File size: 4,160 Bytes
2334ed3
 
 
 
f903536
2334ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680fb78
e281b75
2334ed3
 
 
 
 
 
 
 
 
 
 
 
 
d7c586c
 
 
e281b75
 
 
 
d7c586c
 
e281b75
d7c586c
 
 
 
e281b75
d7c586c
 
4fed6f6
d7c586c
2334ed3
680fb78
2334ed3
 
 
680fb78
 
2334ed3
 
 
 
 
680fb78
2334ed3
 
 
680fb78
6830819
 
 
 
 
 
4fed6f6
6830819
 
599a4c4
4fed6f6
6830819
 
 
 
 
680fb78
 
2334ed3
 
680fb78
2334ed3
 
 
 
 
680fb78
2334ed3
 
 
 
 
680fb78
2334ed3
 
 
 
 
 
 
 
 
 
e281b75
2334ed3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import re
import requests
import datasets
from bs4 import BeautifulSoup


_DBNAME = os.path.basename(__file__).split('.')[0]

_HOMEPAGE = "https://huggingface.co/datasets/george-chou/" + _DBNAME

_URL = 'https://pytorch.org/vision/main/_modules/'


class vi_backbones(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "ver": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "input_size": datasets.Value("int16"),
                    # "num_params": datasets.Value("int64"),
                    "url": datasets.Value("string"),
                }
            ),
            supervised_keys=("ver", "type"),
            homepage=_HOMEPAGE,
            license="mit"
        )

    def _parse_url(self, url):
        response = requests.get(url)
        html = response.text
        return BeautifulSoup(html, 'html.parser')

    def _info_on_dataset(self, m_ver, m_type, in1k_span):
        url_span = in1k_span.find_next_sibling('span', {'class': 's2'})
        size_span = url_span.find_next_sibling('span', {'class': 'mi'})
        # params_label_span = size_span.find_next_sibling(
        #     'span', string='"num_params"')
        # params_span = params_label_span.find_next_sibling(
        #     'span', {'class': 'mi'})
        m_url = str(url_span.text[1:-2])
        input_size = int(size_span.text)
        # num_params = int(params_span.text)
        m_dict = {
            'ver': m_ver,
            'type': m_type,
            'input_size': input_size,
            # 'num_params': num_params,
            'url': m_url
        }
        return m_dict, size_span

    def _generate_dataset(self, url):

        torch_page = self._parse_url(url)
        article = torch_page.find('article', {'id': 'pytorch-article'})
        ul = article.find('ul').find('ul')
        in1k_v1, in1k_v2 = [], []

        for li in ul.find_all('li'):
            name = str(li.text)
            if name.__contains__('torchvision.models.') and len(name.split('.')) == 3:
                if name.__contains__('_api') or name.__contains__('feature_extraction'):
                    continue

                href = li.find('a').get('href')
                model_page = self._parse_url(url + href)
                divs = model_page.select('div.viewcode-block')

                for div in divs:
                    div_id = str(div['id'])
                    if div_id.__contains__('_Weights'):
                        m_ver = div_id.split('_Weight')[0].lower()
                        m_type = re.search('[a-zA-Z]+', m_ver).group(0)
                        in1k_v1_span = div.find('span', string='IMAGENET1K_V1')
                        m_dict, size_span = self._info_on_dataset(
                            m_ver, m_type, in1k_v1_span)
                        in1k_v1.append(m_dict)

                        in1k_v2_span = size_span.find_next_sibling(
                            'span', string='IMAGENET1K_V2')
                        if in1k_v2_span != None:
                            m_dict, _ = self._info_on_dataset(
                                m_ver, m_type, in1k_v2_span)
                            in1k_v2.append(m_dict)

        return in1k_v1, in1k_v2

    def _split_generators(self, dl_manager):
        in1k_v1, in1k_v2 = self._generate_dataset(_URL)

        return [
            datasets.SplitGenerator(
                name="IMAGENET1K_V1",
                gen_kwargs={
                    "files": in1k_v1,
                },
            ),
            datasets.SplitGenerator(
                name="IMAGENET1K_V2",
                gen_kwargs={
                    "files": in1k_v2,
                },
            ),
        ]

    def _generate_examples(self, files):
        for i, model in enumerate(files):
            yield i, {
                "ver": model['ver'],
                "type": model['type'],
                "input_size": model['input_size'],
                # "num_params": model['num_params'],
                "url": model['url'],
            }