Delete research_1/test.py
Browse files- research_1/test.py +0 -38
research_1/test.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
from langchain_community.vectorstores import FAISS
|
2 |
-
from langchain_openai import OpenAIEmbeddings
|
3 |
-
from langchain_text_splitters import CharacterTextSplitter
|
4 |
-
from langchain_community.document_loaders import TextLoader
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
loader = TextLoader("../../state_of_the_union.txt")
|
9 |
-
documents = loader.load()
|
10 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
11 |
-
texts = text_splitter.split_documents(documents)
|
12 |
-
embeddings = OpenAIEmbeddings()
|
13 |
-
db = FAISS.from_documents(texts, embeddings)
|
14 |
-
|
15 |
-
retriever = db.as_retriever()
|
16 |
-
docs = retriever.invoke("what did he say about ketanji brown jackson")
|
17 |
-
|
18 |
-
|
19 |
-
# Maximum marginal relevance retrieval
|
20 |
-
#By default, the vector store retriever uses similarity search. If the underlying vector store supports maximum marginal relevance search, you can specify that as the search type.
|
21 |
-
retriever = db.as_retriever(search_type="mmr")
|
22 |
-
docs = retriever.invoke("what did he say about ketanji brown jackson")
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
#Similarity score threshold retrieval
|
27 |
-
retriever = db.as_retriever(
|
28 |
-
search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.5}
|
29 |
-
)
|
30 |
-
docs = retriever.invoke("what did he say about ketanji brown jackson")
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#Specifying top k
|
35 |
-
#You can also specify search kwargs like k to use when doing retrieval.
|
36 |
-
retriever = db.as_retriever(search_kwargs={"k": 1})
|
37 |
-
docs = retriever.invoke("what did he say about ketanji brown jackson")
|
38 |
-
len(docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|