rqualis commited on
Commit
daacecf
·
verified ·
1 Parent(s): 91271ff

Delete research_1/test.py

Browse files
Files changed (1) hide show
  1. research_1/test.py +0 -38
research_1/test.py DELETED
@@ -1,38 +0,0 @@
1
- from langchain_community.vectorstores import FAISS
2
- from langchain_openai import OpenAIEmbeddings
3
- from langchain_text_splitters import CharacterTextSplitter
4
- from langchain_community.document_loaders import TextLoader
5
-
6
-
7
-
8
- loader = TextLoader("../../state_of_the_union.txt")
9
- documents = loader.load()
10
- text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
11
- texts = text_splitter.split_documents(documents)
12
- embeddings = OpenAIEmbeddings()
13
- db = FAISS.from_documents(texts, embeddings)
14
-
15
- retriever = db.as_retriever()
16
- docs = retriever.invoke("what did he say about ketanji brown jackson")
17
-
18
-
19
- # Maximum marginal relevance retrieval
20
- #By default, the vector store retriever uses similarity search. If the underlying vector store supports maximum marginal relevance search, you can specify that as the search type.
21
- retriever = db.as_retriever(search_type="mmr")
22
- docs = retriever.invoke("what did he say about ketanji brown jackson")
23
-
24
-
25
-
26
- #Similarity score threshold retrieval
27
- retriever = db.as_retriever(
28
- search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.5}
29
- )
30
- docs = retriever.invoke("what did he say about ketanji brown jackson")
31
-
32
-
33
-
34
- #Specifying top k
35
- #You can also specify search kwargs like k to use when doing retrieval.
36
- retriever = db.as_retriever(search_kwargs={"k": 1})
37
- docs = retriever.invoke("what did he say about ketanji brown jackson")
38
- len(docs)