import dask.dataframe as dd from functools import partial def read_parquet_file(parquet_file_path, npartitions=50, top=None): print(f"Process parquet file from {parquet_file_path}") file_name = parquet_file_path.split("/")[-1] parquet_df = dd.read_parquet(parquet_file_path, engine="pyarrow") parquet_df = parquet_df.repartition(npartitions=npartitions) # Smaller partitions if top: parquet_df = parquet_df.head(top, compute=False) # compute=False to keep it as DaskDataframe return parquet_df, file_name def process_parquet_df(parquet_df, file_name, process_row_func, process_partition): # A new function of process_row_func to allow pre-defining parameters of process-row_func. process_row_with_params = partial(process_row_func, parquet_file_name=file_name) result_df = parquet_df.map_partitions(process_partition, process_row_with_params) return result_df def save_to_csv(df, final_path): # Save the processed DataFrame to csv df.to_csv(final_path, index=False, single_file=True)