mstz commited on
Commit
5d21285
·
1 Parent(s): 7efb770

updated to datasets 4.*

Browse files
Files changed (6) hide show
  1. 1hr/train.csv +0 -0
  2. 8hr/train.csv +0 -0
  3. README.md +16 -10
  4. eighthr.data +0 -0
  5. onehr.data +0 -0
  6. ozone.py +0 -301
1hr/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
8hr/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,19 +1,25 @@
1
  ---
2
- language:
3
- - en
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  tags:
5
- - ozone
6
  - tabular_classification
7
  - binary_classification
8
- pretty_name: Ozone
9
- size_categories:
10
- - 1K<n<10K
11
  task_categories:
12
  - tabular-classification
13
- configs:
14
- - 8hr
15
- - 1hr
16
- license: cc
17
  ---
18
  # Ozone
19
  The [Ozone dataset](https://archive.ics.uci.edu/ml/datasets/Ozone) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
 
1
  ---
2
+ configs:
3
+ - config_name: 8hr
4
+ data_files:
5
+ - path: 8hr/train.csv
6
+ split: train
7
+ default: true
8
+ - config_name: 1hr
9
+ data_files:
10
+ - path: 1hr/train.csv
11
+ split: train
12
+ default: false
13
+ language: en
14
+ license: cc
15
+ pretty_name: Ozone
16
+ size_categories: 1M<n<10M
17
  tags:
 
18
  - tabular_classification
19
  - binary_classification
20
+ - multiclass_classification
 
 
21
  task_categories:
22
  - tabular-classification
 
 
 
 
23
  ---
24
  # Ozone
25
  The [Ozone dataset](https://archive.ics.uci.edu/ml/datasets/Ozone) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
eighthr.data DELETED
The diff for this file is too large to render. See raw diff
 
onehr.data DELETED
The diff for this file is too large to render. See raw diff
 
ozone.py DELETED
@@ -1,301 +0,0 @@
1
- """Ozone: A Census Dataset"""
2
-
3
- from typing import List
4
-
5
- import datasets
6
-
7
- import pandas
8
-
9
-
10
- VERSION = datasets.Version("1.0.0")
11
- _BASE_FEATURE_NAMES = [
12
- "Date",
13
- "WSR0",
14
- "WSR1",
15
- "WSR2",
16
- "WSR3",
17
- "WSR4",
18
- "WSR5",
19
- "WSR6",
20
- "WSR7",
21
- "WSR8",
22
- "WSR9",
23
- "WSR10",
24
- "WSR11",
25
- "WSR12",
26
- "WSR13",
27
- "WSR14",
28
- "WSR15",
29
- "WSR16",
30
- "WSR17",
31
- "WSR18",
32
- "WSR19",
33
- "WSR20",
34
- "WSR21",
35
- "WSR22",
36
- "WSR23",
37
- "WSR_PK",
38
- "WSR_AV",
39
- "T0",
40
- "T1",
41
- "T2",
42
- "T3",
43
- "T4",
44
- "T5",
45
- "T6",
46
- "T7",
47
- "T8",
48
- "T9",
49
- "T10",
50
- "T11",
51
- "T12",
52
- "T13",
53
- "T14",
54
- "T15",
55
- "T16",
56
- "T17",
57
- "T18",
58
- "T19",
59
- "T20",
60
- "T21",
61
- "T22",
62
- "T23",
63
- "T_PK",
64
- "T_AV",
65
- "T85",
66
- "RH85",
67
- "U85",
68
- "V85",
69
- "HT85",
70
- "T70",
71
- "RH70",
72
- "U70",
73
- "V70",
74
- "HT70",
75
- "T50",
76
- "RH50",
77
- "U50",
78
- "V50",
79
- "HT50",
80
- "KI",
81
- "TT",
82
- "SLP",
83
- "SLP_",
84
- "Precp",
85
- "Class"
86
- ]
87
-
88
- DESCRIPTION = "Ozone dataset from the UCI ML repository."
89
- _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Ozone"
90
- _URLS = ("https://archive.ics.uci.edu/ml/datasets/Ozone")
91
- _CITATION = """
92
- @misc{misc_ozone_level_detection_172,
93
- author = {Zhang,Kun, Fan,Wei & Yuan,XiaoJing},
94
- title = {{Ozone Level Detection}},
95
- year = {2008},
96
- howpublished = {UCI Machine Learning Repository},
97
- note = {{DOI}: \\url{10.24432/C5NG6W}}
98
- }"""
99
-
100
- # Dataset info
101
- urls_per_split = {
102
- "8hr": {"train": "https://huggingface.co/datasets/mstz/ozone/raw/main/eighthr.data"},
103
- "1hr": {"train": "https://huggingface.co/datasets/mstz/ozone/raw/main/onehr.data"},
104
- }
105
- features_types_per_config = {
106
- "8hr": {
107
- "WSR0": datasets.Value("float64"),
108
- "WSR1": datasets.Value("float64"),
109
- "WSR2": datasets.Value("float64"),
110
- "WSR3": datasets.Value("float64"),
111
- "WSR4": datasets.Value("float64"),
112
- "WSR5": datasets.Value("float64"),
113
- "WSR6": datasets.Value("float64"),
114
- "WSR7": datasets.Value("float64"),
115
- "WSR8": datasets.Value("float64"),
116
- "WSR9": datasets.Value("float64"),
117
- "WSR10": datasets.Value("float64"),
118
- "WSR11": datasets.Value("float64"),
119
- "WSR12": datasets.Value("float64"),
120
- "WSR13": datasets.Value("float64"),
121
- "WSR14": datasets.Value("float64"),
122
- "WSR15": datasets.Value("float64"),
123
- "WSR16": datasets.Value("float64"),
124
- "WSR17": datasets.Value("float64"),
125
- "WSR18": datasets.Value("float64"),
126
- "WSR19": datasets.Value("float64"),
127
- "WSR20": datasets.Value("float64"),
128
- "WSR21": datasets.Value("float64"),
129
- "WSR22": datasets.Value("float64"),
130
- "WSR23": datasets.Value("float64"),
131
- "WSR_PK": datasets.Value("float64"),
132
- "WSR_AV": datasets.Value("float64"),
133
- "T0": datasets.Value("float64"),
134
- "T1": datasets.Value("float64"),
135
- "T2": datasets.Value("float64"),
136
- "T3": datasets.Value("float64"),
137
- "T4": datasets.Value("float64"),
138
- "T5": datasets.Value("float64"),
139
- "T6": datasets.Value("float64"),
140
- "T7": datasets.Value("float64"),
141
- "T8": datasets.Value("float64"),
142
- "T9": datasets.Value("float64"),
143
- "T10": datasets.Value("float64"),
144
- "T11": datasets.Value("float64"),
145
- "T12": datasets.Value("float64"),
146
- "T13": datasets.Value("float64"),
147
- "T14": datasets.Value("float64"),
148
- "T15": datasets.Value("float64"),
149
- "T16": datasets.Value("float64"),
150
- "T17": datasets.Value("float64"),
151
- "T18": datasets.Value("float64"),
152
- "T19": datasets.Value("float64"),
153
- "T20": datasets.Value("float64"),
154
- "T21": datasets.Value("float64"),
155
- "T22": datasets.Value("float64"),
156
- "T23": datasets.Value("float64"),
157
- "T_PK": datasets.Value("float64"),
158
- "T_AV": datasets.Value("float64"),
159
- "T85": datasets.Value("float64"),
160
- "RH85": datasets.Value("float64"),
161
- "U85": datasets.Value("float64"),
162
- "V85": datasets.Value("float64"),
163
- "HT85": datasets.Value("float64"),
164
- "T70": datasets.Value("float64"),
165
- "RH70": datasets.Value("float64"),
166
- "U70": datasets.Value("float64"),
167
- "V70": datasets.Value("float64"),
168
- "HT70": datasets.Value("float64"),
169
- "T50": datasets.Value("float64"),
170
- "RH50": datasets.Value("float64"),
171
- "U50": datasets.Value("float64"),
172
- "V50": datasets.Value("float64"),
173
- "HT50": datasets.Value("float64"),
174
- "KI": datasets.Value("float64"),
175
- "TT": datasets.Value("float64"),
176
- "SLP": datasets.Value("float64"),
177
- "SLP_": datasets.Value("float64"),
178
- "Precp": datasets.Value("float64"),
179
- "Class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
180
- },
181
- "1hr": {
182
- "WSR0": datasets.Value("float64"),
183
- "WSR1": datasets.Value("float64"),
184
- "WSR2": datasets.Value("float64"),
185
- "WSR3": datasets.Value("float64"),
186
- "WSR4": datasets.Value("float64"),
187
- "WSR5": datasets.Value("float64"),
188
- "WSR6": datasets.Value("float64"),
189
- "WSR7": datasets.Value("float64"),
190
- "WSR8": datasets.Value("float64"),
191
- "WSR9": datasets.Value("float64"),
192
- "WSR10": datasets.Value("float64"),
193
- "WSR11": datasets.Value("float64"),
194
- "WSR12": datasets.Value("float64"),
195
- "WSR13": datasets.Value("float64"),
196
- "WSR14": datasets.Value("float64"),
197
- "WSR15": datasets.Value("float64"),
198
- "WSR16": datasets.Value("float64"),
199
- "WSR17": datasets.Value("float64"),
200
- "WSR18": datasets.Value("float64"),
201
- "WSR19": datasets.Value("float64"),
202
- "WSR20": datasets.Value("float64"),
203
- "WSR21": datasets.Value("float64"),
204
- "WSR22": datasets.Value("float64"),
205
- "WSR23": datasets.Value("float64"),
206
- "WSR_PK": datasets.Value("float64"),
207
- "WSR_AV": datasets.Value("float64"),
208
- "T0": datasets.Value("float64"),
209
- "T1": datasets.Value("float64"),
210
- "T2": datasets.Value("float64"),
211
- "T3": datasets.Value("float64"),
212
- "T4": datasets.Value("float64"),
213
- "T5": datasets.Value("float64"),
214
- "T6": datasets.Value("float64"),
215
- "T7": datasets.Value("float64"),
216
- "T8": datasets.Value("float64"),
217
- "T9": datasets.Value("float64"),
218
- "T10": datasets.Value("float64"),
219
- "T11": datasets.Value("float64"),
220
- "T12": datasets.Value("float64"),
221
- "T13": datasets.Value("float64"),
222
- "T14": datasets.Value("float64"),
223
- "T15": datasets.Value("float64"),
224
- "T16": datasets.Value("float64"),
225
- "T17": datasets.Value("float64"),
226
- "T18": datasets.Value("float64"),
227
- "T19": datasets.Value("float64"),
228
- "T20": datasets.Value("float64"),
229
- "T21": datasets.Value("float64"),
230
- "T22": datasets.Value("float64"),
231
- "T23": datasets.Value("float64"),
232
- "T_PK": datasets.Value("float64"),
233
- "T_AV": datasets.Value("float64"),
234
- "T85": datasets.Value("float64"),
235
- "RH85": datasets.Value("float64"),
236
- "U85": datasets.Value("float64"),
237
- "V85": datasets.Value("float64"),
238
- "HT85": datasets.Value("float64"),
239
- "T70": datasets.Value("float64"),
240
- "RH70": datasets.Value("float64"),
241
- "U70": datasets.Value("float64"),
242
- "V70": datasets.Value("float64"),
243
- "HT70": datasets.Value("float64"),
244
- "T50": datasets.Value("float64"),
245
- "RH50": datasets.Value("float64"),
246
- "U50": datasets.Value("float64"),
247
- "V50": datasets.Value("float64"),
248
- "HT50": datasets.Value("float64"),
249
- "KI": datasets.Value("float64"),
250
- "TT": datasets.Value("float64"),
251
- "SLP": datasets.Value("float64"),
252
- "SLP_": datasets.Value("float64"),
253
- "Precp": datasets.Value("float64"),
254
- "Class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
255
- },
256
-
257
- }
258
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
259
-
260
-
261
- class OzoneConfig(datasets.BuilderConfig):
262
- def __init__(self, **kwargs):
263
- super(OzoneConfig, self).__init__(version=VERSION, **kwargs)
264
- self.features = features_per_config[kwargs["name"]]
265
-
266
-
267
- class Ozone(datasets.GeneratorBasedBuilder):
268
- # dataset versions
269
- DEFAULT_CONFIG = "8hr"
270
- BUILDER_CONFIGS = [
271
- OzoneConfig(name="8hr",
272
- description="Ozone for binary classification."),
273
- OzoneConfig(name="1hr",
274
- description="Ozone for binary classification.")
275
- ]
276
-
277
-
278
- def _info(self):
279
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
280
- features=features_per_config[self.config.name])
281
-
282
- return info
283
-
284
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
285
- downloads = dl_manager.download_and_extract(urls_per_split)
286
-
287
- return [
288
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
289
- ]
290
-
291
- def _generate_examples(self, filepath: str):
292
- data = pandas.read_csv(filepath)
293
- data.drop("Date", axis="columns", inplace=True)
294
- data.loc[:, "Class"] = data.Class.astype(int)
295
- data = data[~(data.isin(["?"]).any(axis=1))]
296
- data = data.infer_objects()
297
-
298
- for row_id, row in data.iterrows():
299
- data_row = dict(row)
300
-
301
- yield row_id, data_row