admin
commited on
Commit
·
2f2017c
1
Parent(s):
06806f7
Update vi_backbones.py
Browse files- vi_backbones.py +13 -43
vi_backbones.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
-
# import hashlib
|
4 |
import requests
|
5 |
import datasets
|
6 |
from bs4 import BeautifulSoup
|
@@ -17,12 +16,9 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
|
|
17 |
features=datasets.Features(
|
18 |
{
|
19 |
"ver": datasets.Value("string"),
|
20 |
-
"name": datasets.Value("string"),
|
21 |
"type": datasets.Value("string"),
|
22 |
"input_size": datasets.Value("int16"),
|
23 |
-
# "output_size": datasets.Value("int64"),
|
24 |
"url": datasets.Value("string"),
|
25 |
-
# "md5": datasets.Value("string"),
|
26 |
}
|
27 |
),
|
28 |
supervised_keys=("ver", "type"),
|
@@ -30,27 +26,6 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
|
|
30 |
license="mit"
|
31 |
)
|
32 |
|
33 |
-
# def _get_file_md5(self, url):
|
34 |
-
# """
|
35 |
-
# Calculate the MD5 hash value of a file using its URL
|
36 |
-
|
37 |
-
# :param url: the URL address of the file
|
38 |
-
# :return: the MD5 hash value in string format
|
39 |
-
# """
|
40 |
-
# try:
|
41 |
-
# response = requests.get(url, stream=True)
|
42 |
-
# if response.status_code == 200:
|
43 |
-
# md5obj = hashlib.md5()
|
44 |
-
# for chunk in response.iter_content(chunk_size=1024*1024):
|
45 |
-
# md5obj.update(chunk)
|
46 |
-
# return md5obj.hexdigest()
|
47 |
-
# else:
|
48 |
-
# raise ValueError(
|
49 |
-
# f"Error downloading file from {url}. Status code: {response.status_code}")
|
50 |
-
# except Exception as e:
|
51 |
-
# raise ValueError(
|
52 |
-
# f"Error calculating MD5 of file at {url}: {str(e)}")
|
53 |
-
|
54 |
def _parse_url(self, url):
|
55 |
response = requests.get(url)
|
56 |
html = response.text
|
@@ -58,31 +33,25 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
|
|
58 |
|
59 |
def _special_type(self, m_ver):
|
60 |
m_type = re.search('[a-zA-Z]+', m_ver).group(0)
|
61 |
-
m_name = m_ver
|
62 |
|
63 |
if m_type == 'wide' or m_type == 'resnext':
|
64 |
-
|
65 |
|
66 |
elif m_type == 'swin':
|
67 |
-
|
68 |
|
69 |
elif m_type == 'inception':
|
70 |
-
|
71 |
-
|
72 |
-
pattern = r'_v\d+_'
|
73 |
-
if re.search(pattern, m_name):
|
74 |
-
m_name = re.sub(pattern, '_', m_name)
|
75 |
|
76 |
-
return m_type
|
77 |
|
78 |
-
def _info_on_dataset(self, m_ver,
|
79 |
url_span = in1k_span.find_next_sibling('span', {'class': 's2'})
|
80 |
size_span = url_span.find_next_sibling('span', {'class': 'mi'})
|
81 |
m_url = str(url_span.text[1:-1])
|
82 |
input_size = int(size_span.text)
|
83 |
m_dict = {
|
84 |
'ver': m_ver,
|
85 |
-
'name': m_name,
|
86 |
'type': m_type,
|
87 |
'input_size': input_size,
|
88 |
'url': m_url
|
@@ -99,7 +68,9 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
|
|
99 |
name = str(li.text)
|
100 |
if name.__contains__('torchvision.models.') and len(name.split('.')) == 3:
|
101 |
|
102 |
-
if name.__contains__('_api') or
|
|
|
|
|
103 |
continue
|
104 |
|
105 |
href = li.find('a').get('href')
|
@@ -110,7 +81,11 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
|
|
110 |
div_id = str(div['id'])
|
111 |
if div_id.__contains__('_Weights'):
|
112 |
m_ver = div_id.split('_Weight')[0].lower()
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
|
115 |
in1k_v1_span = div.find(
|
116 |
name='span',
|
@@ -123,7 +98,6 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
|
|
123 |
|
124 |
m_dict, size_span = self._info_on_dataset(
|
125 |
m_ver,
|
126 |
-
m_name,
|
127 |
m_type,
|
128 |
in1k_v1_span
|
129 |
)
|
@@ -138,7 +112,6 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
|
|
138 |
if in1k_v2_span != None:
|
139 |
m_dict, _ = self._info_on_dataset(
|
140 |
m_ver,
|
141 |
-
m_name,
|
142 |
m_type,
|
143 |
in1k_v2_span
|
144 |
)
|
@@ -168,10 +141,7 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
|
|
168 |
for i, model in enumerate(subset):
|
169 |
yield i, {
|
170 |
"ver": model['ver'],
|
171 |
-
"name": model['name'],
|
172 |
"type": model['type'],
|
173 |
"input_size": model['input_size'],
|
174 |
-
# "output_size": 1234,
|
175 |
"url": model['url'],
|
176 |
-
# "md5": self._get_file_md5(model['url']),
|
177 |
}
|
|
|
1 |
import os
|
2 |
import re
|
|
|
3 |
import requests
|
4 |
import datasets
|
5 |
from bs4 import BeautifulSoup
|
|
|
16 |
features=datasets.Features(
|
17 |
{
|
18 |
"ver": datasets.Value("string"),
|
|
|
19 |
"type": datasets.Value("string"),
|
20 |
"input_size": datasets.Value("int16"),
|
|
|
21 |
"url": datasets.Value("string"),
|
|
|
22 |
}
|
23 |
),
|
24 |
supervised_keys=("ver", "type"),
|
|
|
26 |
license="mit"
|
27 |
)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def _parse_url(self, url):
|
30 |
response = requests.get(url)
|
31 |
html = response.text
|
|
|
33 |
|
34 |
def _special_type(self, m_ver):
|
35 |
m_type = re.search('[a-zA-Z]+', m_ver).group(0)
|
|
|
36 |
|
37 |
if m_type == 'wide' or m_type == 'resnext':
|
38 |
+
return 'resnet'
|
39 |
|
40 |
elif m_type == 'swin':
|
41 |
+
return 'swin_transformer'
|
42 |
|
43 |
elif m_type == 'inception':
|
44 |
+
return 'googlenet'
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
return m_type
|
47 |
|
48 |
+
def _info_on_dataset(self, m_ver, m_type, in1k_span):
|
49 |
url_span = in1k_span.find_next_sibling('span', {'class': 's2'})
|
50 |
size_span = url_span.find_next_sibling('span', {'class': 'mi'})
|
51 |
m_url = str(url_span.text[1:-1])
|
52 |
input_size = int(size_span.text)
|
53 |
m_dict = {
|
54 |
'ver': m_ver,
|
|
|
55 |
'type': m_type,
|
56 |
'input_size': input_size,
|
57 |
'url': m_url
|
|
|
68 |
name = str(li.text)
|
69 |
if name.__contains__('torchvision.models.') and len(name.split('.')) == 3:
|
70 |
|
71 |
+
if name.__contains__('_api') or \
|
72 |
+
name.__contains__('feature_extraction') or \
|
73 |
+
name.__contains__('maxvit'):
|
74 |
continue
|
75 |
|
76 |
href = li.find('a').get('href')
|
|
|
81 |
div_id = str(div['id'])
|
82 |
if div_id.__contains__('_Weights'):
|
83 |
m_ver = div_id.split('_Weight')[0].lower()
|
84 |
+
|
85 |
+
if m_ver.__contains__('swin_v2_'):
|
86 |
+
continue
|
87 |
+
|
88 |
+
m_type = self._special_type(m_ver)
|
89 |
|
90 |
in1k_v1_span = div.find(
|
91 |
name='span',
|
|
|
98 |
|
99 |
m_dict, size_span = self._info_on_dataset(
|
100 |
m_ver,
|
|
|
101 |
m_type,
|
102 |
in1k_v1_span
|
103 |
)
|
|
|
112 |
if in1k_v2_span != None:
|
113 |
m_dict, _ = self._info_on_dataset(
|
114 |
m_ver,
|
|
|
115 |
m_type,
|
116 |
in1k_v2_span
|
117 |
)
|
|
|
141 |
for i, model in enumerate(subset):
|
142 |
yield i, {
|
143 |
"ver": model['ver'],
|
|
|
144 |
"type": model['type'],
|
145 |
"input_size": model['input_size'],
|
|
|
146 |
"url": model['url'],
|
|
|
147 |
}
|