Upload custom_code/bharatgenai_patram-7b-instruct.py with huggingface_hub
Browse files
custom_code/bharatgenai_patram-7b-instruct.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.12"
|
3 |
+
# dependencies = [
|
4 |
+
# "transformers",
|
5 |
+
# "torch",
|
6 |
+
# ]
|
7 |
+
# ///
|
8 |
+
|
9 |
+
# Use a pipeline as a high-level helper
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
pipe = pipeline("image-text-to-text", model="bharatgenai/patram-7b-instruct", trust_remote_code=True)
|
13 |
+
messages = [
|
14 |
+
{
|
15 |
+
"role": "user",
|
16 |
+
"content": [
|
17 |
+
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
|
18 |
+
{"type": "text", "text": "What animal is on the candy?"}
|
19 |
+
]
|
20 |
+
},
|
21 |
+
]
|
22 |
+
pipe(text=messages)
|
23 |
+
# Load model directly
|
24 |
+
from transformers import AutoModelForCausalLM
|
25 |
+
model = AutoModelForCausalLM.from_pretrained("bharatgenai/patram-7b-instruct", trust_remote_code=True)
|