from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = FAISS.from_documents(texts, embeddings) retriever = db.as_retriever() docs = retriever.invoke("what did he say about ketanji brown jackson") # Maximum marginal relevance retrieval #By default, the vector store retriever uses similarity search. If the underlying vector store supports maximum marginal relevance search, you can specify that as the search type. retriever = db.as_retriever(search_type="mmr") docs = retriever.invoke("what did he say about ketanji brown jackson") #Similarity score threshold retrieval retriever = db.as_retriever( search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.5} ) docs = retriever.invoke("what did he say about ketanji brown jackson") #Specifying top k #You can also specify search kwargs like k to use when doing retrieval. retriever = db.as_retriever(search_kwargs={"k": 1}) docs = retriever.invoke("what did he say about ketanji brown jackson") len(docs)