|
from langchain_community.vectorstores import FAISS |
|
from langchain_openai import OpenAIEmbeddings |
|
from langchain_text_splitters import CharacterTextSplitter |
|
from langchain_community.document_loaders import TextLoader |
|
|
|
|
|
|
|
loader = TextLoader("../../state_of_the_union.txt") |
|
documents = loader.load() |
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) |
|
texts = text_splitter.split_documents(documents) |
|
embeddings = OpenAIEmbeddings() |
|
db = FAISS.from_documents(texts, embeddings) |
|
|
|
retriever = db.as_retriever() |
|
docs = retriever.invoke("what did he say about ketanji brown jackson") |
|
|
|
|
|
|
|
|
|
retriever = db.as_retriever(search_type="mmr") |
|
docs = retriever.invoke("what did he say about ketanji brown jackson") |
|
|
|
|
|
|
|
|
|
retriever = db.as_retriever( |
|
search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.5} |
|
) |
|
docs = retriever.invoke("what did he say about ketanji brown jackson") |
|
|
|
|
|
|
|
|
|
|
|
retriever = db.as_retriever(search_kwargs={"k": 1}) |
|
docs = retriever.invoke("what did he say about ketanji brown jackson") |
|
len(docs) |
|
|