcal{R}(z)$')\n", (413, 434), True, 'import matplotlib.pyplot as plt\n'), ((435, 445), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (443, 445), True, 'import matplotlib.pyplot as plt\n'), ((475, 485), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (483, 485), True, 'import matplotlib.pyplot as plt\n'), ((723, 751), 'numpy.linspace', 'np.linspace', (['(0)', '(10)'], {'num': '(1001)'}), '(0, 10, num=1001)\n', (734, 751), True, 'import numpy as np\n'), ((789, 806), 'numpy.zeros', 'np.zeros', (['E.shape'], {}), '(E.shape)\n', (797, 806), True, 'import numpy as np\n'), ((1112, 1154), 'numpy.concatenate', 'np.concatenate', (['(z, E, Eics, Eall)'], {'axis': '(1)'}), '((z, E, Eics, Eall), axis=1)\n', (1126, 1154), True, 'import numpy as np\n'), ((1152, 1210), 'numpy.savetxt', 'np.savetxt', (['"""support_data/splines_Ez.txt"""', 'd'], {'fmt': '"""%0.9lf"""'}), "('support_data/splines_Ez.txt', d, fmt='%0.9lf')\n", (1162, 1210), True, 'import numpy as np\n'), ((1274, 1295), 'matplotlib.pyplot.plot', 'plt.plot', (['z', 'Rp', '"""-k"""'], {}), "(z, Rp, '-k')\n", (1282, 1295), True, 'import matplotlib.pyplot as plt\n'), ((1294, 1325), 'matplotlib.pyplot.plot', 'plt.plot', (['z', '(R / (1 + z))', '"""--b"""'], {}), "(z, R / (1 + z), '--b')\n", (1302, 1325), True, 'import matplotlib.pyplot as plt\n'), ((1320, 1344), 'matplotlib.pyplot.plot', 'plt.plot', (['z', 'Eall', '"""-.r"""'], {}), "(z, Eall, '-.r')\n", (1328, 1344), True, 'import matplotlib.pyplot as plt\n'), ((1377, 1394), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$z$"""'], {}), "('$z$')\n", (1387, 1394), True, 'import matplotlib.pyplot as plt\n'), ((1396, 1406), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (1404, 1406), True, 'import matplotlib.pyplot as plt\n'), ((1407, 1417), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1415, 1417), True, 'import matplotlib.pyplot as plt\n'), ((120, 148), 'numpy.linspace', 'np.linspace', (['(0)', '(10)'], {'num': '(1001)'}), '(0, 10, num=1001)\n', (131, 148), True, 'import numpy as np\n'), ((157, 178), 'numpy.power', 'np.power', (['(1.0 + z)', 'n1'], {}), '(1.0 + z, n1)\n', (165, 178), True, 'import numpy as np\n'), ((190, 211), 'numpy.power', 'np.power', (['(1.0 + z)', 'n2'], {}), '(1.0 + z, n2)\n', (198, 211), True, 'import numpy as np\n'), ((222, 249), 'numpy.power', 'np.power', (['(1.0 + z1)', '(n1 - n2)'], {}), '(1.0 + z1, n1 - n2)\n', (230, 249), True, 'import numpy as np\n'), ((846, 869), 'scipy.integrate.quad', 'quad', (['Efuncinv', '(0)', 'z[i]'], {}), '(Efuncinv, 0, z[i])\n', (850, 869), False, 'from scipy.integrate import quad\n'), ((630, 648), 'numpy.power', 'np.power', (['(1 + z)', '(3)'], {}), '(1 + z, 3)\n', (638, 648), True, 'import numpy as np\n')]
from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage from callback import callback_reply_keyboard def generate_keyboard_place(): kb_content = QuickReplyContentText( header="Куда вы сегодня хотите сходить?", text="Выберите из предложенного списка", caption="" ) kb = QuickReply(callback_data=callback_reply_keyboard.new(name="place", id="1"), content=kb_content) kb.add(KeyboardButton(title='Кинотеатр')).add(KeyboardButton(title='Ресторан')) return kb def generate_keyboard_cinema_time(): kb_content = QuickReplyContentText( header="Кинотеатр", text="Выберите удобное для Вас время", caption="" ) kb = QuickReply(callback_data=callback_reply_keyboard.new(name="cinema_time", id="2"), content=kb_content) kb.add(KeyboardButton(title='18:00')).add(KeyboardButton(title='20:00')) return kb def generate_keyboard_restaurant_time(): kb_content = QuickReplyContentText( header="Ресторан", text="Выберите удобное для Вас время", caption="", ) kb = QuickReply(callback_data=callback_reply_keyboard.new(name="restaurant_time", id="2"), content=kb_content) kb.add(KeyboardButton(title='18:30')).add(KeyboardButton(title='21:00')) return kb def generate_keyboard_image(): # Можно отправить клавиатуру с изображением, вместо заголовка. В примере не использовалось kb_content = QuickReplyContentImage( url="https://www.buildquickbots.com/whatsapp/media/sample/jpg/sample01.jpg", text="this is the body", caption="this is the footer" ) kb = QuickReply(callback_data=callback_reply_keyboard.new(type="start", id="1"), content=kb_content) kb.add(KeyboardButton(title='Сменить ресторан')).add(KeyboardButton(title='Новый ресторан')) return kb
[ "waio.keyboard.reply.QuickReplyContentText", "waio.keyboard.reply.KeyboardButton", "callback.callback_reply_keyboard.new", "waio.keyboard.reply.QuickReplyContentImage" ]
[((201, 322), 'waio.keyboard.reply.QuickReplyContentText', 'QuickReplyContentText', ([], {'header': '"""Куда вы сегодня хотите сходить?"""', 'text': '"""Выберите из предложенного списка"""', 'caption': '""""""'}), "(header='Куда вы сегодня хотите сходить?', text=\n 'Выберите из предложенного списка', caption='')\n", (222, 322), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((608, 705), 'waio.keyboard.reply.QuickReplyContentText', 'QuickReplyContentText', ([], {'header': '"""Кинотеатр"""', 'text': '"""Выберите удобное для Вас время"""', 'caption': '""""""'}), "(header='Кинотеатр', text=\n 'Выберите удобное для Вас время', caption='')\n", (629, 705), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((994, 1090), 'waio.keyboard.reply.QuickReplyContentText', 'QuickReplyContentText', ([], {'header': '"""Ресторан"""', 'text': '"""Выберите удобное для Вас время"""', 'caption': '""""""'}), "(header='Ресторан', text=\n 'Выберите удобное для Вас время', caption='')\n", (1015, 1090), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((1466, 1629), 'waio.keyboard.reply.QuickReplyContentImage', 'QuickReplyContentImage', ([], {'url': '"""https://www.buildquickbots.com/whatsapp/media/sample/jpg/sample01.jpg"""', 'text': '"""this is the body"""', 'caption': '"""this is the footer"""'}), "(url=\n 'https://www.buildquickbots.com/whatsapp/media/sample/jpg/sample01.jpg',\n text='this is the body', caption='this is the footer')\n", (1488, 1629), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((512, 544), 'waio.keyboard.reply.KeyboardButton', 'KeyboardButton', ([], {'title': '"""Ресторан"""'}), "(title='Ресторан')\n", (526, 544), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((888, 917), 'waio.keyboard.reply.KeyboardButton', 'KeyboardButton', ([], {'title': '"""20:00"""'}), "(title='20:00')\n", (902, 917), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((1278, 1307), 'waio.keyboard.reply.KeyboardButton', 'KeyboardButton', ([], {'title': '"""21:00"""'}), "(title='21:00')\n", (1292, 1307), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((1828, 1866), 'waio.keyboard.reply.KeyboardButton', 'KeyboardButton', ([], {'title': '"""Новый ресторан"""'}), "(title='Новый ресторан')\n", (1842, 1866), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((382, 431), 'callback.callback_reply_keyboard.new', 'callback_reply_keyboard.new', ([], {'name': '"""place"""', 'id': '"""1"""'}), "(name='place', id='1')\n", (409, 431), False, 'from callback import callback_reply_keyboard\n'), ((765, 820), 'callback.callback_reply_keyboard.new', 'callback_reply_keyboard.new', ([], {'name': '"""cinema_time"""', 'id': '"""2"""'}), "(name='cinema_time', id='2')\n", (792, 820), False, 'from callback import callback_reply_keyboard\n'), ((1151, 1210), 'callback.callback_reply_keyboard.new', 'callback_reply_keyboard.new', ([], {'name': '"""restaurant_time"""', 'id': '"""2"""'}), "(name='restaurant_time', id='2')\n", (1178, 1210), False, 'from callback import callback_reply_keyboard\n'), ((1685, 1734), 'callback.callback_reply_keyboard.new', 'callback_reply_keyboard.new', ([], {'type': '"""start"""', 'id': '"""1"""'}), "(type='start', id='1')\n", (1712, 1734), False, 'from callback import callback_reply_keyboard\n'), ((464, 497), 'waio.keyboard.reply.KeyboardButton', 'KeyboardButton', ([], {'title': '"""Кинотеатр"""'}), "(title='Кинотеатр')\n", (478, 497), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((853, 882), 'waio.keyboard.reply.KeyboardButton', 'KeyboardButton', ([], {'title': '"""18:00"""'}), "(title='18:00')\n", (867, 882), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((1243, 1272), 'waio.keyboard.reply.KeyboardButton', 'KeyboardButton', ([], {'title': '"""18:30"""'}), "(title='18:30')\n", (1257, 1272), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n'), ((1767, 1807), 'waio.keyboard.reply.KeyboardButton', 'KeyboardButton', ([], {'title': '"""Сменить ресторан"""'}), "(title='Сменить ресторан')\n", (1781, 1807), False, 'from waio.keyboard.reply import QuickReplyContentText, QuickReply, KeyboardButton, QuickReplyContentImage\n')]
#!/usr/bin/env python # Python script for fast text file searching using keyword index on disk. # # Author: <NAME> <<EMAIL>> # Last Change: November 1, 2015 # URL: http://peterodding.com/code/vim/notes/ # License: MIT # # This Python script can be used by the notes.vim plug-in to perform fast # keyword searches in the user's notes. It has two advantages over just # using Vim's internal :vimgrep command to search all of the user's notes: # # - Very large notes don't slow searching down so much; # - Hundreds of notes can be searched in less than a second. # # The keyword index is a Python dictionary that's persisted using the pickle # module. The structure of the dictionary may seem very naive but it's quite # fast. Also the pickle protocol makes sure repeating strings are stored only # once, so it's not as bad as it may appear at first sight :-). # # For more information about the Vim plug-in see http://peterodding.com/code/vim/notes/. """ Usage: search_notes.py [OPTIONS] KEYWORD... Search one or more directories of plain text files using a full text index, updated automatically during each invocation of the program. Valid options include: -i, --ignore-case ignore case of keyword(s) -l, --list=SUBSTR list keywords matching substring -d, --database=FILE set path to keywords index file -n, --notes=DIR set directory with user notes (can be repeated) -e, --encoding=NAME set character encoding of notes -v, --verbose make more noise -h, --help show this message and exit For more information see http://peterodding.com/code/vim/notes/ """ # Standard library modules. import codecs import fnmatch import getopt import logging import os import re import sys import time import pickle from typing import List, Set try: import Levenshtein except ImportError: Levenshtein = None # The version of the index format that's supported by this revision of the # `search_notes.py' script; if an existing index file is found with an # unsupported version, the script knows that it should rebuild the index. INDEX_VERSION = 3 # Filename matching patterns of files to ignore during scans. INCLUDE_PATTERNS = {'*.md', '*.txt'} NOTES_DIRECTORIES = [os.path.expanduser('~/Dropbox/notes')] INDEX_FILE_PATH = os.path.expanduser('~/notes-index.pickle') logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) def load_index(index_location): try: load_timer = Timer() logger.debug("Loading index from %s ..", index_location) with open(index_location, 'rb') as handle: index = pickle.load(handle) logger.debug("Format version of index loaded from disk: %i", index['version']) assert index['version'] == INDEX_VERSION, "Incompatible index format detected!" logger.debug("Loaded %i notes from index in %s", len(index['files']), load_timer) except Exception: logger.warning("Failed to load index from file!", exc_info=True) return {'keywords': {}, 'files': {}, 'version': INDEX_VERSION} else: return index class TextIndex: def __init__(self, index_location: str, notes_directories: List[str]): self.index_location = index_location self.notes_directories = notes_directories self.index = load_index(self.index_location) def search(self, query: str) -> List[str]: """Return names of files containing all of the given keywords.""" print('Searching index') index = load_index(INDEX_FILE_PATH) needles = query.split() matches = None normalized_db_keywords = [(k, k.lower()) for k in index['keywords']] for word in needles: submatches = set() for original_db_kw, normalized_db_kw in normalized_db_keywords: if word in normalized_db_kw: submatches.update(index['keywords'][original_db_kw]) if matches is None: matches = submatches else: matches &= submatches return sorted(matches) if matches else [] def update_index(self): """Update the keyword index by scanning the notes directory.""" user_directories = self.notes_directories index = self.index # First we find the filenames and last modified times of the notes on disk. notes_on_disk = {} last_count = 0 for directory in user_directories: for root, dirs, files in os.walk(directory): for filename in files: if any(fnmatch.fnmatch(filename, pattern) for pattern in INCLUDE_PATTERNS): abspath = os.path.join(root, filename) notes_on_disk[abspath] = os.path.getmtime(abspath) logger.info("Found %i notes in %s ..", len(notes_on_disk) - last_count, directory) last_count = len(notes_on_disk) logger.info("Found a total of %i notes ..", len(notes_on_disk)) # Check for updated and/or deleted notes since the last run? if index: for filename in set(index['files'].keys()): if filename not in notes_on_disk: # Forget a deleted note. self.delete_note_from_index(index, filename) else: # Check whether previously seen note has changed? last_modified_on_disk = notes_on_disk[filename] last_modified_in_db = index['files'][filename] if last_modified_on_disk > last_modified_in_db: self.delete_note_from_index(index, filename) self.add_note_to_index(index, filename, last_modified_on_disk) # Already checked this note, we can forget about it. del notes_on_disk[filename] # Add new notes to index. for filename, last_modified in notes_on_disk.items(): self.add_note_to_index(index, filename, last_modified) # TODO: Only save if necessary. self.save_index(INDEX_FILE_PATH, index) def add_note_to_index(self, index, filename, last_modified): """Add a note to the index (assumes the note is not already indexed).""" logger.info("Adding file to index: %s", filename) index['files'][filename] = last_modified with open(filename, encoding='utf-8') as handle: raw = handle.read() for kw in tokenize(raw): if kw not in index['keywords']: index['keywords'][kw] = [filename] else: index['keywords'][kw].append(filename) def delete_note_from_index(self, index, filename): """Delete a note from given index.""" logger.info("Deleting file from index: %s", filename) del index['files'][filename] for kw in index['keywords']: index['keywords'][kw] = [x for x in index['keywords'][kw] if x != filename] def tokenize(self, text: str) -> Set[str]: """Tokenize a string into a list of normalized, unique keywords.""" return {w.strip() for w in re.findall(r'\w{3,}', text, re.UNICODE) if not w.isspace()} def save_index(self, database_file: str, index): """Save the keyword index to disk.""" with open(database_file, 'wb') as handle: pickle.dump(index, handle) class NotesIndex: def __init__(self, argv=None): """Entry point to the notes search.""" global_timer = Timer() keywords = self.parse_args(argv or sys.argv[1:]) self.load_index() self.update_index() if self.dirty: self.save_index() if self.keyword_filter is not None: self.list_keywords(self.keyword_filter) logger.debug("Finished listing keywords in %s", global_timer) else: matches = self.search_index(keywords) if matches: print('\n'.join(sorted(matches))) logger.debug("Finished searching index in %s", global_timer) def parse_args(self, argv): """Parse the command line arguments.""" try: opts, keywords = getopt.getopt(argv, 'il:d:n:e:vh', [ 'ignore-case', 'list=', 'database=', 'notes=', 'encoding=', 'verbose', 'help', ]) except getopt.GetoptError as error: print(str(error)) self.usage() sys.exit(2) # Define the command line option defaults. self.database_file = '~/.vim/misc/notes/index.pickle' self.user_directories = ['~/.vim/misc/notes/user/'] self.character_encoding = 'UTF-8' self.case_sensitive = True self.keyword_filter = None # Map command line options to variables. for opt, arg in opts: if opt in ('-i', '--ignore-case'): self.case_sensitive = False logger.debug("Disabling case sensitivity") elif opt in ('-l', '--list'): self.keyword_filter = arg.strip().lower() elif opt in ('-d', '--database'): self.database_file = arg elif opt in ('-n', '--notes'): self.user_directories.append(arg) elif opt in ('-e', '--encoding'): self.character_encoding = arg elif opt in ('-v', '--verbose'): logger.setLevel(logging.DEBUG) elif opt in ('-h', '--help'): self.usage() sys.exit(0) else: assert False, "Unhandled option" logger.debug("Index file: %s", self.database_file) logger.debug("Notes directories: %r", self.user_directories) logger.debug("Character encoding: %s", self.character_encoding) if self.keyword_filter is not None: self.keyword_filter = self.decode(self.keyword_filter) # Canonicalize pathnames, check validity. self.database_file = self.munge_path(self.database_file) self.user_directories = [self.munge_path(d) for d in self.user_directories if os.path.isdir(d)] # Return tokenized keyword arguments. return [self.normalize(k) for k in self.tokenize(' '.join(keywords))] def load_index(self): """Load the keyword index or start with an empty one.""" try: load_timer = Timer() logger.debug("Loading index from %s ..", self.database_file) with open(self.database_file, 'rb') as handle: self.index = pickle.load(handle) logger.debug("Format version of index loaded from disk: %i", self.index['version']) assert self.index['version'] == INDEX_VERSION, "Incompatible index format detected!" self.first_use = False self.dirty = False logger.debug("Loaded %i notes from index in %s", len(self.index['files']), load_timer) except Exception: logger.warn("Failed to load index from file!", exc_info=True) self.first_use = True self.dirty = True self.index = {'keywords': {}, 'files': {}, 'version': INDEX_VERSION} def save_index(self): """Save the keyword index to disk.""" save_timer = Timer() with open(self.database_file, 'wb') as handle: pickle.dump(self.index, handle) logger.debug("Saved index to disk in %s", save_timer) def update_index(self): """Update the keyword index by scanning the notes directory.""" update_timer = Timer() # First we find the filenames and last modified times of the notes on disk. notes_on_disk = {} last_count = 0 for directory in self.user_directories: print('Scanning', directory) for root, dirs, files in os.walk(directory): for filename in files: if any(fnmatch.fnmatch(filename, pattern) for pattern in INCLUDE_PATTERNS): abspath = os.path.join(root, filename) notes_on_disk[abspath] = os.path.getmtime(abspath) logger.info("Found %i notes in %s ..", len(notes_on_disk) - last_count, directory) last_count = len(notes_on_disk) logger.info("Found a total of %i notes ..", len(notes_on_disk)) # Check for updated and/or deleted notes since the last run? if not self.first_use: for filename in self.index['files'].keys(): if filename not in notes_on_disk: # Forget a deleted note. self.delete_note(filename) else: # Check whether previously seen note has changed? last_modified_on_disk = notes_on_disk[filename] last_modified_in_db = self.index['files'][filename] if last_modified_on_disk > last_modified_in_db: self.delete_note(filename) self.add_note(filename, last_modified_on_disk) # Already checked this note, we can forget about it. del notes_on_disk[filename] # Add new notes to index. for filename, last_modified in notes_on_disk.items(): self.add_note(filename, last_modified) logger.info("Updated index in %s", update_timer) def add_note(self, filename, last_modified): """Add a note to the index (assumes the note is not already indexed).""" logger.info("Adding file to index: %s", filename) self.index['files'][filename] = last_modified with open(filename, encoding='utf-8') as handle: for kw in self.tokenize(handle.read()): if kw not in self.index['keywords']: self.index['keywords'][kw] = [filename] else: self.index['keywords'][kw].append(filename) self.dirty = True def delete_note(self, filename): """Remove a note from the index.""" logger.info("Removing file from index: %s", filename) del self.index['files'][filename] for kw in self.index['keywords']: self.index['keywords'][kw] = [x for x in self.index['keywords'][kw] if x != filename] self.dirty = True def search_index(self, keywords): """Return names of files containing all of the given keywords.""" matches = None normalized_db_keywords = [(k, self.normalize(k)) for k in self.index['keywords']] for usr_kw in keywords: submatches = set() for original_db_kw, normalized_db_kw in normalized_db_keywords: # Yes I'm using a nested for loop over all keywords in the index. If # I really have to I'll probably come up with something more # efficient, but really it doesn't seem to be needed -- I have over # 850 notes (about 8 MB) and 25000 keywords and it's plenty fast. if usr_kw in normalized_db_kw: submatches.update(self.index['keywords'][original_db_kw]) if matches is None: matches = submatches else: matches &= submatches return list(matches) if matches else [] def list_keywords(self, substring, limit=25): """Print all (matching) keywords to standard output.""" print('listing keywords') decorated = [] substring = self.normalize(substring) for kw, filenames in self.index['keywords'].items(): normalized_kw = self.normalize(kw) if substring in normalized_kw: if Levenshtein is not None: decorated.append((Levenshtein.distance(normalized_kw, substring), -len(filenames), kw)) else: decorated.append((-len(filenames), kw)) decorated.sort() selection = [d[-1] for d in decorated[:limit]] print(selection) print(self.encode(u'\n'.join(selection))) def tokenize(self, text): """Tokenize a string into a list of normalized, unique keywords.""" words = set() text = self.decode(text) for word in re.findall(r'\w+', text, re.UNICODE): word = word.strip() if word != '' and not word.isspace() and len(word) >= 2: words.add(word) return words def normalize(self, keyword): """Normalize the case of a keyword if configured to do so.""" return keyword if self.case_sensitive else keyword.lower() def encode(self, text): """Encode a string in the user's preferred character encoding.""" if isinstance(text, str): text = codecs.encode(text, self.character_encoding, 'ignore') return text def decode(self, text): """Decode a string in the user's preferred character encoding.""" if isinstance(text, bytes): text = codecs.decode(text, self.character_encoding, 'ignore') return text def munge_path(self, path): """Canonicalize user-defined path, making it absolute.""" return os.path.abspath(os.path.expanduser(path)) def usage(self): print(__doc__.strip()) class Timer: """Easy to use timer to keep track of long during operations.""" def __init__(self): self.start_time = time.time() def __str__(self): return "%.2f seconds" % self.elapsed_time @property def elapsed_time(self): return time.time() - self.start_time if __name__ == '__main__': NotesIndex()
[ "codecs.encode", "pickle.dump", "getopt.getopt", "logging.basicConfig", "os.path.join", "codecs.decode", "os.path.isdir", "Levenshtein.distance", "os.walk", "time.time", "re.findall", "pickle.load", "os.path.getmtime", "sys.exit", "os.path.expanduser", "fnmatch.fnmatch", "logging.getLogger" ]
[((2271, 2313), 'os.path.expanduser', 'os.path.expanduser', (['"""~/notes-index.pickle"""'], {}), "('~/notes-index.pickle')\n", (2289, 2313), False, 'import os\n'), ((2315, 2355), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (2334, 2355), False, 'import logging\n'), ((2365, 2392), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2382, 2392), False, 'import logging\n'), ((2214, 2251), 'os.path.expanduser', 'os.path.expanduser', (['"""~/Dropbox/notes"""'], {}), "('~/Dropbox/notes')\n", (2232, 2251), False, 'import os\n'), ((16299, 16335), 're.findall', 're.findall', (['"""\\\\w+"""', 'text', 're.UNICODE'], {}), "('\\\\w+', text, re.UNICODE)\n", (16309, 16335), False, 'import re\n'), ((17472, 17483), 'time.time', 'time.time', ([], {}), '()\n', (17481, 17483), False, 'import time\n'), ((2601, 2620), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (2612, 2620), False, 'import pickle\n'), ((4496, 4514), 'os.walk', 'os.walk', (['directory'], {}), '(directory)\n', (4503, 4514), False, 'import os\n'), ((7381, 7407), 'pickle.dump', 'pickle.dump', (['index', 'handle'], {}), '(index, handle)\n', (7392, 7407), False, 'import pickle\n'), ((8209, 8328), 'getopt.getopt', 'getopt.getopt', (['argv', '"""il:d:n:e:vh"""', "['ignore-case', 'list=', 'database=', 'notes=', 'encoding=', 'verbose', 'help']"], {}), "(argv, 'il:d:n:e:vh', ['ignore-case', 'list=', 'database=',\n 'notes=', 'encoding=', 'verbose', 'help'])\n", (8222, 8328), False, 'import getopt\n'), ((11404, 11435), 'pickle.dump', 'pickle.dump', (['self.index', 'handle'], {}), '(self.index, handle)\n', (11415, 11435), False, 'import pickle\n'), ((11890, 11908), 'os.walk', 'os.walk', (['directory'], {}), '(directory)\n', (11897, 11908), False, 'import os\n'), ((16819, 16873), 'codecs.encode', 'codecs.encode', (['text', 'self.character_encoding', '"""ignore"""'], {}), "(text, self.character_encoding, 'ignore')\n", (16832, 16873), False, 'import codecs\n'), ((17052, 17106), 'codecs.decode', 'codecs.decode', (['text', 'self.character_encoding', '"""ignore"""'], {}), "(text, self.character_encoding, 'ignore')\n", (17065, 17106), False, 'import codecs\n'), ((17257, 17281), 'os.path.expanduser', 'os.path.expanduser', (['path'], {}), '(path)\n', (17275, 17281), False, 'import os\n'), ((17616, 17627), 'time.time', 'time.time', ([], {}), '()\n', (17625, 17627), False, 'import time\n'), ((7159, 7198), 're.findall', 're.findall', (['"""\\\\w{3,}"""', 'text', 're.UNICODE'], {}), "('\\\\w{3,}', text, re.UNICODE)\n", (7169, 7198), False, 'import re\n'), ((8483, 8494), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (8491, 8494), False, 'import sys\n'), ((10151, 10167), 'os.path.isdir', 'os.path.isdir', (['d'], {}), '(d)\n', (10164, 10167), False, 'import os\n'), ((10592, 10611), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (10603, 10611), False, 'import pickle\n'), ((4685, 4713), 'os.path.join', 'os.path.join', (['root', 'filename'], {}), '(root, filename)\n', (4697, 4713), False, 'import os\n'), ((4763, 4788), 'os.path.getmtime', 'os.path.getmtime', (['abspath'], {}), '(abspath)\n', (4779, 4788), False, 'import os\n'), ((12079, 12107), 'os.path.join', 'os.path.join', (['root', 'filename'], {}), '(root, filename)\n', (12091, 12107), False, 'import os\n'), ((12157, 12182), 'os.path.getmtime', 'os.path.getmtime', (['abspath'], {}), '(abspath)\n', (12173, 12182), False, 'import os\n'), ((4582, 4616), 'fnmatch.fnmatch', 'fnmatch.fnmatch', (['filename', 'pattern'], {}), '(filename, pattern)\n', (4597, 4616), False, 'import fnmatch\n'), ((11976, 12010), 'fnmatch.fnmatch', 'fnmatch.fnmatch', (['filename', 'pattern'], {}), '(filename, pattern)\n', (11991, 12010), False, 'import fnmatch\n'), ((15810, 15856), 'Levenshtein.distance', 'Levenshtein.distance', (['normalized_kw', 'substring'], {}), '(normalized_kw, substring)\n', (15830, 15856), False, 'import Levenshtein\n'), ((9560, 9571), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (9568, 9571), False, 'import sys\n')]
"""Implementation of the FunctionInjectionWalker class.""" from inspect import ( signature as inspect_signature) from types import ( CodeType, FunctionType) from typing import ( Iterator, Optional) from .abstract_injection_walker import ( AbstractInjectionWalker) from .code_object_injection_walker import ( CodeObjectInjectionWalker) from .doc_string_injection_walker import ( DocStringInjectionWalker) from .failed_injection_walker import ( FailedInjectionWalker) from .name_injection_walker import ( NameInjectionWalker) class FunctionInjectionWalker(AbstractInjectionWalker): """Injection walker for a function. This module will attempt to recover the source code from a function, via access to its ``__code__`` attribute. """ INJECTION_RE = None RESPONSE_RE = r'<function .+ at 0x[0-9a-fA-F]+>' def __extra_init__( self ) -> None: self._code_walker: Optional[CodeObjectInjectionWalker] = None self._name_walker: NameInjectionWalker = \ self.empty_instance(NameInjectionWalker) self._docstring_walker: DocStringInjectionWalker = \ self.empty_instance(DocStringInjectionWalker) self._src_code: Optional[str] = None self._signature: Optional[str] = None @property def code_walker( self ) -> Optional[CodeObjectInjectionWalker]: """The code object that this walker recovered from the target. This attribute will only be populated after a call to :func:`walk`. If the call to ``walk()`` cannot recover the object, then this attribute will remain as ``None``. """ return self._code_walker @property def name_walker( self ) -> NameInjectionWalker: """Walker used to recover this function's __name__.""" return self._name_walker @property def docstring_walker( self ) -> DocStringInjectionWalker: """Walker used to recover this function's __doc__ string.""" return self._docstring_walker @property def src_code( self ) -> Optional[str]: """The source code that this walker recovered from the target.""" return self._src_code @property def signature( self ) -> Optional[str]: """The decompiled function's signature, if one was retrieved.""" return self._signature def walk( self ) -> Iterator[AbstractInjectionWalker]: yield from self._walk_name() if not self._name_walker.is_default: if self._name_walker.value in self._engine.function_blacklist: return self._engine.function_blacklist.add(self._name_walker.value) yield from self._walk_docstring() code_obj_injection = f'{self._injection_str}.__code__' raw_result = self._harness.send_injection(code_obj_injection) if raw_result is None: yield FailedInjectionWalker.msg( 'Unable to recover injection response from string ' f'{raw_result}') return walker = self.next_walker(code_obj_injection, raw_result) if walker is None: yield FailedInjectionWalker.msg( 'No matching walker found for injection response ' f'{raw_result}') return elif not isinstance(walker, CodeObjectInjectionWalker): yield FailedInjectionWalker.msg( f'Got {type(walker)} when injecting function __code__ ' 'attribute; something is terribly wrong...') return for sub_walker in walker.walk(): yield sub_walker if walker.code_obj is None or walker.src_code is None: yield FailedInjectionWalker.msg( 'Unable to successfully recover code object from string ' f'{walker.injection_str}') return src_lines = ([] if walker.src_code is None else walker.src_code.splitlines()) indented_src_lines = [f' {line}' for line in src_lines] self._signature = self.__class__.code_obj_to_signature( walker.code_obj) self._src_code = f'{self._signature}\n' if self._docstring_walker.value: self._src_code += f' """{self._docstring_walker.value}"""\n' self._src_code += '\n'.join(indented_src_lines) yield self def _walk_name( self ) -> Iterator[AbstractInjectionWalker]: """Recover the function's __name__ attribute.""" name_injection = f'{self._injection_str}.__qualname__!r' result = self._harness.send_injection(name_injection) if result is None: yield FailedInjectionWalker.msg( 'Unable to read __name__ of function via injection ' f'{name_injection}') return walker = self.next_walker(name_injection, result) if not isinstance(walker, NameInjectionWalker): yield FailedInjectionWalker.msg( f'Expected a name walker when sending {name_injection} ' f'but got {walker.__class__.__qualname__} instead') return yield from walker.walk() self._name_walker = walker def _walk_docstring( self ) -> Iterator[AbstractInjectionWalker]: """Recover the function's __doc__ attribute.""" doc_string_injection = f'{self._injection_str}.__doc__!r' result = self._harness.send_injection(doc_string_injection) if result is None: yield FailedInjectionWalker.msg( 'Unable to read __doc__ of function via injection ' f'{doc_string_injection}') return walker = self.next_walker(doc_string_injection, result) if not isinstance(walker, DocStringInjectionWalker): yield FailedInjectionWalker.msg( f'Expected a doc walker when sending {doc_string_injection} ' f'but got {walker.__class__.__qualname__} instead') return yield from walker.walk() self._docstring_walker = walker @staticmethod def code_obj_to_signature( code_obj: CodeType ) -> str: """Get a function signature from a code object. See: https://stackoverflow.com/a/56761306/5094008 """ try: func = FunctionType(code_obj, {}) arg_sequence = inspect_signature(func) return f'def {code_obj.co_name}{arg_sequence}:' except TypeError: # build our own signature return f"""\ # exact argument names could not be reversed for below signature def {code_obj.co_name}(*args, **kwargs):""" def __str__( self ) -> str: return f'Injected function object with string {self._injection_str}'
[ "types.FunctionType", "inspect.signature" ]
[((6470, 6496), 'types.FunctionType', 'FunctionType', (['code_obj', '{}'], {}), '(code_obj, {})\n', (6482, 6496), False, 'from types import CodeType, FunctionType\n'), ((6524, 6547), 'inspect.signature', 'inspect_signature', (['func'], {}), '(func)\n', (6541, 6547), True, 'from inspect import signature as inspect_signature\n')]
# # Copyright (c) nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/tracecode-toolkit/ # The TraceCode software is licensed under the Apache License version 2.0. # Data generated with TraceCode require an acknowledgment. # TraceCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with TraceCode or any TraceCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with TraceCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # TraceCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # TraceCode is a free and open source software analysis tool from nexB Inc. and others. # Visit https://github.com/nexB/tracecode-toolkit/ for support and download. # from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest from tracecode import pathutils class TestPathUtils(unittest.TestCase): def test_common_path_prefix1(self): test = pathutils.common_path_prefix('/a/b/c', '/a/b/c') assert ('a/b/c', 3) == test def test_common_path_prefix2(self): test = pathutils.common_path_prefix('/a/b/c', '/a/b') assert ('a/b', 2) == test def test_common_path_prefix3(self): test = pathutils.common_path_prefix('/a/b', '/a/b/c') assert ('a/b', 2) == test def test_common_path_prefix4(self): test = pathutils.common_path_prefix('/a', '/a') assert ('a', 1) == test def test_common_path_prefix_path_root(self): test = pathutils.common_path_prefix('/a/b/c', '/') assert (None, 0) == test def test_common_path_prefix_root_path(self): test = pathutils.common_path_prefix('/', '/a/b/c') assert (None, 0) == test def test_common_path_prefix_root_root(self): test = pathutils.common_path_prefix('/', '/') assert (None, 0) == test def test_common_path_prefix_path_elements_are_similar(self): test = pathutils.common_path_prefix('/a/b/c', '/a/b/d') assert ('a/b', 2) == test def test_common_path_prefix_no_match(self): test = pathutils.common_path_prefix('/abc/d', '/abe/f') assert (None, 0) == test def test_common_path_prefix_ignore_training_slashes(self): test = pathutils.common_path_prefix('/a/b/c/', '/a/b/c/') assert ('a/b/c', 3) == test def test_common_path_prefix8(self): test = pathutils.common_path_prefix('/a/b/c/', '/a/b') assert ('a/b', 2) == test def test_common_path_prefix10(self): test = pathutils.common_path_prefix('/a/b/c.txt', '/a/b/b.txt') assert ('a/b', 2) == test def test_common_path_prefix11(self): test = pathutils.common_path_prefix('/a/b/c.txt', '/a/b.txt') assert ('a', 1) == test def test_common_path_prefix12(self): test = pathutils.common_path_prefix('/a/c/e/x.txt', '/a/d/a.txt') assert ('a', 1) == test def test_common_path_prefix13(self): test = pathutils.common_path_prefix('/a/c/e/x.txt', '/a/d/') assert ('a', 1) == test def test_common_path_prefix14(self): test = pathutils.common_path_prefix('/a/c/e/', '/a/d/') assert ('a', 1) == test def test_common_path_prefix15(self): test = pathutils.common_path_prefix('/a/c/e/', '/a/c/a.txt') assert ('a/c', 2) == test def test_common_path_prefix16(self): test = pathutils.common_path_prefix('/a/c/e/', '/a/c/f/') assert ('a/c', 2) == test def test_common_path_prefix17(self): test = pathutils.common_path_prefix('/a/a.txt', '/a/b.txt/') assert ('a', 1) == test def test_common_path_prefix18(self): test = pathutils.common_path_prefix('/a/c/', '/a/') assert ('a', 1) == test def test_common_path_prefix19(self): test = pathutils.common_path_prefix('/a/c.txt', '/a/') assert ('a', 1) == test def test_common_path_prefix20(self): test = pathutils.common_path_prefix('/a/c/', '/a/d/') assert ('a', 1) == test def test_common_path_suffix(self): test = pathutils.common_path_suffix('/a/b/c', '/a/b/c') assert ('a/b/c', 3) == test def test_common_path_suffix_absolute_relative(self): test = pathutils.common_path_suffix('a/b/c', '/a/b/c') assert ('a/b/c', 3) == test def test_common_path_suffix_find_subpath(self): test = pathutils.common_path_suffix('/z/b/c', '/a/b/c') assert ('b/c', 2) == test def test_common_path_suffix_handles_relative_path(self): test = pathutils.common_path_suffix('a/b', 'a/b') assert ('a/b', 2) == test def test_common_path_suffix_handles_relative_subpath(self): test = pathutils.common_path_suffix('zsds/adsds/a/b/b/c', 'a//a/d//b/c') assert ('b/c', 2) == test def test_common_path_suffix_ignore_and_strip_trailing_slash(self): test = pathutils.common_path_suffix('zsds/adsds/a/b/b/c/', 'a//a/d//b/c/') assert ('b/c', 2) == test def test_common_path_suffix_return_None_if_no_common_suffix(self): test = pathutils.common_path_suffix('/a/b/c', '/') assert (None, 0) == test def test_common_path_suffix_return_None_if_no_common_suffix2(self): test = pathutils.common_path_suffix('/', '/a/b/c') assert (None, 0) == test def test_common_path_suffix_match_only_whole_segments(self): # only segments are honored, commonality within segment is ignored test = pathutils.common_path_suffix( 'this/is/aaaa/great/path', 'this/is/aaaaa/great/path') assert ('great/path', 2) == test def test_common_path_suffix_two_root(self): test = pathutils.common_path_suffix('/', '/') assert (None, 0) == test def test_common_path_suffix_empty_root(self): test = pathutils.common_path_suffix('', '/') assert (None, 0) == test def test_common_path_suffix_root_empty(self): test = pathutils.common_path_suffix('/', '') assert (None, 0) == test def test_common_path_suffix_empty_empty(self): test = pathutils.common_path_suffix('', '') assert (None, 0) == test
[ "tracecode.pathutils.common_path_suffix", "tracecode.pathutils.common_path_prefix" ]
[((1673, 1721), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b/c"""', '"""/a/b/c"""'], {}), "('/a/b/c', '/a/b/c')\n", (1701, 1721), False, 'from tracecode import pathutils\n'), ((1814, 1860), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b/c"""', '"""/a/b"""'], {}), "('/a/b/c', '/a/b')\n", (1842, 1860), False, 'from tracecode import pathutils\n'), ((1951, 1997), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b"""', '"""/a/b/c"""'], {}), "('/a/b', '/a/b/c')\n", (1979, 1997), False, 'from tracecode import pathutils\n'), ((2088, 2128), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a"""', '"""/a"""'], {}), "('/a', '/a')\n", (2116, 2128), False, 'from tracecode import pathutils\n'), ((2226, 2269), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b/c"""', '"""/"""'], {}), "('/a/b/c', '/')\n", (2254, 2269), False, 'from tracecode import pathutils\n'), ((2368, 2411), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/"""', '"""/a/b/c"""'], {}), "('/', '/a/b/c')\n", (2396, 2411), False, 'from tracecode import pathutils\n'), ((2510, 2548), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/"""', '"""/"""'], {}), "('/', '/')\n", (2538, 2548), False, 'from tracecode import pathutils\n'), ((2663, 2711), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b/c"""', '"""/a/b/d"""'], {}), "('/a/b/c', '/a/b/d')\n", (2691, 2711), False, 'from tracecode import pathutils\n'), ((2810, 2858), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/abc/d"""', '"""/abe/f"""'], {}), "('/abc/d', '/abe/f')\n", (2838, 2858), False, 'from tracecode import pathutils\n'), ((2971, 3021), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b/c/"""', '"""/a/b/c/"""'], {}), "('/a/b/c/', '/a/b/c/')\n", (2999, 3021), False, 'from tracecode import pathutils\n'), ((3114, 3161), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b/c/"""', '"""/a/b"""'], {}), "('/a/b/c/', '/a/b')\n", (3142, 3161), False, 'from tracecode import pathutils\n'), ((3253, 3309), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b/c.txt"""', '"""/a/b/b.txt"""'], {}), "('/a/b/c.txt', '/a/b/b.txt')\n", (3281, 3309), False, 'from tracecode import pathutils\n'), ((3445, 3499), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/b/c.txt"""', '"""/a/b.txt"""'], {}), "('/a/b/c.txt', '/a/b.txt')\n", (3473, 3499), False, 'from tracecode import pathutils\n'), ((3589, 3647), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/c/e/x.txt"""', '"""/a/d/a.txt"""'], {}), "('/a/c/e/x.txt', '/a/d/a.txt')\n", (3617, 3647), False, 'from tracecode import pathutils\n'), ((3781, 3834), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/c/e/x.txt"""', '"""/a/d/"""'], {}), "('/a/c/e/x.txt', '/a/d/')\n", (3809, 3834), False, 'from tracecode import pathutils\n'), ((3924, 3972), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/c/e/"""', '"""/a/d/"""'], {}), "('/a/c/e/', '/a/d/')\n", (3952, 3972), False, 'from tracecode import pathutils\n'), ((4062, 4115), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/c/e/"""', '"""/a/c/a.txt"""'], {}), "('/a/c/e/', '/a/c/a.txt')\n", (4090, 4115), False, 'from tracecode import pathutils\n'), ((4207, 4257), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/c/e/"""', '"""/a/c/f/"""'], {}), "('/a/c/e/', '/a/c/f/')\n", (4235, 4257), False, 'from tracecode import pathutils\n'), ((4349, 4402), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/a.txt"""', '"""/a/b.txt/"""'], {}), "('/a/a.txt', '/a/b.txt/')\n", (4377, 4402), False, 'from tracecode import pathutils\n'), ((4492, 4536), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/c/"""', '"""/a/"""'], {}), "('/a/c/', '/a/')\n", (4520, 4536), False, 'from tracecode import pathutils\n'), ((4626, 4673), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/c.txt"""', '"""/a/"""'], {}), "('/a/c.txt', '/a/')\n", (4654, 4673), False, 'from tracecode import pathutils\n'), ((4763, 4809), 'tracecode.pathutils.common_path_prefix', 'pathutils.common_path_prefix', (['"""/a/c/"""', '"""/a/d/"""'], {}), "('/a/c/', '/a/d/')\n", (4791, 4809), False, 'from tracecode import pathutils\n'), ((4897, 4945), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""/a/b/c"""', '"""/a/b/c"""'], {}), "('/a/b/c', '/a/b/c')\n", (4925, 4945), False, 'from tracecode import pathutils\n'), ((5055, 5102), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""a/b/c"""', '"""/a/b/c"""'], {}), "('a/b/c', '/a/b/c')\n", (5083, 5102), False, 'from tracecode import pathutils\n'), ((5207, 5255), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""/z/b/c"""', '"""/a/b/c"""'], {}), "('/z/b/c', '/a/b/c')\n", (5235, 5255), False, 'from tracecode import pathutils\n'), ((5367, 5409), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""a/b"""', '"""a/b"""'], {}), "('a/b', 'a/b')\n", (5395, 5409), False, 'from tracecode import pathutils\n'), ((5524, 5589), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""zsds/adsds/a/b/b/c"""', '"""a//a/d//b/c"""'], {}), "('zsds/adsds/a/b/b/c', 'a//a/d//b/c')\n", (5552, 5589), False, 'from tracecode import pathutils\n'), ((5755, 5822), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""zsds/adsds/a/b/b/c/"""', '"""a//a/d//b/c/"""'], {}), "('zsds/adsds/a/b/b/c/', 'a//a/d//b/c/')\n", (5783, 5822), False, 'from tracecode import pathutils\n'), ((5988, 6031), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""/a/b/c"""', '"""/"""'], {}), "('/a/b/c', '/')\n", (6016, 6031), False, 'from tracecode import pathutils\n'), ((6153, 6196), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""/"""', '"""/a/b/c"""'], {}), "('/', '/a/b/c')\n", (6181, 6196), False, 'from tracecode import pathutils\n'), ((6386, 6473), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""this/is/aaaa/great/path"""', '"""this/is/aaaaa/great/path"""'], {}), "('this/is/aaaa/great/path',\n 'this/is/aaaaa/great/path')\n", (6414, 6473), False, 'from tracecode import pathutils\n'), ((6588, 6626), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""/"""', '"""/"""'], {}), "('/', '/')\n", (6616, 6626), False, 'from tracecode import pathutils\n'), ((6726, 6763), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['""""""', '"""/"""'], {}), "('', '/')\n", (6754, 6763), False, 'from tracecode import pathutils\n'), ((6863, 6900), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['"""/"""', '""""""'], {}), "('/', '')\n", (6891, 6900), False, 'from tracecode import pathutils\n'), ((7001, 7037), 'tracecode.pathutils.common_path_suffix', 'pathutils.common_path_suffix', (['""""""', '""""""'], {}), "('', '')\n", (7029, 7037), False, 'from tracecode import pathutils\n')]
# Generated by Django 3.2.8 on 2021-10-24 01:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dim_sum', '0001_initial'), ] operations = [ migrations.AddField( model_name='dimsum', name='history', field=models.TextField(default='Write summary here.'), ), ]
[ "django.db.models.TextField" ]
[((324, 371), 'django.db.models.TextField', 'models.TextField', ([], {'default': '"""Write summary here."""'}), "(default='Write summary here.')\n", (340, 371), False, 'from django.db import migrations, models\n')]
# Copyright (c) 2020-2021 CRS4 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import logging from lifemonitor.auth.models import Subscription, User from tests import utils logger = logging.getLogger() def test_workflow_subscription(user1: dict, valid_workflow: str): _, workflow = utils.pick_and_register_workflow(user1, valid_workflow) user: User = user1['user'] s: Subscription = user.subscribe(workflow) logger.debug("Subscription: %r", s) assert s, "Subscription should not be empty" assert len(user.subscriptions) == 1, "Unexpected number of subscriptions" s: Subscription = user.unsubscribe(workflow) logger.debug("Subscription: %r", s) assert s, "Subscription should not be empty" assert len(user.subscriptions) == 0, "Unexpected number of subscriptions"
[ "tests.utils.pick_and_register_workflow", "logging.getLogger" ]
[((1196, 1215), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1213, 1215), False, 'import logging\n'), ((1302, 1357), 'tests.utils.pick_and_register_workflow', 'utils.pick_and_register_workflow', (['user1', 'valid_workflow'], {}), '(user1, valid_workflow)\n', (1334, 1357), False, 'from tests import utils\n')]
# ============================================= # -*- coding: utf-8 -*- # @Time : 2020/5/14 上午10:50 # @Author : xiao9616 # @Email : <EMAIL> # @File : BaseModel.py # @Software: PyCharm # ============================================ import logging import tensorflow as tf import os from src.yolo4.config import * from src.yolo4.util import * from src.yolo4.Net import YOLO4_NET from src.yolo4.Loss import YOLO4_LOSS logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename="./yolo4/logs/train.log", filemode='w+') class BaseModel(object): ''' 一个自定义的类,需要重写方法: ''' def data_generator(self): ''' Returns:该方法可以重写, 并且返回一个tf.data对象 ''' txt_data = tf.data.TextLineDataset(filenames=train_path) count = 0 for _ in txt_data: count += 1 train_data = txt_data.batch(batch_size=batch_size) return train_data, count def net_generator(self): net = YOLO4_NET() return net def loss_generator(self): loss = YOLO4_LOSS() return loss def optimizer_generator(self): lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=0.001, decay_steps=3000, decay_rate=0.96, staircase=True ) optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule) return optimizer def metric_generator(self): metric = tf.keras.metrics.Mean() return metric def train(self): # GPU 设置 tf.debugging.set_log_device_placement(True) if use_gpu: gpus = tf.config.experimental.list_physical_devices(device_type="GPU") if gpus: logging.info("use gpu device") # gpu显存分配 for gpu in gpus: tf.config.experimental.set_memory_growth(device=gpu, enable=True) tf.print(gpu) else: os.environ["CUDA_VISIBLE_DEVICE"] = "-1" logging.info("not found gpu device,convert to use cpu") else: logging.info("use cpu device") # 禁用gpu os.environ["CUDA_VISIBLE_DEVICE"] = "-1" # 训练数据 train_dataset, train_count = self.data_generator() # 网络结构 net = self.net_generator() net.summary() global fine_tune_epoch # 是否finetune if fine_tune: net.load_weights(filepath=weights_path + "epoch-{}".format(fine_tune_epoch)) print("load {} epoch weigth".format(fine_tune)) else: fine_tune_epoch = -1 print("train model from init") # 设置loss损失函数 loss = self.loss_generator() # 设置优化器optimizer optimizer = self.optimizer_generator() # 设置评价指标 metric = self.metric_generator() # 模型训练与更新 for epoch in range(fine_tune_epoch + 1, train_epochs): step = 0 for train_dataset_batch in train_dataset: # print(train_dataset_batch) step += 1 images, boxes = parse_dataset_batch(dataset=train_dataset_batch) image_batch = process_image_batch(images) label_batch = generate_label_batch(boxes) with tf.GradientTape() as tape: out = net(image_batch) total_loss = loss(y_true=label_batch, y_pred=out) gradients = tape.gradient(total_loss, net.trainable_variables) optimizer.apply_gradients(grads_and_vars=zip(gradients, net.trainable_variables)) metric.updates(values=total_loss) print("Epoch: {}/{}, step: {}/{} ,loss: {:.5f}".format( epoch, train_epochs, step, tf.math.ceil(train_count / batch_size), metric.result() )) metric.reset_states() if epoch % save_frequency == 0: net.save_weights(filepath=weights_path + "epoch-{}".format(epoch), save_format='tf') net.save_weights(filepath=weights_path + "epoch-{}".format(train_epochs), save_format='tf') if __name__ == '__main__': yolo = BaseModel() yolo.train()
[ "tensorflow.math.ceil", "logging.basicConfig", "tensorflow.keras.metrics.Mean", "tensorflow.print", "tensorflow.keras.optimizers.schedules.ExponentialDecay", "tensorflow.config.experimental.set_memory_growth", "logging.info", "tensorflow.keras.optimizers.Adam", "tensorflow.debugging.set_log_device_placement", "src.yolo4.Loss.YOLO4_LOSS", "src.yolo4.Net.YOLO4_NET", "tensorflow.config.experimental.list_physical_devices", "tensorflow.GradientTape", "tensorflow.data.TextLineDataset" ]
[((454, 635), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG', 'format': '"""%(asctime)s %(levelname)s %(message)s"""', 'datefmt': '"""%a, %d %b %Y %H:%M:%S"""', 'filename': '"""./yolo4/logs/train.log"""', 'filemode': '"""w+"""'}), "(level=logging.DEBUG, format=\n '%(asctime)s %(levelname)s %(message)s', datefmt=\n '%a, %d %b %Y %H:%M:%S', filename='./yolo4/logs/train.log', filemode='w+')\n", (473, 635), False, 'import logging\n'), ((827, 872), 'tensorflow.data.TextLineDataset', 'tf.data.TextLineDataset', ([], {'filenames': 'train_path'}), '(filenames=train_path)\n', (850, 872), True, 'import tensorflow as tf\n'), ((1078, 1089), 'src.yolo4.Net.YOLO4_NET', 'YOLO4_NET', ([], {}), '()\n', (1087, 1089), False, 'from src.yolo4.Net import YOLO4_NET\n'), ((1155, 1167), 'src.yolo4.Loss.YOLO4_LOSS', 'YOLO4_LOSS', ([], {}), '()\n', (1165, 1167), False, 'from src.yolo4.Loss import YOLO4_LOSS\n'), ((1246, 1376), 'tensorflow.keras.optimizers.schedules.ExponentialDecay', 'tf.keras.optimizers.schedules.ExponentialDecay', ([], {'initial_learning_rate': '(0.001)', 'decay_steps': '(3000)', 'decay_rate': '(0.96)', 'staircase': '(True)'}), '(initial_learning_rate=0.001,\n decay_steps=3000, decay_rate=0.96, staircase=True)\n', (1292, 1376), True, 'import tensorflow as tf\n'), ((1451, 1502), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': 'lr_schedule'}), '(learning_rate=lr_schedule)\n', (1475, 1502), True, 'import tensorflow as tf\n'), ((1578, 1601), 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {}), '()\n', (1599, 1601), True, 'import tensorflow as tf\n'), ((1671, 1714), 'tensorflow.debugging.set_log_device_placement', 'tf.debugging.set_log_device_placement', (['(True)'], {}), '(True)\n', (1708, 1714), True, 'import tensorflow as tf\n'), ((1754, 1817), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', ([], {'device_type': '"""GPU"""'}), "(device_type='GPU')\n", (1798, 1817), True, 'import tensorflow as tf\n'), ((2238, 2268), 'logging.info', 'logging.info', (['"""use cpu device"""'], {}), "('use cpu device')\n", (2250, 2268), False, 'import logging\n'), ((1855, 1885), 'logging.info', 'logging.info', (['"""use gpu device"""'], {}), "('use gpu device')\n", (1867, 1885), False, 'import logging\n'), ((2156, 2211), 'logging.info', 'logging.info', (['"""not found gpu device,convert to use cpu"""'], {}), "('not found gpu device,convert to use cpu')\n", (2168, 2211), False, 'import logging\n'), ((1965, 2030), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', ([], {'device': 'gpu', 'enable': '(True)'}), '(device=gpu, enable=True)\n', (2005, 2030), True, 'import tensorflow as tf\n'), ((2051, 2064), 'tensorflow.print', 'tf.print', (['gpu'], {}), '(gpu)\n', (2059, 2064), True, 'import tensorflow as tf\n'), ((3441, 3458), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (3456, 3458), True, 'import tensorflow as tf\n'), ((3927, 3965), 'tensorflow.math.ceil', 'tf.math.ceil', (['(train_count / batch_size)'], {}), '(train_count / batch_size)\n', (3939, 3965), True, 'import tensorflow as tf\n')]
import networkx as nx import sys from collections import defaultdict sys.setrecursionlimit(100000000) def direct_paths(lines): world = nx.Graph() for row,line in enumerate(lines): for col,obj in enumerate(line): if obj != '.': continue if line[col - 1] == '.': world.add_edge((col, row), (col - 1, row)) if lines[row - 1][col] == '.': world.add_edge((col, row), (col, row - 1)) return world def search_portals(lines): portals = defaultdict(list) for row,line in enumerate(lines[:-1]): for col,obj in enumerate(line): if not obj.isalpha(): continue if line[col + 1].isalpha(): portals[obj + line[col + 1]].append((col + 2, row) if line[col + 2] == '.' else (col - 1, row)) elif lines[row + 1][col].isalpha(): portals[obj + lines[row + 1][col]].append((col, row - 1) if lines[row - 1][col] == '.' else (col, row + 2)) return portals def portal_paths(portal_list, world): for portals in portal_list.values(): if len(portals) == 1: continue assert len(portals) == 2 world.add_edge(portals[0], portals[1]) with open('day20.txt') as f: lines = f.readlines() width = len(lines[0]) height = len(lines) W = direct_paths(lines) portal_connections = search_portals(lines) portal_paths(portal_connections, W) path = nx.dijkstra_path(W, portal_connections['AA'][0], portal_connections['ZZ'][0]) print('part one', len(path) - 1) def is_outer(x, y): return x == 2 or y == 2 or x == width - 4 or y == height - 3 def accessible_portals(pos, portal_list, world): acc_outer, acc_inner = {}, {} for portal_id in portal_list.keys(): if portal_id == 'AA': continue for portal_pos in portal_list[portal_id]: if portal_pos == pos: continue try: dst = nx.dijkstra_path_length(world, pos, portal_pos) accessible = acc_outer if is_outer(*portal_pos) else acc_inner assert portal_id not in accessible accessible[portal_id] = dst, portal_pos except nx.NetworkXNoPath: pass return acc_outer, acc_inner def get_other_exit(portal_list, portal_id, current_pos): return [pos for pos in portal_list[portal_id] if pos != current_pos][0] def pathfind_recursive(pos, level, portal_list, world, history): print(level) def search_paths(accessible, dlevel): paths = [] for pid, dst_pos in accessible.items(): if pid == 'ZZ' or (pid, dst_pos[1], level) in history: continue distance_to_goal = pathfind_recursive(get_other_exit(portal_list, pid, dst_pos[1]), level + dlevel, portal_list, world, history.union([(pid, dst_pos[1], level)])) paths.append(distance_to_goal + dst_pos[0] + 1 if distance_to_goal else None) paths = [path for path in paths if path] return min(paths) if paths else None acc_outer, acc_inner = accessible_portals(pos, portal_list, world) if level == 0 and 'ZZ' in acc_outer: return acc_outer['ZZ'][0] if level != 0 and acc_outer: outer_found = search_paths(acc_outer, -1) if outer_found: return outer_found return search_paths(acc_inner, 1) def pathfind_loop(world, portal_list, max_level): def add_branches(accessible, new_level, current_length): for pid in [pid for pid in accessible.keys() if pid != 'ZZ']: current = accessible[pid] new_length = current_length + 1 + current[0] new_pos = get_other_exit(portal_list, pid, current[1]) to_check_branch.append((new_pos, new_level, new_length)) to_check_branch = [(portal_list['AA'][0], 0, 0)] solutions = [] while to_check_branch: pos, level, path_length = to_check_branch.pop() acc_outer, acc_inner = accessible_portals(pos, portal_list, world) if level == 0 and 'ZZ' in acc_outer: solutions.append(path_length + acc_outer['ZZ'][0]) print(solutions[-1]) elif level >= max_level: continue add_branches(acc_inner, level + 1, path_length) if level > 0 and acc_outer: add_branches(acc_outer, level - 1, path_length) return min(solutions) if solutions else None W = direct_paths(lines) #result = pathfind_recursive(portal_connections['AA'][0], 0, portal_connections, W, set()) result = pathfind_loop(W, portal_connections, 100) print('part two', result)
[ "networkx.dijkstra_path_length", "networkx.dijkstra_path", "collections.defaultdict", "networkx.Graph", "sys.setrecursionlimit" ]
[((70, 102), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(100000000)'], {}), '(100000000)\n', (91, 102), False, 'import sys\n'), ((1461, 1538), 'networkx.dijkstra_path', 'nx.dijkstra_path', (['W', "portal_connections['AA'][0]", "portal_connections['ZZ'][0]"], {}), "(W, portal_connections['AA'][0], portal_connections['ZZ'][0])\n", (1477, 1538), True, 'import networkx as nx\n'), ((141, 151), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (149, 151), True, 'import networkx as nx\n'), ((539, 556), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (550, 556), False, 'from collections import defaultdict\n'), ((1982, 2029), 'networkx.dijkstra_path_length', 'nx.dijkstra_path_length', (['world', 'pos', 'portal_pos'], {}), '(world, pos, portal_pos)\n', (2005, 2029), True, 'import networkx as nx\n')]