Commit
·
5973fe6
1
Parent(s):
c146a92
Update README
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- music
|
7 |
- spectrogram
|
8 |
size_categories:
|
9 |
-
- n<
|
10 |
---
|
11 |
|
12 |
## Google/MusicCapsをスペクトログラムにしたデータ。
|
@@ -29,7 +29,7 @@ size_categories:
|
|
29 |
</tbody>
|
30 |
</table>
|
31 |
|
32 |
-
###
|
33 |
|
34 |
* コード:https://colab.research.google.com/drive/13m792FEoXszj72viZuBtusYRUL1z6Cu2?usp=sharing
|
35 |
* 参考にしたKaggle Notebook : https://www.kaggle.com/code/osanseviero/musiccaps-explorer
|
@@ -48,7 +48,140 @@ image = Image.fromarray(np.uint8(D), mode='L') # 'L'は1チャンネルのグ
|
|
48 |
image.save('spectrogram_{}.png')
|
49 |
```
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
```python
|
53 |
im = Image.open("pngファイル")
|
54 |
db_ud = np.uint8(np.array(im))
|
@@ -60,4 +193,4 @@ print(amp.shape)
|
|
60 |
|
61 |
y_inv = librosa.griffinlim(amp*200)
|
62 |
display(IPython.display.Audio(y_inv, rate=sr))
|
63 |
-
```
|
|
|
6 |
- music
|
7 |
- spectrogram
|
8 |
size_categories:
|
9 |
+
- 10K<n<100K
|
10 |
---
|
11 |
|
12 |
## Google/MusicCapsをスペクトログラムにしたデータ。
|
|
|
29 |
</tbody>
|
30 |
</table>
|
31 |
|
32 |
+
### How this dataset was made
|
33 |
|
34 |
* コード:https://colab.research.google.com/drive/13m792FEoXszj72viZuBtusYRUL1z6Cu2?usp=sharing
|
35 |
* 参考にしたKaggle Notebook : https://www.kaggle.com/code/osanseviero/musiccaps-explorer
|
|
|
48 |
image.save('spectrogram_{}.png')
|
49 |
```
|
50 |
|
51 |
+
## How to use this
|
52 |
+
* <font color="red">Subset <b>data 1300-1600</b> and <b>data 3400-3600</b> are not working now, so please get subset_name_list</n>
|
53 |
+
those were removed first</font>.
|
54 |
+
### get information about this dataset:
|
55 |
+
```python
|
56 |
+
# Extract dataset's information using huggingface API
|
57 |
+
import requests
|
58 |
+
headers = {"Authorization": f"Bearer {API token}"}
|
59 |
+
API_URL = "https://datasets-server.huggingface.co/info?dataset=mb23%2FGraySpectrogram"
|
60 |
+
def query():
|
61 |
+
response = requests.get(API_URL, headers=headers)
|
62 |
+
return response.json()
|
63 |
+
data = query()
|
64 |
+
|
65 |
+
# Make subset name list.
|
66 |
+
subset__name_list = list()
|
67 |
+
for dic in data["failed"]:
|
68 |
+
subset_name_list.append(dic["config"])
|
69 |
+
# print(dic["config"])
|
70 |
+
subset_name_list = sorted(subset_list, key=natural_keys)
|
71 |
+
|
72 |
+
|
73 |
+
remove_list = [
|
74 |
+
"data 1300-1600",
|
75 |
+
"data 3400-3600"
|
76 |
+
]
|
77 |
+
for remove_dataset in remove_list:
|
78 |
+
if remove_dataset in subset_list:
|
79 |
+
subset_list.remove(remove_dataset)
|
80 |
+
else:
|
81 |
+
pass
|
82 |
+
subset_list
|
83 |
+
|
84 |
+
'''
|
85 |
+
return subset name list. for example,
|
86 |
+
['data 0-200',
|
87 |
+
'data 200-600',
|
88 |
+
'data 600-1000',
|
89 |
+
'data 1000-1300',
|
90 |
+
'data 1600-2000',
|
91 |
+
'data 2000-2200',
|
92 |
+
'data 2200-2400',
|
93 |
+
'data 2400-2600',
|
94 |
+
'data 2600-2800',
|
95 |
+
'data 3000-3200',
|
96 |
+
'data 3200-3400',
|
97 |
+
'data 3600-3800',
|
98 |
+
'data 3800-4000',
|
99 |
+
'data 4000-4200',
|
100 |
+
'data 4200-4400',
|
101 |
+
'data 4400-4600',
|
102 |
+
'data 4600-4800',
|
103 |
+
'data 4800-5000',
|
104 |
+
'data 5000-5200',
|
105 |
+
'data 5200-5520']
|
106 |
+
'''
|
107 |
+
```
|
108 |
+
|
109 |
+
|
110 |
+
### load dataset and change to dataloader:
|
111 |
+
* You can use the code below:
|
112 |
+
* <font color="red">...but (;・∀・)I don't know whether this code works efficiently, because I haven't tried this code so far</color>
|
113 |
+
```python
|
114 |
+
import datasets
|
115 |
+
from datasets import load_dataset, DatasetDict
|
116 |
+
from torchvision import transforms
|
117 |
+
from torch.utils.data import DataLoader
|
118 |
+
BATCH_SIZE = ???
|
119 |
+
IMAGE_SIZE = ???
|
120 |
+
TRAIN_SIZE = ??? # the number of training data
|
121 |
+
TEST_SIZE = ??? # the number of test data
|
122 |
+
|
123 |
+
def load_datasets():
|
124 |
+
|
125 |
+
# Define data transforms
|
126 |
+
data_transforms = [
|
127 |
+
transforms.Resize((IMG_SIZE, IMG_SIZE)),
|
128 |
+
transforms.ToTensor(), # Scales data into [0,1]
|
129 |
+
transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1]
|
130 |
+
]
|
131 |
+
data_transform = transforms.Compose(data_transforms)
|
132 |
+
|
133 |
+
data = load_dataset("mb23/GraySpectrogram", subset_list[0])
|
134 |
+
for subset in subset_list:
|
135 |
+
# Confirm subset_list doesn't include "remove_list" datasets in the above cell.
|
136 |
+
print(subset)
|
137 |
+
new_ds = load_dataset("mb23/GraySpectrogram", subset)
|
138 |
+
new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]])
|
139 |
+
new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]])
|
140 |
+
|
141 |
+
# take place of data[split]
|
142 |
+
data["train"] = new_dataset_train
|
143 |
+
data["test"] = new_dataset_test
|
144 |
+
|
145 |
+
# memo:
|
146 |
+
# 特徴量上手く抽出する方法が...わからん。これは力づく。
|
147 |
+
# 本当はload_dataset()の時点で抽出したかったけど、無理そう
|
148 |
+
# リポジトリ作り直してpush_to_hub()したほうがいいかもしれない。
|
149 |
+
|
150 |
+
new_dataset = dict()
|
151 |
+
new_dataset["train"] = Dataset.from_dict({
|
152 |
+
"image" : data["train"]["image"],
|
153 |
+
"caption" : data["train"]["caption"]
|
154 |
+
})
|
155 |
+
|
156 |
+
new_dataset["test"] = Dataset.from_dict({
|
157 |
+
"image" : data["test"]["image"],
|
158 |
+
"caption" : data["test"]["caption"]
|
159 |
+
})
|
160 |
+
data = datasets.DatasetDict(new_dataset)
|
161 |
+
train = data["train"]
|
162 |
+
test = data["test"]
|
163 |
+
|
164 |
+
for idx in range(len(train["image"])):
|
165 |
+
train["image"][idx] = data_transform(train["image"][idx])
|
166 |
+
test["image"][idx] = data_transform(test["image"][idx])
|
167 |
+
|
168 |
+
train = Dataset.from_dict(train)
|
169 |
+
train = train.with_format("torch") # リスト型回避
|
170 |
+
test = Dataset.from_dict(train)
|
171 |
+
test = test.with_format("torch") # リスト型回避
|
172 |
+
|
173 |
+
# or
|
174 |
+
train_loader = DataLoader(train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
|
175 |
+
test_loader = DataLoader(test, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
|
176 |
+
return train_loader, test_loader
|
177 |
+
|
178 |
+
```
|
179 |
+
* then try this?
|
180 |
+
```
|
181 |
+
train_loader, test_loader = load_datasets()
|
182 |
+
```
|
183 |
+
|
184 |
+
### Recover music(wave form) from sprctrogram
|
185 |
```python
|
186 |
im = Image.open("pngファイル")
|
187 |
db_ud = np.uint8(np.array(im))
|
|
|
193 |
|
194 |
y_inv = librosa.griffinlim(amp*200)
|
195 |
display(IPython.display.Audio(y_inv, rate=sr))
|
196 |
+
```
|