Upload soybean.py
Browse files- soybean.py +40 -0
soybean.py
CHANGED
|
@@ -117,6 +117,46 @@ features_types_per_config = {
|
|
| 117 |
"class": datasets.ClassLabel(num_classes=19)
|
| 118 |
}
|
| 119 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
| 121 |
|
| 122 |
|
|
|
|
| 117 |
"class": datasets.ClassLabel(num_classes=19)
|
| 118 |
}
|
| 119 |
}
|
| 120 |
+
for c in _ENCODING_DICS["class"].keys():
|
| 121 |
+
features_types_per_config[c] = {
|
| 122 |
+
"date": datasets.Value("string"),
|
| 123 |
+
"plant_stand": datasets.Value("string"),
|
| 124 |
+
"precip": datasets.Value("string"),
|
| 125 |
+
"temp": datasets.Value("string"),
|
| 126 |
+
"hail": datasets.Value("string"),
|
| 127 |
+
"crop_hist": datasets.Value("string"),
|
| 128 |
+
"area_damaged": datasets.Value("string"),
|
| 129 |
+
"severity": datasets.Value("string"),
|
| 130 |
+
"seed_tmt": datasets.Value("string"),
|
| 131 |
+
"germination": datasets.Value("string"),
|
| 132 |
+
"plant_growth": datasets.Value("string"),
|
| 133 |
+
"leaves": datasets.Value("string"),
|
| 134 |
+
"leafspots_halo": datasets.Value("string"),
|
| 135 |
+
"leafspots_marg": datasets.Value("string"),
|
| 136 |
+
"leafspot_size": datasets.Value("string"),
|
| 137 |
+
"leaf_shread": datasets.Value("string"),
|
| 138 |
+
"leaf_malf": datasets.Value("string"),
|
| 139 |
+
"leaf_mild": datasets.Value("string"),
|
| 140 |
+
"stem": datasets.Value("string"),
|
| 141 |
+
"lodging": datasets.Value("string"),
|
| 142 |
+
"stem_cankers": datasets.Value("string"),
|
| 143 |
+
"canker_lesion": datasets.Value("string"),
|
| 144 |
+
"fruiting_bodies": datasets.Value("string"),
|
| 145 |
+
"external decay": datasets.Value("string"),
|
| 146 |
+
"mycelium": datasets.Value("string"),
|
| 147 |
+
"int_discolor": datasets.Value("string"),
|
| 148 |
+
"sclerotia": datasets.Value("string"),
|
| 149 |
+
"fruit_pods": datasets.Value("string"),
|
| 150 |
+
"fruit spots": datasets.Value("string"),
|
| 151 |
+
"seed": datasets.Value("string"),
|
| 152 |
+
"mold_growth": datasets.Value("string"),
|
| 153 |
+
"seed_discolor": datasets.Value("string"),
|
| 154 |
+
"seed_size": datasets.Value("string"),
|
| 155 |
+
"shriveling": datasets.Value("string"),
|
| 156 |
+
"roots": datasets.Value("string"),
|
| 157 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
| 161 |
|
| 162 |
|