index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
37,674
healpy
disable_warnings
.. deprecated:: 1.15.0 The disable_warnings function is deprecated and may be removed in a future version. healpy uses logging now This function has no effect
def disable_warnings(): """healpy uses logging now This function has no effect """ pass
()
37,675
healpy
enable_warnings
.. deprecated:: 1.15.0 The enable_warnings function is deprecated and may be removed in a future version. healpy uses logging now This function has no effect
def disable_warnings(): """healpy uses logging now This function has no effect """ pass
()
37,676
healpy.pixelfunc
fit_dipole
Fit a dipole and a monopole to the map, excluding bad pixels. Parameters ---------- m : float, array-like the map to which a dipole is fitted and subtracted, accepts masked maps nest : bool if ``False`` m is assumed in RING scheme, otherwise map is NESTED bad : float bad values of pixel, default to :const:`UNSEEN`. gal_cut : float [degrees] pixels at latitude in [-gal_cut;+gal_cut] degrees are not taken into account Returns ------- res : tuple of length 2 the monopole value in res[0] and the dipole vector (as array) in res[1] See Also -------- remove_dipole, fit_monopole, remove_monopole
def fit_dipole(m, nest=False, bad=UNSEEN, gal_cut=0): """Fit a dipole and a monopole to the map, excluding bad pixels. Parameters ---------- m : float, array-like the map to which a dipole is fitted and subtracted, accepts masked maps nest : bool if ``False`` m is assumed in RING scheme, otherwise map is NESTED bad : float bad values of pixel, default to :const:`UNSEEN`. gal_cut : float [degrees] pixels at latitude in [-gal_cut;+gal_cut] degrees are not taken into account Returns ------- res : tuple of length 2 the monopole value in res[0] and the dipole vector (as array) in res[1] See Also -------- remove_dipole, fit_monopole, remove_monopole """ m = ma_to_array(m) m = np.asarray(m) npix = m.size nside = npix2nside(npix) if nside > 128: bunchsize = npix // 24 else: bunchsize = npix aa = np.zeros((4, 4), dtype=np.float64) v = np.zeros(4, dtype=np.float64) for ibunch in range(npix // bunchsize): ipix = np.arange(ibunch * bunchsize, (ibunch + 1) * bunchsize) ipix = ipix[(m.flat[ipix] != bad) & (np.isfinite(m.flat[ipix]))] x, y, z = pix2vec(nside, ipix, nest) if gal_cut > 0: w = np.abs(z) >= np.sin(gal_cut * np.pi / 180) ipix = ipix[w] x = x[w] y = y[w] z = z[w] del w aa[0, 0] += ipix.size aa[1, 0] += x.sum() aa[2, 0] += y.sum() aa[3, 0] += z.sum() aa[1, 1] += (x ** 2).sum() aa[2, 1] += (x * y).sum() aa[3, 1] += (x * z).sum() aa[2, 2] += (y ** 2).sum() aa[3, 2] += (y * z).sum() aa[3, 3] += (z ** 2).sum() v[0] += m.flat[ipix].sum() v[1] += (m.flat[ipix] * x).sum() v[2] += (m.flat[ipix] * y).sum() v[3] += (m.flat[ipix] * z).sum() aa[0, 1] = aa[1, 0] aa[0, 2] = aa[2, 0] aa[0, 3] = aa[3, 0] aa[1, 2] = aa[2, 1] aa[1, 3] = aa[3, 1] aa[2, 3] = aa[3, 2] res = np.dot(np.linalg.inv(aa), v) mono = res[0] dipole = res[1:4] return mono, dipole
(m, nest=False, bad=-1.6375e+30, gal_cut=0)
37,677
healpy.pixelfunc
fit_monopole
Fit a monopole to the map, excluding unseen pixels. Parameters ---------- m : float, array-like the map to which a dipole is fitted and subtracted, accepts masked arrays nest : bool if ``False`` m is assumed in RING scheme, otherwise map is NESTED bad : float bad values of pixel, default to :const:`UNSEEN`. gal_cut : float [degrees] pixels at latitude in [-gal_cut;+gal_cut] degrees are not taken into account Returns ------- res: float fitted monopole value See Also -------- fit_dipole, remove_monopole, remove_monopole
def fit_monopole(m, nest=False, bad=UNSEEN, gal_cut=0): """Fit a monopole to the map, excluding unseen pixels. Parameters ---------- m : float, array-like the map to which a dipole is fitted and subtracted, accepts masked arrays nest : bool if ``False`` m is assumed in RING scheme, otherwise map is NESTED bad : float bad values of pixel, default to :const:`UNSEEN`. gal_cut : float [degrees] pixels at latitude in [-gal_cut;+gal_cut] degrees are not taken into account Returns ------- res: float fitted monopole value See Also -------- fit_dipole, remove_monopole, remove_monopole """ m = ma_to_array(m) m = np.asarray(m) npix = m.size nside = npix2nside(npix) if nside > 128: bunchsize = npix // 24 else: bunchsize = npix aa = v = 0.0 for ibunch in range(npix // bunchsize): ipix = np.arange(ibunch * bunchsize, (ibunch + 1) * bunchsize) ipix = ipix[(m.flat[ipix] != bad) & (np.isfinite(m.flat[ipix]))] x, y, z = pix2vec(nside, ipix, nest) if gal_cut > 0: w = np.abs(z) >= np.sin(gal_cut * np.pi / 180) ipix = ipix[w] x = x[w] y = y[w] z = z[w] del w aa += ipix.size v += m.flat[ipix].sum() mono = v / aa return mono
(m, nest=False, bad=-1.6375e+30, gal_cut=0)
37,679
healpy.sphtfunc
gauss_beam
Gaussian beam window function Computes the spherical transform of an axisimmetric gaussian beam For a sky of underlying power spectrum C(l) observed with beam of given FWHM, the measured power spectrum will be C(l)_meas = C(l) B(l)^2 where B(l) is given by gaussbeam(Fwhm,Lmax). The polarization beam is also provided (when pol = True ) assuming a perfectly co-polarized beam (e.g., Challinor et al 2000, astro-ph/0008228) Parameters ---------- fwhm : float full width half max in radians lmax : integer ell max pol : bool if False, output has size (lmax+1) and is temperature beam if True output has size (lmax+1, 4) with components: * temperature beam * grad/electric polarization beam * curl/magnetic polarization beam * temperature * grad beam Returns ------- beam : array beam window function [0, lmax] if dim not specified otherwise (lmax+1, 4) contains polarized beam
def gauss_beam(fwhm, lmax=512, pol=False): """Gaussian beam window function Computes the spherical transform of an axisimmetric gaussian beam For a sky of underlying power spectrum C(l) observed with beam of given FWHM, the measured power spectrum will be C(l)_meas = C(l) B(l)^2 where B(l) is given by gaussbeam(Fwhm,Lmax). The polarization beam is also provided (when pol = True ) assuming a perfectly co-polarized beam (e.g., Challinor et al 2000, astro-ph/0008228) Parameters ---------- fwhm : float full width half max in radians lmax : integer ell max pol : bool if False, output has size (lmax+1) and is temperature beam if True output has size (lmax+1, 4) with components: * temperature beam * grad/electric polarization beam * curl/magnetic polarization beam * temperature * grad beam Returns ------- beam : array beam window function [0, lmax] if dim not specified otherwise (lmax+1, 4) contains polarized beam """ sigma = fwhm / np.sqrt(8.0 * np.log(2.0)) ell = np.arange(lmax + 1) sigma2 = sigma ** 2 g = np.exp(-0.5 * ell * (ell + 1) * sigma2) if not pol: # temperature-only beam return g else: # polarization beam # polarization factors [1, 2 sigma^2, 2 sigma^2, sigma^2] pol_factor = np.exp([0.0, 2 * sigma2, 2 * sigma2, sigma2]) return g[:, np.newaxis] * pol_factor
(fwhm, lmax=512, pol=False)
37,680
healpy.pixelfunc
get_all_neighbours
Return the 8 nearest pixels. Parameters ---------- nside : int the nside to work with theta, phi : scalar or array-like if phi is not given or None, theta is interpreted as pixel number, otherwise, theta[rad],phi[rad] are angular coordinates nest : bool if ``True``, pixel number will be NESTED ordering, otherwise RING ordering. lonlat : bool If True, input angles are assumed to be longitude and latitude in degree, otherwise, they are co-latitude and longitude in radians. Returns ------- ipix : int, array pixel number of the SW, W, NW, N, NE, E, SE and S neighbours, shape is (8,) if input is scalar, otherwise shape is (8, N) if input is of length N. If a neighbor does not exist (it can be the case for W, N, E and S) the corresponding pixel number will be -1. See Also -------- get_interp_weights, get_interp_val Examples -------- >>> import healpy as hp >>> print(hp.get_all_neighbours(1, 4)) [11 7 3 -1 0 5 8 -1] >>> print(hp.get_all_neighbours(1, np.pi/2, np.pi/2)) [ 8 4 0 -1 1 6 9 -1] >>> print(hp.get_all_neighbours(1, 90, 0, lonlat=True)) [ 8 4 0 -1 1 6 9 -1]
def get_all_neighbours(nside, theta, phi=None, nest=False, lonlat=False): """Return the 8 nearest pixels. Parameters ---------- nside : int the nside to work with theta, phi : scalar or array-like if phi is not given or None, theta is interpreted as pixel number, otherwise, theta[rad],phi[rad] are angular coordinates nest : bool if ``True``, pixel number will be NESTED ordering, otherwise RING ordering. lonlat : bool If True, input angles are assumed to be longitude and latitude in degree, otherwise, they are co-latitude and longitude in radians. Returns ------- ipix : int, array pixel number of the SW, W, NW, N, NE, E, SE and S neighbours, shape is (8,) if input is scalar, otherwise shape is (8, N) if input is of length N. If a neighbor does not exist (it can be the case for W, N, E and S) the corresponding pixel number will be -1. See Also -------- get_interp_weights, get_interp_val Examples -------- >>> import healpy as hp >>> print(hp.get_all_neighbours(1, 4)) [11 7 3 -1 0 5 8 -1] >>> print(hp.get_all_neighbours(1, np.pi/2, np.pi/2)) [ 8 4 0 -1 1 6 9 -1] >>> print(hp.get_all_neighbours(1, 90, 0, lonlat=True)) [ 8 4 0 -1 1 6 9 -1] """ check_nside(nside, nest=nest) if phi is not None: theta = ang2pix(nside, theta, phi, nest=nest, lonlat=lonlat) if nest: r = pixlib._get_neighbors_nest(nside, theta) else: r = pixlib._get_neighbors_ring(nside, theta) res = np.array(r[0:8]) return res
(nside, theta, phi=None, nest=False, lonlat=False)
37,681
healpy.pixelfunc
get_interp_val
Return the bi-linear interpolation value of map(s) using 4 nearest neighbours. Parameters ---------- m : array-like, shape (npix,) or (nmaps, npix) a healpix map or sequence thereof, accepts masked arrays theta, phi : float, scalar or array-like angular coordinates of point at which to interpolate the map nest : bool if True, the is assumed to be in NESTED ordering. lonlat : bool If True, input angles are assumed to be longitude and latitude in degree, otherwise, they are co-latitude and longitude in radians. Returns ------- val : float, scalar or array-like the interpolated value(s), usual numpy broadcasting rules apply. See Also -------- get_interp_weights, get_all_neighbours Examples -------- >>> import healpy as hp >>> hp.get_interp_val(np.arange(12.), np.pi/2, 0) 4.0 >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2) 5.0 >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2 + 2*np.pi) 5.0 >>> hp.get_interp_val(np.arange(12.), np.linspace(0, np.pi, 10), 0) array([ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ]) >>> hp.get_interp_val(np.arange(12.), 0, np.linspace(90, -90, 10), lonlat=True) array([ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ]) >>> hp.get_interp_val( ... [np.arange(12.), 2 * np.arange(12.)], np.linspace(0, np.pi, 10), 0 ... ) array([[ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ], [ 3. , 3. , 3. , 4.41236857, 6.80412286, 10.63092972, 15.89278916, 19. , 19. , 19. ]])
def get_interp_val(m, theta, phi, nest=False, lonlat=False): """Return the bi-linear interpolation value of map(s) using 4 nearest neighbours. Parameters ---------- m : array-like, shape (npix,) or (nmaps, npix) a healpix map or sequence thereof, accepts masked arrays theta, phi : float, scalar or array-like angular coordinates of point at which to interpolate the map nest : bool if True, the is assumed to be in NESTED ordering. lonlat : bool If True, input angles are assumed to be longitude and latitude in degree, otherwise, they are co-latitude and longitude in radians. Returns ------- val : float, scalar or array-like the interpolated value(s), usual numpy broadcasting rules apply. See Also -------- get_interp_weights, get_all_neighbours Examples -------- >>> import healpy as hp >>> hp.get_interp_val(np.arange(12.), np.pi/2, 0) 4.0 >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2) 5.0 >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2 + 2*np.pi) 5.0 >>> hp.get_interp_val(np.arange(12.), np.linspace(0, np.pi, 10), 0) array([ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ]) >>> hp.get_interp_val(np.arange(12.), 0, np.linspace(90, -90, 10), lonlat=True) array([ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ]) >>> hp.get_interp_val( ... [np.arange(12.), 2 * np.arange(12.)], np.linspace(0, np.pi, 10), 0 ... ) array([[ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ], [ 3. , 3. , 3. , 4.41236857, 6.80412286, 10.63092972, 15.89278916, 19. , 19. , 19. ]]) """ m = np.atleast_2d(m) nmaps, npix = m.shape nside = npix2nside(npix) if lonlat: theta, phi = lonlat2thetaphi(theta, phi) if nest: r = pixlib._get_interpol_nest(nside, theta, phi) else: r = pixlib._get_interpol_ring(nside, theta, phi) p = np.array(r[0:4]) w = np.array(r[4:8]) del r # NOTE: the [()] syntax converts a 0d array from np.squeeze to a Python scalar return np.squeeze(np.sum(m[:, p] * w, axis=1))[()]
(m, theta, phi, nest=False, lonlat=False)
37,682
healpy.pixelfunc
get_interp_weights
Return the 4 closest pixels on the two rings above and below the location and corresponding weights. Weights are provided for bilinear interpolation along latitude and longitude Parameters ---------- nside : int the healpix nside theta, phi : float, scalar or array-like if phi is not given, theta is interpreted as pixel number, otherwise theta[rad],phi[rad] are angular coordinates nest : bool if ``True``, NESTED ordering, otherwise RING ordering. lonlat : bool If True, input angles are assumed to be longitude and latitude in degree, otherwise, they are co-latitude and longitude in radians. Returns ------- res : tuple of length 2 contains pixel numbers in res[0] and weights in res[1]. Usual numpy broadcasting rules apply. See Also -------- get_interp_val, get_all_neighbours Examples -------- Note that some of the test inputs below that are on pixel boundaries such as theta=pi/2, phi=pi/2, have a tiny value of 1e-15 added to them to make them reproducible on i386 machines using x87 floating point instruction set (see https://github.com/healpy/healpy/issues/528). >>> import healpy as hp >>> pix, weights = hp.get_interp_weights(1, 0) >>> print(pix) [0 1 4 5] >>> weights array([ 1., 0., 0., 0.]) >>> pix, weights = hp.get_interp_weights(1, 0, 0) >>> print(pix) [1 2 3 0] >>> weights array([ 0.25, 0.25, 0.25, 0.25]) >>> pix, weights = hp.get_interp_weights(1, 0, 90, lonlat=True) >>> print(pix) [1 2 3 0] >>> weights array([ 0.25, 0.25, 0.25, 0.25]) >>> pix, weights = hp.get_interp_weights(1, [0, np.pi/2 + 1e-15], 0) >>> print(pix) [[ 1 4] [ 2 5] [ 3 11] [ 0 8]] >>> np.testing.assert_allclose( ... weights, ... np.array([[ 0.25, 1. ], ... [ 0.25, 0. ], ... [ 0.25, 0. ], ... [ 0.25, 0. ]]), rtol=0, atol=1e-14)
def get_interp_weights(nside, theta, phi=None, nest=False, lonlat=False): """Return the 4 closest pixels on the two rings above and below the location and corresponding weights. Weights are provided for bilinear interpolation along latitude and longitude Parameters ---------- nside : int the healpix nside theta, phi : float, scalar or array-like if phi is not given, theta is interpreted as pixel number, otherwise theta[rad],phi[rad] are angular coordinates nest : bool if ``True``, NESTED ordering, otherwise RING ordering. lonlat : bool If True, input angles are assumed to be longitude and latitude in degree, otherwise, they are co-latitude and longitude in radians. Returns ------- res : tuple of length 2 contains pixel numbers in res[0] and weights in res[1]. Usual numpy broadcasting rules apply. See Also -------- get_interp_val, get_all_neighbours Examples -------- Note that some of the test inputs below that are on pixel boundaries such as theta=pi/2, phi=pi/2, have a tiny value of 1e-15 added to them to make them reproducible on i386 machines using x87 floating point instruction set (see https://github.com/healpy/healpy/issues/528). >>> import healpy as hp >>> pix, weights = hp.get_interp_weights(1, 0) >>> print(pix) [0 1 4 5] >>> weights array([ 1., 0., 0., 0.]) >>> pix, weights = hp.get_interp_weights(1, 0, 0) >>> print(pix) [1 2 3 0] >>> weights array([ 0.25, 0.25, 0.25, 0.25]) >>> pix, weights = hp.get_interp_weights(1, 0, 90, lonlat=True) >>> print(pix) [1 2 3 0] >>> weights array([ 0.25, 0.25, 0.25, 0.25]) >>> pix, weights = hp.get_interp_weights(1, [0, np.pi/2 + 1e-15], 0) >>> print(pix) [[ 1 4] [ 2 5] [ 3 11] [ 0 8]] >>> np.testing.assert_allclose( ... weights, ... np.array([[ 0.25, 1. ], ... [ 0.25, 0. ], ... [ 0.25, 0. ], ... [ 0.25, 0. ]]), rtol=0, atol=1e-14) """ check_nside(nside, nest=nest) if phi is None: theta, phi = pix2ang(nside, theta, nest=nest) elif lonlat: theta, phi = lonlat2thetaphi(theta, phi) if nest: r = pixlib._get_interpol_nest(nside, theta, phi) else: r = pixlib._get_interpol_ring(nside, theta, phi) p = np.array(r[0:4]) w = np.array(r[4:8]) return (p, w)
(nside, theta, phi=None, nest=False, lonlat=False)
37,683
healpy.pixelfunc
get_map_size
Returns the npix of a given map (implicit or explicit pixelization). If map is a dict type, assumes explicit pixelization: use nside key if present, or use nside attribute if present, otherwise use the smallest valid npix given the maximum key value. otherwise assumes implicit pixelization and returns len(m). Parameters ---------- m : array-like or dict-like a map with implicit (array-like) or explicit (dict-like) pixellization Returns ------- npix : int a valid number of pixel Notes ----- In implicit pixellization, raise a ValueError exception if the size of the input is not a valid pixel number. Examples -------- >>> import healpy as hp >>> m = {0: 1, 1: 1, 2: 1, 'nside': 1} >>> print(hp.get_map_size(m)) 12 >>> m = {0: 1, 767: 1} >>> print(hp.get_map_size(m)) 768 >>> print(hp.get_map_size(np.zeros(12 * 8 ** 2))) 768
def get_map_size(m): """Returns the npix of a given map (implicit or explicit pixelization). If map is a dict type, assumes explicit pixelization: use nside key if present, or use nside attribute if present, otherwise use the smallest valid npix given the maximum key value. otherwise assumes implicit pixelization and returns len(m). Parameters ---------- m : array-like or dict-like a map with implicit (array-like) or explicit (dict-like) pixellization Returns ------- npix : int a valid number of pixel Notes ----- In implicit pixellization, raise a ValueError exception if the size of the input is not a valid pixel number. Examples -------- >>> import healpy as hp >>> m = {0: 1, 1: 1, 2: 1, 'nside': 1} >>> print(hp.get_map_size(m)) 12 >>> m = {0: 1, 767: 1} >>> print(hp.get_map_size(m)) 768 >>> print(hp.get_map_size(np.zeros(12 * 8 ** 2))) 768 """ if isinstance(m, dict): if "nside" in m: return nside2npix(m["nside"]) elif hasattr(ma, "nside"): return nside2npix(m.nside) else: nside = get_min_valid_nside(max(m.keys()) + 1) return nside2npix(nside) else: if isnpixok(len(m)): return len(m) else: raise ValueError("Wrong pixel number (it is not 12*nside**2)")
(m)
37,684
healpy.pixelfunc
get_nside
Return the nside of the given map. Parameters ---------- m : sequence the map to get the nside from. Returns ------- nside : int the healpix nside parameter of the map (or sequence of maps) Notes ----- If the input is a sequence of maps, all of them must have same size. If the input is not a valid map (not a sequence, unvalid number of pixels), a TypeError exception is raised.
def get_nside(m): """Return the nside of the given map. Parameters ---------- m : sequence the map to get the nside from. Returns ------- nside : int the healpix nside parameter of the map (or sequence of maps) Notes ----- If the input is a sequence of maps, all of them must have same size. If the input is not a valid map (not a sequence, unvalid number of pixels), a TypeError exception is raised. """ typ = maptype(m) if typ == 0: return npix2nside(len(m)) else: return npix2nside(len(m[0]))
(m)
37,685
healpy.visufunc
gnomview
Plot a healpix map (given as an array) in Gnomonic projection. Parameters ---------- map : array-like The map to project, supports masked maps, see the `ma` function. If None, use a blank map, useful for overplotting. fig : None or int, optional A figure number. Default: None= create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 200 ysize : None or int, optional The size of the image. Default: None= xsize reso : float, optional Resolution (in arcmin). Default: 1.5 arcmin title : str, optional The title of the plot. Default: 'Gnomonic view' nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, scalar, optional The minimum range value max : float, scalar, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] format : str, optional The format of the scale label. Default: '%g' cmap : a color map The colormap to use (see matplotlib.cm) badcolor : str Color to use to plot bad values bgcolor : str Color to use for background hold : bool, optional If True, replace the current Axes by a GnomonicAxes. use this if you want to have multiple maps on the same figure. Default: False sub : int or sequence, optional Use only a zone of the current figure (same syntax as subplot). Default: None reuse_axes : bool, optional If True, reuse the current Axes (should be a GnomonicAxes). This is useful if you want to overplot with a partially transparent colormap, such as for plotting a line integral convolution. Default: False margins : None or sequence, optional Either None, or a sequence (left,bottom,right,top) giving the margins on left,bottom,right and top of the axes. Values are relative to figure (0-1). Default: None notext: bool, optional If True: do not add resolution info text. Default=False return_projected_map : bool, optional if True returns the projected map in a 2d numpy array no_plot : bool, optional if True no figure will be created alpha : float, array-like or None An array containing the alpha channel, supports masked maps, see the `ma` function. If None, no transparency will be applied. See an example usage of the alpha channel transparency in the documentation under "Other tutorials" See Also -------- mollview, cartview, orthview, azeqview
def gnomview( map=None, fig=None, rot=None, coord=None, unit="", xsize=200, ysize=None, reso=1.5, title="Gnomonic view", nest=False, remove_dip=False, remove_mono=False, gal_cut=0, min=None, max=None, flip="astro", format="%.3g", cbar=True, cmap=None, badcolor="gray", bgcolor="white", norm=None, hold=False, sub=None, reuse_axes=False, margins=None, notext=False, return_projected_map=False, no_plot=False, alpha=None, ): """Plot a healpix map (given as an array) in Gnomonic projection. Parameters ---------- map : array-like The map to project, supports masked maps, see the `ma` function. If None, use a blank map, useful for overplotting. fig : None or int, optional A figure number. Default: None= create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 200 ysize : None or int, optional The size of the image. Default: None= xsize reso : float, optional Resolution (in arcmin). Default: 1.5 arcmin title : str, optional The title of the plot. Default: 'Gnomonic view' nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, scalar, optional The minimum range value max : float, scalar, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] format : str, optional The format of the scale label. Default: '%g' cmap : a color map The colormap to use (see matplotlib.cm) badcolor : str Color to use to plot bad values bgcolor : str Color to use for background hold : bool, optional If True, replace the current Axes by a GnomonicAxes. use this if you want to have multiple maps on the same figure. Default: False sub : int or sequence, optional Use only a zone of the current figure (same syntax as subplot). Default: None reuse_axes : bool, optional If True, reuse the current Axes (should be a GnomonicAxes). This is useful if you want to overplot with a partially transparent colormap, such as for plotting a line integral convolution. Default: False margins : None or sequence, optional Either None, or a sequence (left,bottom,right,top) giving the margins on left,bottom,right and top of the axes. Values are relative to figure (0-1). Default: None notext: bool, optional If True: do not add resolution info text. Default=False return_projected_map : bool, optional if True returns the projected map in a 2d numpy array no_plot : bool, optional if True no figure will be created alpha : float, array-like or None An array containing the alpha channel, supports masked maps, see the `ma` function. If None, no transparency will be applied. See an example usage of the alpha channel transparency in the documentation under "Other tutorials" See Also -------- mollview, cartview, orthview, azeqview """ import pylab if map is None: map = np.zeros(12) + np.inf cbar = False # Ensure that the nside is valid nside = pixelfunc.get_nside(map) pixelfunc.check_nside(nside, nest=nest) if not (hold or sub or reuse_axes): f = pylab.figure(fig, figsize=(5.8, 6.4)) if not margins: margins = (0.075, 0.05, 0.075, 0.05) extent = (0.0, 0.0, 1.0, 1.0) elif hold: f = pylab.gcf() left, bottom, right, top = np.array(pylab.gca().get_position()).ravel() if not margins: margins = (0.0, 0.0, 0.0, 0.0) extent = (left, bottom, right - left, top - bottom) f.delaxes(pylab.gca()) elif reuse_axes: f = pylab.gcf() else: # using subplot syntax f = pylab.gcf() if hasattr(sub, "__len__"): nrows, ncols, idx = sub else: nrows, ncols, idx = sub // 100, (sub % 100) // 10, (sub % 10) if idx < 1 or idx > ncols * nrows: raise ValueError("Wrong values for sub: %d, %d, %d" % (nrows, ncols, idx)) c, r = (idx - 1) % ncols, (idx - 1) // ncols if not margins: margins = (0.01, 0.0, 0.0, 0.02) extent = ( c * 1.0 / ncols, 1.0 - (r + 1) * 1.0 / nrows, 1.0 / ncols, 1.0 / nrows, ) if not reuse_axes: extent = ( extent[0] + margins[0], extent[1] + margins[1], extent[2] - margins[2] - margins[0], extent[3] - margins[3] - margins[1], ) # f=pylab.figure(fig,figsize=(5.5,6)) # Starting to draw : turn interactive off wasinteractive = pylab.isinteractive() pylab.ioff() try: map = pixelfunc.ma_to_array(map) if reuse_axes: ax = f.gca() else: ax = PA.HpxGnomonicAxes( f, extent, coord=coord, rot=rot, format=format, flipconv=flip ) f.add_axes(ax) if remove_dip: map = pixelfunc.remove_dipole(map, gal_cut=gal_cut, nest=nest, copy=True) elif remove_mono: map = pixelfunc.remove_monopole(map, gal_cut=gal_cut, nest=nest, copy=True) img = ax.projmap( map, nest=nest, coord=coord, vmin=min, vmax=max, xsize=xsize, ysize=ysize, reso=reso, cmap=cmap, norm=norm, badcolor=badcolor, bgcolor=bgcolor, alpha=alpha, ) if cbar: im = ax.get_images()[0] b = im.norm.inverse(np.linspace(0, 1, im.cmap.N + 1)) v = np.linspace(im.norm.vmin, im.norm.vmax, im.cmap.N) mappable = plt.cm.ScalarMappable( norm=matplotlib.colors.Normalize(vmin=im.norm.vmin, vmax=im.norm.vmax), cmap=cmap, ) if matplotlib.__version__ >= "0.91.0": cb = f.colorbar( mappable, ax=ax, orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(), pad=0.08, fraction=0.1, boundaries=b, values=v, format=format, ) else: cb = f.colorbar( mappable, orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(), pad=0.08, fraction=0.1, boundaries=b, values=v, format=format, ) cb.solids.set_rasterized(True) ax.set_title(title) if not notext: ax.text( -0.07, 0.02, "%g '/pix, %dx%d pix" % ( ax.proj.arrayinfo["reso"], ax.proj.arrayinfo["xsize"], ax.proj.arrayinfo["ysize"], ), fontsize=12, verticalalignment="bottom", transform=ax.transAxes, rotation=90, ) ax.text( -0.07, 0.6, ax.proj.coordsysstr, fontsize=14, fontweight="bold", rotation=90, transform=ax.transAxes, ) lon, lat = np.around(ax.proj.get_center(lonlat=True), ax._coordprec) ax.text( 0.5, -0.03, "(%g,%g)" % (lon, lat), verticalalignment="center", horizontalalignment="center", transform=ax.transAxes, ) if cbar: cb.ax.text( 1.05, 0.30, unit, fontsize=14, fontweight="bold", transform=cb.ax.transAxes, ha="left", va="center", ) f.sca(ax) finally: pylab.draw() if wasinteractive: pylab.ion() # pylab.show() if no_plot: pylab.close(f) f.clf() ax.cla() if return_projected_map: return img
(map=None, fig=None, rot=None, coord=None, unit='', xsize=200, ysize=None, reso=1.5, title='Gnomonic view', nest=False, remove_dip=False, remove_mono=False, gal_cut=0, min=None, max=None, flip='astro', format='%.3g', cbar=True, cmap=None, badcolor='gray', bgcolor='white', norm=None, hold=False, sub=None, reuse_axes=False, margins=None, notext=False, return_projected_map=False, no_plot=False, alpha=None)
37,686
healpy.visufunc
graticule
Draw a graticule on the current Axes. Parameters ---------- dpar, dmer : float, scalars Interval in degrees between meridians and between parallels coord : {'E', 'G', 'C'} The coordinate system of the graticule (make rotation if needed, using coordinate system of the map if it is defined). local : bool If True, draw a local graticule (no rotation is performed, useful for a gnomonic view, for example) Notes ----- Other keyword parameters will be transmitted to the projplot function. See Also -------- delgraticules
def graticule(dpar=None, dmer=None, coord=None, local=None, **kwds): """Draw a graticule on the current Axes. Parameters ---------- dpar, dmer : float, scalars Interval in degrees between meridians and between parallels coord : {'E', 'G', 'C'} The coordinate system of the graticule (make rotation if needed, using coordinate system of the map if it is defined). local : bool If True, draw a local graticule (no rotation is performed, useful for a gnomonic view, for example) Notes ----- Other keyword parameters will be transmitted to the projplot function. See Also -------- delgraticules """ import pylab f = pylab.gcf() wasinteractive = pylab.isinteractive() pylab.ioff() try: if len(f.get_axes()) == 0: ax = PA.HpxMollweideAxes(f, (0.02, 0.05, 0.96, 0.9), coord=coord) f.add_axes(ax) ax.text( 0.86, 0.05, ax.proj.coordsysstr, fontsize=14, fontweight="bold", transform=ax.transAxes, ) for ax in f.get_axes(): if isinstance(ax, PA.SphericalProjAxes): ax.graticule(dpar=dpar, dmer=dmer, coord=coord, local=local, **kwds) finally: pylab.draw() if wasinteractive: pylab.ion()
(dpar=None, dmer=None, coord=None, local=None, **kwds)
37,687
healpy.pixelfunc
isnpixok
Return :const:`True` if npix is a valid value for healpix map size, :const:`False` otherwise. Parameters ---------- npix : int, scalar or array-like integer value to be tested Returns ------- ok : bool, scalar or array-like :const:`True` if given value is a valid number of pixel, :const:`False` otherwise Examples -------- >>> import healpy as hp >>> hp.isnpixok(12) True >>> hp.isnpixok(768) True >>> hp.isnpixok([12, 768, 1002]) array([ True, True, False], dtype=bool)
def isnpixok(npix): """Return :const:`True` if npix is a valid value for healpix map size, :const:`False` otherwise. Parameters ---------- npix : int, scalar or array-like integer value to be tested Returns ------- ok : bool, scalar or array-like :const:`True` if given value is a valid number of pixel, :const:`False` otherwise Examples -------- >>> import healpy as hp >>> hp.isnpixok(12) True >>> hp.isnpixok(768) True >>> hp.isnpixok([12, 768, 1002]) array([ True, True, False], dtype=bool) """ nside = np.sqrt(np.asarray(npix) / 12.0) return nside == np.floor(nside)
(npix)
37,688
healpy.pixelfunc
isnsideok
Returns :const:`True` if nside is a valid nside parameter, :const:`False` otherwise. NSIDE needs to be a power of 2 only for nested ordering Parameters ---------- nside : int, scalar or array-like integer value to be tested Returns ------- ok : bool, scalar or array-like :const:`True` if given value is a valid nside, :const:`False` otherwise. Examples -------- >>> import healpy as hp >>> hp.isnsideok(13, nest=True) False >>> hp.isnsideok(13, nest=False) True >>> hp.isnsideok(32) True >>> hp.isnsideok([1, 2, 3, 4, 8, 16], nest=True) array([ True, True, False, True, True, True], dtype=bool)
def isnsideok(nside, nest=False): """Returns :const:`True` if nside is a valid nside parameter, :const:`False` otherwise. NSIDE needs to be a power of 2 only for nested ordering Parameters ---------- nside : int, scalar or array-like integer value to be tested Returns ------- ok : bool, scalar or array-like :const:`True` if given value is a valid nside, :const:`False` otherwise. Examples -------- >>> import healpy as hp >>> hp.isnsideok(13, nest=True) False >>> hp.isnsideok(13, nest=False) True >>> hp.isnsideok(32) True >>> hp.isnsideok([1, 2, 3, 4, 8, 16], nest=True) array([ True, True, False, True, True, True], dtype=bool) """ # we use standard bithacks from http://graphics.stanford.edu/~seander/bithacks.html#DetermineIfPowerOf2 if hasattr(nside, "__len__"): if not isinstance(nside, np.ndarray): nside = np.asarray(nside) is_nside_ok = ( (nside == nside.astype(int)) & (nside > 0) & (nside <= max_nside) ) if nest: is_nside_ok &= (nside.astype(int) & (nside.astype(int) - 1)) == 0 else: is_nside_ok = nside == int(nside) and 0 < nside <= max_nside if nest: is_nside_ok = is_nside_ok and (int(nside) & (int(nside) - 1)) == 0 return is_nside_ok
(nside, nest=False)
37,690
healpy.pixelfunc
ma
Return map as a masked array, with ``badval`` pixels masked. Parameters ---------- m : a map (may be a sequence of maps) badval : float, optional The value of the pixel considered as bad (:const:`UNSEEN` by default) rtol : float, optional The relative tolerance atol : float, optional The absolute tolerance copy : bool, optional If ``True``, a copy of the input map is made. Returns ------- a masked array with the same shape as the input map, masked where input map is close to badval. See Also -------- mask_good, mask_bad, numpy.ma.masked_values Examples -------- >>> import healpy as hp >>> m = np.arange(12.) >>> m[3] = hp.UNSEEN >>> hp.ma(m) masked_array(data = [0.0 1.0 2.0 -- 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0], mask = [False False False True False False False False False False False False], fill_value = -1.6375e+30) <BLANKLINE>
def ma(m, badval=UNSEEN, rtol=1e-5, atol=1e-8, copy=True): """Return map as a masked array, with ``badval`` pixels masked. Parameters ---------- m : a map (may be a sequence of maps) badval : float, optional The value of the pixel considered as bad (:const:`UNSEEN` by default) rtol : float, optional The relative tolerance atol : float, optional The absolute tolerance copy : bool, optional If ``True``, a copy of the input map is made. Returns ------- a masked array with the same shape as the input map, masked where input map is close to badval. See Also -------- mask_good, mask_bad, numpy.ma.masked_values Examples -------- >>> import healpy as hp >>> m = np.arange(12.) >>> m[3] = hp.UNSEEN >>> hp.ma(m) masked_array(data = [0.0 1.0 2.0 -- 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0], mask = [False False False True False False False False False False False False], fill_value = -1.6375e+30) <BLANKLINE> """ return np.ma.masked_values(np.array(m), badval, rtol=rtol, atol=atol, copy=copy)
(m, badval=-1.6375e+30, rtol=1e-05, atol=1e-08, copy=True)
37,691
healpy.sphtfunc
map2alm
Computes the alm of a Healpix map. The input maps must all be in ring ordering. For recommendations about how to set `lmax`, `iter`, and weights, see the `Anafast documentation <https://healpix.sourceforge.io/html/fac_anafast.htm>`_ Pixel values are weighted before applying the transform: * when you don't specify any weights, the uniform weight value 4*pi/n_pix is used * with ring weights enabled (use_weights=True), pixels in every ring are weighted with a uniform value similar to the one above, ring weights are included in healpy * with pixel weights (use_pixel_weights=True), every pixel gets an individual weight Pixel weights provide the most accurate transform, so you should always use them if possible. However they are not included in healpy and will be automatically downloaded and cached in ~/.astropy the first time you compute a trasform at a specific nside. If datapath is specified, healpy will first check that local folder before downloading the weights. The easiest way to setup the folder is to clone the healpy-data repository: git clone --depth 1 https://github.com/healpy/healpy-data cd healpy-data bash download_weights_8192.sh and set datapath to the root of the repository. Parameters ---------- maps : array-like, shape (Npix,) or (n, Npix) The input map or a list of n input maps. Must be in ring ordering. lmax : int, scalar, optional Maximum l of the power spectrum. Default: 3*nside-1 mmax : int, scalar, optional Maximum m of the alm. Default: lmax iter : int, scalar, optional Number of iteration (default: 3) pol : bool, optional If True, assumes input maps are TQU. Output will be TEB alm's. (input must be 1 or 3 maps) If False, apply spin 0 harmonic transform to each map. (input can be any number of maps) If there is only one input map, it has no effect. Default: True. use_weights: bool, scalar, optional If True, use the ring weighting. Default: False. datapath : None or str, optional If given, the directory where to find the pixel weights. See in the docstring above details on how to set it up. gal_cut : float [degrees] pixels at latitude in [-gal_cut;+gal_cut] are not taken into account use_pixel_weights: bool, optional If True, use pixel by pixel weighting, healpy will automatically download the weights, if needed verbose : bool, optional Deprecated, has not effect. Returns ------- alms : array or tuple of array alm or a tuple of 3 alm (almT, almE, almB) if polarized input. Notes ----- The pixels which have the special `UNSEEN` value are replaced by zeros before spherical harmonic transform. They are converted back to `UNSEEN` value, so that the input maps are not modified. Each map have its own, independent mask.
def synalm(cls, lmax=None, mmax=None, new=False, verbose=True): """Generate a set of alm given cl. The cl are given as a float array. Corresponding alm are generated. If lmax is None, it is assumed lmax=cl.size-1 If mmax is None, it is assumed mmax=lmax. Parameters ---------- cls : float, array or tuple of arrays Either one cl (1D array) or a tuple of either 4 cl or of n*(n+1)/2 cl. Some of the cl may be None, implying no cross-correlation. See *new* parameter. lmax : int, scalar, optional The lmax (if None or <0, the largest size-1 of cls) mmax : int, scalar, optional The mmax (if None or <0, =lmax) new : bool, optional If True, use the new ordering of cl's, ie by diagonal (e.g. TT, EE, BB, TE, EB, TB or TT, EE, BB, TE if 4 cl as input). If False, use the old ordering, ie by row (e.g. TT, TE, TB, EE, EB, BB or TT, TE, EE, BB if 4 cl as input). Returns ------- alms : array or list of arrays the generated alm if one spectrum is given, or a list of n alms (with n(n+1)/2 the number of input cl, or n=3 if there are 4 input cl). Notes ----- We don't plan to change the default order anymore, that would break old code in a way difficult to debug. """ if not cb.is_seq(cls): raise TypeError("cls must be an array or a sequence of arrays") if not cb.is_seq_of_seq(cls, True): # Only one spectrum if lmax is None or lmax < 0: lmax = len(cls) - 1 if mmax is None or mmax < 0: mmax = lmax cls_list = [np.asarray(cls, dtype=np.float64)] szalm = Alm.getsize(lmax, mmax) alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list = [alm] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return alm # From here, we interpret cls as a list of spectra cls_list = list(cls) maxsize = max([len(c) for c in cls if c is not None]) if lmax is None or lmax < 0: lmax = maxsize - 1 if mmax is None or mmax < 0: mmax = lmax Nspec = sphtlib._getn(len(cls_list)) if Nspec <= 0: if len(cls_list) == 4: if new: ## new input order: TT EE BB TE -> TT EE BB TE 0 0 cls_list = [cls[0], cls[1], cls[2], cls[3], None, None] else: ## old input order: TT TE EE BB -> TT TE 0 EE 0 BB cls_list = [cls[0], cls[1], None, cls[2], None, cls[3]] Nspec = 3 else: raise TypeError( "The sequence of arrays must have either 4 elements " "or n(n+1)/2 elements (some may be None)" ) szalm = Alm.getsize(lmax, mmax) alms_list = [] for i in range(Nspec): alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list.append(alm) if new: # new input order: input given by diagonal, should be given by row cls_list = new_to_old_spectra_order(cls_list) # ensure cls are float64 cls_list = [ (np.asarray(cl, dtype=np.float64) if cl is not None else None) for cl in cls_list ] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return np.array(alms_list)
(maps, lmax=None, mmax=None, iter=3, pol=True, use_weights=False, datapath=None, gal_cut=0, use_pixel_weights=False, verbose=True)
37,692
healpy.sphtfunc
map2alm_lsq
Runs an iterative map analysis up to (lmax, mmax) and returns the result including its quality. Healpix map analysis is often interpreted as "compute the `alm` for which `alm2map(alm) == map`". Unfortunately this inversion problem is not solvable in many cases, since `alm` typically has fewer elements than `map`, which makes the equation system overdetermined, so that a solution only exists for a vanishingly small subset of all possible maps. (Even if there were more `alm` elements than map pixels it can happen that the problem is unsolvable, but this situation should not be relevant for practical use.) This function aims to compute instead the `alm` for which the L2 norm of `alm2map(alm) - map` is minimal, i.e. it tries to find the best possible least-squares approximation. Since this is an iterative procedure, the user needs to specify a tolerance at which the iteration is stopped and a maximum iteration count to avoid excessive run times in extreme cases. Compared to `map2alm` this algorithm has the following advantages and disadvantages: - the exact number of iterations need not be specified beforehand, it will stop automatically once the desired accuracy is reached. - during calculation it requires more memory than `map2alm`. Parameters ---------- maps : array-like, shape (Npix,) or (n, Npix) The input map or a list of n input maps. Must be in ring ordering. lmax, mmax : int The desired lmax and mmax parameters for the analysis pol : bool, optional If True, assumes input maps are TQU. Output will be TEB alm's. (input must be 1 or 3 maps) If False, apply spin 0 harmonic transform to each map. (input can be any number of maps) If there is only one input map, it has no effect. Default: True. tol : float The desired accuracy for the result. Once this is reached, the iteration stops. maxiter : int maximum iteration count after which the minimization is stopped Returns ------- alm : numpy.ndarray(complex) The reconstructed a_lm coefficients rel_res : float The norm of the residual map (i.e. `map-alm2map(alm)`), divided by the norm of `maps`. This is a measure for the fraction of the map signal that could not be modeled by the a_lm n_iter : int the number of iterations required
def map2alm_lsq(maps, lmax, mmax, pol=True, tol=1e-10, maxiter=20): """Runs an iterative map analysis up to (lmax, mmax) and returns the result including its quality. Healpix map analysis is often interpreted as "compute the `alm` for which `alm2map(alm) == map`". Unfortunately this inversion problem is not solvable in many cases, since `alm` typically has fewer elements than `map`, which makes the equation system overdetermined, so that a solution only exists for a vanishingly small subset of all possible maps. (Even if there were more `alm` elements than map pixels it can happen that the problem is unsolvable, but this situation should not be relevant for practical use.) This function aims to compute instead the `alm` for which the L2 norm of `alm2map(alm) - map` is minimal, i.e. it tries to find the best possible least-squares approximation. Since this is an iterative procedure, the user needs to specify a tolerance at which the iteration is stopped and a maximum iteration count to avoid excessive run times in extreme cases. Compared to `map2alm` this algorithm has the following advantages and disadvantages: - the exact number of iterations need not be specified beforehand, it will stop automatically once the desired accuracy is reached. - during calculation it requires more memory than `map2alm`. Parameters ---------- maps : array-like, shape (Npix,) or (n, Npix) The input map or a list of n input maps. Must be in ring ordering. lmax, mmax : int The desired lmax and mmax parameters for the analysis pol : bool, optional If True, assumes input maps are TQU. Output will be TEB alm's. (input must be 1 or 3 maps) If False, apply spin 0 harmonic transform to each map. (input can be any number of maps) If there is only one input map, it has no effect. Default: True. tol : float The desired accuracy for the result. Once this is reached, the iteration stops. maxiter : int maximum iteration count after which the minimization is stopped Returns ------- alm : numpy.ndarray(complex) The reconstructed a_lm coefficients rel_res : float The norm of the residual map (i.e. `map-alm2map(alm)`), divided by the norm of `maps`. This is a measure for the fraction of the map signal that could not be modeled by the a_lm n_iter : int the number of iterations required """ from scipy.sparse.linalg import LinearOperator, lsqr, lsmr from scipy.linalg import norm from .pixelfunc import npix2nside maps = ma_to_array(maps) info = maptype(maps) ncomp = 1 if info == 0 else info maps = np.array(maps) npix = maps.size / ncomp nside = pixelfunc.get_nside(maps) check_max_nside(nside) # helper functions to convert between real- and complex-valued a_lm def alm2realalm(alm): alm = alm.reshape((ncomp, -1)) res = np.zeros((ncomp, alm.shape[1] * 2 - lmax - 1)) for i in range(ncomp): res[i, 0 : lmax + 1] = alm[i, 0 : lmax + 1].real res[i, lmax + 1 :] = alm[i, lmax + 1 :].view(np.float64) * np.sqrt(2.0) return res.reshape((-1,)) def realalm2alm(alm): alm = np.array(alm).reshape((ncomp, -1)) res = np.zeros((ncomp, (alm.shape[1] + lmax + 1) // 2), dtype=np.complex128) for i in range(ncomp): res[i, 0 : lmax + 1] = alm[i, 0 : lmax + 1] res[i, lmax + 1 :] = alm[i, lmax + 1 :].view(np.complex128) * ( np.sqrt(2.0) / 2 ) if ncomp == 1: res = res[0] return res def a2m2(x): talm = realalm2alm(x) res = alm2map(talm, lmax=lmax, nside=nside, pol=pol) return res.reshape((-1,)) def m2a2(x): talm = map2alm(x.reshape((ncomp, -1)), lmax=lmax, iter=0, pol=pol) talm *= (12 * nside ** 2) / (4 * np.pi) res = alm2realalm(talm) return res # initial guess alm0 = m2a2(maps) / npix * (4 * np.pi) op = LinearOperator( matvec=a2m2, rmatvec=m2a2, shape=(len(maps) * maps[0].size, alm0.size) ) res = lsqr( A=op, b=maps.reshape((-1,)), x0=alm0, atol=tol, btol=tol, iter_lim=maxiter, show=False, ) # res = lsmr(A=op, b=maps, x0=alm0, atol=tol, btol=tol, maxiter=maxiter, show=False) return realalm2alm(res[0]), res[3] / norm(maps.reshape((-1,))), res[2]
(maps, lmax, mmax, pol=True, tol=1e-10, maxiter=20)
37,693
healpy.pixelfunc
maptype
Describe the type of the map (valid, single, sequence of maps). Checks : the number of maps, that all maps have same length and that this length is a valid map size (using :func:`isnpixok`). Parameters ---------- m : sequence the map to get info from Returns ------- info : int -1 if the given object is not a valid map, 0 if it is a single map, *info* > 0 if it is a sequence of maps (*info* is then the number of maps) Examples -------- >>> import healpy as hp >>> hp.pixelfunc.maptype(np.arange(12)) 0 >>> hp.pixelfunc.maptype([np.arange(12), np.arange(12)]) 2
def maptype(m): """Describe the type of the map (valid, single, sequence of maps). Checks : the number of maps, that all maps have same length and that this length is a valid map size (using :func:`isnpixok`). Parameters ---------- m : sequence the map to get info from Returns ------- info : int -1 if the given object is not a valid map, 0 if it is a single map, *info* > 0 if it is a sequence of maps (*info* is then the number of maps) Examples -------- >>> import healpy as hp >>> hp.pixelfunc.maptype(np.arange(12)) 0 >>> hp.pixelfunc.maptype([np.arange(12), np.arange(12)]) 2 """ if not hasattr(m, "__len__"): raise TypeError("input map is a scalar") if len(m) == 0: raise TypeError("input map has length zero") try: npix = len(m[0]) except TypeError: npix = None if npix is not None: for mm in m[1:]: if len(mm) != npix: raise TypeError("input maps have different npix") if isnpixok(len(m[0])): return len(m) else: raise TypeError("bad number of pixels") else: if isnpixok(len(m)): return 0 else: raise TypeError("bad number of pixels")
(m)
37,694
healpy.pixelfunc
mask_bad
Returns a bool array with ``True`` where m is close to badval. Parameters ---------- m : a map (may be a sequence of maps) badval : float, optional The value of the pixel considered as bad (:const:`UNSEEN` by default) rtol : float, optional The relative tolerance atol : float, optional The absolute tolerance Returns ------- mask a bool array with the same shape as the input map, ``True`` where input map is close to badval, and ``False`` elsewhere. See Also -------- mask_good, ma Examples -------- >>> import healpy as hp >>> import numpy as np >>> m = np.arange(12.) >>> m[3] = hp.UNSEEN >>> hp.mask_bad(m) array([False, False, False, True, False, False, False, False, False, False, False, False], dtype=bool)
def mask_bad(m, badval=UNSEEN, rtol=1.0e-5, atol=1.0e-8): """Returns a bool array with ``True`` where m is close to badval. Parameters ---------- m : a map (may be a sequence of maps) badval : float, optional The value of the pixel considered as bad (:const:`UNSEEN` by default) rtol : float, optional The relative tolerance atol : float, optional The absolute tolerance Returns ------- mask a bool array with the same shape as the input map, ``True`` where input map is close to badval, and ``False`` elsewhere. See Also -------- mask_good, ma Examples -------- >>> import healpy as hp >>> import numpy as np >>> m = np.arange(12.) >>> m[3] = hp.UNSEEN >>> hp.mask_bad(m) array([False, False, False, True, False, False, False, False, False, False, False, False], dtype=bool) """ m = np.asarray(m) atol = np.absolute(atol) rtol = np.absolute(rtol) return np.absolute(m - badval) <= atol + rtol * np.absolute(badval)
(m, badval=-1.6375e+30, rtol=1e-05, atol=1e-08)
37,695
healpy.pixelfunc
mask_good
Returns a bool array with ``False`` where m is close to badval. Parameters ---------- m : a map (may be a sequence of maps) badval : float, optional The value of the pixel considered as bad (:const:`UNSEEN` by default) rtol : float, optional The relative tolerance atol : float, optional The absolute tolerance Returns ------- a bool array with the same shape as the input map, ``False`` where input map is close to badval, and ``True`` elsewhere. See Also -------- mask_bad, ma Examples -------- >>> import healpy as hp >>> m = np.arange(12.) >>> m[3] = hp.UNSEEN >>> hp.mask_good(m) array([ True, True, True, False, True, True, True, True, True, True, True, True], dtype=bool)
def mask_good(m, badval=UNSEEN, rtol=1.0e-5, atol=1.0e-8): """Returns a bool array with ``False`` where m is close to badval. Parameters ---------- m : a map (may be a sequence of maps) badval : float, optional The value of the pixel considered as bad (:const:`UNSEEN` by default) rtol : float, optional The relative tolerance atol : float, optional The absolute tolerance Returns ------- a bool array with the same shape as the input map, ``False`` where input map is close to badval, and ``True`` elsewhere. See Also -------- mask_bad, ma Examples -------- >>> import healpy as hp >>> m = np.arange(12.) >>> m[3] = hp.UNSEEN >>> hp.mask_good(m) array([ True, True, True, False, True, True, True, True, True, True, True, True], dtype=bool) """ m = np.asarray(m) atol = np.absolute(atol) rtol = np.absolute(rtol) return np.absolute(m - badval) > atol + rtol * np.absolute(badval)
(m, badval=-1.6375e+30, rtol=1e-05, atol=1e-08)
37,696
healpy.pixelfunc
max_pixrad
Maximum angular distance between any pixel center and its corners Parameters ---------- nside : int the nside to work with degrees : bool if True, returns pixel radius in degrees, in radians otherwise Returns ------- rads: double angular distance (in radians or degrees) Examples -------- >>> '%.14f' % max_pixrad(1) '0.84106867056793' >>> '%.14f' % max_pixrad(16) '0.06601476143251'
def max_pixrad(nside, degrees=False): """Maximum angular distance between any pixel center and its corners Parameters ---------- nside : int the nside to work with degrees : bool if True, returns pixel radius in degrees, in radians otherwise Returns ------- rads: double angular distance (in radians or degrees) Examples -------- >>> '%.14f' % max_pixrad(1) '0.84106867056793' >>> '%.14f' % max_pixrad(16) '0.06601476143251' """ check_nside(nside, nest=False) if degrees: return np.rad2deg(pixlib._max_pixrad(nside)) return pixlib._max_pixrad(nside)
(nside, degrees=False)
37,697
healpy.visufunc
mollview
Plot a healpix map (given as an array) in Mollweide projection. Parameters ---------- map : float, array-like or None An array containing the map, supports masked maps, see the `ma` function. If None, will display a blank map, useful for overplotting. fig : int or None, optional The figure number to use. Default: create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 title : str, optional The title of the plot. Default: 'Mollweide view' nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards right, west towards left) remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] format : str, optional The format of the scale label. Default: '%g' format2 : str, optional Format of the pixel value under mouse. Default: '%g' cbar : bool, optional Display the colorbar. Default: True notext : bool, optional If True, no text is printed around the map norm : {'hist', 'log', None} Color normalization, hist= histogram equalized color mapping, log= logarithmic color mapping, default: None (linear color mapping) cmap : a color map The colormap to use (see matplotlib.cm) badcolor : str Color to use to plot bad values bgcolor : str Color to use for background hold : bool, optional If True, replace the current Axes by a MollweideAxes. use this if you want to have multiple maps on the same figure. Default: False sub : int, scalar or sequence, optional Use only a zone of the current figure (same syntax as subplot). Default: None reuse_axes : bool, optional If True, reuse the current Axes (should be a MollweideAxes). This is useful if you want to overplot with a partially transparent colormap, such as for plotting a line integral convolution. Default: False margins : None or sequence, optional Either None, or a sequence (left,bottom,right,top) giving the margins on left,bottom,right and top of the axes. Values are relative to figure (0-1). Default: None return_projected_map : bool if True returns the projected map in a 2d numpy array alpha : float, array-like or None An array containing the alpha channel, supports masked maps, see the `ma` function. If None, no transparency will be applied. See Also -------- gnomview, cartview, orthview, azeqview
def mollview( map=None, fig=None, rot=None, coord=None, unit="", xsize=800, title="Mollweide view", nest=False, min=None, max=None, flip="astro", remove_dip=False, remove_mono=False, gal_cut=0, format="%g", format2="%g", cbar=True, cmap=None, badcolor="gray", bgcolor="white", notext=False, norm=None, hold=False, reuse_axes=False, margins=None, sub=None, nlocs=2, return_projected_map=False, alpha=None, ): """Plot a healpix map (given as an array) in Mollweide projection. Parameters ---------- map : float, array-like or None An array containing the map, supports masked maps, see the `ma` function. If None, will display a blank map, useful for overplotting. fig : int or None, optional The figure number to use. Default: create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 title : str, optional The title of the plot. Default: 'Mollweide view' nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards right, west towards left) remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] format : str, optional The format of the scale label. Default: '%g' format2 : str, optional Format of the pixel value under mouse. Default: '%g' cbar : bool, optional Display the colorbar. Default: True notext : bool, optional If True, no text is printed around the map norm : {'hist', 'log', None} Color normalization, hist= histogram equalized color mapping, log= logarithmic color mapping, default: None (linear color mapping) cmap : a color map The colormap to use (see matplotlib.cm) badcolor : str Color to use to plot bad values bgcolor : str Color to use for background hold : bool, optional If True, replace the current Axes by a MollweideAxes. use this if you want to have multiple maps on the same figure. Default: False sub : int, scalar or sequence, optional Use only a zone of the current figure (same syntax as subplot). Default: None reuse_axes : bool, optional If True, reuse the current Axes (should be a MollweideAxes). This is useful if you want to overplot with a partially transparent colormap, such as for plotting a line integral convolution. Default: False margins : None or sequence, optional Either None, or a sequence (left,bottom,right,top) giving the margins on left,bottom,right and top of the axes. Values are relative to figure (0-1). Default: None return_projected_map : bool if True returns the projected map in a 2d numpy array alpha : float, array-like or None An array containing the alpha channel, supports masked maps, see the `ma` function. If None, no transparency will be applied. See Also -------- gnomview, cartview, orthview, azeqview """ # Create the figure import pylab if map is None: map = np.zeros(12) + np.inf cbar = False # Ensure that the nside is valid nside = pixelfunc.get_nside(map) pixelfunc.check_nside(nside, nest=nest) if not (hold or sub or reuse_axes): f = pylab.figure(fig, figsize=(8.5, 5.4)) if not margins: margins = (0.02, 0.05, 0.02, 0.05) extent = (0.0, 0.0, 1.0, 1.0) elif hold: f = pylab.gcf() left, bottom, right, top = np.array(f.gca().get_position()).ravel() if not margins: margins = (0.0, 0.0, 0.0, 0.0) extent = (left, bottom, right - left, top - bottom) f.delaxes(f.gca()) elif reuse_axes: f = pylab.gcf() else: # using subplot syntax f = pylab.gcf() if hasattr(sub, "__len__"): nrows, ncols, idx = sub else: nrows, ncols, idx = sub // 100, (sub % 100) // 10, (sub % 10) if idx < 1 or idx > ncols * nrows: raise ValueError("Wrong values for sub: %d, %d, %d" % (nrows, ncols, idx)) c, r = (idx - 1) % ncols, (idx - 1) // ncols if not margins: margins = (0.01, 0.0, 0.0, 0.02) extent = ( c * 1.0 / ncols, 1.0 - (r + 1) * 1.0 / nrows, 1.0 / ncols, 1.0 / nrows, ) if not reuse_axes: extent = ( extent[0] + margins[0], extent[1] + margins[1], extent[2] - margins[2] - margins[0], extent[3] - margins[3] - margins[1], ) # Starting to draw : turn interactive off wasinteractive = pylab.isinteractive() pylab.ioff() try: map = pixelfunc.ma_to_array(map) if alpha is not None: alpha = pixelfunc.ma_to_array(alpha) if reuse_axes: ax = f.gca() else: ax = PA.HpxMollweideAxes( f, extent, coord=coord, rot=rot, format=format2, flipconv=flip ) f.add_axes(ax) if remove_dip: map = pixelfunc.remove_dipole( map, gal_cut=gal_cut, nest=nest, copy=True ) elif remove_mono: map = pixelfunc.remove_monopole( map, gal_cut=gal_cut, nest=nest, copy=True ) img = ax.projmap( map, nest=nest, xsize=xsize, coord=coord, vmin=min, vmax=max, cmap=cmap, badcolor=badcolor, bgcolor=bgcolor, norm=norm, alpha=alpha, ) if cbar: im = ax.get_images()[0] b = im.norm.inverse(np.linspace(0, 1, im.cmap.N + 1)) v = np.linspace(im.norm.vmin, im.norm.vmax, im.cmap.N) mappable = plt.cm.ScalarMappable( norm=matplotlib.colors.Normalize(vmin=im.norm.vmin, vmax=im.norm.vmax), cmap=cmap, ) if matplotlib.__version__ >= "0.91.0": cb = f.colorbar( mappable, ax=ax, orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(nlocs, norm), pad=0.05, fraction=0.1, boundaries=b, values=v, format=format, ) else: # for older matplotlib versions, no ax kwarg cb = f.colorbar( mappable, orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(nlocs, norm), pad=0.05, fraction=0.1, boundaries=b, values=v, format=format, ) cb.solids.set_rasterized(True) ax.set_title(title) if not notext: ax.text( 0.86, 0.05, ax.proj.coordsysstr, fontsize=14, fontweight="bold", transform=ax.transAxes, ) if cbar: cb.ax.text( 0.5, -1.0, unit, fontsize=14, transform=cb.ax.transAxes, ha="center", va="center", ) f.sca(ax) finally: pylab.draw() if wasinteractive: pylab.ion() # pylab.show() if return_projected_map: return img
(map=None, fig=None, rot=None, coord=None, unit='', xsize=800, title='Mollweide view', nest=False, min=None, max=None, flip='astro', remove_dip=False, remove_mono=False, gal_cut=0, format='%g', format2='%g', cbar=True, cmap=None, badcolor='gray', bgcolor='white', notext=False, norm=None, hold=False, reuse_axes=False, margins=None, sub=None, nlocs=2, return_projected_map=False, alpha=None)
37,698
healpy.zoomtool
mollzoom
Interactive mollweide plot with zoomed gnomview. Parameters: ----------- map : float, array-like shape (Npix,) An array containing the map, supports masked maps, see the `ma` function. if None, use map with inf value (white map), useful for overplotting fig : a figure number. Default: create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 title : str, optional The title of the plot. Default: 'Mollweide view' nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] format : str, optional The format of the scale label. Default: '%g'
def mollzoom( map=None, fig=None, rot=None, coord=None, unit="", xsize=800, title="Mollweide view", nest=False, min=None, max=None, flip="astro", remove_dip=False, remove_mono=False, gal_cut=0, format="%g", cmap=None, norm=None, hold=False, margins=None, sub=None, ): """Interactive mollweide plot with zoomed gnomview. Parameters: ----------- map : float, array-like shape (Npix,) An array containing the map, supports masked maps, see the `ma` function. if None, use map with inf value (white map), useful for overplotting fig : a figure number. Default: create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 title : str, optional The title of the plot. Default: 'Mollweide view' nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] format : str, optional The format of the scale label. Default: '%g' """ import pylab # Ensure that the nside is valid nside = pixelfunc.get_nside(map) pixelfunc.check_nside(nside, nest=nest) # create the figure (if interactive, it will open the window now) f = pylab.figure(fig, figsize=(10.5, 5.4)) extent = (0.02, 0.25, 0.56, 0.72) # Starting to draw : turn interactive off wasinteractive = pylab.isinteractive() pylab.ioff() try: if map is None: map = np.zeros(12) + np.inf map = pixelfunc.ma_to_array(map) ax = PA.HpxMollweideAxes( f, extent, coord=coord, rot=rot, format=format, flipconv=flip ) f.add_axes(ax) if remove_dip: map = pixelfunc.remove_dipole( map, gal_cut=gal_cut, nest=nest, copy=True ) elif remove_mono: map = pixelfunc.remove_monopole( map, gal_cut=gal_cut, nest=nest, copy=True ) ax.projmap( map, nest=nest, xsize=xsize, coord=coord, vmin=min, vmax=max, cmap=cmap, norm=norm, ) im = ax.get_images()[0] b = im.norm.inverse(np.linspace(0, 1, im.cmap.N + 1)) v = np.linspace(im.norm.vmin, im.norm.vmax, im.cmap.N) if matplotlib.__version__ >= "0.91.0": cb = f.colorbar( ax.get_images()[0], ax=ax, orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(), pad=0.05, fraction=0.1, boundaries=b, values=v, ) else: # for older matplotlib versions, no ax kwarg cb = f.colorbar( ax.get_images()[0], orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(), pad=0.05, fraction=0.1, boundaries=b, values=v, ) ax.set_title(title) ax.text( 0.86, 0.05, ax.proj.coordsysstr, fontsize=14, fontweight="bold", transform=ax.transAxes, ) cb.ax.text( 1.05, 0.30, unit, fontsize=14, fontweight="bold", transform=cb.ax.transAxes, ha="left", va="center", ) f.sca(ax) ## Gnomonic axes # extent = (0.02,0.25,0.56,0.72) g_xsize = 600 g_reso = 1.0 extent = (0.60, 0.04, 0.38, 0.94) g_ax = PA.HpxGnomonicAxes( f, extent, coord=coord, rot=rot, format=format, flipconv=flip ) f.add_axes(g_ax) if remove_dip: map = pixelfunc.remove_dipole(map, gal_cut=gal_cut, nest=nest, copy=True) elif remove_mono: map = pixelfunc.remove_monopole(map, gal_cut=gal_cut, nest=nest, copy=True) g_ax.projmap( map, nest=nest, coord=coord, vmin=min, vmax=max, xsize=g_xsize, ysize=g_xsize, reso=g_reso, cmap=cmap, norm=norm, ) im = g_ax.get_images()[0] b = im.norm.inverse(np.linspace(0, 1, im.cmap.N + 1)) v = np.linspace(im.norm.vmin, im.norm.vmax, im.cmap.N) if matplotlib.__version__ >= "0.91.0": cb = f.colorbar( g_ax.get_images()[0], ax=g_ax, orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(), pad=0.08, fraction=0.1, boundaries=b, values=v, ) else: cb = f.colorbar( g_ax.get_images()[0], orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(), pad=0.08, fraction=0.1, boundaries=b, values=v, ) g_ax.set_title(title) g_ax.text( -0.07, 0.02, "%g '/pix, %dx%d pix" % ( g_ax.proj.arrayinfo["reso"], g_ax.proj.arrayinfo["xsize"], g_ax.proj.arrayinfo["ysize"], ), fontsize=12, verticalalignment="bottom", transform=g_ax.transAxes, rotation=90, ) g_ax.text( -0.07, 0.8, g_ax.proj.coordsysstr, fontsize=14, fontweight="bold", rotation=90, transform=g_ax.transAxes, ) lon, lat = np.around(g_ax.proj.get_center(lonlat=True), g_ax._coordprec) g_ax.text( 0.5, -0.03, "on (%g,%g)" % (lon, lat), verticalalignment="center", horizontalalignment="center", transform=g_ax.transAxes, ) cb.ax.text( 1.05, 0.30, unit, fontsize=14, fontweight="bold", transform=cb.ax.transAxes, ha="left", va="center", ) # Add graticule info axes grat_ax = pylab.axes([0.25, 0.02, 0.22, 0.25]) grat_ax.axis("off") # Add help text help_ax = pylab.axes([0.02, 0.02, 0.22, 0.25]) help_ax.axis("off") t = help_ax.transAxes help_ax.text(0.1, 0.8, "r/t .... zoom out/in", transform=t, va="baseline") help_ax.text(0.1, 0.65, "p/v .... print coord/val", transform=t, va="baseline") help_ax.text(0.1, 0.5, "c ...... go to center", transform=t, va="baseline") help_ax.text(0.1, 0.35, "f ...... next color scale", transform=t, va="baseline") help_ax.text( 0.1, 0.2, "k ...... save current scale", transform=t, va="baseline" ) help_ax.text(0.1, 0.05, "g ...... toggle graticule", transform=t, va="baseline") f.sca(g_ax) # Set up the zoom capability zt = ZoomTool(map, fig=f.number, nest=nest, cmap=cmap, norm=norm, coord=coord) finally: pylab.draw() if wasinteractive: pylab.ion()
(map=None, fig=None, rot=None, coord=None, unit='', xsize=800, title='Mollweide view', nest=False, min=None, max=None, flip='astro', remove_dip=False, remove_mono=False, gal_cut=0, format='%g', cmap=None, norm=None, hold=False, margins=None, sub=None)
37,699
healpy.pixelfunc
nest2ring
Convert pixel number from NESTED ordering to RING ordering. Parameters ---------- nside : int, scalar or array-like the healpix nside parameter ipix : int, scalar or array-like the pixel number in NESTED scheme Returns ------- ipix : int, scalar or array-like the pixel number in RING scheme See Also -------- ring2nest, reorder Examples -------- >>> import healpy as hp >>> hp.nest2ring(16, 1130) 1504 >>> print(hp.nest2ring(2, np.arange(10))) [13 5 4 0 15 7 6 1 17 9] >>> print(hp.nest2ring([1, 2, 4, 8], 11)) [ 11 2 12 211]
def nest2ring(nside, ipix): """Convert pixel number from NESTED ordering to RING ordering. Parameters ---------- nside : int, scalar or array-like the healpix nside parameter ipix : int, scalar or array-like the pixel number in NESTED scheme Returns ------- ipix : int, scalar or array-like the pixel number in RING scheme See Also -------- ring2nest, reorder Examples -------- >>> import healpy as hp >>> hp.nest2ring(16, 1130) 1504 >>> print(hp.nest2ring(2, np.arange(10))) [13 5 4 0 15 7 6 1 17 9] >>> print(hp.nest2ring([1, 2, 4, 8], 11)) [ 11 2 12 211] """ check_nside(nside, nest=True) return pixlib._nest2ring(nside, ipix)
(nside, ipix)
37,700
healpy.newvisufunc
newprojplot
newprojplot is a wrapper around :func:`matplotlib.Axes.plot` to support colatitude theta and longitude phi and take into account the longitude convention (see the `flip` keyword of :func:`projview`) You can call this function as:: newprojplot(theta, phi) # plot a line going through points at coord (theta, phi) newprojplot(theta, phi, 'bo') # plot 'o' in blue at coord (theta, phi) Parameters ---------- theta, phi : float, array-like Coordinates of point to plot in radians. fmt : str A format string (see :func:`matplotlib.Axes.plot` for details) Notes ----- Other keywords are passed to :func:`matplotlib.Axes.plot`.
def newprojplot(theta, phi, fmt=None, **kwargs): """newprojplot is a wrapper around :func:`matplotlib.Axes.plot` to support colatitude theta and longitude phi and take into account the longitude convention (see the `flip` keyword of :func:`projview`) You can call this function as:: newprojplot(theta, phi) # plot a line going through points at coord (theta, phi) newprojplot(theta, phi, 'bo') # plot 'o' in blue at coord (theta, phi) Parameters ---------- theta, phi : float, array-like Coordinates of point to plot in radians. fmt : str A format string (see :func:`matplotlib.Axes.plot` for details) Notes ----- Other keywords are passed to :func:`matplotlib.Axes.plot`. """ import matplotlib.pyplot as plt ax = plt.gca() flip = getattr(ax, "healpy_flip", "astro") longitude, latitude = lonlat(theta, phi) if flip == "astro": longitude = longitude * -1 if fmt is None: ret = plt.plot(longitude, latitude, **kwargs) else: ret = plt.plot(longitude, latitude, fmt, **kwargs) return ret
(theta, phi, fmt=None, **kwargs)
37,702
healpy.pixelfunc
npix2nside
Give the nside parameter for the given number of pixels. Parameters ---------- npix : int the number of pixels Returns ------- nside : int the nside parameter corresponding to npix Notes ----- Raise a ValueError exception if number of pixel does not correspond to the number of pixel of a healpix map. Examples -------- >>> import healpy as hp >>> hp.npix2nside(768) 8 >>> np.all([hp.npix2nside(12 * nside**2) == nside for nside in [2**n for n in range(12)]]) True >>> hp.npix2nside(1000) Traceback (most recent call last): ... ValueError: Wrong pixel number (it is not 12*nside**2)
def npix2nside(npix): """Give the nside parameter for the given number of pixels. Parameters ---------- npix : int the number of pixels Returns ------- nside : int the nside parameter corresponding to npix Notes ----- Raise a ValueError exception if number of pixel does not correspond to the number of pixel of a healpix map. Examples -------- >>> import healpy as hp >>> hp.npix2nside(768) 8 >>> np.all([hp.npix2nside(12 * nside**2) == nside for nside in [2**n for n in range(12)]]) True >>> hp.npix2nside(1000) Traceback (most recent call last): ... ValueError: Wrong pixel number (it is not 12*nside**2) """ if not isnpixok(npix): raise ValueError("Wrong pixel number (it is not 12*nside**2)") return int(np.sqrt(npix / 12.0))
(npix)
37,703
healpy.pixelfunc
npix2order
Give the resolution order for the given number of pixels. Parameters ---------- npix : int the number of pixels Returns ------- order : int corresponding resolution order Notes ----- A convenience function that successively applies npix2nside then nside2order to npix. Examples -------- >>> import healpy as hp >>> hp.npix2order(768) 3 >>> np.all([hp.npix2order(12 * 4**order) == order for order in range(12)]) True >>> hp.npix2order(1000) Traceback (most recent call last): ... ValueError: Wrong pixel number (it is not 12*nside**2)
def npix2order(npix): """Give the resolution order for the given number of pixels. Parameters ---------- npix : int the number of pixels Returns ------- order : int corresponding resolution order Notes ----- A convenience function that successively applies npix2nside then nside2order to npix. Examples -------- >>> import healpy as hp >>> hp.npix2order(768) 3 >>> np.all([hp.npix2order(12 * 4**order) == order for order in range(12)]) True >>> hp.npix2order(1000) Traceback (most recent call last): ... ValueError: Wrong pixel number (it is not 12*nside**2) """ nside = npix2nside(npix) order = nside2order(nside) return order
(npix)
37,704
healpy.pixelfunc
nside2npix
Give the number of pixels for the given nside. Parameters ---------- nside : int healpix nside parameter Returns ------- npix : int corresponding number of pixels Examples -------- >>> import healpy as hp >>> import numpy as np >>> hp.nside2npix(8) 768 >>> np.all([hp.nside2npix(nside) == 12 * nside**2 for nside in [2**n for n in range(12)]]) True >>> hp.nside2npix(7) 588
def nside2npix(nside): """Give the number of pixels for the given nside. Parameters ---------- nside : int healpix nside parameter Returns ------- npix : int corresponding number of pixels Examples -------- >>> import healpy as hp >>> import numpy as np >>> hp.nside2npix(8) 768 >>> np.all([hp.nside2npix(nside) == 12 * nside**2 for nside in [2**n for n in range(12)]]) True >>> hp.nside2npix(7) 588 """ return 12 * nside * nside
(nside)
37,705
healpy.pixelfunc
nside2order
Give the resolution order for a given nside. Parameters ---------- nside : int healpix nside parameter; an exception is raised if nside is not valid (nside must be a power of 2, less than 2**30) Returns ------- order : int corresponding order where nside = 2**(order) Notes ----- Raise a ValueError exception if nside is not valid. Examples -------- >>> import healpy as hp >>> import numpy as np >>> hp.nside2order(128) 7 >>> np.all([hp.nside2order(2**o) == o for o in range(30)]) True >>> hp.nside2order(7) Traceback (most recent call last): ... ValueError: 7 is not a valid nside parameter (must be a power of 2, less than 2**30)
def nside2order(nside): """Give the resolution order for a given nside. Parameters ---------- nside : int healpix nside parameter; an exception is raised if nside is not valid (nside must be a power of 2, less than 2**30) Returns ------- order : int corresponding order where nside = 2**(order) Notes ----- Raise a ValueError exception if nside is not valid. Examples -------- >>> import healpy as hp >>> import numpy as np >>> hp.nside2order(128) 7 >>> np.all([hp.nside2order(2**o) == o for o in range(30)]) True >>> hp.nside2order(7) Traceback (most recent call last): ... ValueError: 7 is not a valid nside parameter (must be a power of 2, less than 2**30) """ check_nside(nside, nest=True) return len("{0:b}".format(nside)) - 1
(nside)
37,706
healpy.pixelfunc
nside2pixarea
Give pixel area given nside in square radians or square degrees. Parameters ---------- nside : int healpix nside parameter, must be a power of 2, less than 2**30 degrees : bool if True, returns pixel area in square degrees, in square radians otherwise Returns ------- pixarea : float pixel area in square radian or square degree Notes ----- Raise a ValueError exception if nside is not valid. Examples -------- >>> import healpy as hp >>> hp.nside2pixarea(128, degrees = True) # doctest: +FLOAT_CMP 0.2098234113027917 >>> hp.nside2pixarea(256) 1.5978966540475428e-05 >>> hp.nside2pixarea(7) 0.021371378595848933
def nside2pixarea(nside, degrees=False): """Give pixel area given nside in square radians or square degrees. Parameters ---------- nside : int healpix nside parameter, must be a power of 2, less than 2**30 degrees : bool if True, returns pixel area in square degrees, in square radians otherwise Returns ------- pixarea : float pixel area in square radian or square degree Notes ----- Raise a ValueError exception if nside is not valid. Examples -------- >>> import healpy as hp >>> hp.nside2pixarea(128, degrees = True) # doctest: +FLOAT_CMP 0.2098234113027917 >>> hp.nside2pixarea(256) 1.5978966540475428e-05 >>> hp.nside2pixarea(7) 0.021371378595848933 """ pixarea = 4 * np.pi / nside2npix(nside) if degrees: pixarea = np.rad2deg(np.rad2deg(pixarea)) return pixarea
(nside, degrees=False)
37,707
healpy.pixelfunc
nside2resol
Give approximate resolution (pixel size in radian or arcmin) for nside. Resolution is just the square root of the pixel area, which is a gross approximation given the different pixel shapes Parameters ---------- nside : int healpix nside parameter, must be a power of 2, less than 2**30 arcmin : bool if True, return resolution in arcmin, otherwise in radian Returns ------- resol : float approximate pixel size in radians or arcmin Notes ----- Raise a ValueError exception if nside is not valid. Examples -------- >>> import healpy as hp >>> hp.nside2resol(128, arcmin = True) # doctest: +FLOAT_CMP 27.483891294539248 >>> hp.nside2resol(256) 0.0039973699529159707 >>> hp.nside2resol(7) 0.1461895297066412
def nside2resol(nside, arcmin=False): """Give approximate resolution (pixel size in radian or arcmin) for nside. Resolution is just the square root of the pixel area, which is a gross approximation given the different pixel shapes Parameters ---------- nside : int healpix nside parameter, must be a power of 2, less than 2**30 arcmin : bool if True, return resolution in arcmin, otherwise in radian Returns ------- resol : float approximate pixel size in radians or arcmin Notes ----- Raise a ValueError exception if nside is not valid. Examples -------- >>> import healpy as hp >>> hp.nside2resol(128, arcmin = True) # doctest: +FLOAT_CMP 27.483891294539248 >>> hp.nside2resol(256) 0.0039973699529159707 >>> hp.nside2resol(7) 0.1461895297066412 """ resol = np.sqrt(nside2pixarea(nside)) if arcmin: resol = np.rad2deg(resol) * 60 return resol
(nside, arcmin=False)
37,708
healpy.pixelfunc
order2npix
Give the number of pixels for the given resolution order. Parameters ---------- order : int the resolution order Returns ------- npix : int corresponding number of pixels Notes ----- A convenience function that successively applies order2nside then nside2npix to order. Examples -------- >>> import healpy as hp >>> hp.order2npix(7) 196608 >>> print(hp.order2npix(np.arange(8))) [ 12 48 192 768 3072 12288 49152 196608] >>> hp.order2npix(31) Traceback (most recent call last): ... ValueError: 2147483648 is not a valid nside parameter (must be a power of 2, less than 2**30)
def order2npix(order): """Give the number of pixels for the given resolution order. Parameters ---------- order : int the resolution order Returns ------- npix : int corresponding number of pixels Notes ----- A convenience function that successively applies order2nside then nside2npix to order. Examples -------- >>> import healpy as hp >>> hp.order2npix(7) 196608 >>> print(hp.order2npix(np.arange(8))) [ 12 48 192 768 3072 12288 49152 196608] >>> hp.order2npix(31) Traceback (most recent call last): ... ValueError: 2147483648 is not a valid nside parameter (must be a power of 2, less than 2**30) """ nside = order2nside(order) npix = nside2npix(nside) return npix
(order)
37,709
healpy.pixelfunc
order2nside
Give the nside parameter for the given resolution order. Parameters ---------- order : int the resolution order Returns ------- nside : int the nside parameter corresponding to order Notes ----- Raise a ValueError exception if order produces an nside out of range. Examples -------- >>> import healpy as hp >>> hp.order2nside(7) 128 >>> print(hp.order2nside(np.arange(8))) [ 1 2 4 8 16 32 64 128] >>> hp.order2nside(31) Traceback (most recent call last): ... ValueError: 2147483648 is not a valid nside parameter (must be a power of 2, less than 2**30)
def order2nside(order): """Give the nside parameter for the given resolution order. Parameters ---------- order : int the resolution order Returns ------- nside : int the nside parameter corresponding to order Notes ----- Raise a ValueError exception if order produces an nside out of range. Examples -------- >>> import healpy as hp >>> hp.order2nside(7) 128 >>> print(hp.order2nside(np.arange(8))) [ 1 2 4 8 16 32 64 128] >>> hp.order2nside(31) Traceback (most recent call last): ... ValueError: 2147483648 is not a valid nside parameter (must be a power of 2, less than 2**30) """ nside = 1 << order check_nside(nside, nest=True) return nside
(order)
37,710
healpy.visufunc
orthview
Plot a healpix map (given as an array) in Orthographic projection. Parameters ---------- map : float, array-like or None An array containing the map. If None, will display a blank map, useful for overplotting. fig : int or None, optional The figure number to use. Default: create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. half_sky : bool, optional Plot only one side of the sphere. Default: False unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 title : str, optional The title of the plot. Default: 'Orthographic view' nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] format : str, optional The format of the scale label. Default: '%g' format2 : str, optional Format of the pixel value under mouse. Default: '%g' cbar : bool, optional Display the colorbar. Default: True notext : bool, optional If True, no text is printed around the map norm : {'hist', 'log', None} Color normalization, hist= histogram equalized color mapping, log= logarithmic color mapping, default: None (linear color mapping) cmap : a color map The colormap to use (see matplotlib.cm) badcolor : str Color to use to plot bad values bgcolor : str Color to use for background hold : bool, optional If True, replace the current Axes by an OrthographicAxes. use this if you want to have multiple maps on the same figure. Default: False sub : int, scalar or sequence, optional Use only a zone of the current figure (same syntax as subplot). Default: None reuse_axes : bool, optional If True, reuse the current Axes (should be a OrthographicAxes). This is useful if you want to overplot with a partially transparent colormap, such as for plotting a line integral convolution. Default: False margins : None or sequence, optional Either None, or a sequence (left,bottom,right,top) giving the margins on left,bottom,right and top of the axes. Values are relative to figure (0-1). Default: None return_projected_map : bool if True returns the projected map in a 2d numpy array alpha : float, array-like or None An array containing the alpha channel, supports masked maps, see the `ma` function. If None, no transparency will be applied. See Also -------- mollview, gnomview, cartview, azeqview
def orthview( map=None, fig=None, rot=None, coord=None, unit="", xsize=800, half_sky=False, title="Orthographic view", nest=False, min=None, max=None, flip="astro", remove_dip=False, remove_mono=False, gal_cut=0, format="%g", format2="%g", cbar=True, cmap=None, badcolor="gray", bgcolor="white", notext=False, norm=None, hold=False, margins=None, sub=None, reuse_axes=False, return_projected_map=False, alpha=None, ): """Plot a healpix map (given as an array) in Orthographic projection. Parameters ---------- map : float, array-like or None An array containing the map. If None, will display a blank map, useful for overplotting. fig : int or None, optional The figure number to use. Default: create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. half_sky : bool, optional Plot only one side of the sphere. Default: False unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 title : str, optional The title of the plot. Default: 'Orthographic view' nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] format : str, optional The format of the scale label. Default: '%g' format2 : str, optional Format of the pixel value under mouse. Default: '%g' cbar : bool, optional Display the colorbar. Default: True notext : bool, optional If True, no text is printed around the map norm : {'hist', 'log', None} Color normalization, hist= histogram equalized color mapping, log= logarithmic color mapping, default: None (linear color mapping) cmap : a color map The colormap to use (see matplotlib.cm) badcolor : str Color to use to plot bad values bgcolor : str Color to use for background hold : bool, optional If True, replace the current Axes by an OrthographicAxes. use this if you want to have multiple maps on the same figure. Default: False sub : int, scalar or sequence, optional Use only a zone of the current figure (same syntax as subplot). Default: None reuse_axes : bool, optional If True, reuse the current Axes (should be a OrthographicAxes). This is useful if you want to overplot with a partially transparent colormap, such as for plotting a line integral convolution. Default: False margins : None or sequence, optional Either None, or a sequence (left,bottom,right,top) giving the margins on left,bottom,right and top of the axes. Values are relative to figure (0-1). Default: None return_projected_map : bool if True returns the projected map in a 2d numpy array alpha : float, array-like or None An array containing the alpha channel, supports masked maps, see the `ma` function. If None, no transparency will be applied. See Also -------- mollview, gnomview, cartview, azeqview """ # Create the figure import pylab if map is None: map = np.zeros(12) + np.inf cbar = False # Ensure that the nside is valid nside = pixelfunc.get_nside(map) pixelfunc.check_nside(nside, nest=nest) if not (hold or sub or reuse_axes): f = pylab.figure(fig, figsize=(8.5, 5.4)) if not margins: margins = (0.02, 0.05, 0.02, 0.05) extent = (0.0, 0.0, 1.0, 1.0) elif hold: f = pylab.gcf() left, bottom, right, top = np.array(f.gca().get_position()).ravel() if not margins: margins = (0.0, 0.0, 0.0, 0.0) extent = (left, bottom, right - left, top - bottom) f.delaxes(f.gca()) elif reuse_axes: f = pylab.gcf() else: # using subplot syntax f = pylab.gcf() if hasattr(sub, "__len__"): nrows, ncols, idx = sub else: nrows, ncols, idx = sub // 100, (sub % 100) // 10, (sub % 10) if idx < 1 or idx > ncols * nrows: raise ValueError("Wrong values for sub: %d, %d, %d" % (nrows, ncols, idx)) c, r = (idx - 1) % ncols, (idx - 1) // ncols if not margins: margins = (0.01, 0.0, 0.0, 0.02) extent = ( c * 1.0 / ncols, 1.0 - (r + 1) * 1.0 / nrows, 1.0 / ncols, 1.0 / nrows, ) if not reuse_axes: extent = ( extent[0] + margins[0], extent[1] + margins[1], extent[2] - margins[2] - margins[0], extent[3] - margins[3] - margins[1], ) # Starting to draw : turn interactive off wasinteractive = pylab.isinteractive() pylab.ioff() try: if reuse_axes: ax = f.gca() else: ax = PA.HpxOrthographicAxes( f, extent, coord=coord, rot=rot, format=format2, flipconv=flip ) f.add_axes(ax) if remove_dip: map = pixelfunc.remove_dipole( map, gal_cut=gal_cut, nest=nest, copy=True ) elif remove_mono: map = pixelfunc.remove_monopole( map, gal_cut=gal_cut, nest=nest, copy=True ) img = ax.projmap( map, nest=nest, xsize=xsize, half_sky=half_sky, coord=coord, vmin=min, vmax=max, cmap=cmap, badcolor=badcolor, bgcolor=bgcolor, norm=norm, alpha=alpha, ) if cbar: im = ax.get_images()[0] b = im.norm.inverse(np.linspace(0, 1, im.cmap.N + 1)) v = np.linspace(im.norm.vmin, im.norm.vmax, im.cmap.N) mappable = plt.cm.ScalarMappable( norm=matplotlib.colors.Normalize(vmin=im.norm.vmin, vmax=im.norm.vmax), cmap=cmap, ) if matplotlib.__version__ >= "0.91.0": cb = f.colorbar( mappable, ax=ax, orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(), pad=0.05, fraction=0.1, boundaries=b, values=v, format=format, ) else: # for older matplotlib versions, no ax kwarg cb = f.colorbar( mappable, orientation="horizontal", shrink=0.5, aspect=25, ticks=PA.BoundaryLocator(), pad=0.05, fraction=0.1, boundaries=b, values=v, format=format, ) cb.solids.set_rasterized(True) ax.set_title(title) if not notext: ax.text( 0.86, 0.05, ax.proj.coordsysstr, fontsize=14, fontweight="bold", transform=ax.transAxes, ) if cbar: cb.ax.text( 0.5, -1.0, unit, fontsize=14, transform=cb.ax.transAxes, ha="center", va="center", ) f.sca(ax) finally: pylab.draw() if wasinteractive: pylab.ion() # pylab.show() if return_projected_map: return img
(map=None, fig=None, rot=None, coord=None, unit='', xsize=800, half_sky=False, title='Orthographic view', nest=False, min=None, max=None, flip='astro', remove_dip=False, remove_mono=False, gal_cut=0, format='%g', format2='%g', cbar=True, cmap=None, badcolor='gray', bgcolor='white', notext=False, norm=None, hold=False, margins=None, sub=None, reuse_axes=False, return_projected_map=False, alpha=None)
37,711
healpy.pixelfunc
pix2ang
pix2ang : nside,ipix,nest=False,lonlat=False -> theta[rad],phi[rad] (default RING) Parameters ---------- nside : int or array-like The healpix nside parameter, must be a power of 2, less than 2**30 ipix : int or array-like Pixel indices nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering lonlat : bool, optional If True, return angles will be longitude and latitude in degree, otherwise, angles will be co-latitude and longitude in radians (default) Returns ------- theta, phi : float, scalar or array-like The angular coordinates corresponding to ipix. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- ang2pix, vec2pix, pix2vec Examples -------- >>> import healpy as hp >>> hp.pix2ang(16, 1440) (1.5291175943723188, 0.0) >>> hp.pix2ang(16, [1440, 427, 1520, 0, 3068]) (array([ 1.52911759, 0.78550497, 1.57079633, 0.05103658, 3.09055608]), array([ 0. , 0.78539816, 1.61988371, 0.78539816, 0.78539816])) >>> hp.pix2ang([1, 2, 4, 8], 11) (array([ 2.30052398, 0.84106867, 0.41113786, 0.2044802 ]), array([ 5.49778714, 5.89048623, 5.89048623, 5.89048623])) >>> hp.pix2ang([1, 2, 4, 8], 11, lonlat=True) (array([ 315. , 337.5, 337.5, 337.5]), array([-41.8103149 , 41.8103149 , 66.44353569, 78.28414761]))
def pix2ang(nside, ipix, nest=False, lonlat=False): """pix2ang : nside,ipix,nest=False,lonlat=False -> theta[rad],phi[rad] (default RING) Parameters ---------- nside : int or array-like The healpix nside parameter, must be a power of 2, less than 2**30 ipix : int or array-like Pixel indices nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering lonlat : bool, optional If True, return angles will be longitude and latitude in degree, otherwise, angles will be co-latitude and longitude in radians (default) Returns ------- theta, phi : float, scalar or array-like The angular coordinates corresponding to ipix. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- ang2pix, vec2pix, pix2vec Examples -------- >>> import healpy as hp >>> hp.pix2ang(16, 1440) (1.5291175943723188, 0.0) >>> hp.pix2ang(16, [1440, 427, 1520, 0, 3068]) (array([ 1.52911759, 0.78550497, 1.57079633, 0.05103658, 3.09055608]), array([ 0. , 0.78539816, 1.61988371, 0.78539816, 0.78539816])) >>> hp.pix2ang([1, 2, 4, 8], 11) (array([ 2.30052398, 0.84106867, 0.41113786, 0.2044802 ]), array([ 5.49778714, 5.89048623, 5.89048623, 5.89048623])) >>> hp.pix2ang([1, 2, 4, 8], 11, lonlat=True) (array([ 315. , 337.5, 337.5, 337.5]), array([-41.8103149 , 41.8103149 , 66.44353569, 78.28414761])) """ check_nside(nside, nest=nest) if nest: theta, phi = pixlib._pix2ang_nest(nside, ipix) else: theta, phi = pixlib._pix2ang_ring(nside, ipix) if lonlat: return thetaphi2lonlat(theta, phi) else: return theta, phi
(nside, ipix, nest=False, lonlat=False)
37,712
healpy.pixelfunc
pix2vec
pix2vec : nside,ipix,nest=False -> x,y,z (default RING) Parameters ---------- nside : int, scalar or array-like The healpix nside parameter, must be a power of 2, less than 2**30 ipix : int, scalar or array-like Healpix pixel number nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- x, y, z : floats, scalar or array-like The coordinates of vector corresponding to input pixels. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- ang2pix, pix2ang, vec2pix Examples -------- >>> import healpy as hp >>> hp.pix2vec(16, 1504) (0.99879545620517241, 0.049067674327418015, 0.0) >>> hp.pix2vec(16, [1440, 427]) (array([ 0.99913157, 0.5000534 ]), array([ 0. , 0.5000534]), array([ 0.04166667, 0.70703125])) >>> hp.pix2vec([1, 2], 11) (array([ 0.52704628, 0.68861915]), array([-0.52704628, -0.28523539]), array([-0.66666667, 0.66666667]))
def pix2vec(nside, ipix, nest=False): """pix2vec : nside,ipix,nest=False -> x,y,z (default RING) Parameters ---------- nside : int, scalar or array-like The healpix nside parameter, must be a power of 2, less than 2**30 ipix : int, scalar or array-like Healpix pixel number nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- x, y, z : floats, scalar or array-like The coordinates of vector corresponding to input pixels. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- ang2pix, pix2ang, vec2pix Examples -------- >>> import healpy as hp >>> hp.pix2vec(16, 1504) (0.99879545620517241, 0.049067674327418015, 0.0) >>> hp.pix2vec(16, [1440, 427]) (array([ 0.99913157, 0.5000534 ]), array([ 0. , 0.5000534]), array([ 0.04166667, 0.70703125])) >>> hp.pix2vec([1, 2], 11) (array([ 0.52704628, 0.68861915]), array([-0.52704628, -0.28523539]), array([-0.66666667, 0.66666667])) """ check_nside(nside, nest=nest) if nest: return pixlib._pix2vec_nest(nside, ipix) else: return pixlib._pix2vec_ring(nside, ipix)
(nside, ipix, nest=False)
37,713
healpy.pixelfunc
pix2xyf
pix2xyf : nside,ipix,nest=False -> x,y,face (default RING) Parameters ---------- nside : int or array-like The healpix nside parameter, must be a power of 2 ipix : int or array-like Pixel indices nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- x, y : int, scalars or array-like Pixel indices within face face : int, scalars or array-like Face number See Also -------- xyf2pix Examples -------- >>> import healpy as hp >>> hp.pix2xyf(16, 1440) (8, 8, 4) >>> hp.pix2xyf(16, [1440, 427, 1520, 0, 3068]) (array([ 8, 8, 8, 15, 0]), array([ 8, 8, 7, 15, 0]), array([4, 0, 5, 0, 8])) >>> hp.pix2xyf([1, 2, 4, 8], 11) (array([0, 1, 3, 7]), array([0, 0, 2, 6]), array([11, 3, 3, 3]))
def pix2xyf(nside, ipix, nest=False): """pix2xyf : nside,ipix,nest=False -> x,y,face (default RING) Parameters ---------- nside : int or array-like The healpix nside parameter, must be a power of 2 ipix : int or array-like Pixel indices nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- x, y : int, scalars or array-like Pixel indices within face face : int, scalars or array-like Face number See Also -------- xyf2pix Examples -------- >>> import healpy as hp >>> hp.pix2xyf(16, 1440) (8, 8, 4) >>> hp.pix2xyf(16, [1440, 427, 1520, 0, 3068]) (array([ 8, 8, 8, 15, 0]), array([ 8, 8, 7, 15, 0]), array([4, 0, 5, 0, 8])) >>> hp.pix2xyf([1, 2, 4, 8], 11) (array([0, 1, 3, 7]), array([0, 0, 2, 6]), array([11, 3, 3, 3])) """ check_nside(nside, nest=nest) if nest: return pixlib._pix2xyf_nest(nside, ipix) else: return pixlib._pix2xyf_ring(nside, ipix)
(nside, ipix, nest=False)
37,715
healpy.sphtfunc
pixwin
Return the pixel window function for the given nside. Parameters ---------- nside : int The nside for which to return the pixel window function pol : bool, optional If True, return also the polar pixel window. Default: False lmax : int, optional Maximum l of the power spectrum (default: 3*nside-1) Returns ------- pw or pwT,pwP : array or tuple of 2 arrays The temperature pixel window function, or a tuple with both temperature and polarisation pixel window functions.
def pixwin(nside, pol=False, lmax=None): """Return the pixel window function for the given nside. Parameters ---------- nside : int The nside for which to return the pixel window function pol : bool, optional If True, return also the polar pixel window. Default: False lmax : int, optional Maximum l of the power spectrum (default: 3*nside-1) Returns ------- pw or pwT,pwP : array or tuple of 2 arrays The temperature pixel window function, or a tuple with both temperature and polarisation pixel window functions. """ if lmax is None: lmax = 3 * nside - 1 datapath = DATAPATH if not pixelfunc.isnsideok(nside): raise ValueError("Wrong nside value (must be a power of two).") fname = os.path.join(datapath, "pixel_window_n%04d.fits" % nside) if not os.path.isfile(fname): raise ValueError("No pixel window for this nside " "or data files missing") # return hfitslib._pixwin(nside,datapath,pol) ## BROKEN -> seg fault... pw = pf.getdata(fname) pw_temp, pw_pol = pw.field(0), pw.field(1) if pol: return pw_temp[: lmax + 1], pw_pol[: lmax + 1] else: return pw_temp[: lmax + 1]
(nside, pol=False, lmax=None)
37,718
healpy.visufunc
projplot
projplot is a wrapper around :func:`matplotlib.Axes.plot` to take into account the spherical projection. You can call this function as:: projplot(theta, phi) # plot a line going through points at coord (theta, phi) projplot(theta, phi, 'bo') # plot 'o' in blue at coord (theta, phi) projplot(thetaphi) # plot a line going through points at coord (thetaphi[0], thetaphi[1]) projplot(thetaphi, 'bx') # idem but with blue 'x' Parameters ---------- theta, phi : float, array-like Coordinates of point to plot. Can be put into one 2-d array, first line is then *theta* and second line is *phi*. See *lonlat* parameter for unit. fmt : str A format string (see :func:`matplotlib.Axes.plot` for details) lonlat : bool, optional If True, theta and phi are interpreted as longitude and latitude in degree, otherwise, as colatitude and longitude in radian coord : {'E', 'G', 'C', None} The coordinate system of the points, only used if the coordinate coordinate system of the Axes has been defined and in this case, a rotation is performed rot : None or sequence rotation to be applied =(lon, lat, psi) : lon, lat will be position of the new Z axis, and psi is rotation around this axis, all in degree. if None, no rotation is performed direct : bool if True, the rotation to center the projection is not taken into account Notes ----- Other keywords are passed to :func:`matplotlib.Axes.plot`. See Also -------- projscatter, projtext
def projplot(*args, **kwds): import pylab f = pylab.gcf() wasinteractive = pylab.isinteractive() pylab.ioff() ret = None try: for ax in f.get_axes(): if isinstance(ax, PA.SphericalProjAxes): ret = ax.projplot(*args, **kwds) finally: pylab.draw() if wasinteractive: pylab.ion() # pylab.show() return ret
(*args, **kwds)
37,719
healpy.visufunc
projscatter
Projscatter is a wrapper around :func:`matplotlib.Axes.scatter` to take into account the spherical projection. You can call this function as:: projscatter(theta, phi) # plot points at coord (theta, phi) projplot(thetaphi) # plot points at coord (thetaphi[0], thetaphi[1]) Parameters ---------- theta, phi : float, array-like Coordinates of point to plot. Can be put into one 2-d array, first line is then *theta* and second line is *phi*. See *lonlat* parameter for unit. lonlat : bool, optional If True, theta and phi are interpreted as longitude and latitude in degree, otherwise, as colatitude and longitude in radian coord : {'E', 'G', 'C', None}, optional The coordinate system of the points, only used if the coordinate coordinate system of the axes has been defined and in this case, a rotation is performed rot : None or sequence, optional rotation to be applied =(lon, lat, psi) : lon, lat will be position of the new Z axis, and psi is rotation around this axis, all in degree. if None, no rotation is performed direct : bool, optional if True, the rotation to center the projection is not taken into account Notes ----- Other keywords are passed to :func:`matplotlib.Axes.plot`. See Also -------- projplot, projtext
def projscatter(*args, **kwds): import pylab f = pylab.gcf() wasinteractive = pylab.isinteractive() pylab.ioff() ret = None try: for ax in f.get_axes(): if isinstance(ax, PA.SphericalProjAxes): ret = ax.projscatter(*args, **kwds) finally: pylab.draw() if wasinteractive: pylab.ion() # pylab.show() return ret
(*args, **kwds)
37,720
healpy.visufunc
projtext
Projtext is a wrapper around :func:`matplotlib.Axes.text` to take into account the spherical projection. Parameters ---------- theta, phi : float, array-like Coordinates of point to plot. Can be put into one 2-d array, first line is then *theta* and second line is *phi*. See *lonlat* parameter for unit. text : str The text to be displayed. lonlat : bool, optional If True, theta and phi are interpreted as longitude and latitude in degree, otherwise, as colatitude and longitude in radian coord : {'E', 'G', 'C', None}, optional The coordinate system of the points, only used if the coordinate coordinate system of the axes has been defined and in this case, a rotation is performed rot : None or sequence, optional rotation to be applied =(lon, lat, psi) : lon, lat will be position of the new Z axis, and psi is rotation around this axis, all in degree. if None, no rotation is performed direct : bool, optional if True, the rotation to center the projection is not taken into account Notes ----- Other keywords are passed to :func:`matplotlib.Axes.text`. See Also -------- projplot, projscatter
def projtext(*args, **kwds): import pylab f = pylab.gcf() wasinteractive = pylab.isinteractive() pylab.ioff() ret = None try: for ax in f.get_axes(): if isinstance(ax, PA.SphericalProjAxes): ret = ax.projtext(*args, **kwds) finally: pylab.draw() if wasinteractive: pylab.ion() # pylab.show() return ret
(*args, **kwds)
37,721
healpy.newvisufunc
projview
Plot a healpix map (given as an array) in the chosen projection. See examples of using this function in the documentation under "Other tutorials". Overplot points or lines using :func:`newprojplot`. .. warning:: this function is work in progress, the aim is to reimplement the healpy plot functions using the new features of matplotlib and remove most of the custom projection code. Please report bugs or submit feature requests via Github. The interface will change in future releases. Parameters ---------- m : float, array-like or None An array containing the map, supports masked maps, see the `ma` function. If None, will display a blank map, useful for overplotting. fig : int or None, optional The figure number to use. Default: create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. default: 'G' unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 width : float, optional Sets the width of the figure. Use override_plot_properties for more. Overrides the default width of the figure nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) It creates the `healpy_flip` attribute on the Axes to save the convention in the figure. format : str, optional The format of the scale label. Default: '%g' cbar : bool, optional Display the colorbar. Default: True cmap : str, optional Specify the colormap. default: Viridis norm : {'hist', 'log', 'symlog', 'symlog2', None} Color normalization: hist = histogram equalized color mapping. log = logarithmic color mapping. symlog = symmetric logarithmic, linear between -linthresh and linthresh. symlog2 = similar to symlog, used for plack log colormap. default: None (linear color mapping) norm_dict : dict, optional Parameters for normalization: default is set to {"linthresh": 1, "base": 10, "linscale": 0.1} where linthresh determines the linear regime of symlog norm, and linscale sets the size of the linear regime on the cbar. default: None graticule : bool add graticule graticule_labels : bool longitude and latitude labels rot_graticule : bool rotate also the graticule when rotating the map graticule_coord : str Either one of 'G', 'E' or 'C' to describe the coordinate system of the graticule override_rot_graticule_properties : dict Override the following rotated graticule properties: "g_linestyle", "g_linewidth", "g_color", "g_alpha", "t_step", "p_step". return_only_data : bool, optional Return array of data projection_type : {'aitoff', 'hammer', 'lambert', 'mollweide', 'cart', '3d', 'polar'} type of the plot cb_orientation : {'horizontal', 'vertical'} color bar orientation xlabel : str set x axis label ylabel : str set y axis label longitude_grid_spacing : float set x axis grid spacing latitude_grid_spacing : float set y axis grid spacing override_plot_properties : dict Override the following plot properties: "cbar_shrink", "cbar_pad", "cbar_label_pad", "cbar_tick_direction", "vertical_tick_rotation" "figure_width": width, "figure_size_ratio": ratio. title : str set title of the plot rlabel : str set label at top right corner of axis llabel : str set label at top left corner of axis xtick_label_color : str Change the color of the graticule xticks ytick_label_color : str Change the color of the graticule yticks graticule_color : str Change the color of the graticule fontname : str Change the fontname of the text fontsize: dict Override fontsize of labels: "xlabel", "ylabel", "title", "xtick_label", "ytick_label", "cbar_label", "cbar_tick_label". phi_convention : string convention on x-axis (phi), 'counterclockwise' (default), 'clockwise', 'symmetrical' (phi as it is truly given) if `flip` is "geo", `phi_convention` should be set to 'clockwise'. custom_xtick_labels : list override x-axis tick labels custom_ytick_labels : list override y-axis tick labels cbar_ticks : list custom ticks on the colorbar show_tickmarkers : bool, optional Preserve tickmarkers for the full bar with labels specified by ticks default: None extend : str, optional Whether to extend the colorbar to mark where min or max tick is less than the min or max of the data. Options are "min", "max", "neither", or "both" invRot : bool invert rotation sub : int, scalar or sequence, optional Use only a zone of the current figure (same syntax as subplot). Default: 111 reuse_axes : bool, optional If True, reuse the current Axes (should be a MollweideAxes). This is useful if you want to overplot with a partially transparent colormap, such as for plotting a line integral convolution. Default: False margins : None or sequence, optional Either None, or a sequence (left,bottom,right,top) giving the margins on left,bottom,right and top of the axes. Values are relative to figure (0-1). Default: None hold : bool, optional If True, replace the current Axes by new axis. use this if you want to have multiple maps on the same figure. Default: False remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] kwargs : dict any leftover arguments will be passed to pcolormesh
def projview( m=None, fig=None, rot=None, coord=None, unit="", xsize=1000, width=None, nest=False, min=None, max=None, flip="astro", format="%g", cbar=True, cmap="viridis", norm=None, norm_dict=None, graticule=False, graticule_labels=False, rot_graticule=False, graticule_coord=None, override_rot_graticule_properties=None, return_only_data=False, projection_type="mollweide", cb_orientation="horizontal", xlabel=None, ylabel=None, longitude_grid_spacing=60, latitude_grid_spacing=30, override_plot_properties=None, title=None, rlabel=None, llabel=None, xtick_label_color="black", ytick_label_color="black", graticule_color=None, fontname=None, fontsize=None, phi_convention="counterclockwise", custom_xtick_labels=None, custom_ytick_labels=None, cbar_ticks=None, show_tickmarkers=False, extend=None, invRot=True, sub=111, reuse_axes=False, margins=None, hold=False, remove_dip=False, remove_mono=False, gal_cut=0, **kwargs, ): """Plot a healpix map (given as an array) in the chosen projection. See examples of using this function in the documentation under "Other tutorials". Overplot points or lines using :func:`newprojplot`. .. warning:: this function is work in progress, the aim is to reimplement the healpy plot functions using the new features of matplotlib and remove most of the custom projection code. Please report bugs or submit feature requests via Github. The interface will change in future releases. Parameters ---------- m : float, array-like or None An array containing the map, supports masked maps, see the `ma` function. If None, will display a blank map, useful for overplotting. fig : int or None, optional The figure number to use. Default: create a new figure rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. default: 'G' unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 width : float, optional Sets the width of the figure. Use override_plot_properties for more. Overrides the default width of the figure nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) It creates the `healpy_flip` attribute on the Axes to save the convention in the figure. format : str, optional The format of the scale label. Default: '%g' cbar : bool, optional Display the colorbar. Default: True cmap : str, optional Specify the colormap. default: Viridis norm : {'hist', 'log', 'symlog', 'symlog2', None} Color normalization: hist = histogram equalized color mapping. log = logarithmic color mapping. symlog = symmetric logarithmic, linear between -linthresh and linthresh. symlog2 = similar to symlog, used for plack log colormap. default: None (linear color mapping) norm_dict : dict, optional Parameters for normalization: default is set to {"linthresh": 1, "base": 10, "linscale": 0.1} where linthresh determines the linear regime of symlog norm, and linscale sets the size of the linear regime on the cbar. default: None graticule : bool add graticule graticule_labels : bool longitude and latitude labels rot_graticule : bool rotate also the graticule when rotating the map graticule_coord : str Either one of 'G', 'E' or 'C' to describe the coordinate system of the graticule override_rot_graticule_properties : dict Override the following rotated graticule properties: "g_linestyle", "g_linewidth", "g_color", "g_alpha", "t_step", "p_step". return_only_data : bool, optional Return array of data projection_type : {'aitoff', 'hammer', 'lambert', 'mollweide', 'cart', '3d', 'polar'} type of the plot cb_orientation : {'horizontal', 'vertical'} color bar orientation xlabel : str set x axis label ylabel : str set y axis label longitude_grid_spacing : float set x axis grid spacing latitude_grid_spacing : float set y axis grid spacing override_plot_properties : dict Override the following plot properties: "cbar_shrink", "cbar_pad", "cbar_label_pad", "cbar_tick_direction", "vertical_tick_rotation" "figure_width": width, "figure_size_ratio": ratio. title : str set title of the plot rlabel : str set label at top right corner of axis llabel : str set label at top left corner of axis xtick_label_color : str Change the color of the graticule xticks ytick_label_color : str Change the color of the graticule yticks graticule_color : str Change the color of the graticule fontname : str Change the fontname of the text fontsize: dict Override fontsize of labels: "xlabel", "ylabel", "title", "xtick_label", "ytick_label", "cbar_label", "cbar_tick_label". phi_convention : string convention on x-axis (phi), 'counterclockwise' (default), 'clockwise', 'symmetrical' (phi as it is truly given) if `flip` is "geo", `phi_convention` should be set to 'clockwise'. custom_xtick_labels : list override x-axis tick labels custom_ytick_labels : list override y-axis tick labels cbar_ticks : list custom ticks on the colorbar show_tickmarkers : bool, optional Preserve tickmarkers for the full bar with labels specified by ticks default: None extend : str, optional Whether to extend the colorbar to mark where min or max tick is less than the min or max of the data. Options are "min", "max", "neither", or "both" invRot : bool invert rotation sub : int, scalar or sequence, optional Use only a zone of the current figure (same syntax as subplot). Default: 111 reuse_axes : bool, optional If True, reuse the current Axes (should be a MollweideAxes). This is useful if you want to overplot with a partially transparent colormap, such as for plotting a line integral convolution. Default: False margins : None or sequence, optional Either None, or a sequence (left,bottom,right,top) giving the margins on left,bottom,right and top of the axes. Values are relative to figure (0-1). Default: None hold : bool, optional If True, replace the current Axes by new axis. use this if you want to have multiple maps on the same figure. Default: False remove_dip : bool, optional If :const:`True`, remove the dipole+monopole remove_mono : bool, optional If :const:`True`, remove the monopole gal_cut : float, scalar, optional Symmetric galactic cut for the dipole/monopole fit. Removes points in latitude range [-gal_cut, +gal_cut] kwargs : dict any leftover arguments will be passed to pcolormesh """ geographic_projections = ["aitoff", "hammer", "lambert", "mollweide"] # Set min and max values if ticks are specified and min and max are not if min is None and cbar_ticks is not None: min = np.min(cbar_ticks) if max is None and cbar_ticks is not None: max = np.max(cbar_ticks) # Update values for symlog normalization if specified norm_dict_defaults = {"linthresh": 1, "base": 10, "linscale": 0.1} if norm_dict is not None: norm_dict_defaults = update_dictionary(norm_dict_defaults, norm_dict) # Remove monopole and dipole if remove_dip: m = remove_dipole(m, gal_cut=gal_cut, nest=nest, copy=True) elif remove_mono: m = remove_monopole(m, gal_cut=gal_cut, nest=nest, copy=True) # do this to find how many decimals are in the colorbar labels, so that the padding in the vertical cbar can done properly def find_number_of_decimals(number): try: return len(str(number).split(".")[1]) except: return 0 # default font sizes fontsize_defaults = { "xlabel": 12, "ylabel": 12, "title": 14, "xtick_label": 12, "ytick_label": 12, "cbar_label": 12, "cbar_tick_label": 10, } if fontsize is not None: fontsize_defaults = update_dictionary(fontsize_defaults, fontsize) # default plot settings decs = np.max([find_number_of_decimals(min), find_number_of_decimals(max)]) if decs >= 3: lpad = -27 else: lpad = -9 * decs ratio = 0.63 custom_width = width if projection_type == "3d": if cb_orientation == "vertical": shrink = 0.55 pad = 0.02 width = 11.5 if cb_orientation == "horizontal": shrink = 0.2 pad = 0 lpad = -10 width = 14 if projection_type in geographic_projections: if cb_orientation == "vertical": shrink = 0.6 pad = 0.03 if cbar_ticks is not None: lpad = 0 else: lpad = -8 width = 10 if cb_orientation == "horizontal": shrink = 0.6 pad = 0.05 if cbar_ticks is not None: lpad = 0 else: lpad = -8 width = 8.5 if projection_type == "cart": if cb_orientation == "vertical": shrink = 0.6 pad = 0.03 if cbar_ticks is not None: lpad = 0 else: lpad = -8 width = 10 if cb_orientation == "horizontal": shrink = 0.6 pad = 0.05 if cbar_ticks is not None: lpad = 0 else: lpad = -8 width = 8.5 if xlabel == None: pad = pad + 0.01 ratio = 0.63 if projection_type == "polar": if cb_orientation == "vertical": shrink = 1 pad = 0.01 width = 10 if cb_orientation == "horizontal": shrink = 0.4 pad = 0.01 lpad = 0 width = 12 # If width was passed as an input argument if custom_width is not None: width = custom_width if cb_orientation == "vertical": # If using rotated ticklabels, pad less. if ( override_plot_properties is not None and "vertical_tick_rotation" in override_plot_properties ): lpad = ( 4 if override_plot_properties["vertical_tick_rotation"] != 90 else lpad ) if title is not None: lpad += 8 # pass the default settings to the plot_properties dictionary plot_properties = { "cbar_shrink": shrink, "cbar_pad": pad, "cbar_label_pad": lpad, "cbar_tick_direction": "out", "vertical_tick_rotation": 90, "figure_width": width, "figure_size_ratio": ratio, } if override_plot_properties is not None: warnings.warn( "\n *** Overriding default plot properies: " + str(plot_properties) + " ***" ) plot_properties = update_dictionary(plot_properties, override_plot_properties) warnings.warn("\n *** New plot properies: " + str(plot_properties) + " ***") g_col = "grey" if graticule_color is None else graticule_color rot_graticule_properties = { "g_linestyle": "-", "g_color": g_col, "g_alpha": 0.75, "g_linewidth": 0.75, "t_step": latitude_grid_spacing, "p_step": longitude_grid_spacing, } if override_rot_graticule_properties is not None: warnings.warn( "\n *** Overriding rotated graticule properies: " + str(rot_graticule_properties) + " ***" ) rot_graticule_properties = update_dictionary( rot_graticule_properties, override_rot_graticule_properties ) warnings.warn( "\n *** New rotated graticule properies: " + str(rot_graticule_properties) + " ***" ) # Create the figure, this method is inspired by the Mollview approach if not return_only_data: # supress figure creation when only dumping the data if hasattr(sub, "__len__"): nrows, ncols, idx = sub else: nrows, ncols, idx = sub // 100, (sub % 100) // 10, (sub % 10) if idx < 1 or idx > ncols * nrows: raise ValueError("Wrong values for sub: %d, %d, %d" % (nrows, ncols, idx)) if not (hold or reuse_axes) and sub == 111: fig = plt.figure( figsize=( plot_properties["figure_width"], ( plot_properties["figure_width"] * plot_properties["figure_size_ratio"] ), ) ) extent = (0.02, 0.05, 0.96, 0.9) elif hold: fig = plt.gcf() left, bottom, right, top = np.array(fig.gca().get_position()).ravel() extent = (left, bottom, right - left, top - bottom) fig.delaxes(fig.gca()) elif reuse_axes: fig = plt.gcf() else: # using subplot syntax if not plt.get_fignums(): # Scale height depending on subplots fig = plt.figure( figsize=( plot_properties["figure_width"], ( plot_properties["figure_width"] * plot_properties["figure_size_ratio"] ) * (nrows / ncols), ) ) else: fig = plt.gcf() """ # Subplot method 1, copied from mollview c, r = (idx - 1) % ncols, (idx - 1) // ncols if not margins: right_adjust = 0.045 if cb_orientation=="vertical" else 0.0 margins = (0.01, 0.0, 0.01-right_adjust, 0.0) extent = ( c * 1.0 / ncols + margins[0], 1.0 - (r + 1) * 1.0 / nrows + margins[1], 1.0 / ncols - margins[2] - margins[0], 1.0 / nrows - margins[3] - margins[1], ) extent = ( extent[0] + margins[0], extent[1] + margins[1], extent[2] - margins[2] - margins[0], extent[3] - margins[3] - margins[1], ) """ # FIXME: make a more general axes creation that works also with subplots # ax = fig.add_axes(extent, projection=projection_type) if projection_type == "cart": ax = fig.add_subplot(nrows, ncols, idx) else: ax = fig.add_subplot(nrows, ncols, idx, projection=projection_type) # Parameters for subplots left = 0.02 right = 0.98 top = 0.95 bottom = 0.05 # end if not if graticule and graticule_labels: left += 0.02 ysize = xsize // 2 theta = np.linspace(np.pi, 0, ysize) phi = np.linspace(-np.pi, np.pi, xsize) longitude = np.radians(np.linspace(-180, 180, xsize)) if flip == "astro": longitude = longitude[::-1] if not return_only_data: plt.subplots_adjust(left=left, right=right, top=top, bottom=bottom) # set property on ax so it can be used in newprojplot ax.healpy_flip = flip latitude = np.radians(np.linspace(-90, 90, ysize)) # project the map to a rectangular matrix xsize x ysize PHI, THETA = np.meshgrid(phi, theta) # coord or rotation if coord or rot: r = Rotator(coord=coord, rot=rot, inv=invRot) THETA, PHI = r(THETA.flatten(), PHI.flatten()) THETA = THETA.reshape(ysize, xsize) PHI = PHI.reshape(ysize, xsize) nside = npix2nside(len(m)) if not m is None: w = ~(np.isnan(m) | np.isinf(m)) if not m is None: # auto min and max if min is None: min = m[w].min() if max is None: max = m[w].max() cm, nn = get_color_table( min, max, m[w], cmap=cmap, norm=norm, **norm_dict_defaults ) grid_pix = ang2pix(nside, THETA, PHI, nest=nest) grid_map = m[grid_pix] # plot if return_only_data: # exit here when dumping the data return [longitude, latitude, grid_map] if projection_type != "3d": # test for 3d plot ret = plt.pcolormesh( longitude, latitude, grid_map, norm=nn, rasterized=True, cmap=cm, shading="auto", **kwargs, ) elif projection_type == "3d": # test for 3d plot LONGITUDE, LATITUDE = np.meshgrid(longitude, latitude) ret = ax.plot_surface( LONGITUDE, LATITUDE, grid_map, cmap=cm, norm=nn, rasterized=True, **kwargs, ) # graticule if rot_graticule or graticule_coord is not None: graticule_labels = False if rot_graticule or graticule_coord is None: if graticule_color is None: plt.grid(graticule) else: plt.grid(graticule, color=graticule_color) if graticule: if projection_type in geographic_projections: longitude_grid_spacing = longitude_grid_spacing # deg 60 ax.set_longitude_grid(longitude_grid_spacing) ax.set_latitude_grid(latitude_grid_spacing) ax.set_longitude_grid_ends(90) else: longitude_grid_spacing = longitude_grid_spacing # deg latitude_grid_spacing = latitude_grid_spacing # deg ax.xaxis.set_major_locator( MultipleLocator(np.deg2rad(longitude_grid_spacing)) ) # longitude ax.yaxis.set_major_locator( MultipleLocator(np.deg2rad(latitude_grid_spacing)) ) # lattitude # labelling if graticule_labels & graticule: if phi_convention == "counterclockwise": xtick_formatter = ThetaFormatterCounterclockwisePhi(longitude_grid_spacing) elif phi_convention == "clockwise": xtick_formatter = ThetaFormatterClockwisePhi(longitude_grid_spacing) elif phi_convention == "symmetrical": xtick_formatter = ThetaFormatterSymmetricPhi(longitude_grid_spacing) ax.xaxis.set_major_formatter(xtick_formatter) ax.yaxis.set_major_formatter(ThetaFormatterTheta(latitude_grid_spacing)) if custom_xtick_labels is not None: try: ax.xaxis.set_ticklabels(custom_xtick_labels, fontname=fontname) except: warnings.warn( "Put names for all " + str(len(ax.xaxis.get_ticklabels())) + " x-tick labels!. No re-labelling done." ) if custom_ytick_labels is not None: try: ax.yaxis.set_ticklabels(custom_ytick_labels, fontname=fontname) except: warnings.warn( "Put names for all " + str(len(ax.yaxis.get_ticklabels())) + " y-tick labels!. No re-labelling done." ) if not graticule or not graticule_labels: # remove longitude and latitude labels ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticklabels([]) ax.tick_params(axis="both", which="both", length=0) ax.set_title(title, fontsize=fontsize_defaults["title"], fontname=fontname) # tick font size ax.tick_params( axis="x", labelsize=fontsize_defaults["xtick_label"], colors=xtick_label_color ) ax.tick_params( axis="y", labelsize=fontsize_defaults["ytick_label"], colors=ytick_label_color ) # colorbar if projection_type == "cart": ax.set_aspect(1) if cbar: if cbar_ticks is None: cbar_ticks = [min, max] if extend is None: extend = "neither" if min > np.min(m): extend = "min" if max < np.max(m): extend = "max" if min > np.min(m) and max < np.max(m): extend = "both" # For preserving automatic tickmarkers ticks = None if show_tickmarkers else cbar_ticks # Create colorbar cb = fig.colorbar( ret, orientation=cb_orientation, shrink=plot_properties["cbar_shrink"], pad=plot_properties["cbar_pad"], ticks=ticks, extend=extend, ) # Hide all tickslabels not in tick variable. Do not delete tick-markers if show_tickmarkers: ticks = list(set(cb.get_ticks()) | set(cbar_ticks)) ticks = np.sort(ticks) ticks = ticks[ticks >= min] ticks = ticks[ticks <= max] labels = [format % tick if tick in cbar_ticks else "" for tick in ticks] try: cb.set_ticks(ticks, labels) except TypeError: cb.set_ticks(ticks) cb.set_ticklabels(labels) else: labels = [format % tick for tick in cbar_ticks] if cb_orientation == "horizontal": # labels = cb.ax.get_xticklabels() if norm is not None else labels cb.ax.set_xticklabels(labels, fontname=fontname) cb.ax.xaxis.set_label_text( unit, fontsize=fontsize_defaults["cbar_label"], fontname=fontname ) cb.ax.tick_params( axis="x", labelsize=fontsize_defaults["cbar_tick_label"], direction=plot_properties["cbar_tick_direction"], ) cb.ax.xaxis.labelpad = plot_properties["cbar_label_pad"] if cb_orientation == "vertical": # labels = cb.ax.get_yticklabels() if norm is not None else labels cb.ax.set_yticklabels( labels, rotation=plot_properties["vertical_tick_rotation"], va="center", fontname=fontname, ) cb.ax.yaxis.set_label_text( unit, fontsize=fontsize_defaults["cbar_label"], rotation=90, fontname=fontname, ) cb.ax.tick_params( axis="y", labelsize=fontsize_defaults["cbar_tick_label"], direction=plot_properties["cbar_tick_direction"], ) cb.ax.yaxis.labelpad = plot_properties["cbar_label_pad"] # workaround for issue with viewers, see colorbar docstring cb.solids.set_edgecolor("face") ax.set_xlabel(xlabel, fontsize=fontsize_defaults["xlabel"], fontname=fontname) ax.set_ylabel(ylabel, fontsize=fontsize_defaults["ylabel"], fontname=fontname) # Separate graticule coordinate rotation if rot_graticule or graticule_coord is not None: if coord is None: coord = "G" # TODO: Not implemented coordinate rotation! rotated_grid_lines, where_zero = CreateRotatedGraticule( rot, # coordtransform=coord+graticule_coord, t_step=rot_graticule_properties["t_step"], p_step=rot_graticule_properties["p_step"], ) for i, g_line in enumerate(rotated_grid_lines): if i in where_zero: linewidth = rot_graticule_properties["g_linewidth"] * 2.5 else: linewidth = rot_graticule_properties["g_linewidth"] plt.plot( *g_line, linewidth=linewidth, linestyle=rot_graticule_properties["g_linestyle"], color=rot_graticule_properties["g_color"], alpha=rot_graticule_properties["g_alpha"], ) # Top right label if rlabel is not None: plt.text( 0.975, 0.925, rlabel, ha="right", va="center", fontsize=fontsize_defaults["cbar_label"], fontname=fontname, transform=ax.transAxes, ) # Top left label if llabel is not None: plt.text( 0.025, 0.925, llabel, ha="left", va="center", fontsize=fontsize_defaults["cbar_label"], fontname=fontname, transform=ax.transAxes, ) plt.draw() return ret
(m=None, fig=None, rot=None, coord=None, unit='', xsize=1000, width=None, nest=False, min=None, max=None, flip='astro', format='%g', cbar=True, cmap='viridis', norm=None, norm_dict=None, graticule=False, graticule_labels=False, rot_graticule=False, graticule_coord=None, override_rot_graticule_properties=None, return_only_data=False, projection_type='mollweide', cb_orientation='horizontal', xlabel=None, ylabel=None, longitude_grid_spacing=60, latitude_grid_spacing=30, override_plot_properties=None, title=None, rlabel=None, llabel=None, xtick_label_color='black', ytick_label_color='black', graticule_color=None, fontname=None, fontsize=None, phi_convention='counterclockwise', custom_xtick_labels=None, custom_ytick_labels=None, cbar_ticks=None, show_tickmarkers=False, extend=None, invRot=True, sub=111, reuse_axes=False, margins=None, hold=False, remove_dip=False, remove_mono=False, gal_cut=0, **kwargs)
37,722
healpy.fitsfunc
read_alm
Read alm from a fits file. In the fits file, the alm are written with explicit index scheme, index = l**2+l+m+1, while healpix cxx uses index = m*(2*lmax+1-m)/2+l. The conversion is done in this function. Parameters ---------- filename : str or HDUList or HDU or pathlib.Path instance The name of the fits file to read hdu : int, or tuple of int, optional The header to read. Start at 0. Default: hdu=1 return_mmax : bool, optional If true, both the alms and mmax is returned in a tuple. Default: return_mmax=False Returns ------- alms[, mmax] : complex array or tuple of a complex array and an int The alms read from the file and optionally mmax read from the file
def read_alm(filename, hdu=1, return_mmax=False): """Read alm from a fits file. In the fits file, the alm are written with explicit index scheme, index = l**2+l+m+1, while healpix cxx uses index = m*(2*lmax+1-m)/2+l. The conversion is done in this function. Parameters ---------- filename : str or HDUList or HDU or pathlib.Path instance The name of the fits file to read hdu : int, or tuple of int, optional The header to read. Start at 0. Default: hdu=1 return_mmax : bool, optional If true, both the alms and mmax is returned in a tuple. Default: return_mmax=False Returns ------- alms[, mmax] : complex array or tuple of a complex array and an int The alms read from the file and optionally mmax read from the file """ alms = [] lmaxtot = None mmaxtot = None opened_file = False if isinstance(filename, allowed_paths): filename = pf.open(filename) opened_file = True for unit in np.atleast_1d(hdu): idx, almr, almi = [_get_hdu(filename, hdu=unit).data.field(i) for i in range(3)] l = np.floor(np.sqrt(idx - 1)).astype(int) m = idx - l ** 2 - l - 1 if (m < 0).any(): raise ValueError("Negative m value encountered !") lmax = l.max() mmax = m.max() if lmaxtot is None: lmaxtot = lmax mmaxtot = mmax else: if lmaxtot != lmax or mmaxtot != mmax: raise RuntimeError( "read_alm: harmonic expansion order in {} HDUs {} does not " "match".format(filename, unit, hdu) ) alm = almr * (0 + 0j) i = Alm.getidx(lmax, l, m) alm.real[i] = almr alm.imag[i] = almi alms.append(alm) if opened_file: filename.close() if len(alms) == 1: alm = alms[0] else: alm = np.array(alms) if return_mmax: return alm, mmax else: return alm
(filename, hdu=1, return_mmax=False)
37,723
healpy.fitsfunc
read_cl
Reads Cl from a healpix file, as IDL fits2cl. Parameters ---------- filename : str or HDUList or HDU or pathlib.Path instance the fits file name Returns ------- cl : array the cl array
def read_cl(filename): """Reads Cl from a healpix file, as IDL fits2cl. Parameters ---------- filename : str or HDUList or HDU or pathlib.Path instance the fits file name Returns ------- cl : array the cl array """ opened_file = False if isinstance(filename, allowed_paths): filename = pf.open(filename) opened_file = True fits_hdu = _get_hdu(filename, hdu=1) cl = np.array([fits_hdu.data.field(n) for n in range(len(fits_hdu.columns))]) if opened_file: filename.close() if len(cl) == 1: return cl[0] else: return cl
(filename)
37,724
healpy.fitsfunc
read_map
Read a healpix map from a fits file. Partial-sky files, if properly identified, are expanded to full size and filled with UNSEEN. .. warning:: Starting from healpy 1.15.0, if you do not specify `dtype`, the map will be read in memory with the same precision it is stored on disk. Previously, by default `healpy` wrote maps in `float32` and then upcast to `float64` when reading to memory. To reproduce the same behaviour of `healpy` 1.14.0 and below, set `dtype=np.float64` in `read_map`. Parameters ---------- filename : str or HDU or HDUList or pathlib.Path instance the fits file name field : int or tuple of int, or None, optional The column to read. Default: 0. By convention 0 is temperature, 1 is Q, 2 is U. Field can be a tuple to read multiple columns (0,1,2) If the fits file is a partial-sky file, field=0 corresponds to the first column after the pixel index column. If None, all columns are read in. dtype : data type or list of data types, optional Force the conversion to some type. Passing a list allows different types for each field. In that case, the length of the list must correspond to the length of the field parameter. If None, keep the dtype of the input FITS file Default: Preserve the data types in the file nest : bool, optional If True return the map in NEST ordering, otherwise in RING ordering; use fits keyword ORDERING to decide whether conversion is needed or not If None, no conversion is performed. partial : bool, optional If True, fits file is assumed to be a partial-sky file with explicit indexing, if the indexing scheme cannot be determined from the header. If False, implicit indexing is assumed. Default: False. A partial sky file is one in which OBJECT=PARTIAL and INDXSCHM=EXPLICIT, and the first column is then assumed to contain pixel indices. A full sky file is one in which OBJECT=FULLSKY and INDXSCHM=IMPLICIT. At least one of these keywords must be set for the indexing scheme to be properly identified. hdu : int, optional the header number to look at (start at 0) h : bool, optional If True, return also the header. Default: False. verbose : bool, deprecated It has no effect memmap : bool, optional Argument passed to astropy.io.fits.open, if True, the map is not read into memory, but only the required pixels are read when needed. Default: False. Returns ------- m | (m0, m1, ...) [, header] : array or a tuple of arrays, optionally with header appended The map(s) read from the file, and the header if *h* is True.
def write_alm( filename, alms, out_dtype=None, lmax=-1, mmax=-1, mmax_in=-1, overwrite=False ): """Write alms to a fits file. In the fits file the alms are written with explicit index scheme, index = l*l + l + m +1, possibly out of order. By default write_alm makes a table with the same precision as the alms. If specified, the lmax and mmax parameters truncate the input data to include only alms for which l <= lmax and m <= mmax. Parameters ---------- filename : str The filename of the output fits file alms : array, complex or list of arrays A complex ndarray holding the alms, index = m*(2*lmax+1-m)/2+l, see Alm.getidx lmax : int, optional The maximum l in the output file mmax : int, optional The maximum m in the output file out_dtype : data type, optional data type in the output file (must be a numpy dtype). Default: *alms*.real.dtype mmax_in : int, optional maximum m in the input array """ if not cb.is_seq_of_seq(alms): alms = [alms] l2max = Alm.getlmax(len(alms[0]), mmax=mmax_in) if lmax != -1 and lmax > l2max: raise ValueError("Too big lmax in parameter") elif lmax == -1: lmax = l2max if mmax_in == -1: mmax_in = l2max if mmax == -1: mmax = lmax if mmax > mmax_in: mmax = mmax_in if out_dtype is None: out_dtype = alms[0].real.dtype l, m = Alm.getlm(lmax) idx = np.where((l <= lmax) * (m <= mmax)) l = l[idx] m = m[idx] idx_in_original = Alm.getidx(l2max, l=l, m=m) index = l ** 2 + l + m + 1 hdulist = pf.HDUList() for alm in alms: out_data = np.empty( len(index), dtype=[("index", "i"), ("real", out_dtype), ("imag", out_dtype)] ) out_data["index"] = index out_data["real"] = alm.real[idx_in_original] out_data["imag"] = alm.imag[idx_in_original] cindex = pf.Column( name="index", format=getformat(np.int32), unit="l*l+l+m+1", array=out_data["index"], ) creal = pf.Column( name="real", format=getformat(out_dtype), unit="unknown", array=out_data["real"], ) cimag = pf.Column( name="imag", format=getformat(out_dtype), unit="unknown", array=out_data["imag"], ) tbhdu = pf.BinTableHDU.from_columns([cindex, creal, cimag]) hdulist.append(tbhdu) # Add str to convert pathlib.Path into str # Due to https://github.com/astropy/astropy/issues/10594 hdulist.writeto(str(filename), overwrite=overwrite)
(filename, field=0, dtype=None, nest=False, partial=False, hdu=1, h=False, verbose=True, memmap=False)
37,725
healpy.pixelfunc
remove_dipole
Fit and subtract the dipole and the monopole from the given map m. Parameters ---------- m : float, array-like the map to which a dipole is fitted and subtracted, accepts masked arrays nest : bool if ``False`` m is assumed in RING scheme, otherwise map is NESTED bad : float bad values of pixel, default to :const:`UNSEEN`. gal_cut : float [degrees] pixels at latitude in [-gal_cut;+gal_cut] are not taken into account fitval : bool whether to return or not the fitted values of monopole and dipole copy : bool whether to modify input map or not (by default, make a copy) verbose : bool deprecated, no effect Returns ------- res : array or tuple of length 3 if fitval is False, returns map with monopole and dipole subtracted, otherwise, returns map (array, in res[0]), monopole (float, in res[1]), dipole_vector (array, in res[2]) See Also -------- fit_dipole, fit_monopole, remove_monopole
def xyf2pix(nside, x, y, face, nest=False): """xyf2pix : nside,x,y,face,nest=False -> ipix (default:RING) Parameters ---------- nside : int, scalar or array-like The healpix nside parameter, must be a power of 2 x, y : int, scalars or array-like Pixel indices within face face : int, scalars or array-like Face number nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- pix : int or array of int The healpix pixel numbers. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- pix2xyf Examples -------- >>> import healpy as hp >>> hp.xyf2pix(16, 8, 8, 4) 1440 >>> print(hp.xyf2pix(16, [8, 8, 8, 15, 0], [8, 8, 7, 15, 0], [4, 0, 5, 0, 8])) [1440 427 1520 0 3068] """ check_nside(nside, nest=nest) if nest: return pixlib._xyf2pix_nest(nside, x, y, face) else: return pixlib._xyf2pix_ring(nside, x, y, face)
(m, nest=False, bad=-1.6375e+30, gal_cut=0, fitval=False, copy=True, verbose=True)
37,726
healpy.pixelfunc
remove_monopole
Fit and subtract the monopole from the given map m. Parameters ---------- m : float, array-like the map to which a monopole is fitted and subtracted nest : bool if ``False`` m is assumed in RING scheme, otherwise map is NESTED bad : float bad values of pixel, default to :const:`UNSEEN`. gal_cut : float [degrees] pixels at latitude in [-gal_cut;+gal_cut] are not taken into account fitval : bool whether to return or not the fitted value of monopole copy : bool whether to modify input map or not (by default, make a copy) verbose: bool deprecated, no effect Returns ------- res : array or tuple of length 3 if fitval is False, returns map with monopole subtracted, otherwise, returns map (array, in res[0]) and monopole (float, in res[1]) See Also -------- fit_dipole, fit_monopole, remove_dipole
def xyf2pix(nside, x, y, face, nest=False): """xyf2pix : nside,x,y,face,nest=False -> ipix (default:RING) Parameters ---------- nside : int, scalar or array-like The healpix nside parameter, must be a power of 2 x, y : int, scalars or array-like Pixel indices within face face : int, scalars or array-like Face number nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- pix : int or array of int The healpix pixel numbers. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- pix2xyf Examples -------- >>> import healpy as hp >>> hp.xyf2pix(16, 8, 8, 4) 1440 >>> print(hp.xyf2pix(16, [8, 8, 8, 15, 0], [8, 8, 7, 15, 0], [4, 0, 5, 0, 8])) [1440 427 1520 0 3068] """ check_nside(nside, nest=nest) if nest: return pixlib._xyf2pix_nest(nside, x, y, face) else: return pixlib._xyf2pix_ring(nside, x, y, face)
(m, nest=False, bad=-1.6375e+30, gal_cut=0, fitval=False, copy=True, verbose=True)
37,727
healpy.pixelfunc
reorder
Reorder a healpix map from RING/NESTED ordering to NESTED/RING Parameters ---------- map_in : array-like the input map to reorder, accepts masked arrays inp, out : ``'RING'`` or ``'NESTED'`` define the input and output ordering r2n : bool if True, reorder from RING to NESTED n2r : bool if True, reorder from NESTED to RING Returns ------- map_out : array-like the reordered map, as masked array if the input was a masked array Notes ----- if ``r2n`` or ``n2r`` is defined, override ``inp`` and ``out``. See Also -------- nest2ring, ring2nest Examples -------- >>> import healpy as hp >>> hp.reorder(np.arange(48), r2n = True) array([13, 5, 4, 0, 15, 7, 6, 1, 17, 9, 8, 2, 19, 11, 10, 3, 28, 20, 27, 12, 30, 22, 21, 14, 32, 24, 23, 16, 34, 26, 25, 18, 44, 37, 36, 29, 45, 39, 38, 31, 46, 41, 40, 33, 47, 43, 42, 35]) >>> hp.reorder(np.arange(12), n2r = True) array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) >>> hp.reorder(hp.ma(np.arange(12.)), n2r = True) masked_array(data = [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.], mask = False, fill_value = -1.6375e+30) <BLANKLINE> >>> m = [np.arange(12.), np.arange(12.), np.arange(12.)] >>> m[0][2] = hp.UNSEEN >>> m[1][2] = hp.UNSEEN >>> m[2][2] = hp.UNSEEN >>> m = hp.ma(m) >>> hp.reorder(m, n2r = True) masked_array(data = [[0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0] [0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0] [0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0]], mask = [[False False True False False False False False False False False False] [False False True False False False False False False False False False] [False False True False False False False False False False False False]], fill_value = -1.6375e+30) <BLANKLINE>
def accept_ma(f): """Wraps a function in order to convert the input map from a masked to a regular numpy array, and convert back the output from a regular array to a masked array""" @wraps(f) def wrapper(map_in, *args, **kwds): return_ma = is_ma(map_in) m = ma_to_array(map_in) out = f(m, *args, **kwds) return ma(out) if return_ma else out return wrapper
(map_in, inp=None, out=None, r2n=None, n2r=None)
37,728
healpy.sphtfunc
resize_alm
Returns a resized copy of the input a_lm, either truncated or padded with zeros. Parameters ---------- alm : array or sequence of arrays, complex A complex array of alm, or a sequence of such arrays. Size of each array must be of the form mmax*(lmax-mmax+1)/2+lmax lmax, mmax: int, scalar maximum l and m multipole moments of the input alm lmax_out, mmax_out: int, scalar maximum l and m multipole moments of the output alm Returns ------- array or sequence of arrays, complex A complex array of alm, or a sequence of such arrays. Size of each array will be of the form mmax_out*(lmax_out-mmax_out+1)/2+lmax_out
def resize_alm(alm, lmax, mmax, lmax_out, mmax_out): """Returns a resized copy of the input a_lm, either truncated or padded with zeros. Parameters ---------- alm : array or sequence of arrays, complex A complex array of alm, or a sequence of such arrays. Size of each array must be of the form mmax*(lmax-mmax+1)/2+lmax lmax, mmax: int, scalar maximum l and m multipole moments of the input alm lmax_out, mmax_out: int, scalar maximum l and m multipole moments of the output alm Returns ------- array or sequence of arrays, complex A complex array of alm, or a sequence of such arrays. Size of each array will be of the form mmax_out*(lmax_out-mmax_out+1)/2+lmax_out """ alm = np.array(alm) if alm.ndim < 1 or alm.ndim > 2: raise ValueError("incorrect dimensionality of the input a_lm") if alm.ndim == 2: return [resize_alm(almi, lmax, mmax, lmax_out, mmax_out) for almi in alm] # alm is a 1D array if alm.shape[0] != Alm.getsize(lmax, mmax): raise ValueError("inconsistent number of input a_lm") res = np.zeros(Alm.getsize(lmax_out, mmax_out), dtype=alm.dtype) lmaxmin = min(lmax, lmax_out) mmaxmin = min(mmax, mmax_out) ofs_i, ofs_o = 0, 0 for m in range(0, mmaxmin + 1): nval = lmaxmin - m + 1 res[ofs_o : ofs_o + nval] = alm[ofs_i : ofs_i + nval] ofs_i += lmax - m + 1 ofs_o += lmax_out - m + 1 return res
(alm, lmax, mmax, lmax_out, mmax_out)
37,729
healpy.pixelfunc
ring2nest
Convert pixel number from RING ordering to NESTED ordering. Parameters ---------- nside : int, scalar or array-like the healpix nside parameter ipix : int, scalar or array-like the pixel number in RING scheme Returns ------- ipix : int, scalar or array-like the pixel number in NESTED scheme See Also -------- nest2ring, reorder Examples -------- >>> import healpy as hp >>> hp.ring2nest(16, 1504) 1130 >>> print(hp.ring2nest(2, np.arange(10))) [ 3 7 11 15 2 1 6 5 10 9] >>> print(hp.ring2nest([1, 2, 4, 8], 11)) [ 11 13 61 253]
def ring2nest(nside, ipix): """Convert pixel number from RING ordering to NESTED ordering. Parameters ---------- nside : int, scalar or array-like the healpix nside parameter ipix : int, scalar or array-like the pixel number in RING scheme Returns ------- ipix : int, scalar or array-like the pixel number in NESTED scheme See Also -------- nest2ring, reorder Examples -------- >>> import healpy as hp >>> hp.ring2nest(16, 1504) 1130 >>> print(hp.ring2nest(2, np.arange(10))) [ 3 7 11 15 2 1 6 5 10 9] >>> print(hp.ring2nest([1, 2, 4, 8], 11)) [ 11 13 61 253] """ check_nside(nside, nest=True) return pixlib._ring2nest(nside, ipix)
(nside, ipix)
37,731
healpy.zoomtool
set_g_clim
Set min/max value of the gnomview part of a mollzoom.
def set_g_clim(vmin, vmax): """Set min/max value of the gnomview part of a mollzoom.""" import pylab f = pylab.gcf() if not hasattr(f, "zoomtool"): raise TypeError("The current figure has no zoomtool") f.zoomtool.save_min = vmin f.zoomtool.save_max = vmax f.zoomtool._range_status = 2 f.zoomtool.draw_gnom()
(vmin, vmax)
37,732
healpy.sphtfunc
smoothalm
Smooth alm with a Gaussian symmetric beam function. Parameters ---------- alms : array or sequence of 3 arrays Either an array representing one alm, or a sequence of arrays. See *pol* parameter. fwhm : float, optional The full width half max parameter of the Gaussian. Default:0.0 [in radians] sigma : float, optional The sigma of the Gaussian. Override fwhm. [in radians] beam_window: array, optional Custom beam window function. Override fwhm and sigma. pol : bool, optional If True, assumes input alms are TEB. Output will be TQU maps. (input must be 1 or 3 alms) If False, apply spin 0 harmonic transform to each alm. (input can be any number of alms) If there is only one input alm, it has no effect. Default: True. mmax : None or int, optional The maximum m for alm. Default: mmax=lmax inplace : bool, optional If True, the alm's are modified inplace if they are contiguous arrays of type complex128. Otherwise, a copy of alm is made. Default: True. verbose : bool, optional Deprecated, has not effect. Returns ------- alms : array or sequence of 3 arrays The smoothed alm. If alm[i] is a contiguous array of type complex128, and *inplace* is True the smoothing is applied inplace. Otherwise, a copy is made.
def synalm(cls, lmax=None, mmax=None, new=False, verbose=True): """Generate a set of alm given cl. The cl are given as a float array. Corresponding alm are generated. If lmax is None, it is assumed lmax=cl.size-1 If mmax is None, it is assumed mmax=lmax. Parameters ---------- cls : float, array or tuple of arrays Either one cl (1D array) or a tuple of either 4 cl or of n*(n+1)/2 cl. Some of the cl may be None, implying no cross-correlation. See *new* parameter. lmax : int, scalar, optional The lmax (if None or <0, the largest size-1 of cls) mmax : int, scalar, optional The mmax (if None or <0, =lmax) new : bool, optional If True, use the new ordering of cl's, ie by diagonal (e.g. TT, EE, BB, TE, EB, TB or TT, EE, BB, TE if 4 cl as input). If False, use the old ordering, ie by row (e.g. TT, TE, TB, EE, EB, BB or TT, TE, EE, BB if 4 cl as input). Returns ------- alms : array or list of arrays the generated alm if one spectrum is given, or a list of n alms (with n(n+1)/2 the number of input cl, or n=3 if there are 4 input cl). Notes ----- We don't plan to change the default order anymore, that would break old code in a way difficult to debug. """ if not cb.is_seq(cls): raise TypeError("cls must be an array or a sequence of arrays") if not cb.is_seq_of_seq(cls, True): # Only one spectrum if lmax is None or lmax < 0: lmax = len(cls) - 1 if mmax is None or mmax < 0: mmax = lmax cls_list = [np.asarray(cls, dtype=np.float64)] szalm = Alm.getsize(lmax, mmax) alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list = [alm] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return alm # From here, we interpret cls as a list of spectra cls_list = list(cls) maxsize = max([len(c) for c in cls if c is not None]) if lmax is None or lmax < 0: lmax = maxsize - 1 if mmax is None or mmax < 0: mmax = lmax Nspec = sphtlib._getn(len(cls_list)) if Nspec <= 0: if len(cls_list) == 4: if new: ## new input order: TT EE BB TE -> TT EE BB TE 0 0 cls_list = [cls[0], cls[1], cls[2], cls[3], None, None] else: ## old input order: TT TE EE BB -> TT TE 0 EE 0 BB cls_list = [cls[0], cls[1], None, cls[2], None, cls[3]] Nspec = 3 else: raise TypeError( "The sequence of arrays must have either 4 elements " "or n(n+1)/2 elements (some may be None)" ) szalm = Alm.getsize(lmax, mmax) alms_list = [] for i in range(Nspec): alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list.append(alm) if new: # new input order: input given by diagonal, should be given by row cls_list = new_to_old_spectra_order(cls_list) # ensure cls are float64 cls_list = [ (np.asarray(cl, dtype=np.float64) if cl is not None else None) for cl in cls_list ] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return np.array(alms_list)
(alms, fwhm=0.0, sigma=None, beam_window=None, pol=True, mmax=None, verbose=True, inplace=True)
37,733
healpy.sphtfunc
smoothing
Smooth a map with a Gaussian symmetric beam. No removal of monopole or dipole is performed. Parameters ---------- map_in : array or sequence of 3 arrays Either an array representing one map, or a sequence of 3 arrays representing 3 maps, accepts masked arrays fwhm : float, optional The full width half max parameter of the Gaussian [in radians]. Default:0.0 sigma : float, optional The sigma of the Gaussian [in radians]. Override fwhm. beam_window: array, optional Custom beam window function. Override fwhm and sigma. pol : bool, optional If True, assumes input maps are TQU. Output will be TQU maps. (input must be 1 or 3 alms) If False, each map is assumed to be a spin 0 map and is treated independently (input can be any number of alms). If there is only one input map, it has no effect. Default: True. iter : int, scalar, optional Number of iteration (default: 3) lmax : int, scalar, optional Maximum l of the power spectrum. Default: 3*nside-1 mmax : int, scalar, optional Maximum m of the alm. Default: lmax use_weights: bool, scalar, optional If True, use the ring weighting. Default: False. use_pixel_weights: bool, optional If True, use pixel by pixel weighting, healpy will automatically download the weights, if needed See the map2alm docs for details about weighting datapath : None or str, optional If given, the directory where to find the pixel weights data. See the docstring of `map2alm` for details on how to set it up verbose : bool, optional Deprecated, has not effect. nest : bool, optional If True, the input map ordering is assumed to be NESTED. Default: False (RING) This function will temporary reorder the NESTED map into RING to perform the smoothing and order the output back to NESTED. If the map is in RING ordering no internal reordering will be performed. Returns ------- maps : array or list of 3 arrays The smoothed map(s)
def synalm(cls, lmax=None, mmax=None, new=False, verbose=True): """Generate a set of alm given cl. The cl are given as a float array. Corresponding alm are generated. If lmax is None, it is assumed lmax=cl.size-1 If mmax is None, it is assumed mmax=lmax. Parameters ---------- cls : float, array or tuple of arrays Either one cl (1D array) or a tuple of either 4 cl or of n*(n+1)/2 cl. Some of the cl may be None, implying no cross-correlation. See *new* parameter. lmax : int, scalar, optional The lmax (if None or <0, the largest size-1 of cls) mmax : int, scalar, optional The mmax (if None or <0, =lmax) new : bool, optional If True, use the new ordering of cl's, ie by diagonal (e.g. TT, EE, BB, TE, EB, TB or TT, EE, BB, TE if 4 cl as input). If False, use the old ordering, ie by row (e.g. TT, TE, TB, EE, EB, BB or TT, TE, EE, BB if 4 cl as input). Returns ------- alms : array or list of arrays the generated alm if one spectrum is given, or a list of n alms (with n(n+1)/2 the number of input cl, or n=3 if there are 4 input cl). Notes ----- We don't plan to change the default order anymore, that would break old code in a way difficult to debug. """ if not cb.is_seq(cls): raise TypeError("cls must be an array or a sequence of arrays") if not cb.is_seq_of_seq(cls, True): # Only one spectrum if lmax is None or lmax < 0: lmax = len(cls) - 1 if mmax is None or mmax < 0: mmax = lmax cls_list = [np.asarray(cls, dtype=np.float64)] szalm = Alm.getsize(lmax, mmax) alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list = [alm] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return alm # From here, we interpret cls as a list of spectra cls_list = list(cls) maxsize = max([len(c) for c in cls if c is not None]) if lmax is None or lmax < 0: lmax = maxsize - 1 if mmax is None or mmax < 0: mmax = lmax Nspec = sphtlib._getn(len(cls_list)) if Nspec <= 0: if len(cls_list) == 4: if new: ## new input order: TT EE BB TE -> TT EE BB TE 0 0 cls_list = [cls[0], cls[1], cls[2], cls[3], None, None] else: ## old input order: TT TE EE BB -> TT TE 0 EE 0 BB cls_list = [cls[0], cls[1], None, cls[2], None, cls[3]] Nspec = 3 else: raise TypeError( "The sequence of arrays must have either 4 elements " "or n(n+1)/2 elements (some may be None)" ) szalm = Alm.getsize(lmax, mmax) alms_list = [] for i in range(Nspec): alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list.append(alm) if new: # new input order: input given by diagonal, should be given by row cls_list = new_to_old_spectra_order(cls_list) # ensure cls are float64 cls_list = [ (np.asarray(cl, dtype=np.float64) if cl is not None else None) for cl in cls_list ] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return np.array(alms_list)
(map_in, fwhm=0.0, sigma=None, beam_window=None, pol=True, iter=3, lmax=None, mmax=None, use_weights=False, use_pixel_weights=False, datapath=None, verbose=True, nest=False)
37,735
healpy.sphtfunc
synalm
Generate a set of alm given cl. The cl are given as a float array. Corresponding alm are generated. If lmax is None, it is assumed lmax=cl.size-1 If mmax is None, it is assumed mmax=lmax. Parameters ---------- cls : float, array or tuple of arrays Either one cl (1D array) or a tuple of either 4 cl or of n*(n+1)/2 cl. Some of the cl may be None, implying no cross-correlation. See *new* parameter. lmax : int, scalar, optional The lmax (if None or <0, the largest size-1 of cls) mmax : int, scalar, optional The mmax (if None or <0, =lmax) new : bool, optional If True, use the new ordering of cl's, ie by diagonal (e.g. TT, EE, BB, TE, EB, TB or TT, EE, BB, TE if 4 cl as input). If False, use the old ordering, ie by row (e.g. TT, TE, TB, EE, EB, BB or TT, TE, EE, BB if 4 cl as input). Returns ------- alms : array or list of arrays the generated alm if one spectrum is given, or a list of n alms (with n(n+1)/2 the number of input cl, or n=3 if there are 4 input cl). Notes ----- We don't plan to change the default order anymore, that would break old code in a way difficult to debug.
def synalm(cls, lmax=None, mmax=None, new=False, verbose=True): """Generate a set of alm given cl. The cl are given as a float array. Corresponding alm are generated. If lmax is None, it is assumed lmax=cl.size-1 If mmax is None, it is assumed mmax=lmax. Parameters ---------- cls : float, array or tuple of arrays Either one cl (1D array) or a tuple of either 4 cl or of n*(n+1)/2 cl. Some of the cl may be None, implying no cross-correlation. See *new* parameter. lmax : int, scalar, optional The lmax (if None or <0, the largest size-1 of cls) mmax : int, scalar, optional The mmax (if None or <0, =lmax) new : bool, optional If True, use the new ordering of cl's, ie by diagonal (e.g. TT, EE, BB, TE, EB, TB or TT, EE, BB, TE if 4 cl as input). If False, use the old ordering, ie by row (e.g. TT, TE, TB, EE, EB, BB or TT, TE, EE, BB if 4 cl as input). Returns ------- alms : array or list of arrays the generated alm if one spectrum is given, or a list of n alms (with n(n+1)/2 the number of input cl, or n=3 if there are 4 input cl). Notes ----- We don't plan to change the default order anymore, that would break old code in a way difficult to debug. """ if not cb.is_seq(cls): raise TypeError("cls must be an array or a sequence of arrays") if not cb.is_seq_of_seq(cls, True): # Only one spectrum if lmax is None or lmax < 0: lmax = len(cls) - 1 if mmax is None or mmax < 0: mmax = lmax cls_list = [np.asarray(cls, dtype=np.float64)] szalm = Alm.getsize(lmax, mmax) alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list = [alm] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return alm # From here, we interpret cls as a list of spectra cls_list = list(cls) maxsize = max([len(c) for c in cls if c is not None]) if lmax is None or lmax < 0: lmax = maxsize - 1 if mmax is None or mmax < 0: mmax = lmax Nspec = sphtlib._getn(len(cls_list)) if Nspec <= 0: if len(cls_list) == 4: if new: ## new input order: TT EE BB TE -> TT EE BB TE 0 0 cls_list = [cls[0], cls[1], cls[2], cls[3], None, None] else: ## old input order: TT TE EE BB -> TT TE 0 EE 0 BB cls_list = [cls[0], cls[1], None, cls[2], None, cls[3]] Nspec = 3 else: raise TypeError( "The sequence of arrays must have either 4 elements " "or n(n+1)/2 elements (some may be None)" ) szalm = Alm.getsize(lmax, mmax) alms_list = [] for i in range(Nspec): alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list.append(alm) if new: # new input order: input given by diagonal, should be given by row cls_list = new_to_old_spectra_order(cls_list) # ensure cls are float64 cls_list = [ (np.asarray(cl, dtype=np.float64) if cl is not None else None) for cl in cls_list ] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return np.array(alms_list)
(cls, lmax=None, mmax=None, new=False, verbose=True)
37,736
healpy.sphtfunc
synfast
Create a map(s) from cl(s). You can choose a random seed using `numpy.random.seed(SEEDVALUE)` before calling `synfast`. Parameters ---------- cls : array or tuple of array A cl or a list of cl (either 4 or 6, see :func:`synalm`) nside : int, scalar The nside of the output map(s) lmax : int, scalar, optional Maximum l for alm. Default: min of 3*nside-1 or length of the cls - 1 mmax : int, scalar, optional Maximum m for alm. alm : bool, scalar, optional If True, return also alm(s). Default: False. pol : bool, optional If True, assumes input cls are TEB and correlation. Output will be TQU maps. (input must be 1, 4 or 6 cl's) If False, fields are assumed to be described by spin 0 spherical harmonics. (input can be any number of cl's) If there is only one input cl, it has no effect. Default: True. pixwin : bool, scalar, optional If True, convolve the alm by the pixel window function. Default: False. fwhm : float, scalar, optional The fwhm of the Gaussian used to smooth the map (applied on alm) [in radians] sigma : float, scalar, optional The sigma of the Gaussian used to smooth the map (applied on alm) [in radians] new : bool, optional If True, use the new ordering of cl's, ie by diagonal (e.g. TT, EE, BB, TE, EB, TB or TT, EE, BB, TE if 4 cl as input). If False, use the old ordering, ie by row (e.g. TT, TE, TB, EE, EB, BB or TT, TE, EE, BB if 4 cl as input). Returns ------- maps : array or tuple of arrays The output map (possibly list of maps if polarized input). or, if alm is True, a tuple of (map,alm) (alm possibly a list of alm if polarized input) Notes ----- We don't plan to change the default order anymore, that would break old code in a way difficult to debug.
def synalm(cls, lmax=None, mmax=None, new=False, verbose=True): """Generate a set of alm given cl. The cl are given as a float array. Corresponding alm are generated. If lmax is None, it is assumed lmax=cl.size-1 If mmax is None, it is assumed mmax=lmax. Parameters ---------- cls : float, array or tuple of arrays Either one cl (1D array) or a tuple of either 4 cl or of n*(n+1)/2 cl. Some of the cl may be None, implying no cross-correlation. See *new* parameter. lmax : int, scalar, optional The lmax (if None or <0, the largest size-1 of cls) mmax : int, scalar, optional The mmax (if None or <0, =lmax) new : bool, optional If True, use the new ordering of cl's, ie by diagonal (e.g. TT, EE, BB, TE, EB, TB or TT, EE, BB, TE if 4 cl as input). If False, use the old ordering, ie by row (e.g. TT, TE, TB, EE, EB, BB or TT, TE, EE, BB if 4 cl as input). Returns ------- alms : array or list of arrays the generated alm if one spectrum is given, or a list of n alms (with n(n+1)/2 the number of input cl, or n=3 if there are 4 input cl). Notes ----- We don't plan to change the default order anymore, that would break old code in a way difficult to debug. """ if not cb.is_seq(cls): raise TypeError("cls must be an array or a sequence of arrays") if not cb.is_seq_of_seq(cls, True): # Only one spectrum if lmax is None or lmax < 0: lmax = len(cls) - 1 if mmax is None or mmax < 0: mmax = lmax cls_list = [np.asarray(cls, dtype=np.float64)] szalm = Alm.getsize(lmax, mmax) alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list = [alm] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return alm # From here, we interpret cls as a list of spectra cls_list = list(cls) maxsize = max([len(c) for c in cls if c is not None]) if lmax is None or lmax < 0: lmax = maxsize - 1 if mmax is None or mmax < 0: mmax = lmax Nspec = sphtlib._getn(len(cls_list)) if Nspec <= 0: if len(cls_list) == 4: if new: ## new input order: TT EE BB TE -> TT EE BB TE 0 0 cls_list = [cls[0], cls[1], cls[2], cls[3], None, None] else: ## old input order: TT TE EE BB -> TT TE 0 EE 0 BB cls_list = [cls[0], cls[1], None, cls[2], None, cls[3]] Nspec = 3 else: raise TypeError( "The sequence of arrays must have either 4 elements " "or n(n+1)/2 elements (some may be None)" ) szalm = Alm.getsize(lmax, mmax) alms_list = [] for i in range(Nspec): alm = np.zeros(szalm, "D") alm.real = np.random.standard_normal(szalm) alm.imag = np.random.standard_normal(szalm) alms_list.append(alm) if new: # new input order: input given by diagonal, should be given by row cls_list = new_to_old_spectra_order(cls_list) # ensure cls are float64 cls_list = [ (np.asarray(cl, dtype=np.float64) if cl is not None else None) for cl in cls_list ] sphtlib._synalm(cls_list, alms_list, lmax, mmax) return np.array(alms_list)
(cls, nside, lmax=None, mmax=None, alm=False, pol=True, pixwin=False, fwhm=0.0, sigma=None, new=False, verbose=True)
37,737
healpy.pixelfunc
ud_grade
Upgrade or degrade resolution of a map (or list of maps). in degrading the resolution, ud_grade sets the value of the superpixel as the mean of the children pixels. Parameters ---------- map_in : array-like or sequence of array-like the input map(s) (if a sequence of maps, all must have same size) nside_out : int the desired nside of the output map(s) pess : bool if ``True``, in degrading, reject pixels which contains a bad sub_pixel. Otherwise, estimate average with good pixels order_in, order_out : str pixel ordering of input and output ('RING' or 'NESTED') power : float if non-zero, divide the result by (nside_in/nside_out)**power Examples: power=-2 keeps the sum of the map invariant (useful for hitmaps), power=2 divides the mean by another factor of (nside_in/nside_out)**2 (useful for variance maps) dtype : type the type of the output map Returns ------- map_out : array-like or sequence of array-like the upgraded or degraded map(s) Examples -------- >>> import healpy as hp >>> hp.ud_grade(np.arange(48.), 1) array([ 5.5 , 7.25, 9. , 10.75, 21.75, 21.75, 23.75, 25.75, 36.5 , 38.25, 40. , 41.75])
def accept_ma(f): """Wraps a function in order to convert the input map from a masked to a regular numpy array, and convert back the output from a regular array to a masked array""" @wraps(f) def wrapper(map_in, *args, **kwds): return_ma = is_ma(map_in) m = ma_to_array(map_in) out = f(m, *args, **kwds) return ma(out) if return_ma else out return wrapper
(map_in, nside_out, pess=False, order_in='RING', order_out=None, power=None, dtype=None)
37,739
healpy.pixelfunc
vec2ang
vec2ang: vectors [x, y, z] -> theta[rad], phi[rad] Parameters ---------- vectors : float, array-like the vector(s) to convert, shape is (3,) or (N, 3) lonlat : bool, optional If True, return angles will be longitude and latitude in degree, otherwise, angles will be co-latitude and longitude in radians (default) Returns ------- theta, phi : float, tuple of two arrays the colatitude and longitude in radians See Also -------- ang2vec, rotator.vec2dir, rotator.dir2vec
def vec2ang(vectors, lonlat=False): """vec2ang: vectors [x, y, z] -> theta[rad], phi[rad] Parameters ---------- vectors : float, array-like the vector(s) to convert, shape is (3,) or (N, 3) lonlat : bool, optional If True, return angles will be longitude and latitude in degree, otherwise, angles will be co-latitude and longitude in radians (default) Returns ------- theta, phi : float, tuple of two arrays the colatitude and longitude in radians See Also -------- ang2vec, rotator.vec2dir, rotator.dir2vec """ vectors = vectors.reshape(-1, 3) dnorm = np.sqrt(np.sum(np.square(vectors), axis=1)) theta = np.arccos(vectors[:, 2] / dnorm) phi = np.arctan2(vectors[:, 1], vectors[:, 0]) phi[phi < 0] += 2 * np.pi if lonlat: return thetaphi2lonlat(theta, phi) else: return theta, phi
(vectors, lonlat=False)
37,740
healpy.rotator
vec2dir
Transform a vector to angle given by theta,phi. Parameters ---------- vec : float, scalar or array-like The vector to transform (shape (3,) or (3,N)), or x component (scalar or shape (N,)) if vy and vz are given vy : float, scalar or array-like, optional The y component of the vector (scalar or shape (N,)) vz : float, scalar or array-like, optional The z component of the vector (scalar or shape (N,)) lonlat : bool, optional If True, return angles will be longitude and latitude in degree, otherwise, angles will be longitude and co-latitude in radians (default) Returns ------- angles : float, array The angles (unit depending on *lonlat*) in an array of shape (2,) (if scalar input) or (2, N) See Also -------- :func:`dir2vec`, :func:`pixelfunc.ang2vec`, :func:`pixelfunc.vec2ang`
def vec2dir(vec, vy=None, vz=None, lonlat=False): """Transform a vector to angle given by theta,phi. Parameters ---------- vec : float, scalar or array-like The vector to transform (shape (3,) or (3,N)), or x component (scalar or shape (N,)) if vy and vz are given vy : float, scalar or array-like, optional The y component of the vector (scalar or shape (N,)) vz : float, scalar or array-like, optional The z component of the vector (scalar or shape (N,)) lonlat : bool, optional If True, return angles will be longitude and latitude in degree, otherwise, angles will be longitude and co-latitude in radians (default) Returns ------- angles : float, array The angles (unit depending on *lonlat*) in an array of shape (2,) (if scalar input) or (2, N) See Also -------- :func:`dir2vec`, :func:`pixelfunc.ang2vec`, :func:`pixelfunc.vec2ang` """ if np.any(np.isnan(vec)): return np.nan, np.nan if vy is None and vz is None: vx, vy, vz = vec elif vy is not None and vz is not None: vx = vec else: raise TypeError("You must either give both vy and vz or none of them") r = np.sqrt(vx ** 2 + vy ** 2 + vz ** 2) ang = np.empty((2, r.size)) ang[0, :] = np.arccos(vz / r) ang[1, :] = np.arctan2(vy, vx) if lonlat: ang = np.degrees(ang) np.negative(ang[0, :], ang[0, :]) ang[0, :] += 90.0 return ang[::-1, :].squeeze() else: return ang.squeeze()
(vec, vy=None, vz=None, lonlat=False)
37,741
healpy.pixelfunc
vec2pix
vec2pix : nside,x,y,z,nest=False -> ipix (default:RING) Parameters ---------- nside : int or array-like The healpix nside parameter, must be a power of 2, less than 2**30 x,y,z : floats or array-like vector coordinates defining point on the sphere nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- ipix : int, scalar or array-like The healpix pixel number corresponding to input vector. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- ang2pix, pix2ang, pix2vec Examples -------- >>> import healpy as hp >>> hp.vec2pix(16, 1, 0, 0) 1504 >>> print(hp.vec2pix(16, [1, 0], [0, 1], [0, 0])) [1504 1520] >>> print(hp.vec2pix([1, 2, 4, 8], 1, 0, 0)) [ 4 20 88 368]
def vec2pix(nside, x, y, z, nest=False): """vec2pix : nside,x,y,z,nest=False -> ipix (default:RING) Parameters ---------- nside : int or array-like The healpix nside parameter, must be a power of 2, less than 2**30 x,y,z : floats or array-like vector coordinates defining point on the sphere nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- ipix : int, scalar or array-like The healpix pixel number corresponding to input vector. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- ang2pix, pix2ang, pix2vec Examples -------- >>> import healpy as hp >>> hp.vec2pix(16, 1, 0, 0) 1504 >>> print(hp.vec2pix(16, [1, 0], [0, 1], [0, 0])) [1504 1520] >>> print(hp.vec2pix([1, 2, 4, 8], 1, 0, 0)) [ 4 20 88 368] """ if nest: return pixlib._vec2pix_nest(nside, x, y, z) else: return pixlib._vec2pix_ring(nside, x, y, z)
(nside, x, y, z, nest=False)
37,744
healpy.fitsfunc
write_alm
Write alms to a fits file. In the fits file the alms are written with explicit index scheme, index = l*l + l + m +1, possibly out of order. By default write_alm makes a table with the same precision as the alms. If specified, the lmax and mmax parameters truncate the input data to include only alms for which l <= lmax and m <= mmax. Parameters ---------- filename : str The filename of the output fits file alms : array, complex or list of arrays A complex ndarray holding the alms, index = m*(2*lmax+1-m)/2+l, see Alm.getidx lmax : int, optional The maximum l in the output file mmax : int, optional The maximum m in the output file out_dtype : data type, optional data type in the output file (must be a numpy dtype). Default: *alms*.real.dtype mmax_in : int, optional maximum m in the input array
def write_alm( filename, alms, out_dtype=None, lmax=-1, mmax=-1, mmax_in=-1, overwrite=False ): """Write alms to a fits file. In the fits file the alms are written with explicit index scheme, index = l*l + l + m +1, possibly out of order. By default write_alm makes a table with the same precision as the alms. If specified, the lmax and mmax parameters truncate the input data to include only alms for which l <= lmax and m <= mmax. Parameters ---------- filename : str The filename of the output fits file alms : array, complex or list of arrays A complex ndarray holding the alms, index = m*(2*lmax+1-m)/2+l, see Alm.getidx lmax : int, optional The maximum l in the output file mmax : int, optional The maximum m in the output file out_dtype : data type, optional data type in the output file (must be a numpy dtype). Default: *alms*.real.dtype mmax_in : int, optional maximum m in the input array """ if not cb.is_seq_of_seq(alms): alms = [alms] l2max = Alm.getlmax(len(alms[0]), mmax=mmax_in) if lmax != -1 and lmax > l2max: raise ValueError("Too big lmax in parameter") elif lmax == -1: lmax = l2max if mmax_in == -1: mmax_in = l2max if mmax == -1: mmax = lmax if mmax > mmax_in: mmax = mmax_in if out_dtype is None: out_dtype = alms[0].real.dtype l, m = Alm.getlm(lmax) idx = np.where((l <= lmax) * (m <= mmax)) l = l[idx] m = m[idx] idx_in_original = Alm.getidx(l2max, l=l, m=m) index = l ** 2 + l + m + 1 hdulist = pf.HDUList() for alm in alms: out_data = np.empty( len(index), dtype=[("index", "i"), ("real", out_dtype), ("imag", out_dtype)] ) out_data["index"] = index out_data["real"] = alm.real[idx_in_original] out_data["imag"] = alm.imag[idx_in_original] cindex = pf.Column( name="index", format=getformat(np.int32), unit="l*l+l+m+1", array=out_data["index"], ) creal = pf.Column( name="real", format=getformat(out_dtype), unit="unknown", array=out_data["real"], ) cimag = pf.Column( name="imag", format=getformat(out_dtype), unit="unknown", array=out_data["imag"], ) tbhdu = pf.BinTableHDU.from_columns([cindex, creal, cimag]) hdulist.append(tbhdu) # Add str to convert pathlib.Path into str # Due to https://github.com/astropy/astropy/issues/10594 hdulist.writeto(str(filename), overwrite=overwrite)
(filename, alms, out_dtype=None, lmax=-1, mmax=-1, mmax_in=-1, overwrite=False)
37,745
healpy.fitsfunc
write_cl
Writes Cl into a healpix file, as IDL cl2fits. Parameters ---------- filename : str the fits file name cl : array the cl array to write to file dtype : np.dtype (optional) The datatype in which the columns will be stored. If not supplied, the dtype of the input cl will be used. This changed in `healpy` 1.15.0, in previous versions, cl by default were saved in `float64`. overwrite : bool, optional If True, existing file is silently overwritten. Otherwise trying to write an existing file raises an OSError.
def write_cl(filename, cl, dtype=None, overwrite=False): """Writes Cl into a healpix file, as IDL cl2fits. Parameters ---------- filename : str the fits file name cl : array the cl array to write to file dtype : np.dtype (optional) The datatype in which the columns will be stored. If not supplied, the dtype of the input cl will be used. This changed in `healpy` 1.15.0, in previous versions, cl by default were saved in `float64`. overwrite : bool, optional If True, existing file is silently overwritten. Otherwise trying to write an existing file raises an OSError. """ if dtype is None: dtype = cl.dtype if isinstance(cl, np.ndarray) else cl[0].dtype # check the dtype and convert it fitsformat = getformat(dtype) column_names = ["TEMPERATURE", "GRADIENT", "CURL", "G-T", "C-T", "C-G"] if len(np.shape(cl)) == 2: cols = [ pf.Column(name=column_name, format="%s" % fitsformat, array=column_cl) for column_name, column_cl in zip(column_names[: len(cl)], cl) ] elif len(np.shape(cl)) == 1: # we write only TT cols = [pf.Column(name="TEMPERATURE", format="%s" % fitsformat, array=cl)] else: raise RuntimeError("write_cl: Expected one or more vectors of equal length") tbhdu = pf.BinTableHDU.from_columns(cols) # add needed keywords tbhdu.header["CREATOR"] = "healpy" # Add str to convert pathlib.Path into str # Due to https://github.com/astropy/astropy/issues/10594 tbhdu.writeto(str(filename), overwrite=overwrite)
(filename, cl, dtype=None, overwrite=False)
37,746
healpy.fitsfunc
write_map
Writes a healpix map into a healpix FITS file. .. warning:: Starting from healpy 1.15.0, if you do not specify `dtype`, the map will be written to disk with the same precision it is stored in memory. Previously, by default `healpy` wrote maps in `float32`. To reproduce the same behaviour of `healpy` 1.14.0 and below, set `dtype=np.float32`. Parameters ---------- filename : str the fits file name m : array or sequence of 3 arrays the map to write. Possibly a sequence of 3 maps of same size. They will be considered as I, Q, U maps. Supports masked maps, see the `ma` function. nest : bool, optional If True, ordering scheme is assumed to be NESTED, otherwise, RING. Default: RING. The map ordering is not modified by this function, the input map array should already be in the desired ordering (run `ud_grade` beforehand). fits_IDL : bool, optional If True, reshapes columns in rows of 1024, otherwise all the data will go in one column. Default: True coord : str The coordinate system, typically 'E' for Ecliptic, 'G' for Galactic or 'C' for Celestial (equatorial) partial : bool, optional If True, fits file is written as a partial-sky file with explicit indexing. Otherwise, implicit indexing is used. Default: False. column_names : str or list Column name or list of column names, if None here the default column names based on the number of columns: 1 : "TEMPERATURE", 2 : ["Q_POLARISATION", "U_POLARISATION"], 3 : ["TEMPERATURE", "Q_POLARISATION", "U_POLARISATION"], 6 : ["II", "IQ", "IU", "QQ", "QU", "UU"] COLUMN_1, COLUMN_2... otherwise (FITS is 1-based) column_units : str or list Units for each column, or same units for all columns. extra_header : list Extra records to add to FITS header. dtype: np.dtype or list of np.dtypes, optional The datatype in which the columns will be stored. Will be converted internally from the numpy datatype to the fits convention. If a list, the length must correspond to the number of map arrays. Default: use the data type of the input array(s) .. note:: this changed in 1.15.0, previous versions saved in float32 by default overwrite : bool, optional If True, existing file is silently overwritten. Otherwise trying to write an existing file raises an OSError (IOError for Python 2).
def write_map( filename, m, nest=False, dtype=None, fits_IDL=True, coord=None, partial=False, column_names=None, column_units=None, extra_header=(), overwrite=False, ): """Writes a healpix map into a healpix FITS file. .. warning:: Starting from healpy 1.15.0, if you do not specify `dtype`, the map will be written to disk with the same precision it is stored in memory. Previously, by default `healpy` wrote maps in `float32`. To reproduce the same behaviour of `healpy` 1.14.0 and below, set `dtype=np.float32`. Parameters ---------- filename : str the fits file name m : array or sequence of 3 arrays the map to write. Possibly a sequence of 3 maps of same size. They will be considered as I, Q, U maps. Supports masked maps, see the `ma` function. nest : bool, optional If True, ordering scheme is assumed to be NESTED, otherwise, RING. Default: RING. The map ordering is not modified by this function, the input map array should already be in the desired ordering (run `ud_grade` beforehand). fits_IDL : bool, optional If True, reshapes columns in rows of 1024, otherwise all the data will go in one column. Default: True coord : str The coordinate system, typically 'E' for Ecliptic, 'G' for Galactic or 'C' for Celestial (equatorial) partial : bool, optional If True, fits file is written as a partial-sky file with explicit indexing. Otherwise, implicit indexing is used. Default: False. column_names : str or list Column name or list of column names, if None here the default column names based on the number of columns: 1 : "TEMPERATURE", 2 : ["Q_POLARISATION", "U_POLARISATION"], 3 : ["TEMPERATURE", "Q_POLARISATION", "U_POLARISATION"], 6 : ["II", "IQ", "IU", "QQ", "QU", "UU"] COLUMN_1, COLUMN_2... otherwise (FITS is 1-based) column_units : str or list Units for each column, or same units for all columns. extra_header : list Extra records to add to FITS header. dtype: np.dtype or list of np.dtypes, optional The datatype in which the columns will be stored. Will be converted internally from the numpy datatype to the fits convention. If a list, the length must correspond to the number of map arrays. Default: use the data type of the input array(s) .. note:: this changed in 1.15.0, previous versions saved in float32 by default overwrite : bool, optional If True, existing file is silently overwritten. Otherwise trying to write an existing file raises an OSError (IOError for Python 2). """ if not hasattr(m, "__len__"): raise TypeError("The map must be a sequence") m = pixelfunc.ma_to_array(m) if pixelfunc.maptype(m) == 0: # a single map is converted to a list m = [m] # check the dtype and convert it if dtype is None: dtype = [x.dtype for x in m] log.warning("setting the output map dtype to %s" % str(dtype)) try: fitsformat = [] for curr_dtype in dtype: fitsformat.append(getformat(curr_dtype)) except TypeError: # dtype is not iterable fitsformat = [getformat(dtype)] * len(m) if column_names is None: column_names = standard_column_names.get( len(m), ["COLUMN_%d" % n for n in range(1, len(m) + 1)] ) else: assert len(column_names) == len(m), "Length column_names != number of maps" if column_units is None or isinstance(column_units, str): column_units = [column_units] * len(m) # maps must have same length assert len(set(map(len, m))) == 1, "Maps must have same length" nside = pixelfunc.npix2nside(len(m[0])) if nside < 0: raise ValueError("Invalid healpix map : wrong number of pixel") cols = [] if partial: fits_IDL = False mask = pixelfunc.mask_good(m[0]) pix = np.where(mask)[0] if len(pix) == 0: raise ValueError("Invalid healpix map : empty partial map") m = [mm[mask] for mm in m] ff = getformat(np.min_scalar_type(-pix.max())) if ff is None: ff = "I" cols.append(pf.Column(name="PIXEL", format=ff, array=pix, unit=None)) for cn, cu, mm, curr_fitsformat in zip(column_names, column_units, m, fitsformat): if len(mm) > 1024 and fits_IDL: # I need an ndarray, for reshape: mm2 = np.asarray(mm) cols.append( pf.Column( name=cn, format="1024%s" % curr_fitsformat, array=mm2.reshape(mm2.size // 1024, 1024), unit=cu, ) ) else: cols.append( pf.Column(name=cn, format="%s" % curr_fitsformat, array=mm, unit=cu) ) tbhdu = pf.BinTableHDU.from_columns(cols) # add needed keywords tbhdu.header["PIXTYPE"] = ("HEALPIX", "HEALPIX pixelisation") if nest: ordering = "NESTED" else: ordering = "RING" tbhdu.header["ORDERING"] = ( ordering, "Pixel ordering scheme, either RING or NESTED", ) if coord: tbhdu.header["COORDSYS"] = ( coord, "Ecliptic, Galactic or Celestial (equatorial)", ) tbhdu.header["EXTNAME"] = ("xtension", "name of this binary table extension") tbhdu.header["NSIDE"] = (nside, "Resolution parameter of HEALPIX") if not partial: tbhdu.header["FIRSTPIX"] = (0, "First pixel # (0 based)") tbhdu.header["LASTPIX"] = ( pixelfunc.nside2npix(nside) - 1, "Last pixel # (0 based)", ) tbhdu.header["INDXSCHM"] = ( "EXPLICIT" if partial else "IMPLICIT", "Indexing: IMPLICIT or EXPLICIT", ) tbhdu.header["OBJECT"] = ( "PARTIAL" if partial else "FULLSKY", "Sky coverage, either FULLSKY or PARTIAL", ) # FIXME: In modern versions of Pyfits, header.update() understands a # header as an argument, and headers can be concatenated with the `+' # operator. for args in extra_header: tbhdu.header[args[0]] = args[1:] # Add str to convert pathlib.Path into str # Due to https://github.com/astropy/astropy/issues/10594 tbhdu.writeto(str(filename), overwrite=overwrite)
(filename, m, nest=False, dtype=None, fits_IDL=True, coord=None, partial=False, column_names=None, column_units=None, extra_header=(), overwrite=False)
37,747
healpy.pixelfunc
xyf2pix
xyf2pix : nside,x,y,face,nest=False -> ipix (default:RING) Parameters ---------- nside : int, scalar or array-like The healpix nside parameter, must be a power of 2 x, y : int, scalars or array-like Pixel indices within face face : int, scalars or array-like Face number nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- pix : int or array of int The healpix pixel numbers. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- pix2xyf Examples -------- >>> import healpy as hp >>> hp.xyf2pix(16, 8, 8, 4) 1440 >>> print(hp.xyf2pix(16, [8, 8, 8, 15, 0], [8, 8, 7, 15, 0], [4, 0, 5, 0, 8])) [1440 427 1520 0 3068]
def xyf2pix(nside, x, y, face, nest=False): """xyf2pix : nside,x,y,face,nest=False -> ipix (default:RING) Parameters ---------- nside : int, scalar or array-like The healpix nside parameter, must be a power of 2 x, y : int, scalars or array-like Pixel indices within face face : int, scalars or array-like Face number nest : bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering Returns ------- pix : int or array of int The healpix pixel numbers. Scalar if all input are scalar, array otherwise. Usual numpy broadcasting rules apply. See Also -------- pix2xyf Examples -------- >>> import healpy as hp >>> hp.xyf2pix(16, 8, 8, 4) 1440 >>> print(hp.xyf2pix(16, [8, 8, 8, 15, 0], [8, 8, 7, 15, 0], [4, 0, 5, 0, 8])) [1440 427 1520 0 3068] """ check_nside(nside, nest=nest) if nest: return pixlib._xyf2pix_nest(nside, x, y, face) else: return pixlib._xyf2pix_ring(nside, x, y, face)
(nside, x, y, face, nest=False)
37,749
salesforce_bulk.salesforce_bulk
BulkApiError
null
class BulkApiError(Exception): def __init__(self, message, status_code=None): super(BulkApiError, self).__init__(message) self.status_code = status_code def __reduce__(self): return BulkApiError, (self.args[0], self.status_code)
(message, status_code=None)
37,750
salesforce_bulk.salesforce_bulk
__init__
null
def __init__(self, message, status_code=None): super(BulkApiError, self).__init__(message) self.status_code = status_code
(self, message, status_code=None)
37,751
salesforce_bulk.salesforce_bulk
__reduce__
null
def __reduce__(self): return BulkApiError, (self.args[0], self.status_code)
(self)
37,752
salesforce_bulk.csv_adapter
CsvDictsAdapter
Provide a DataChange generator and it provides a file-like object which returns csv data
class CsvDictsAdapter(object): """Provide a DataChange generator and it provides a file-like object which returns csv data""" def __init__(self, source_generator): self.source = source_generator self.buffer = StringIO() self.csv = None self.add_header = False def __iter__(self): return self def write_header(self): self.add_header = True def next(self): row = next(self.source) self.buffer.truncate(0) self.buffer.seek(0) if not self.csv: self.csv = csv.DictWriter(self.buffer, list(row.keys()), quoting=csv.QUOTE_NONNUMERIC) self.add_header = True if self.add_header: if hasattr(self.csv, 'writeheader'): self.csv.writeheader() else: self.csv.writerow(dict((fn, fn) for fn in self.csv.fieldnames)) self.add_header = False self.csv.writerow(row) self.buffer.seek(0) return self.buffer.read() def __next__(self): return self.next()
(source_generator)
37,753
salesforce_bulk.csv_adapter
__init__
null
def __init__(self, source_generator): self.source = source_generator self.buffer = StringIO() self.csv = None self.add_header = False
(self, source_generator)
37,755
salesforce_bulk.csv_adapter
__next__
null
def __next__(self): return self.next()
(self)
37,756
salesforce_bulk.csv_adapter
next
null
def next(self): row = next(self.source) self.buffer.truncate(0) self.buffer.seek(0) if not self.csv: self.csv = csv.DictWriter(self.buffer, list(row.keys()), quoting=csv.QUOTE_NONNUMERIC) self.add_header = True if self.add_header: if hasattr(self.csv, 'writeheader'): self.csv.writeheader() else: self.csv.writerow(dict((fn, fn) for fn in self.csv.fieldnames)) self.add_header = False self.csv.writerow(row) self.buffer.seek(0) return self.buffer.read()
(self)
37,757
salesforce_bulk.csv_adapter
write_header
null
def write_header(self): self.add_header = True
(self)
37,758
salesforce_bulk.salesforce_bulk
SalesforceBulk
null
class SalesforceBulk(object): def __init__(self, sessionId=None, host=None, username=None, password=None, API_version=DEFAULT_API_VERSION, sandbox=False, security_token=None, organizationId=None, client_id=None, domain=None): if not sessionId and not username: raise RuntimeError( "Must supply either sessionId/instance_url or username/password") if not sessionId: sessionId, host = SalesforceBulk.login_to_salesforce( username, password, sandbox=sandbox, security_token=security_token, organizationId=organizationId, API_version=API_version, client_id=client_id, domain=domain) if host[0:4] == 'http': self.endpoint = host else: self.endpoint = "https://" + host self.endpoint += "/services/async/%s" % API_version self.sessionId = sessionId self.jobNS = 'http://www.force.com/2009/06/asyncapi/dataload' self.jobs = {} # dict of job_id => job_id self.batches = {} # dict of batch_id => job_id self.job_content_types = {} # dict of job_id => contentType self.batch_statuses = {} self.API_version = API_version @staticmethod def login_to_salesforce(username, password, sandbox=False, security_token=None, organizationId=None, client_id=None, API_version=DEFAULT_API_VERSION, # domain is passed directly to SalesforceLogin and should be 'test' or # 'login' or 'something.my' domain=None): if client_id: client_id = "{prefix}/{app_name}".format( prefix=DEFAULT_CLIENT_ID_PREFIX, app_name=client_id) else: client_id = DEFAULT_CLIENT_ID_PREFIX if domain is None and sandbox: domain = 'test' if all(arg is not None for arg in ( username, password, security_token)): # Pass along the username/password to our login helper return SalesforceLogin( username=username, password=password, security_token=security_token, domain=domain, sf_version=API_version, client_id=client_id) elif all(arg is not None for arg in ( username, password, organizationId)): # Pass along the username/password to our login helper return SalesforceLogin( username=username, password=password, organizationId=organizationId, domain=domain, sf_version=API_version, client_id=client_id) else: raise TypeError( 'You must provide login information or an instance and token' ) def headers(self, values={}, content_type='application/xml'): default = { "X-SFDC-Session": self.sessionId, "Content-Type": "{}; charset=UTF-8".format(content_type), 'Accept-Encoding': "gzip", } default.update(values) return default # Register a new Bulk API job - returns the job id def create_query_job(self, object_name, **kwargs): return self.create_job(object_name, "query", **kwargs) def create_queryall_job(self, object_name, **kwargs): """ only supported since version 39.0 """ return self.create_job(object_name, "queryAll", **kwargs) def create_insert_job(self, object_name, **kwargs): return self.create_job(object_name, "insert", **kwargs) def create_upsert_job(self, object_name, external_id_name, **kwargs): return self.create_job(object_name, "upsert", external_id_name=external_id_name, **kwargs) def create_update_job(self, object_name, **kwargs): return self.create_job(object_name, "update", **kwargs) def create_delete_job(self, object_name, **kwargs): return self.create_job(object_name, "delete", **kwargs) def create_job(self, object_name=None, operation=None, contentType='CSV', concurrency=None, external_id_name=None, pk_chunking=False): assert(object_name is not None) assert(operation is not None) extra_headers = {} if pk_chunking: if pk_chunking is True: pk_chunking = u'true' elif isinstance(pk_chunking, int): pk_chunking = u'chunkSize=%d;' % pk_chunking else: pk_chunking = text_type(pk_chunking) extra_headers['Sforce-Enable-PKChunking'] = pk_chunking doc = self.create_job_doc(object_name=object_name, operation=operation, contentType=contentType, concurrency=concurrency, external_id_name=external_id_name) resp = requests.post(self.endpoint + "/job", headers=self.headers(extra_headers), data=doc) self.check_status(resp) tree = ET.fromstring(resp.content) job_id = tree.findtext("{%s}id" % self.jobNS) self.jobs[job_id] = job_id self.job_content_types[job_id] = contentType return job_id def check_status(self, resp): if resp.status_code >= 400: msg = "Bulk API HTTP Error result: {0}".format(resp.text) self.raise_error(msg, resp.status_code) def get_batch_list(self, job_id): url = self.endpoint + "/job/{}/batch".format(job_id) resp = requests.get(url, headers=self.headers()) self.check_status(resp) results = self.parse_response(resp) if isinstance(results, dict): return results['batchInfo'] return results def get_query_batch_request(self, batch_id, job_id=None): """ Fetch the request sent for the batch. Note should only used for query batches """ if not job_id: job_id = self.lookup_job_id(batch_id) url = self.endpoint + "/job/{}/batch/{}/request".format(job_id, batch_id) resp = requests.get(url, headers=self.headers()) self.check_status(resp) return resp.text def close_job(self, job_id): doc = self.create_close_job_doc() url = self.endpoint + "/job/%s" % job_id resp = requests.post(url, headers=self.headers(), data=doc) self.check_status(resp) def abort_job(self, job_id): """Abort a given bulk job""" doc = self.create_abort_job_doc() url = self.endpoint + "/job/%s" % job_id resp = requests.post( url, headers=self.headers(), data=doc ) self.check_status(resp) def create_job_doc(self, object_name=None, operation=None, contentType='CSV', concurrency=None, external_id_name=None): root = ET.Element("jobInfo") root.set("xmlns", self.jobNS) op = ET.SubElement(root, "operation") op.text = operation obj = ET.SubElement(root, "object") obj.text = object_name if external_id_name: ext = ET.SubElement(root, 'externalIdFieldName') ext.text = external_id_name if concurrency: con = ET.SubElement(root, "concurrencyMode") con.text = concurrency ct = ET.SubElement(root, "contentType") ct.text = contentType buf = StringIO() tree = ET.ElementTree(root) tree.write(buf, encoding="UTF-8") return buf.getvalue() def create_close_job_doc(self): root = ET.Element("jobInfo") root.set("xmlns", self.jobNS) state = ET.SubElement(root, "state") state.text = "Closed" buf = StringIO() tree = ET.ElementTree(root) tree.write(buf, encoding="UTF-8") return buf.getvalue() def create_abort_job_doc(self): """Create XML doc for aborting a job""" root = ET.Element("jobInfo") root.set("xmlns", self.jobNS) state = ET.SubElement(root, "state") state.text = "Aborted" buf = StringIO() tree = ET.ElementTree(root) tree.write(buf, encoding="UTF-8") return buf.getvalue() # Add a BulkQuery to the job - returns the batch id def query(self, job_id, soql, contentType='CSV'): if job_id is None: job_id = self.create_job( re.search(re.compile(r"from (\w+)", re.I), soql).group(1), "query", contentType=contentType) job_content_type = self.job_content_types.get(job_id, contentType) http_content_type = job_to_http_content_type[job_content_type] headers = self.headers(content_type=http_content_type) uri = self.endpoint + "/job/%s/batch" % job_id resp = requests.post(uri, data=soql, headers=headers) self.check_status(resp) result = self.parse_response(resp) batch_id = result['id'] self.batches[batch_id] = job_id return batch_id def raise_error(self, message, status_code=None): if status_code: message = "[{0}] {1}".format(status_code, message) raise BulkApiError(message, status_code=status_code) def post_batch(self, job_id, data_generator): job_content_type = self.job_content_types[job_id] http_content_type = job_to_http_content_type[job_content_type] uri = self.endpoint + "/job/%s/batch" % job_id headers = self.headers(content_type=http_content_type) resp = requests.post(uri, data=data_generator, headers=headers) self.check_status(resp) result = self.parse_response(resp) batch_id = result['id'] self.batches[batch_id] = job_id return batch_id def post_mapping_file(self, job_id, mapping_data): job_content_type = 'CSV' http_content_type = job_to_http_content_type[job_content_type] uri = self.endpoint + "/job/%s/spec" % job_id headers = self.headers(content_type=http_content_type) resp = requests.post(uri, data=mapping_data, headers=headers) self.check_status(resp) if resp.status_code != 201: raise Exception("Unable to upload mapping file") def lookup_job_id(self, batch_id): try: return self.batches[batch_id] except KeyError: raise Exception( "Batch id '%s' is uknown, can't retrieve job_id" % batch_id) def job_status(self, job_id=None): job_id = job_id uri = urlparse.urljoin(self.endpoint + "/", 'job/{0}'.format(job_id)) response = requests.get(uri, headers=self.headers()) self.check_status(response) tree = ET.fromstring(response.content) result = {} for child in tree: result[nsclean.sub("", child.tag)] = child.text return result def job_state(self, job_id): status = self.job_status(job_id) if 'state' in status: return status['state'] else: return None def parse_response(self, resp): if resp.headers['Content-Type'] == 'application/json': return resp.json() tree = ET.fromstring(resp.content) if nsclean.sub("", tree.tag) == 'batchInfoList': results = [] for subtree in tree: result = {} results.append(result) for child in subtree: result[nsclean.sub("", child.tag)] = child.text return results result = {} for child in tree: result[nsclean.sub("", child.tag)] = child.text return result def batch_status(self, batch_id=None, job_id=None, reload=False): if not reload and batch_id in self.batch_statuses: return self.batch_statuses[batch_id] job_id = job_id or self.lookup_job_id(batch_id) uri = self.endpoint + \ "/job/%s/batch/%s" % (job_id, batch_id) resp = requests.get(uri, headers=self.headers()) self.check_status(resp) result = self.parse_response(resp) self.batch_statuses[batch_id] = result return result def batch_state(self, batch_id, job_id=None, reload=False): status = self.batch_status(batch_id, job_id, reload=reload) if 'state' in status: return status['state'] else: return None def is_batch_done(self, batch_id, job_id=None): batch_state = self.batch_state(batch_id, job_id=job_id, reload=True) if batch_state in bulk_states.ERROR_STATES: status = self.batch_status(batch_id, job_id) raise BulkBatchFailed(job_id, batch_id, status.get('stateMessage'), batch_state) return batch_state == bulk_states.COMPLETED # Wait for the given batch to complete, waiting at most timeout seconds # (defaults to 10 minutes). def wait_for_batch(self, job_id, batch_id, timeout=60 * 10, sleep_interval=10): waited = 0 while not self.is_batch_done(batch_id, job_id) and waited < timeout: time.sleep(sleep_interval) waited += sleep_interval def get_query_batch_result_ids(self, batch_id, job_id=None): job_id = job_id or self.lookup_job_id(batch_id) if not self.is_batch_done(batch_id, job_id): return False uri = urlparse.urljoin( self.endpoint + "/", "job/{0}/batch/{1}/result".format( job_id, batch_id), ) resp = requests.get(uri, headers=self.headers()) self.check_status(resp) if resp.headers['Content-Type'] == 'application/json': return resp.json() tree = ET.fromstring(resp.content) find_func = getattr(tree, 'iterfind', tree.findall) return [str(r.text) for r in find_func("{{{0}}}result".format(self.jobNS))] def get_all_results_for_query_batch(self, batch_id, job_id=None, chunk_size=2048): """ Gets result ids and generates each result set from the batch and returns it as an generator fetching the next result set when needed Args: batch_id: id of batch job_id: id of job, if not provided, it will be looked up """ result_ids = self.get_query_batch_result_ids(batch_id, job_id=job_id) if not result_ids: raise RuntimeError('Batch is not complete') for result_id in result_ids: yield self.get_query_batch_results( batch_id, result_id, job_id=job_id, chunk_size=chunk_size ) def get_query_batch_results(self, batch_id, result_id, job_id=None, chunk_size=2048, raw=False): job_id = job_id or self.lookup_job_id(batch_id) uri = urlparse.urljoin( self.endpoint + "/", "job/{0}/batch/{1}/result/{2}".format( job_id, batch_id, result_id), ) resp = requests.get(uri, headers=self.headers(), stream=True) self.check_status(resp) if raw: return resp.raw iter = (x.replace(b'\0', b'') for x in resp.iter_content(chunk_size=chunk_size)) return util.IteratorBytesIO(iter) def get_batch_results(self, batch_id, job_id=None): job_id = job_id or self.lookup_job_id(batch_id) uri = urlparse.urljoin( self.endpoint + "/", "job/{0}/batch/{1}/result".format( job_id, batch_id), ) resp = requests.get(uri, headers=self.headers(), stream=True) self.check_status(resp) iter = (x.replace(b'\0', b'') for x in resp.iter_content()) fd = util.IteratorBytesIO(iter) if resp.headers['Content-Type'] == 'application/json': result = json.load(io.TextIOWrapper(fd, 'utf-8')) getter = itemgetter('id', 'success', 'created', 'errors') return [UploadResult(*getter(row)) for row in result] elif resp.headers['Content-Type'] == 'text/csv': reader = unicodecsv.reader( fd, encoding='utf-8' ) results = islice(reader, 1, None) results = [ UploadResult(*row) for row in results ] return results elif resp.headers['Content-Type'] == 'application/xml': tree = ET.parse(fd) def getid(x): x is not None and x.text results = [ UploadResult( getid(result.find('{%s}id' % self.jobNS)), result.find('{%s}success' % self.jobNS).text == 'true', result.find('{%s}created' % self.jobNS).text == 'true', [ self.parse_error_result_xml(x) for x in result.findall('{%s}errors' % self.jobNS) ] ) for result in tree.getroot() ] return results # NOTE raise exception if we get here def parse_error_result_xml(self, error_xml): return { 'fields': [x.text for x in error_xml.findall('{%s}fields' % self.jobNS)], 'message': error_xml.find('{%s}message' % self.jobNS).text, 'statusCode': error_xml.find('{%s}statusCode' % self.jobNS).text, }
(sessionId=None, host=None, username=None, password=None, API_version='40.0', sandbox=False, security_token=None, organizationId=None, client_id=None, domain=None)
37,759
salesforce_bulk.salesforce_bulk
__init__
null
def __init__(self, sessionId=None, host=None, username=None, password=None, API_version=DEFAULT_API_VERSION, sandbox=False, security_token=None, organizationId=None, client_id=None, domain=None): if not sessionId and not username: raise RuntimeError( "Must supply either sessionId/instance_url or username/password") if not sessionId: sessionId, host = SalesforceBulk.login_to_salesforce( username, password, sandbox=sandbox, security_token=security_token, organizationId=organizationId, API_version=API_version, client_id=client_id, domain=domain) if host[0:4] == 'http': self.endpoint = host else: self.endpoint = "https://" + host self.endpoint += "/services/async/%s" % API_version self.sessionId = sessionId self.jobNS = 'http://www.force.com/2009/06/asyncapi/dataload' self.jobs = {} # dict of job_id => job_id self.batches = {} # dict of batch_id => job_id self.job_content_types = {} # dict of job_id => contentType self.batch_statuses = {} self.API_version = API_version
(self, sessionId=None, host=None, username=None, password=None, API_version='40.0', sandbox=False, security_token=None, organizationId=None, client_id=None, domain=None)
37,760
salesforce_bulk.salesforce_bulk
abort_job
Abort a given bulk job
def abort_job(self, job_id): """Abort a given bulk job""" doc = self.create_abort_job_doc() url = self.endpoint + "/job/%s" % job_id resp = requests.post( url, headers=self.headers(), data=doc ) self.check_status(resp)
(self, job_id)
37,761
salesforce_bulk.salesforce_bulk
batch_state
null
def batch_state(self, batch_id, job_id=None, reload=False): status = self.batch_status(batch_id, job_id, reload=reload) if 'state' in status: return status['state'] else: return None
(self, batch_id, job_id=None, reload=False)
37,762
salesforce_bulk.salesforce_bulk
batch_status
null
def batch_status(self, batch_id=None, job_id=None, reload=False): if not reload and batch_id in self.batch_statuses: return self.batch_statuses[batch_id] job_id = job_id or self.lookup_job_id(batch_id) uri = self.endpoint + \ "/job/%s/batch/%s" % (job_id, batch_id) resp = requests.get(uri, headers=self.headers()) self.check_status(resp) result = self.parse_response(resp) self.batch_statuses[batch_id] = result return result
(self, batch_id=None, job_id=None, reload=False)
37,763
salesforce_bulk.salesforce_bulk
check_status
null
def check_status(self, resp): if resp.status_code >= 400: msg = "Bulk API HTTP Error result: {0}".format(resp.text) self.raise_error(msg, resp.status_code)
(self, resp)
37,764
salesforce_bulk.salesforce_bulk
close_job
null
def close_job(self, job_id): doc = self.create_close_job_doc() url = self.endpoint + "/job/%s" % job_id resp = requests.post(url, headers=self.headers(), data=doc) self.check_status(resp)
(self, job_id)
37,765
salesforce_bulk.salesforce_bulk
create_abort_job_doc
Create XML doc for aborting a job
def create_abort_job_doc(self): """Create XML doc for aborting a job""" root = ET.Element("jobInfo") root.set("xmlns", self.jobNS) state = ET.SubElement(root, "state") state.text = "Aborted" buf = StringIO() tree = ET.ElementTree(root) tree.write(buf, encoding="UTF-8") return buf.getvalue()
(self)
37,766
salesforce_bulk.salesforce_bulk
create_close_job_doc
null
def create_close_job_doc(self): root = ET.Element("jobInfo") root.set("xmlns", self.jobNS) state = ET.SubElement(root, "state") state.text = "Closed" buf = StringIO() tree = ET.ElementTree(root) tree.write(buf, encoding="UTF-8") return buf.getvalue()
(self)
37,767
salesforce_bulk.salesforce_bulk
create_delete_job
null
def create_delete_job(self, object_name, **kwargs): return self.create_job(object_name, "delete", **kwargs)
(self, object_name, **kwargs)
37,768
salesforce_bulk.salesforce_bulk
create_insert_job
null
def create_insert_job(self, object_name, **kwargs): return self.create_job(object_name, "insert", **kwargs)
(self, object_name, **kwargs)
37,769
salesforce_bulk.salesforce_bulk
create_job
null
def create_job(self, object_name=None, operation=None, contentType='CSV', concurrency=None, external_id_name=None, pk_chunking=False): assert(object_name is not None) assert(operation is not None) extra_headers = {} if pk_chunking: if pk_chunking is True: pk_chunking = u'true' elif isinstance(pk_chunking, int): pk_chunking = u'chunkSize=%d;' % pk_chunking else: pk_chunking = text_type(pk_chunking) extra_headers['Sforce-Enable-PKChunking'] = pk_chunking doc = self.create_job_doc(object_name=object_name, operation=operation, contentType=contentType, concurrency=concurrency, external_id_name=external_id_name) resp = requests.post(self.endpoint + "/job", headers=self.headers(extra_headers), data=doc) self.check_status(resp) tree = ET.fromstring(resp.content) job_id = tree.findtext("{%s}id" % self.jobNS) self.jobs[job_id] = job_id self.job_content_types[job_id] = contentType return job_id
(self, object_name=None, operation=None, contentType='CSV', concurrency=None, external_id_name=None, pk_chunking=False)
37,770
salesforce_bulk.salesforce_bulk
create_job_doc
null
def create_job_doc(self, object_name=None, operation=None, contentType='CSV', concurrency=None, external_id_name=None): root = ET.Element("jobInfo") root.set("xmlns", self.jobNS) op = ET.SubElement(root, "operation") op.text = operation obj = ET.SubElement(root, "object") obj.text = object_name if external_id_name: ext = ET.SubElement(root, 'externalIdFieldName') ext.text = external_id_name if concurrency: con = ET.SubElement(root, "concurrencyMode") con.text = concurrency ct = ET.SubElement(root, "contentType") ct.text = contentType buf = StringIO() tree = ET.ElementTree(root) tree.write(buf, encoding="UTF-8") return buf.getvalue()
(self, object_name=None, operation=None, contentType='CSV', concurrency=None, external_id_name=None)
37,771
salesforce_bulk.salesforce_bulk
create_query_job
null
def create_query_job(self, object_name, **kwargs): return self.create_job(object_name, "query", **kwargs)
(self, object_name, **kwargs)
37,772
salesforce_bulk.salesforce_bulk
create_queryall_job
only supported since version 39.0
def create_queryall_job(self, object_name, **kwargs): """ only supported since version 39.0 """ return self.create_job(object_name, "queryAll", **kwargs)
(self, object_name, **kwargs)
37,773
salesforce_bulk.salesforce_bulk
create_update_job
null
def create_update_job(self, object_name, **kwargs): return self.create_job(object_name, "update", **kwargs)
(self, object_name, **kwargs)
37,774
salesforce_bulk.salesforce_bulk
create_upsert_job
null
def create_upsert_job(self, object_name, external_id_name, **kwargs): return self.create_job(object_name, "upsert", external_id_name=external_id_name, **kwargs)
(self, object_name, external_id_name, **kwargs)
37,775
salesforce_bulk.salesforce_bulk
get_all_results_for_query_batch
Gets result ids and generates each result set from the batch and returns it as an generator fetching the next result set when needed Args: batch_id: id of batch job_id: id of job, if not provided, it will be looked up
def get_all_results_for_query_batch(self, batch_id, job_id=None, chunk_size=2048): """ Gets result ids and generates each result set from the batch and returns it as an generator fetching the next result set when needed Args: batch_id: id of batch job_id: id of job, if not provided, it will be looked up """ result_ids = self.get_query_batch_result_ids(batch_id, job_id=job_id) if not result_ids: raise RuntimeError('Batch is not complete') for result_id in result_ids: yield self.get_query_batch_results( batch_id, result_id, job_id=job_id, chunk_size=chunk_size )
(self, batch_id, job_id=None, chunk_size=2048)
37,776
salesforce_bulk.salesforce_bulk
get_batch_list
null
def get_batch_list(self, job_id): url = self.endpoint + "/job/{}/batch".format(job_id) resp = requests.get(url, headers=self.headers()) self.check_status(resp) results = self.parse_response(resp) if isinstance(results, dict): return results['batchInfo'] return results
(self, job_id)
37,777
salesforce_bulk.salesforce_bulk
get_batch_results
null
def get_batch_results(self, batch_id, job_id=None): job_id = job_id or self.lookup_job_id(batch_id) uri = urlparse.urljoin( self.endpoint + "/", "job/{0}/batch/{1}/result".format( job_id, batch_id), ) resp = requests.get(uri, headers=self.headers(), stream=True) self.check_status(resp) iter = (x.replace(b'\0', b'') for x in resp.iter_content()) fd = util.IteratorBytesIO(iter) if resp.headers['Content-Type'] == 'application/json': result = json.load(io.TextIOWrapper(fd, 'utf-8')) getter = itemgetter('id', 'success', 'created', 'errors') return [UploadResult(*getter(row)) for row in result] elif resp.headers['Content-Type'] == 'text/csv': reader = unicodecsv.reader( fd, encoding='utf-8' ) results = islice(reader, 1, None) results = [ UploadResult(*row) for row in results ] return results elif resp.headers['Content-Type'] == 'application/xml': tree = ET.parse(fd) def getid(x): x is not None and x.text results = [ UploadResult( getid(result.find('{%s}id' % self.jobNS)), result.find('{%s}success' % self.jobNS).text == 'true', result.find('{%s}created' % self.jobNS).text == 'true', [ self.parse_error_result_xml(x) for x in result.findall('{%s}errors' % self.jobNS) ] ) for result in tree.getroot() ] return results # NOTE raise exception if we get here
(self, batch_id, job_id=None)
37,778
salesforce_bulk.salesforce_bulk
get_query_batch_request
Fetch the request sent for the batch. Note should only used for query batches
def get_query_batch_request(self, batch_id, job_id=None): """ Fetch the request sent for the batch. Note should only used for query batches """ if not job_id: job_id = self.lookup_job_id(batch_id) url = self.endpoint + "/job/{}/batch/{}/request".format(job_id, batch_id) resp = requests.get(url, headers=self.headers()) self.check_status(resp) return resp.text
(self, batch_id, job_id=None)
37,779
salesforce_bulk.salesforce_bulk
get_query_batch_result_ids
null
def get_query_batch_result_ids(self, batch_id, job_id=None): job_id = job_id or self.lookup_job_id(batch_id) if not self.is_batch_done(batch_id, job_id): return False uri = urlparse.urljoin( self.endpoint + "/", "job/{0}/batch/{1}/result".format( job_id, batch_id), ) resp = requests.get(uri, headers=self.headers()) self.check_status(resp) if resp.headers['Content-Type'] == 'application/json': return resp.json() tree = ET.fromstring(resp.content) find_func = getattr(tree, 'iterfind', tree.findall) return [str(r.text) for r in find_func("{{{0}}}result".format(self.jobNS))]
(self, batch_id, job_id=None)
37,780
salesforce_bulk.salesforce_bulk
get_query_batch_results
null
def get_query_batch_results(self, batch_id, result_id, job_id=None, chunk_size=2048, raw=False): job_id = job_id or self.lookup_job_id(batch_id) uri = urlparse.urljoin( self.endpoint + "/", "job/{0}/batch/{1}/result/{2}".format( job_id, batch_id, result_id), ) resp = requests.get(uri, headers=self.headers(), stream=True) self.check_status(resp) if raw: return resp.raw iter = (x.replace(b'\0', b'') for x in resp.iter_content(chunk_size=chunk_size)) return util.IteratorBytesIO(iter)
(self, batch_id, result_id, job_id=None, chunk_size=2048, raw=False)
37,781
salesforce_bulk.salesforce_bulk
headers
null
def headers(self, values={}, content_type='application/xml'): default = { "X-SFDC-Session": self.sessionId, "Content-Type": "{}; charset=UTF-8".format(content_type), 'Accept-Encoding': "gzip", } default.update(values) return default
(self, values={}, content_type='application/xml')
37,782
salesforce_bulk.salesforce_bulk
is_batch_done
null
def is_batch_done(self, batch_id, job_id=None): batch_state = self.batch_state(batch_id, job_id=job_id, reload=True) if batch_state in bulk_states.ERROR_STATES: status = self.batch_status(batch_id, job_id) raise BulkBatchFailed(job_id, batch_id, status.get('stateMessage'), batch_state) return batch_state == bulk_states.COMPLETED
(self, batch_id, job_id=None)
37,783
salesforce_bulk.salesforce_bulk
job_state
null
def job_state(self, job_id): status = self.job_status(job_id) if 'state' in status: return status['state'] else: return None
(self, job_id)
37,784
salesforce_bulk.salesforce_bulk
job_status
null
def job_status(self, job_id=None): job_id = job_id uri = urlparse.urljoin(self.endpoint + "/", 'job/{0}'.format(job_id)) response = requests.get(uri, headers=self.headers()) self.check_status(response) tree = ET.fromstring(response.content) result = {} for child in tree: result[nsclean.sub("", child.tag)] = child.text return result
(self, job_id=None)
37,785
salesforce_bulk.salesforce_bulk
login_to_salesforce
null
@staticmethod def login_to_salesforce(username, password, sandbox=False, security_token=None, organizationId=None, client_id=None, API_version=DEFAULT_API_VERSION, # domain is passed directly to SalesforceLogin and should be 'test' or # 'login' or 'something.my' domain=None): if client_id: client_id = "{prefix}/{app_name}".format( prefix=DEFAULT_CLIENT_ID_PREFIX, app_name=client_id) else: client_id = DEFAULT_CLIENT_ID_PREFIX if domain is None and sandbox: domain = 'test' if all(arg is not None for arg in ( username, password, security_token)): # Pass along the username/password to our login helper return SalesforceLogin( username=username, password=password, security_token=security_token, domain=domain, sf_version=API_version, client_id=client_id) elif all(arg is not None for arg in ( username, password, organizationId)): # Pass along the username/password to our login helper return SalesforceLogin( username=username, password=password, organizationId=organizationId, domain=domain, sf_version=API_version, client_id=client_id) else: raise TypeError( 'You must provide login information or an instance and token' )
(username, password, sandbox=False, security_token=None, organizationId=None, client_id=None, API_version='40.0', domain=None)
37,786
salesforce_bulk.salesforce_bulk
lookup_job_id
null
def lookup_job_id(self, batch_id): try: return self.batches[batch_id] except KeyError: raise Exception( "Batch id '%s' is uknown, can't retrieve job_id" % batch_id)
(self, batch_id)