content
stringlengths
0
894k
type
stringclasses
2 values
#py_gui.py "gui basics" from tkinter import * class Application(Frame): pass root = Tk() app = Application(master=root) app.mainloop()
python
''' There are a total of numCourses courses you have to take, labeled from 0 to numCourses-1. Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1] Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses? **Example 1** `Input: numCourses = 2, prerequisites = [[1,0]]` `Output: true` Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible. **Example 2** `Input: numCourses = 2, prerequisites = [[1,0],[0,1]]` `Output: false` Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible. **Note** You may assume that there are no duplicate edges in the input prerequisites. ''' from collections import defaultdict class Solution(object): def __init__(self): self.eligibleCourses = [] self.visited = [] def seedEligibleCourses(self, g): for index, node in g.items(): if len(node) == 0 and index not in self.visited: self.eligibleCourses.append(index) def dfs(self, node, g): if node in self.visited: return self.visited.append(node) for _, n in g.items(): if node in n: n.remove(node) for successor in g[node]: if successor not in self.visited: self.eligibleCourses.append(successor) self.dfs(node, g) def canFinish(self, numCourses, prerequisites): if not prerequisites: return True graph = defaultdict(list) for relation in prerequisites: currentCourse, prerequisite = relation[0], relation[1] graph[prerequisite].append(currentCourse) # post order!! if currentCourse not in graph: graph[currentCourse] = [] self.seedEligibleCourses(graph) while self.eligibleCourses: current = self.eligibleCourses.pop(0) self.dfs(current, graph) self.seedEligibleCourses(graph) for _, n in graph.items(): if len(n) > 0: return False return True
python
"""This acts as a kind of middleware - which has now been whittled down to only providing logging information""" import logging import platform from .constants import NameSpace from .config import CLIInputs, ParsedArgs from .utils import read_sdk_version logger = logging.getLogger("validate-cli-args") class ValidateCliArgs: """Called via ArgParser.validate_cli_args""" def __init__(self, cli_inputs: CLIInputs): self.cli_inputs = cli_inputs # ----- MAIN ARGUMENT HANDLERS ----- # def handle_top_level_args(self, parsed_args: ParsedArgs) -> None: if not self.cli_inputs.namespace == NameSpace.TOP_LEVEL: return if parsed_args.version: logger.info("ElectrumSV Software Development Kit") logger.info(f"Python version {platform.python_version()}-{platform.architecture()[0]}") logger.info(f"SDK version {read_sdk_version()}") def handle_install_args(self, parsed_args: ParsedArgs) -> None: if not self.cli_inputs.namespace == NameSpace.INSTALL: return # logging if parsed_args.id != "": logger.debug(f"id flag={parsed_args.id}") if parsed_args.repo != "": logger.debug(f"repo flag={parsed_args.repo}") if parsed_args.branch != "": logger.debug(f"branch flag={parsed_args.branch}") def handle_start_args(self, parsed_args: ParsedArgs) -> None: if not self.cli_inputs.namespace == NameSpace.START: return # logging if parsed_args.new: logger.debug("new flag=set") if parsed_args.gui: logger.debug("gui flag=set") if parsed_args.id != "": logger.debug(f"id flag={parsed_args.id}") if parsed_args.repo != "": logger.debug(f"repo flag={parsed_args.repo}") if parsed_args.branch != "": logger.debug(f"branch flag={parsed_args.branch}") def handle_stop_args(self, parsed_args: ParsedArgs) -> None: """takes no arguments""" if not self.cli_inputs.namespace == NameSpace.STOP: return # logging if parsed_args.id != "": logger.debug(f"id flag={parsed_args.id}") def handle_reset_args(self, parsed_args: ParsedArgs) -> None: """takes no arguments""" if not self.cli_inputs.namespace == NameSpace.RESET: return # logging if parsed_args.id != "": logger.debug(f"id flag={parsed_args.id}") if parsed_args.repo != "": logger.debug(f"repo flag={parsed_args.repo}") def handle_status_args(self, _parsed_args: ParsedArgs) -> None: return def handle_config_args(self, parsed_args: ParsedArgs) -> None: return
python
# unet.py # from __future__ import division import torch.nn as nn import torch.nn.functional as F import torch from numpy.linalg import svd from numpy.random import normal from math import sqrt class UNet(nn.Module): def __init__(self, colordim = 1): super(UNet, self).__init__() self.conv1_1 = nn.Conv2d(colordim, 64, 3, padding = 1) self.conv1_2 = nn.Conv2d(64, 64, 3, padding = 1) self.bn1_1 = nn.BatchNorm2d(64) self.bn1_2 = nn.BatchNorm2d(64) self.conv2_1 = nn.Conv2d(64, 128, 3, padding = 1) self.conv2_2 = nn.Conv2d(128, 128, 3, padding = 1) self.bn2_1 = nn.BatchNorm2d(128) self.bn2_2 = nn.BatchNorm2d(128) self.conv4_1 = nn.Conv2d(128, 256, 3, padding = 1) self.conv4_2 = nn.Conv2d(256, 256, 3, padding = 1) self.upconv4 = nn.Conv2d(256, 128, 1) self.bn4 = nn.BatchNorm2d(128) self.bn4_1 = nn.BatchNorm2d(256) self.bn4_2 = nn.BatchNorm2d(256) self.bn4_out = nn.BatchNorm2d(256) self.conv7_1 = nn.Conv2d(256, 128, 3, padding = 1) self.conv7_2 = nn.Conv2d(128, 128, 3, padding = 1) self.upconv7 = nn.Conv2d(128, 64, 1) self.bn7 = nn.BatchNorm2d(64) self.bn7_1 = nn.BatchNorm2d(128) self.bn7_2 = nn.BatchNorm2d(128) self.bn7_out = nn.BatchNorm2d(128) self.conv9_1 = nn.Conv2d(128, 64, 3, padding = 1) self.conv9_2 = nn.Conv2d(64, 64, 3, padding = 1) self.bn9_1 = nn.BatchNorm2d(64) self.bn9_2 = nn.BatchNorm2d(64) self.conv9_3 = nn.Conv2d(64, colordim, 1) self.bn9_3 = nn.BatchNorm2d(colordim) self.bn9 = nn.BatchNorm2d(colordim) self.maxpool = nn.MaxPool2d(2, stride = 2, return_indices = False, ceil_mode = False) self.upsample = nn.UpsamplingBilinear2d(scale_factor = 2) self._initialize_weights() def forward(self, x1): x1 = F.relu(self.bn1_2(self.conv1_2(F.relu(self.bn1_1(self.conv1_1(x1)))))) x2 = F.relu(self.bn2_2(self.conv2_2(F.relu(self.bn2_1(self.conv2_1(self.maxpool(x1))))))) xup = F.relu(self.bn4_2(self.conv4_2(F.relu(self.bn4_1(self.conv4_1(self.maxpool(x2))))))) xup = self.bn4(self.upconv4(self.upsample(xup))) xup = self.bn4_out(torch.cat((x2, xup), 1)) xup = F.relu(self.bn7_2(self.conv7_2(F.relu(self.bn7_1(self.conv7_1(xup)))))) xup = self.bn7(self.upconv7(self.upsample(xup))) xup = self.bn7_out(torch.cat((x1, xup), 1)) xup = F.relu(self.bn9_3(self.conv9_3(F.relu(self.bn9_2(self.conv9_2(F.relu(self.bn9_1(self.conv9_1(xup))))))))) return F.softsign(self.bn9(xup)) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
python
# First, we import a tool to allow text to pop up on a plot when the cursor # hovers over it. Also, we import a data structure used to store arguments # of what to plot in Bokeh. Finally, we will use numpy for this section as well! from bokeh.models import HoverTool, ColumnDataSource from bokeh.plotting import figure, output_file, show import numpy as np # Let's plot a simple 5x5 grid of squares, alternating in color as red and blue. plot_values = [1,2,3,4,5] plot_colors = ["red", "blue"] # How do we tell Bokeh to plot each point in a grid? Let's use a function that # finds each combination of values from 1-5. from itertools import product grid = list(product(plot_values, plot_values)) print(grid) # The first value is the x coordinate, and the second value is the y coordinate. # Let's store these in separate lists. xs, ys = zip(*grid) print(xs) print(ys) # Now we will make a list of colors, alternating between red and blue. colors = [plot_colors[i%2] for i in range(len(grid))] print(colors) # Finally, let's determine the strength of transparency (alpha) for each point, # where 0 is completely transparent. alphas = np.linspace(0, 1, len(grid)) # Bokeh likes each of these to be stored in a special dataframe, called # ColumnDataSource. Let's store our coordinates, colors, and alpha values. source = ColumnDataSource( data={ "x": xs, "y": ys, "colors": colors, "alphas": alphas, } ) # We are ready to make our interactive Bokeh plot! output_file("Basic_Example.html", title="Basic Example") fig = figure(tools="resize, hover, save") fig.rect("x", "y", 0.9, 0.9, source=source, color="colors",alpha="alphas") hover = fig.select(dict(type=HoverTool)) hover.tooltips = { "Value": "@x, @y", } show(fig)
python
from typing import Literal, Optional, Union class Trust_Region_Options: border_abstol: float = 1e-10 tol_step: float = 1.0e-10 tol_grad: float = 1.0e-6 abstol_fval: Optional[float] = None max_stall_iter: Optional[int] = None init_delta: float = 1.0 max_iter: int check_rel: float = 1.0e-2 check_abs: Optional[float] = None check_iter: Optional[int] = None # 0表示只在最优化开始前进行一次梯度检查,-1表示完全关闭检查,默认的None表示始终进行检查 shaking: Union[Literal["x.shape[0]"], int] = "x.shape[0]" display: bool = True def __init__(self, *, max_iter: int) -> None: self.max_iter = max_iter
python
import sqlite3 import os import MLBProjections.MLBProjections.DB.MLB as MLB import MLBProjections.MLBProjections.Environ as ENV from pprint import pprint ################################################################################ ################################################################################ pitchContactCmd = """ SELECT pitches.game_id, pitcher_id, batter_id, pitch_type_id, pitch_result_id, ab_type_id, pitch_num, box, turn, sequence, pitch_velocity, balls, strikes, outs, (CASE WHEN pitcher.throws = batter.bats THEN 1 ELSE 0 END) AS side, (CASE WHEN base_runners.first_base != -10 THEN 1 ELSE 0 END) AS first_base, (CASE WHEN base_runners.second_base != -10 THEN 1 ELSE 0 END) AS second_base, (CASE WHEN base_runners.third_base != -10 THEN 1 ELSE 0 END) AS third_base, hit_style, hit_hardness, hit_angle, hit_distance FROM pitches LEFT JOIN ab_results ON pitches.pitch_id = ab_results.pitch_id INNER JOIN pro_players AS pitcher ON pitches.pitcher_id = pitcher.player_id INNER JOIN pro_players AS batter ON pitches.batter_id = batter.player_id INNER JOIN pitch_locations ON pitches.pitch_location_id = pitch_locations.pitch_location_id INNER JOIN pitch_counts ON pitches.pitch_count_id = pitch_counts.pitch_count_id INNER JOIN base_runners ON pitches.base_runners_id = base_runners.base_runners_id WHERE {0[playerType]}_id = ? """ playerNameCmd = "SELECT first_name, last_name FROM pro_players WHERE player_id = ?" leagueCmd = "SELECT league FROM pro_teams WHERE team_id = ?" lineupCmd = """ SELECT lineups.player_id, first_name, last_name, batt_order, lineups.pos FROM lineups INNER JOIN pro_players ON lineups.player_id = pro_players.player_id INNER JOIN (SELECT team_id, MAX(game_id) AS game_id FROM lineups WHERE team_id = ?) AS max_id ON lineups.game_id = max_id.game_id AND lineups.team_id = max_id.team_id WHERE sub_order = 1 AND lineups.pos != 'P' ORDER BY batt_order """ similarPitcherCmd = """ SELECT pp.player_id, team_id FROM pro_players AS pp INNER JOIN (SELECT pos, throws FROM pro_players WHERE player_id =?) AS a ON pp.pos = a.pos AND pp.throws = a.throws INNER JOIN (SELECT pitcher_id, COUNT(pitcher_id) AS pitch_count FROM pitches GROUP BY pitcher_id) AS b ON pp.player_id = b.pitcher_id INNER JOIN (SELECT MAX(game_id), player_id, team_id FROM lineups GROUP BY player_id) AS c ON pp.player_id = c.player_id WHERE pitch_count >= 100 ORDER BY pp.player_id DESC """ similarBatterCmd = """ SELECT pp.player_id, team_id FROM pro_players AS pp INNER JOIN (SELECT pos, bats FROM pro_players WHERE player_id =?) AS a ON pp.pos = a.pos AND pp.bats = a.bats INNER JOIN (SELECT batter_id, COUNT(batter_id) AS pitch_count FROM pitches GROUP BY batter_id) AS b ON pp.player_id = b.batter_id INNER JOIN (SELECT MAX(game_id), player_id, team_id FROM lineups GROUP BY player_id) AS c ON pp.player_id = c.player_id WHERE pitch_count >= 100 ORDER BY pp.player_id DESC """ ################################################################################ ################################################################################ class DatabaseManager: def __init__(self, db): self.mlbDB = db self.mlbDB.openDB() self.gameDBs = {} def __del__(self): self.db.closeDB() def findPlayer(self, playerId): return self.mlbDB.fetchOne("SELECT player_id FROM pro_players WHERE player_id = ?", (playerId,)) def addPlayerToDB(self, info): print("new Player") self.mlbDB.insert(MLB.proPlayersTable, info=info ) self.mlbDB.commit() def getLeague(self, teamId): return self.mlbDB.fetchOne(leagueCmd, (teamId,))[0] def update(self): self.mlbDB.update() def gameDBExists(self, index): return index in self.gameDBs.keys() def getRecentLineup(self, teamId): return self.mlbDB.fetchAll(lineupCmd, (teamId,)) def cloneDB(self, matchup): gameDB = MLB.MLBGame(matchup.getGameId()) if not os.path.exists(ENV.getPath("game", fileName=matchup.getGameId())): gameDB.openDB() info = matchup.getInfo() self.setMetaData(gameDB, info) self.setTeams(gameDB, info) self.setBullpens(gameDB, info) self.setLineups(gameDB, info) self.setContacts(gameDB, info) self.setGames(gameDB) gameDB.commit() gameDB.closeDB() self.gameDBs[matchup.getGameId()] = gameDB return gameDB def setGames(self, gameDB): for gameId in gameDB.fetchAll("SELECT DISTINCT game_id FROM pitch_contacts"): gameDB.insert(MLB.gamesTable, values=self.mlbDB.fetchOne("SELECT * FROM games WHERE game_id = ?",(gameId[0],))) def setMetaData(self, gameDB, info): gameId = info["gameId"] homeId = info["teams"]["home"]["info"]["team_id"] awayId = info["teams"]["away"]["info"]["team_id"] stadiumId = info["teams"]["home"]["info"]["stadium_id"] gameDB.insert(MLB.metaTable, values=(gameId, homeId, awayId, stadiumId)) stadiumInfo = self.mlbDB.fetchOne("SELECT * FROM stadiums WHERE stadium_id = ?",(stadiumId,)) gameDB.insert(MLB.stadiumsTable, values=stadiumInfo) def setContacts(self, gameDB, info): homeId = info["teams"]["home"]["info"]["team_id"] awayId = info["teams"]["away"]["info"]["team_id"] for teamId in (homeId, awayId): for data in self.mlbDB.fetchAll("SELECT hit_style, hit_hardness, hit_angle, hit_distance, ab_type_id FROM pitches INNER JOIN ab_results ON pitches.pitch_id = ab_results.pitch_id INNER JOIN games ON pitches.game_id = games.game_id WHERE (home_id = ? OR away_id = ?) AND hit_style != -1", (teamId, teamId)): cabId = gameDB.nextKey(MLB.contactAtBatsTable) try: gameDB.insert(MLB.contactAtBatsTable, values=[cabId,teamId]+list(data)) except sqlite3.IntegrityError: pass def setBullpens(self, gameDB, info): for key in ("home", "away"): team = info["teams"][key] teamId = team["teamId"] starterId = team["starter"]["playerId"] self.newPitcher(teamId, starterId, gameDB, True) for pitcher in team["roster"]["pitchers"]: self.newPitcher(teamId, pitcher["playerId"], gameDB) def setLineups(self, gameDB, info): for key in ("home", "away"): team = info["teams"][key] teamId = team["teamId"] for batterId in [batter["playerId"] for batter in team["roster"]["batters"]]: self.newBatter(teamId, batterId, gameDB) if info["league"] == "NL": self.newBatter(teamId, team["starter"]["playerId"], gameDB) for batter in team["lineup"]: lId = gameDB.nextKey(MLB.lineupsTable) gameDB.insert(MLB.lineupsTable, values=(lId, info["gameId"], teamId, batter[0], batter[3], 1, batter[-1])) def setTeams(self, gameDB, info): homeId = info["teams"]["home"]["teamId"] awayId = info["teams"]["away"]["teamId"] for teamId in (homeId, awayId): teamInfo = self.mlbDB.fetchOne("SELECT * FROM pro_teams WHERE team_id = ?", (teamId,)) gameDB.insert(MLB.proTeamsTable, values=teamInfo) def addPlayer(self, gameDB, playerId): playerInfo = self.mlbDB.curs.execute("SELECT * FROM pro_players WHERE player_id = ?",(playerId,)).fetchone() pprint(playerInfo) gameDB.insert(MLB.proPlayersTable, values=playerInfo) def newBatter(self, teamId, batterId, gameDB): if not gameDB.curs.execute("SELECT player_id FROM pro_players WHERE player_id = ?",(batterId,)).fetchone(): self.addPlayer(gameDB, batterId) pitchCount = self.mlbDB.fetchOne("SELECT COUNT(batter_id) FROM pitches INNER JOIN pro_players ON pitches.batter_id = pro_players.player_id WHERE batter_id = ?", (batterId,))[0] checkId = batterId checkTeamId = teamId if pitchCount < 100: checkId, checkTeamId = self.mlbDB.fetchOne(similarBatterCmd, (batterId,)) pitchContacts = self.mlbDB.fetchAll(pitchContactCmd.format({"playerType":"batter"}), (checkId,)) for contact in pitchContacts: pitchContactId = gameDB.nextKey(MLB.pitchContactsTable) try: gameDB.insert(MLB.pitchContactsTable, values=[pitchContactId, *contact[:2], batterId, *contact[3:]]) except sqlite3.IntegrityError: pass def newPitcher(self, teamId, pitcherId, gameDB, starter=0): if not gameDB.curs.execute("SELECT player_id FROM pro_players WHERE player_id = ?",(pitcherId,)).fetchone(): self.addPlayer(gameDB, pitcherId) bpId = gameDB.nextKey(MLB.bullpensTable) gameDB.insert(MLB.bullpensTable, values=(bpId, teamId, pitcherId, starter)) pitchCount = self.mlbDB.fetchOne("SELECT COUNT(pitcher_id) FROM pitches INNER JOIN pro_players ON pitches.pitcher_id = pro_players.player_id WHERE pitcher_id = ?", (pitcherId,))[0] checkId = pitcherId checkTeamId = teamId try: if pitchCount < 100: checkId, checkTeamId = self.mlbDB.fetchOne(similarPitcherCmd, (pitcherId,)) except TypeError: pass pitches = self.mlbDB.fetchAll(pitchContactCmd.format({"playerType":"pitcher"}), (checkId,)) for contact in pitches: pitchContactId = gameDB.nextKey(MLB.pitchContactsTable) try: gameDB.insert(MLB.pitchContactsTable, values=[pitchContactId, contact[0], pitcherId, *contact[2:]]) except sqlite3.IntegrityError: pass for replace in self.mlbDB.fetchAll("SELECT * FROM pitcher_replace WHERE (remove_id = ? OR replace_id = ?)",(checkId, checkId)): try: gameDB.insert(MLB.pitchReplaceTable, values=replace) except sqlite3.IntegrityError: pass ################################################################################ ################################################################################
python
# # Functional Python: The Lambda Lambada (Recursion) # Python Techdegree # # Created by Dulio Denis on 3/22/19. # Copyright (c) 2019 ddApps. All rights reserved. # ------------------------------------------------ # Recursion Challenge # ------------------------------------------------ # Challenge Task 1 of 1 # Finish the prereqs function so that it recursively # finds all of the prerequisite course titles in courses # (like "Object-Oriented Python" is a prerequisite for # "Django Basics"). # You should add() the title of the prerequisite to the pres # set and then call prereqs again with the child courses. # In the end, return the prereqs set. courses = {'count': 2, 'title': 'Django Basics', 'prereqs': [{'count': 3, 'title': 'Object-Oriented Python', 'prereqs': [{'count': 1, 'title': 'Python Collections', 'prereqs': [{'count':0, 'title': 'Python Basics', 'prereqs': []}]}, {'count': 0, 'title': 'Python Basics', 'prereqs': []}, {'count': 0, 'title': 'Setting Up a Local Python Environment', 'prereqs': []}]}, {'count': 0, 'title': 'Flask Basics', 'prereqs': []}]} def prereqs(data, pres=None): pres = pres or set() # for each prereq in this courses' prereq for prereq in data['prereqs']: # add title of this prereq course pres.add(prereq['title']) # use recursive call to drill into any further prereqs prereqs(prereq, pres) return pres print(prereqs(courses))
python
#!/usr/bin/env python import os import random import requests import subprocess import argparse import datetime import time import sys """Based off https://github.com/fogleman/primitive/blob/master/bot/main.py """ with open(os.path.expanduser('~/.flickr_api_key'), 'r') as key_file: FLICKR_API_KEY = key_file.readline().rstrip() class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class Config(AttrDict): def randomize(self): self.m = random.choice([1, 5, 7]) self.n = random.randint(15, 50) * 10 self.rep = 0 self.a = 128 self.r = 256 def parse(self, text): text = (text or '').lower() tokens = text.split() for i, name in enumerate(MODE_NAMES): if name in text: self.m = i for token in tokens: try: self.n = int(token) except Exception: pass def validate(self): self.m = clamp(self.m, 0, 8) if self.m == 6: self.n = random.randint(1400, 2000) @property def description(self): total = self.n + self.n * self.rep return '%d %s' % (total, MODE_NAMES[self.m]) def clamp(x, lo, hi): if x < lo: x = lo if x > hi: x = hi return x def random_date(max_days_ago=1000): today = datetime.date.today() days = random.randint(1, max_days_ago) d = today - datetime.timedelta(days=days) return d.strftime('%Y-%m-%d') def interesting(date=None): url = 'https://api.flickr.com/services/rest/' params = dict( api_key=FLICKR_API_KEY, format='json', nojsoncallback=1, method='flickr.interestingness.getList', ) if date: params['date'] = date r = requests.get(url, params=params) return r.json()['photos']['photo'] def get_aspect_ratio(p): url = 'https://api.flickr.com/services/rest/' params = dict( api_key=FLICKR_API_KEY, format='json', nojsoncallback=1, method='flickr.photos.getSizes', photo_id=p['id'] ) r = requests.get(url, params=params) sizes = r.json()['sizes']['size'] thumbnail = filter(lambda x: x['label']=='Thumbnail', sizes) return float(thumbnail[0]['width']) / float(thumbnail[0]['height']) def photo_url(p, size=None): # See: https://www.flickr.com/services/api/misc.urls.html if size: url = 'https://farm%s.staticflickr.com/%s/%s_%s_%s.jpg' return url % (p['farm'], p['server'], p['id'], p['secret'], size) else: url = 'https://farm%s.staticflickr.com/%s/%s_%s.jpg' return url % (p['farm'], p['server'], p['id'], p['secret']) def download_photo(url, path): r = requests.get(url) with open(path, 'wb') as fp: fp.write(r.content) def primitive(primitive_path, **kwargs): args = [] for k, v in kwargs.items(): if v is None: continue args.append('-%s' % k) args.append(str(v)) args = ' '.join(args) cmd = '{0} {1}'.format(primitive_path, args) subprocess.call(cmd, shell=True) def create_wallpaper(args): download_path = None try: print 'Finding interesting photo...' photos = interesting(date=random_date()) photo = random.choice(photos) aspect_ratio = get_aspect_ratio(photo) print 'Downloading photo...' url = photo_url(photo, 'z') download_path = os.path.join('/tmp', photo['id'] + '.png') download_photo(url, download_path) output_path = os.path.expanduser(args.output) output_path = os.path.join(output_path, 'landscape' if aspect_ratio > 1 else 'portrait') if not os.path.exists(output_path): os.makedirs(output_path) config = Config() config.randomize() config.validate() print 'Generating wallpaper with parameters {0}'.format(config) primitive(args.primitive_path, i=download_path, s=args.size, o='\'{0}\''.format(os.path.join(output_path, photo['id'] + '.png')), **config) print 'Done!' except Exception as e: print e finally: if download_path is not None and os.path.exists(download_path): os.remove(download_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-o', '--output', help="path to output directory", required=True) parser.add_argument('-s', '--size', type=int, help="width of output image", required=True) parser.add_argument('--primitive_path', help="path to primitive executable", default='/usr/local/bin/primitive') parser.add_argument('-n', '--num', type=int, help="number of wallpapers to generate", default=1) args = parser.parse_args() # check network status max_retries = 10 attempt = 0 response = None while attempt < max_retries: attempt += 1 try: print 'Checking network...' response = interesting() break except: print 'No network, retrying...' time.sleep(5) if response is None: print 'No network connection' sys.exit(1) for n in xrange(args.num): create_wallpaper(args)
python
import multiprocessing as mp import time def foo_pool(taskQ, x): print(x) taskQ.put(x) return x*x result_list = [] def log_result(result): # This is called whenever foo_pool(i) returns a result. # result_list is modified only by the main process, not the pool workers. result_list.append(result) def apply_async_with_callback(): pool = mp.Pool() taskQ = mp.Queue(4) for i in range(10): pool.apply_async(foo_pool, args = (taskQ, i, ), callback = log_result) pool.close() pool.join() print(result_list) if __name__ == '__main__': apply_async_with_callback()
python
# Crie um script Python que leia o nome de uma pessoa e mostre uma mensagem de boas-vindas de acordo com o valor digitado msg = 'Olá Mundo!' print(msg)
python
import ldap import json import socket from urllib.parse import urlparse def create_from_env(): import os auth = LdapAuth(os.environ.get('LDAP_ADDRESS')) auth.base_dn = os.environ.get('LDAP_BASE_DN') auth.bind_dn = os.environ.get('LDAP_BIND_DN') auth.bind_pass = os.environ.get('LDAP_BIND_PASS') return auth class LdapAuthException(Exception): pass class LdapAuth(object): def __init__(self, address=None): self.address = address self.base_dn = None self.bind_dn = None self.bind_pass = None self.search_template = 'uid=%(username)s' self.ldap_timeout = 2 self.conn_timeout = 2 def assert_configs(self): print(json.dumps({ 'address': self.address, 'base_dn': self.base_dn, 'bind_dn': self.bind_dn, 'bind_pass': '***' if self.bind_pass else None, 'search_template': self.search_template, })) assert self.address is not None assert self.base_dn is not None assert self.bind_dn is not None assert self.bind_pass is not None assert self.search_template is not None def check_credentials(self, username, password): # -> (str msg, bool authorized) try: self.whoami(username, password) return ("OK: "+username, True) except ldap.LDAPError as e: return (e.__class__.__name__, False) except Exception as e: return (str(e), False) def check_connection(self): address = urlparse(self.address) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(self.conn_timeout) try: s.connect((address.hostname, int(address.port))) s.shutdown(2) return True except: return False def check_binding(self): # initialize ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER) l = ldap.initialize(self.address) l.timeout = self.ldap_timeout try: l.simple_bind_s(self.bind_dn, self.bind_pass) whoami = l.whoami_s() except: whoami = None finally: l.unbind_s() return whoami is not None and len(whoami) > 0 def whoami(self, username, password): # initialize ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER) l = ldap.initialize(self.address) l.timeout = self.ldap_timeout try: l.simple_bind_s(self.bind_dn, self.bind_pass) # search user search_filter = self.search_template % {'username': username} users = l.search_s(self.base_dn, ldap.SCOPE_SUBTREE, search_filter) if len(users) == 0: msg = "User with username '%s' not found on %s" % (username, self.base_dn) raise LdapAuthException(msg) if len(users) > 1: raise LdapAuthException("Multiple users found") # try to verify user password user_dn, _ = users[0] l.simple_bind_s(user_dn, password) whoami = l.whoami_s() except: whoami = None finally: l.unbind_s() if whoami is None or len(whoami) == 0: raise LdapAuthException("Invalid username/password") return whoami
python
# %% coding=utf-8 import pandas as pd from atm import ATM from sklearn.model_selection import train_test_split beauty_data = pd.read_csv('/data/face/df_input.csv') select_cols = ['Image', 'label', '0_10_x', '0_10_y', '0_11_x', '0_11_y', '0_12_x', '0_12_y', '0_13_x', '0_13_y', '0_14_x', '0_14_y', '0_15_x', '0_15_y', '0_16_x', '0_16_y', '0_17_x', '0_17_y', '0_18_x', '0_18_y', '0_19_x', '0_19_y', '0_1_x', '0_1_y', '0_20_x', '0_20_y', '0_21_x', '0_21_y', '0_22_x', '0_22_y', '0_23_x', '0_23_y', '0_24_x', '0_24_y', '0_25_x', '0_25_y', '0_26_x', '0_26_y', '0_27_x', '0_27_y', '0_28_x', '0_28_y', '0_29_x', '0_29_y', '0_2_x', '0_2_y', '0_30_x', '0_30_y', '0_31_x', '0_31_y', '0_32_x', '0_32_y', '0_33_x', '0_33_y', '0_34_x', '0_34_y', '0_35_x', '0_35_y', '0_36_x', '0_36_y', '0_37_x', '0_37_y', '0_38_x', '0_38_y', '0_39_x', '0_39_y', '0_3_x', '0_3_y', '0_40_x', '0_40_y', '0_41_x', '0_41_y', '0_42_x', '0_42_y', '0_43_x', '0_43_y', '0_44_x', '0_44_y', '0_45_x', '0_45_y', '0_46_x', '0_46_y', '0_47_x', '0_47_y', '0_48_x', '0_48_y', '0_49_x', '0_49_y', '0_4_x', '0_4_y', '0_50_x', '0_50_y', '0_51_x', '0_51_y', '0_52_x', '0_52_y', '0_53_x', '0_53_y', '0_54_x', '0_54_y', '0_55_x', '0_55_y', '0_56_x', '0_56_y', '0_57_x', '0_57_y', '0_58_x', '0_58_y', '0_59_x', '0_59_y', '0_5_x', '0_5_y', '0_60_x', '0_60_y', '0_61_x', '0_61_y', '0_62_x', '0_62_y', '0_63_x', '0_63_y', '0_64_x', '0_64_y', '0_65_x', '0_65_y', '0_66_x', '0_66_y', '0_67_x', '0_67_y', '0_6_x', '0_6_y', '0_7_x', '0_7_y', '0_8_x', '0_8_y', '0_9_x', '0_9_y', '10_11_x', '10_11_y', '10_12_x', '10_12_y', '10_13_x', '10_13_y', '10_14_x', '10_14_y', '10_15_x', '10_15_y', '10_16_x', '10_16_y', '10_17_x', '10_17_y', '10_18_x', '10_18_y', '10_19_x', '10_19_y', '10_20_x', '10_20_y', '10_21_x', '10_21_y', '10_22_x', '10_22_y', '10_23_x', '10_23_y', '10_24_x', '10_24_y', '10_25_x', '10_25_y', '10_26_x', '10_26_y', '10_27_x', '10_27_y', '10_28_x', '10_28_y', '10_29_x', '10_29_y', '10_30_x', '10_30_y', '10_31_x', '10_31_y', '10_32_x', '10_32_y', '10_33_x', '10_33_y', '10_34_x', '10_34_y', '10_35_x', '10_35_y', '10_36_x', '10_36_y', '10_37_x', '10_37_y', '10_38_x', '10_38_y', '10_39_x', '10_39_y', '10_40_x', '10_40_y', '10_41_x', '10_41_y', '10_42_x', '10_42_y', '10_43_x', '10_43_y', '10_44_x', '10_44_y', '10_45_x', '10_45_y', '10_46_x', '10_46_y', '10_47_x', '10_47_y', '10_48_x', '10_48_y', '10_49_x', '10_49_y', '10_50_x', '10_50_y', '10_51_x', '10_51_y', '10_52_x', '10_52_y', '10_53_x', '10_53_y', '10_54_x', '10_54_y', '10_55_x', '10_55_y', '10_56_x', '10_56_y', '10_57_x', '10_57_y', '10_58_x', '10_58_y', '10_59_x', '10_59_y', '10_60_x', '10_60_y', '10_61_x', '10_61_y', '10_62_x', '10_62_y', '10_63_x', '10_63_y', '10_64_x', '10_64_y', '10_65_x', '10_65_y', '10_66_x', '10_66_y', '10_67_x', '10_67_y', '11_12_x', '11_12_y', '11_13_x', '11_13_y', '11_14_x', '11_14_y', '11_15_x', '11_15_y', '11_16_x', '11_16_y', '11_17_x', '11_17_y', '11_18_x', '11_18_y', '11_19_x', '11_19_y', '11_20_x', '11_20_y', '11_21_x', '11_21_y', '11_22_x', '11_22_y', '11_23_x', '11_23_y', '11_24_x', '11_24_y', '11_25_x', '11_25_y', '11_26_x', '11_26_y', '11_27_x', '11_27_y', '11_28_x', '11_28_y', '11_29_x', '11_29_y', '11_30_x', '11_30_y', '11_31_x', '11_31_y', '11_32_x', '11_32_y', '11_33_x', '11_33_y', '11_34_x', '11_34_y', '11_35_x', '11_35_y', '11_36_x', '11_36_y', '11_37_x', '11_37_y', '11_38_x', '11_38_y', '11_39_x', '11_39_y', '11_40_x', '11_40_y', '11_41_x', '11_41_y', '11_42_x', '11_42_y', '11_43_x', '11_43_y', '11_44_x', '11_44_y', '11_45_x', '11_45_y', '11_46_x', '11_46_y', '11_47_x', '11_47_y', '11_48_x', '11_48_y', '11_49_x', '11_49_y', '11_50_x', '11_50_y', '11_51_x', '11_51_y', '11_52_x', '11_52_y', '11_53_x', '11_53_y', '11_54_x', '11_54_y', '11_55_x', '11_55_y', '11_56_x', '11_56_y', '11_57_x', '11_57_y', '11_58_x', '11_58_y', '11_59_x', '11_59_y', '11_60_x', '11_60_y', '11_61_x', '11_61_y', '11_62_x', '11_62_y', '11_63_x', '11_63_y', '11_64_x', '11_64_y', '11_65_x', '11_65_y', '11_66_x', '11_66_y', '11_67_x', '11_67_y', '12_13_x', '12_13_y', '12_14_x', '12_14_y', '12_15_x', '12_15_y', '12_16_x', '12_16_y', '12_17_x', '12_17_y', '12_18_x', '12_18_y', '12_19_x', '12_19_y', '12_20_x', '12_20_y', '12_21_x', '12_21_y', '12_22_x', '12_22_y', '12_23_x', '12_23_y', '12_24_x', '12_24_y', '12_25_x', '12_25_y', '12_26_x', '12_26_y', '12_27_x', '12_27_y', '12_28_x', '12_28_y', '12_29_x', '12_29_y', '12_30_x', '12_30_y', '12_31_x', '12_31_y', '12_32_x', '12_32_y', '12_33_x', '12_33_y', '12_34_x', '12_34_y', '12_35_x', '12_35_y', '12_36_x', '12_36_y', '12_37_x', '12_37_y', '12_38_x', '12_38_y', '12_39_x', '12_39_y', '12_40_x', '12_40_y', '12_41_x', '12_41_y', '12_42_x', '12_42_y', '12_43_x', '12_43_y', '12_44_x', '12_44_y', '12_45_x', '12_45_y', '12_46_x', '12_46_y', '12_47_x', '12_47_y', '12_48_x', '12_48_y', '12_49_x', '12_49_y', '12_50_x', '12_50_y', '12_51_x', '12_51_y', '12_52_x', '12_52_y', '12_53_x', '12_53_y', '12_54_x', '12_54_y', '12_55_x', '12_55_y', '12_56_x', '12_56_y', '12_57_x', '12_57_y', '12_58_x', '12_58_y', '12_59_x', '12_59_y', '12_60_x', '12_60_y', '12_61_x', '12_61_y', '12_62_x', '12_62_y', '12_63_x', '12_63_y', '12_64_x', '12_64_y', '12_65_x', '12_65_y', '12_66_x', '12_66_y', '12_67_x', '12_67_y', '13_14_x', '13_14_y', '13_15_x', '13_15_y', '13_16_x', '13_16_y', '13_17_x', '13_17_y', '13_18_x', '13_18_y', '13_19_x', '13_19_y', '13_20_x', '13_20_y', '13_21_x', '13_21_y', '13_22_x', '13_22_y', '13_23_x', '13_23_y', '13_24_x', '13_24_y', '13_25_x', '13_25_y', '13_26_x', '13_26_y', '13_27_x', '13_27_y', '13_28_x', '13_28_y', '13_29_x', '13_29_y', '13_30_x', '13_30_y', '13_31_x', '13_31_y', '13_32_x', '13_32_y', '13_33_x', '13_33_y', '13_34_x', '13_34_y', '13_35_x', '13_35_y', '13_36_x', '13_36_y', '13_37_x', '13_37_y', '13_38_x', '13_38_y', '13_39_x', '13_39_y', '13_40_x', '13_40_y', '13_41_x', '13_41_y', '13_42_x', '13_42_y', '13_43_x', '13_43_y', '13_44_x', '13_44_y', '13_45_x', '13_45_y', '13_46_x', '13_46_y', '13_47_x', '13_47_y', '13_48_x', '13_48_y', '13_49_x', '13_49_y', '13_50_x', '13_50_y', '13_51_x', '13_51_y', '13_52_x', '13_52_y', '13_53_x', '13_53_y', '13_54_x', '13_54_y', '13_55_x', '13_55_y', '13_56_x', '13_56_y', '13_57_x', '13_57_y', '13_58_x', '13_58_y', '13_59_x', '13_59_y', '13_60_x', '13_60_y', '13_61_x', '13_61_y', '13_62_x', '13_62_y', '13_63_x', '13_63_y', '13_64_x', '13_64_y', '13_65_x', '13_65_y', '13_66_x', '13_66_y', '13_67_x', '13_67_y', '14_15_x', '14_15_y', '14_16_x', '14_16_y', '14_17_x', '14_17_y', '14_18_x', '14_18_y', '14_19_x', '14_19_y', '14_20_x', '14_20_y', '14_21_x', '14_21_y', '14_22_x', '14_22_y', '14_23_x', '14_23_y', '14_24_x', '14_24_y', '14_25_x', '14_25_y', '14_26_x', '14_26_y', '14_27_x', '14_27_y', '14_28_x', '14_28_y', '14_29_x', '14_29_y', '14_30_x', '14_30_y', '14_31_x', '14_31_y', '14_32_x', '14_32_y', '14_33_x', '14_33_y', '14_34_x', '14_34_y', '14_35_x', '14_35_y', '14_36_x', '14_36_y', '14_37_x', '14_37_y', '14_38_x', '14_38_y', '14_39_x', '14_39_y', '14_40_x', '14_40_y', '14_41_x', '14_41_y', '14_42_x', '14_42_y', '14_43_x', '14_43_y', '14_44_x', '14_44_y', '14_45_x', '14_45_y', '14_46_x', '14_46_y', '14_47_x', '14_47_y', '14_48_x', '14_48_y', '14_49_x', '14_49_y', '14_50_x', '14_50_y', '14_51_x', '14_51_y', '14_52_x', '14_52_y', '14_53_x', '14_53_y', '14_54_x', '14_54_y', '14_55_x', '14_55_y', '14_56_x', '14_56_y', '14_57_x', '14_57_y', '14_58_x', '14_58_y', '14_59_x', '14_59_y', '14_60_x', '14_60_y', '14_61_x', '14_61_y', '14_62_x', '14_62_y', '14_63_x', '14_63_y', '14_64_x', '14_64_y', '14_65_x', '14_65_y', '14_66_x', '14_66_y', '14_67_x', '14_67_y', '15_16_x', '15_16_y', '15_17_x', '15_17_y', '15_18_x', '15_18_y', '15_19_x', '15_19_y', '15_20_x', '15_20_y', '15_21_x', '15_21_y', '15_22_x', '15_22_y', '15_23_x', '15_23_y', '15_24_x', '15_24_y', '15_25_x', '15_25_y', '15_26_x', '15_26_y', '15_27_x', '15_27_y', '15_28_x', '15_28_y', '15_29_x', '15_29_y', '15_30_x', '15_30_y', '15_31_x', '15_31_y', '15_32_x', '15_32_y', '15_33_x', '15_33_y', '15_34_x', '15_34_y', '15_35_x', '15_35_y', '15_36_x', '15_36_y', '15_37_x', '15_37_y', '15_38_x', '15_38_y', '15_39_x', '15_39_y', '15_40_x', '15_40_y', '15_41_x', '15_41_y', '15_42_x', '15_42_y', '15_43_x', '15_43_y', '15_44_x', '15_44_y', '15_45_x', '15_45_y', '15_46_x', '15_46_y', '15_47_x', '15_47_y', '15_48_x', '15_48_y', '15_49_x', '15_49_y', '15_50_x', '15_50_y', '15_51_x', '15_51_y', '15_52_x', '15_52_y', '15_53_x', '15_53_y', '15_54_x', '15_54_y', '15_55_x', '15_55_y', '15_56_x', '15_56_y', '15_57_x', '15_57_y', '15_58_x', '15_58_y', '15_59_x', '15_59_y', '15_60_x', '15_60_y', '15_61_x', '15_61_y', '15_62_x', '15_62_y', '15_63_x', '15_63_y', '15_64_x', '15_64_y', '15_65_x', '15_65_y', '15_66_x', '15_66_y', '15_67_x', '15_67_y', '16_17_x', '16_17_y', '16_18_x', '16_18_y', '16_19_x', '16_19_y', '16_20_x', '16_20_y', '16_21_x', '16_21_y', '16_22_x', '16_22_y', '16_23_x', '16_23_y', '16_24_x', '16_24_y', '16_25_x', '16_25_y', '16_26_x', '16_26_y', '16_27_x', '16_27_y', '16_28_x', '16_28_y', '16_29_x', '16_29_y', '16_30_x', '16_30_y', '16_31_x', '16_31_y', '16_32_x', '16_32_y', '16_33_x', '16_33_y', '16_34_x', '16_34_y', '16_35_x', '16_35_y', '16_36_x', '16_36_y', '16_37_x', '16_37_y', '16_38_x', '16_38_y', '16_39_x', '16_39_y', '16_40_x', '16_40_y', '16_41_x', '16_41_y', '16_42_x', '16_42_y', '16_43_x', '16_43_y', '16_44_x', '16_44_y', '16_45_x', '16_45_y', '16_46_x', '16_46_y', '16_47_x', '16_47_y', '16_48_x', '16_48_y', '16_49_x', '16_49_y', '16_50_x', '16_50_y', '16_51_x', '16_51_y', '16_52_x', '16_52_y', '16_53_x', '16_53_y', '16_54_x', '16_54_y', '16_55_x', '16_55_y', '16_56_x', '16_56_y', '16_57_x', '16_57_y', '16_58_x', '16_58_y', '16_59_x', '16_59_y', '16_60_x', '16_60_y', '16_61_x', '16_61_y', '16_62_x', '16_62_y', '16_63_x', '16_63_y', '16_64_x', '16_64_y', '16_65_x', '16_65_y', '16_66_x', '16_66_y', '16_67_x', '16_67_y', '17_18_x', '17_18_y', '17_19_x', '17_19_y', '17_20_x', '17_20_y', '17_21_x', '17_21_y', '17_22_x', '17_22_y', '17_23_x', '17_23_y', '17_24_x', '17_24_y', '17_25_x', '17_25_y', '17_26_x', '17_26_y', '17_27_x', '17_27_y', '17_28_x', '17_28_y', '17_29_x', '17_29_y', '17_30_x', '17_30_y', '17_31_x', '17_31_y', '17_32_x', '17_32_y', '17_33_x', '17_33_y', '17_34_x', '17_34_y', '17_35_x', '17_35_y', '17_36_x', '17_36_y', '17_37_x', '17_37_y', '17_38_x', '17_38_y', '17_39_x', '17_39_y', '17_40_x', '17_40_y', '17_41_x', '17_41_y', '17_42_x', '17_42_y', '17_43_x', '17_43_y', '17_44_x', '17_44_y', '17_45_x', '17_45_y', '17_46_x', '17_46_y', '17_47_x', '17_47_y', '17_48_x', '17_48_y', '17_49_x', '17_49_y', '17_50_x', '17_50_y', '17_51_x', '17_51_y', '17_52_x', '17_52_y', '17_53_x', '17_53_y', '17_54_x', '17_54_y', '17_55_x', '17_55_y', '17_56_x', '17_56_y', '17_57_x', '17_57_y', '17_58_x', '17_58_y', '17_59_x', '17_59_y', '17_60_x', '17_60_y', '17_61_x', '17_61_y', '17_62_x', '17_62_y', '17_63_x', '17_63_y', '17_64_x', '17_64_y', '17_65_x', '17_65_y', '17_66_x', '17_66_y', '17_67_x', '17_67_y', '18_19_x', '18_19_y', '18_20_x', '18_20_y', '18_21_x', '18_21_y', '18_22_x', '18_22_y', '18_23_x', '18_23_y', '18_24_x', '18_24_y', '18_25_x', '18_25_y', '18_26_x', '18_26_y', '18_27_x', '18_27_y', '18_28_x', '18_28_y', '18_29_x', '18_29_y', '18_30_x', '18_30_y', '18_31_x', '18_31_y', '18_32_x', '18_32_y', '18_33_x', '18_33_y', '18_34_x', '18_34_y', '18_35_x', '18_35_y', '18_36_x', '18_36_y', '18_37_x', '18_37_y', '18_38_x', '18_38_y', '18_39_x', '18_39_y', '18_40_x', '18_40_y', '18_41_x', '18_41_y', '18_42_x', '18_42_y', '18_43_x', '18_43_y', '18_44_x', '18_44_y', '18_45_x', '18_45_y', '18_46_x', '18_46_y', '18_47_x', '18_47_y', '18_48_x', '18_48_y', '18_49_x', '18_49_y', '18_50_x', '18_50_y', '18_51_x', '18_51_y', '18_52_x', '18_52_y', '18_53_x', '18_53_y', '18_54_x', '18_54_y', '18_55_x', '18_55_y', '18_56_x', '18_56_y', '18_57_x', '18_57_y', '18_58_x', '18_58_y', '18_59_x', '18_59_y', '18_60_x', '18_60_y', '18_61_x', '18_61_y', '18_62_x', '18_62_y', '18_63_x', '18_63_y', '18_64_x', '18_64_y', '18_65_x', '18_65_y', '18_66_x', '18_66_y', '18_67_x', '18_67_y', '19_20_x', '19_20_y', '19_21_x', '19_21_y', '19_22_x', '19_22_y', '19_23_x', '19_23_y', '19_24_x', '19_24_y', '19_25_x', '19_25_y', '19_26_x', '19_26_y', '19_27_x', '19_27_y', '19_28_x', '19_28_y', '19_29_x', '19_29_y', '19_30_x', '19_30_y', '19_31_x', '19_31_y', '19_32_x', '19_32_y', '19_33_x', '19_33_y', '19_34_x', '19_34_y', '19_35_x', '19_35_y', '19_36_x', '19_36_y', '19_37_x', '19_37_y', '19_38_x', '19_38_y', '19_39_x', '19_39_y', '19_40_x', '19_40_y', '19_41_x', '19_41_y', '19_42_x', '19_42_y', '19_43_x', '19_43_y', '19_44_x', '19_44_y', '19_45_x', '19_45_y', '19_46_x', '19_46_y', '19_47_x', '19_47_y', '19_48_x', '19_48_y', '19_49_x', '19_49_y', '19_50_x', '19_50_y', '19_51_x', '19_51_y', '19_52_x', '19_52_y', '19_53_x', '19_53_y', '19_54_x', '19_54_y', '19_55_x', '19_55_y', '19_56_x', '19_56_y', '19_57_x', '19_57_y', '19_58_x', '19_58_y', '19_59_x', '19_59_y', '19_60_x', '19_60_y', '19_61_x', '19_61_y', '19_62_x', '19_62_y', '19_63_x', '19_63_y', '19_64_x', '19_64_y', '19_65_x', '19_65_y', '19_66_x', '19_66_y', '19_67_x', '19_67_y', '1_10_x', '1_10_y', '1_11_x', '1_11_y', '1_12_x', '1_12_y', '1_13_x', '1_13_y', '1_14_x', '1_14_y', '1_15_x', '1_15_y', '1_16_x', '1_16_y', '1_17_x', '1_17_y', '1_18_x', '1_18_y', '1_19_x', '1_19_y', '1_20_x', '1_20_y', '1_21_x', '1_21_y', '1_22_x', '1_22_y', '1_23_x', '1_23_y', '1_24_x', '1_24_y', '1_25_x', '1_25_y', '1_26_x', '1_26_y', '1_27_x', '1_27_y', '1_28_x', '1_28_y', '1_29_x', '1_29_y', '1_2_x', '1_2_y', '1_30_x', '1_30_y', '1_31_x', '1_31_y', '1_32_x', '1_32_y', '1_33_x', '1_33_y', '1_34_x', '1_34_y', '1_35_x', '1_35_y', '1_36_x', '1_36_y', '1_37_x', '1_37_y', '1_38_x', '1_38_y', '1_39_x', '1_39_y', '1_3_x', '1_3_y', '1_40_x', '1_40_y', '1_41_x', '1_41_y', '1_42_x', '1_42_y', '1_43_x', '1_43_y', '1_44_x', '1_44_y', '1_45_x', '1_45_y', '1_46_x', '1_46_y', '1_47_x', '1_47_y', '1_48_x', '1_48_y', '1_49_x', '1_49_y', '1_4_x', '1_4_y', '1_50_x', '1_50_y', '1_51_x', '1_51_y', '1_52_x', '1_52_y', '1_53_x', '1_53_y', '1_54_x', '1_54_y', '1_55_x', '1_55_y', '1_56_x', '1_56_y', '1_57_x', '1_57_y', '1_58_x', '1_58_y', '1_59_x', '1_59_y', '1_5_x', '1_5_y', '1_60_x', '1_60_y', '1_61_x', '1_61_y', '1_62_x', '1_62_y', '1_63_x', '1_63_y', '1_64_x', '1_64_y', '1_65_x', '1_65_y', '1_66_x', '1_66_y', '1_67_x', '1_67_y', '1_6_x', '1_6_y', '1_7_x', '1_7_y', '1_8_x', '1_8_y', '1_9_x', '1_9_y', '20_21_x', '20_21_y', '20_22_x', '20_22_y', '20_23_x', '20_23_y', '20_24_x', '20_24_y', '20_25_x', '20_25_y', '20_26_x', '20_26_y', '20_27_x', '20_27_y', '20_28_x', '20_28_y', '20_29_x', '20_29_y', '20_30_x', '20_30_y', '20_31_x', '20_31_y', '20_32_x', '20_32_y', '20_33_x', '20_33_y', '20_34_x', '20_34_y', '20_35_x', '20_35_y', '20_36_x', '20_36_y', '20_37_x', '20_37_y', '20_38_x', '20_38_y', '20_39_x', '20_39_y', '20_40_x', '20_40_y', '20_41_x', '20_41_y', '20_42_x', '20_42_y', '20_43_x', '20_43_y', '20_44_x', '20_44_y', '20_45_x', '20_45_y', '20_46_x', '20_46_y', '20_47_x', '20_47_y', '20_48_x', '20_48_y', '20_49_x', '20_49_y', '20_50_x', '20_50_y', '20_51_x', '20_51_y', '20_52_x', '20_52_y', '20_53_x', '20_53_y', '20_54_x', '20_54_y', '20_55_x', '20_55_y', '20_56_x', '20_56_y', '20_57_x', '20_57_y', '20_58_x', '20_58_y', '20_59_x', '20_59_y', '20_60_x', '20_60_y', '20_61_x', '20_61_y', '20_62_x', '20_62_y', '20_63_x', '20_63_y', '20_64_x', '20_64_y', '20_65_x', '20_65_y', '20_66_x', '20_66_y', '20_67_x', '20_67_y', '21_22_x', '21_22_y', '21_23_x', '21_23_y', '21_24_x', '21_24_y', '21_25_x', '21_25_y', '21_26_x', '21_26_y', '21_27_x', '21_27_y', '21_28_x', '21_28_y', '21_29_x', '21_29_y', '21_30_x', '21_30_y', '21_31_x', '21_31_y', '21_32_x', '21_32_y', '21_33_x', '21_33_y', '21_34_x', '21_34_y', '21_35_x', '21_35_y', '21_36_x', '21_36_y', '21_37_x', '21_37_y', '21_38_x', '21_38_y', '21_39_x', '21_39_y', '21_40_x', '21_40_y', '21_41_x', '21_41_y', '21_42_x', '21_42_y', '21_43_x', '21_43_y', '21_44_x', '21_44_y', '21_45_x', '21_45_y', '21_46_x', '21_46_y', '21_47_x', '21_47_y', '21_48_x', '21_48_y', '21_49_x', '21_49_y', '21_50_x', '21_50_y', '21_51_x', '21_51_y', '21_52_x', '21_52_y', '21_53_x', '21_53_y', '21_54_x', '21_54_y', '21_55_x', '21_55_y', '21_56_x', '21_56_y', '21_57_x', '21_57_y', '21_58_x', '21_58_y', '21_59_x', '21_59_y', '21_60_x', '21_60_y', '21_61_x', '21_61_y', '21_62_x', '21_62_y', '21_63_x', '21_63_y', '21_64_x', '21_64_y', '21_65_x', '21_65_y', '21_66_x', '21_66_y', '21_67_x', '21_67_y', '22_23_x', '22_23_y', '22_24_x', '22_24_y', '22_25_x', '22_25_y', '22_26_x', '22_26_y', '22_27_x', '22_27_y', '22_28_x', '22_28_y', '22_29_x', '22_29_y', '22_30_x', '22_30_y', '22_31_x', '22_31_y', '22_32_x', '22_32_y', '22_33_x', '22_33_y', '22_34_x', '22_34_y', '22_35_x', '22_35_y', '22_36_x', '22_36_y', '22_37_x', '22_37_y', '22_38_x', '22_38_y', '22_39_x', '22_39_y', '22_40_x', '22_40_y', '22_41_x', '22_41_y', '22_42_x', '22_42_y', '22_43_x', '22_43_y', '22_44_x', '22_44_y', '22_45_x', '22_45_y', '22_46_x', '22_46_y', '22_47_x', '22_47_y', '22_48_x', '22_48_y', '22_49_x', '22_49_y', '22_50_x', '22_50_y', '22_51_x', '22_51_y', '22_52_x', '22_52_y', '22_53_x', '22_53_y', '22_54_x', '22_54_y', '22_55_x', '22_55_y', '22_56_x', '22_56_y', '22_57_x', '22_57_y', '22_58_x', '22_58_y', '22_59_x', '22_59_y', '22_60_x', '22_60_y', '22_61_x', '22_61_y', '22_62_x', '22_62_y', '22_63_x', '22_63_y', '22_64_x', '22_64_y', '22_65_x', '22_65_y', '22_66_x', '22_66_y', '22_67_x', '22_67_y', '23_24_x', '23_24_y', '23_25_x', '23_25_y', '23_26_x', '23_26_y', '23_27_x', '23_27_y', '23_28_x', '23_28_y', '23_29_x', '23_29_y', '23_30_x', '23_30_y', '23_31_x', '23_31_y', '23_32_x', '23_32_y', '23_33_x', '23_33_y', '23_34_x', '23_34_y', '23_35_x', '23_35_y', '23_36_x', '23_36_y', '23_37_x', '23_37_y', '23_38_x', '23_38_y', '23_39_x', '23_39_y', '23_40_x', '23_40_y', '23_41_x', '23_41_y', '23_42_x', '23_42_y', '23_43_x', '23_43_y', '23_44_x', '23_44_y', '23_45_x', '23_45_y', '23_46_x', '23_46_y', '23_47_x', '23_47_y', '23_48_x', '23_48_y', '23_49_x', '23_49_y', '23_50_x', '23_50_y', '23_51_x', '23_51_y', '23_52_x', '23_52_y', '23_53_x', '23_53_y', '23_54_x', '23_54_y', '23_55_x', '23_55_y', '23_56_x', '23_56_y', '23_57_x', '23_57_y', '23_58_x', '23_58_y', '23_59_x', '23_59_y', '23_60_x', '23_60_y', '23_61_x', '23_61_y', '23_62_x', '23_62_y', '23_63_x', '23_63_y', '23_64_x', '23_64_y', '23_65_x', '23_65_y', '23_66_x', '23_66_y', '23_67_x', '23_67_y', '24_25_x', '24_25_y', '24_26_x', '24_26_y', '24_27_x', '24_27_y', '24_28_x', '24_28_y', '24_29_x', '24_29_y', '24_30_x', '24_30_y', '24_31_x', '24_31_y', '24_32_x', '24_32_y', '24_33_x', '24_33_y', '24_34_x', '24_34_y', '24_35_x', '24_35_y', '24_36_x', '24_36_y', '24_37_x', '24_37_y', '24_38_x', '24_38_y', '24_39_x', '24_39_y', '24_40_x', '24_40_y', '24_41_x', '24_41_y', '24_42_x', '24_42_y', '24_43_x', '24_43_y', '24_44_x', '24_44_y', '24_45_x', '24_45_y', '24_46_x', '24_46_y', '24_47_x', '24_47_y', '24_48_x', '24_48_y', '24_49_x', '24_49_y', '24_50_x', '24_50_y', '24_51_x', '24_51_y', '24_52_x', '24_52_y', '24_53_x', '24_53_y', '24_54_x', '24_54_y', '24_55_x', '24_55_y', '24_56_x', '24_56_y', '24_57_x', '24_57_y', '24_58_x', '24_58_y', '24_59_x', '24_59_y', '24_60_x', '24_60_y', '24_61_x', '24_61_y', '24_62_x', '24_62_y', '24_63_x', '24_63_y', '24_64_x', '24_64_y', '24_65_x', '24_65_y', '24_66_x', '24_66_y', '24_67_x', '24_67_y', '25_26_x', '25_26_y', '25_27_x', '25_27_y', '25_28_x', '25_28_y', '25_29_x', '25_29_y', '25_30_x', '25_30_y', '25_31_x', '25_31_y', '25_32_x', '25_32_y', '25_33_x', '25_33_y', '25_34_x', '25_34_y', '25_35_x', '25_35_y', '25_36_x', '25_36_y', '25_37_x', '25_37_y', '25_38_x', '25_38_y', '25_39_x', '25_39_y', '25_40_x', '25_40_y', '25_41_x', '25_41_y', '25_42_x', '25_42_y', '25_43_x', '25_43_y', '25_44_x', '25_44_y', '25_45_x', '25_45_y', '25_46_x', '25_46_y', '25_47_x', '25_47_y', '25_48_x', '25_48_y', '25_49_x', '25_49_y', '25_50_x', '25_50_y', '25_51_x', '25_51_y', '25_52_x', '25_52_y', '25_53_x', '25_53_y', '25_54_x', '25_54_y', '25_55_x', '25_55_y', '25_56_x', '25_56_y', '25_57_x', '25_57_y', '25_58_x', '25_58_y', '25_59_x', '25_59_y', '25_60_x', '25_60_y', '25_61_x', '25_61_y', '25_62_x', '25_62_y', '25_63_x', '25_63_y', '25_64_x', '25_64_y', '25_65_x', '25_65_y', '25_66_x', '25_66_y', '25_67_x', '25_67_y', '26_27_x', '26_27_y', '26_28_x', '26_28_y', '26_29_x', '26_29_y', '26_30_x', '26_30_y', '26_31_x', '26_31_y', '26_32_x', '26_32_y', '26_33_x', '26_33_y', '26_34_x', '26_34_y', '26_35_x', '26_35_y', '26_36_x', '26_36_y', '26_37_x', '26_37_y', '26_38_x', '26_38_y', '26_39_x', '26_39_y', '26_40_x', '26_40_y', '26_41_x', '26_41_y', '26_42_x', '26_42_y', '26_43_x', '26_43_y', '26_44_x', '26_44_y', '26_45_x', '26_45_y', '26_46_x', '26_46_y', '26_47_x', '26_47_y', '26_48_x', '26_48_y', '26_49_x', '26_49_y', '26_50_x', '26_50_y', '26_51_x', '26_51_y', '26_52_x', '26_52_y', '26_53_x', '26_53_y', '26_54_x', '26_54_y', '26_55_x', '26_55_y', '26_56_x', '26_56_y', '26_57_x', '26_57_y', '26_58_x', '26_58_y', '26_59_x', '26_59_y', '26_60_x', '26_60_y', '26_61_x', '26_61_y', '26_62_x', '26_62_y', '26_63_x', '26_63_y', '26_64_x', '26_64_y', '26_65_x', '26_65_y', '26_66_x', '26_66_y', '26_67_x', '26_67_y', '27_28_x', '27_28_y', '27_29_x', '27_29_y', '27_30_x', '27_30_y', '27_31_x', '27_31_y', '27_32_x', '27_32_y', '27_33_x', '27_33_y', '27_34_x', '27_34_y', '27_35_x', '27_35_y', '27_36_x', '27_36_y', '27_37_x', '27_37_y', '27_38_x', '27_38_y', '27_39_x', '27_39_y', '27_40_x', '27_40_y', '27_41_x', '27_41_y', '27_42_x', '27_42_y', '27_43_x', '27_43_y', '27_44_x', '27_44_y', '27_45_x', '27_45_y', '27_46_x', '27_46_y', '27_47_x', '27_47_y', '27_48_x', '27_48_y', '27_49_x', '27_49_y', '27_50_x', '27_50_y', '27_51_x', '27_51_y', '27_52_x', '27_52_y', '27_53_x', '27_53_y', '27_54_x', '27_54_y', '27_55_x', '27_55_y', '27_56_x', '27_56_y', '27_57_x', '27_57_y', '27_58_x', '27_58_y', '27_59_x', '27_59_y', '27_60_x', '27_60_y', '27_61_x', '27_61_y', '27_62_x', '27_62_y', '27_63_x', '27_63_y', '27_64_x', '27_64_y', '27_65_x', '27_65_y', '27_66_x', '27_66_y', '27_67_x', '27_67_y', '28_29_x', '28_29_y', '28_30_x', '28_30_y', '28_31_x', '28_31_y', '28_32_x', '28_32_y', '28_33_x', '28_33_y', '28_34_x', '28_34_y', '28_35_x', '28_35_y', '28_36_x', '28_36_y', '28_37_x', '28_37_y', '28_38_x', '28_38_y', '28_39_x', '28_39_y', '28_40_x', '28_40_y', '28_41_x', '28_41_y', '28_42_x', '28_42_y', '28_43_x', '28_43_y', '28_44_x', '28_44_y', '28_45_x', '28_45_y', '28_46_x', '28_46_y', '28_47_x', '28_47_y', '28_48_x', '28_48_y', '28_49_x', '28_49_y', '28_50_x', '28_50_y', '28_51_x', '28_51_y', '28_52_x', '28_52_y', '28_53_x', '28_53_y', '28_54_x', '28_54_y', '28_55_x', '28_55_y', '28_56_x', '28_56_y', '28_57_x', '28_57_y', '28_58_x', '28_58_y', '28_59_x', '28_59_y', '28_60_x', '28_60_y', '28_61_x', '28_61_y', '28_62_x', '28_62_y', '28_63_x', '28_63_y', '28_64_x', '28_64_y', '28_65_x', '28_65_y', '28_66_x', '28_66_y', '28_67_x', '28_67_y', '29_30_x', '29_30_y', '29_31_x', '29_31_y', '29_32_x', '29_32_y', '29_33_x', '29_33_y', '29_34_x', '29_34_y', '29_35_x', '29_35_y', '29_36_x', '29_36_y', '29_37_x', '29_37_y', '29_38_x', '29_38_y', '29_39_x', '29_39_y', '29_40_x', '29_40_y', '29_41_x', '29_41_y', '29_42_x', '29_42_y', '29_43_x', '29_43_y', '29_44_x', '29_44_y', '29_45_x', '29_45_y', '29_46_x', '29_46_y', '29_47_x', '29_47_y', '29_48_x', '29_48_y', '29_49_x', '29_49_y', '29_50_x', '29_50_y', '29_51_x', '29_51_y', '29_52_x', '29_52_y', '29_53_x', '29_53_y', '29_54_x', '29_54_y', '29_55_x', '29_55_y', '29_56_x', '29_56_y', '29_57_x', '29_57_y', '29_58_x', '29_58_y', '29_59_x', '29_59_y', '29_60_x', '29_60_y', '29_61_x', '29_61_y', '29_62_x', '29_62_y', '29_63_x', '29_63_y', '29_64_x', '29_64_y', '29_65_x', '29_65_y', '29_66_x', '29_66_y', '29_67_x', '29_67_y', '2_10_x', '2_10_y', '2_11_x', '2_11_y', '2_12_x', '2_12_y', '2_13_x', '2_13_y', '2_14_x', '2_14_y', '2_15_x', '2_15_y', '2_16_x', '2_16_y', '2_17_x', '2_17_y', '2_18_x', '2_18_y', '2_19_x', '2_19_y', '2_20_x', '2_20_y', '2_21_x', '2_21_y', '2_22_x', '2_22_y', '2_23_x', '2_23_y', '2_24_x', '2_24_y', '2_25_x', '2_25_y', '2_26_x', '2_26_y', '2_27_x', '2_27_y', '2_28_x', '2_28_y', '2_29_x', '2_29_y', '2_30_x', '2_30_y', '2_31_x', '2_31_y', '2_32_x', '2_32_y', '2_33_x', '2_33_y', '2_34_x', '2_34_y', '2_35_x', '2_35_y', '2_36_x', '2_36_y', '2_37_x', '2_37_y', '2_38_x', '2_38_y', '2_39_x', '2_39_y', '2_3_x', '2_3_y', '2_40_x', '2_40_y', '2_41_x', '2_41_y', '2_42_x', '2_42_y', '2_43_x', '2_43_y', '2_44_x', '2_44_y', '2_45_x', '2_45_y', '2_46_x', '2_46_y', '2_47_x', '2_47_y', '2_48_x', '2_48_y', '2_49_x', '2_49_y', '2_4_x', '2_4_y', '2_50_x', '2_50_y', '2_51_x', '2_51_y', '2_52_x', '2_52_y', '2_53_x', '2_53_y', '2_54_x', '2_54_y', '2_55_x', '2_55_y', '2_56_x', '2_56_y', '2_57_x', '2_57_y', '2_58_x', '2_58_y', '2_59_x', '2_59_y', '2_5_x', '2_5_y', '2_60_x', '2_60_y', '2_61_x', '2_61_y', '2_62_x', '2_62_y', '2_63_x', '2_63_y', '2_64_x', '2_64_y', '2_65_x', '2_65_y', '2_66_x', '2_66_y', '2_67_x', '2_67_y', '2_6_x', '2_6_y', '2_7_x', '2_7_y', '2_8_x', '2_8_y', '2_9_x', '2_9_y', '30_31_x', '30_31_y', '30_32_x', '30_32_y', '30_33_x', '30_33_y', '30_34_x', '30_34_y', '30_35_x', '30_35_y', '30_36_x', '30_36_y', '30_37_x', '30_37_y', '30_38_x', '30_38_y', '30_39_x', '30_39_y', '30_40_x', '30_40_y', '30_41_x', '30_41_y', '30_42_x', '30_42_y', '30_43_x', '30_43_y', '30_44_x', '30_44_y', '30_45_x', '30_45_y', '30_46_x', '30_46_y', '30_47_x', '30_47_y', '30_48_x', '30_48_y', '30_49_x', '30_49_y', '30_50_x', '30_50_y', '30_51_x', '30_51_y', '30_52_x', '30_52_y', '30_53_x', '30_53_y', '30_54_x', '30_54_y', '30_55_x', '30_55_y', '30_56_x', '30_56_y', '30_57_x', '30_57_y', '30_58_x', '30_58_y', '30_59_x', '30_59_y', '30_60_x', '30_60_y', '30_61_x', '30_61_y', '30_62_x', '30_62_y', '30_63_x', '30_63_y', '30_64_x', '30_64_y', '30_65_x', '30_65_y', '30_66_x', '30_66_y', '30_67_x', '30_67_y', '31_32_x', '31_32_y', '31_33_x', '31_33_y', '31_34_x', '31_34_y', '31_35_x', '31_35_y', '31_36_x', '31_36_y', '31_37_x', '31_37_y', '31_38_x', '31_38_y', '31_39_x', '31_39_y', '31_40_x', '31_40_y', '31_41_x', '31_41_y', '31_42_x', '31_42_y', '31_43_x', '31_43_y', '31_44_x', '31_44_y', '31_45_x', '31_45_y', '31_46_x', '31_46_y', '31_47_x', '31_47_y', '31_48_x', '31_48_y', '31_49_x', '31_49_y', '31_50_x', '31_50_y', '31_51_x', '31_51_y', '31_52_x', '31_52_y', '31_53_x', '31_53_y', '31_54_x', '31_54_y', '31_55_x', '31_55_y', '31_56_x', '31_56_y', '31_57_x', '31_57_y', '31_58_x', '31_58_y', '31_59_x', '31_59_y', '31_60_x', '31_60_y', '31_61_x', '31_61_y', '31_62_x', '31_62_y', '31_63_x', '31_63_y', '31_64_x', '31_64_y', '31_65_x', '31_65_y', '31_66_x', '31_66_y', '31_67_x', '31_67_y', '32_33_x', '32_33_y', '32_34_x', '32_34_y', '32_35_x', '32_35_y', '32_36_x', '32_36_y', '32_37_x', '32_37_y', '32_38_x', '32_38_y', '32_39_x', '32_39_y', '32_40_x', '32_40_y', '32_41_x', '32_41_y', '32_42_x', '32_42_y', '32_43_x', '32_43_y', '32_44_x', '32_44_y', '32_45_x', '32_45_y', '32_46_x', '32_46_y', '32_47_x', '32_47_y', '32_48_x', '32_48_y', '32_49_x', '32_49_y', '32_50_x', '32_50_y', '32_51_x', '32_51_y', '32_52_x', '32_52_y', '32_53_x', '32_53_y', '32_54_x', '32_54_y', '32_55_x', '32_55_y', '32_56_x', '32_56_y', '32_57_x', '32_57_y', '32_58_x', '32_58_y', '32_59_x', '32_59_y', '32_60_x', '32_60_y', '32_61_x', '32_61_y', '32_62_x', '32_62_y', '32_63_x', '32_63_y', '32_64_x', '32_64_y', '32_65_x', '32_65_y', '32_66_x', '32_66_y', '32_67_x', '32_67_y', '33_34_x', '33_34_y', '33_35_x', '33_35_y', '33_36_x', '33_36_y', '33_37_x', '33_37_y', '33_38_x', '33_38_y', '33_39_x', '33_39_y', '33_40_x', '33_40_y', '33_41_x', '33_41_y', '33_42_x', '33_42_y', '33_43_x', '33_43_y', '33_44_x', '33_44_y', '33_45_x', '33_45_y', '33_46_x', '33_46_y', '33_47_x', '33_47_y', '33_48_x', '33_48_y', '33_49_x', '33_49_y', '33_50_x', '33_50_y', '33_51_x', '33_51_y', '33_52_x', '33_52_y', '33_53_x', '33_53_y', '33_54_x', '33_54_y', '33_55_x', '33_55_y', '33_56_x', '33_56_y', '33_57_x', '33_57_y', '33_58_x', '33_58_y', '33_59_x', '33_59_y', '33_60_x', '33_60_y', '33_61_x', '33_61_y', '33_62_x', '33_62_y', '33_63_x', '33_63_y', '33_64_x', '33_64_y', '33_65_x', '33_65_y', '33_66_x', '33_66_y', '33_67_x', '33_67_y', '34_35_x', '34_35_y', '34_36_x', '34_36_y', '34_37_x', '34_37_y', '34_38_x', '34_38_y', '34_39_x', '34_39_y', '34_40_x', '34_40_y', '34_41_x', '34_41_y', '34_42_x', '34_42_y', '34_43_x', '34_43_y', '34_44_x', '34_44_y', '34_45_x', '34_45_y', '34_46_x', '34_46_y', '34_47_x', '34_47_y', '34_48_x', '34_48_y', '34_49_x', '34_49_y', '34_50_x', '34_50_y', '34_51_x', '34_51_y', '34_52_x', '34_52_y', '34_53_x', '34_53_y', '34_54_x', '34_54_y', '34_55_x', '34_55_y', '34_56_x', '34_56_y', '34_57_x', '34_57_y', '34_58_x', '34_58_y', '34_59_x', '34_59_y', '34_60_x', '34_60_y', '34_61_x', '34_61_y', '34_62_x', '34_62_y', '34_63_x', '34_63_y', '34_64_x', '34_64_y', '34_65_x', '34_65_y', '34_66_x', '34_66_y', '34_67_x', '34_67_y', '35_36_x', '35_36_y', '35_37_x', '35_37_y', '35_38_x', '35_38_y', '35_39_x', '35_39_y', '35_40_x', '35_40_y', '35_41_x', '35_41_y', '35_42_x', '35_42_y', '35_43_x', '35_43_y', '35_44_x', '35_44_y', '35_45_x', '35_45_y', '35_46_x', '35_46_y', '35_47_x', '35_47_y', '35_48_x', '35_48_y', '35_49_x', '35_49_y', '35_50_x', '35_50_y', '35_51_x', '35_51_y', '35_52_x', '35_52_y', '35_53_x', '35_53_y', '35_54_x', '35_54_y', '35_55_x', '35_55_y', '35_56_x', '35_56_y', '35_57_x', '35_57_y', '35_58_x', '35_58_y', '35_59_x', '35_59_y', '35_60_x', '35_60_y', '35_61_x', '35_61_y', '35_62_x', '35_62_y', '35_63_x', '35_63_y', '35_64_x', '35_64_y', '35_65_x', '35_65_y', '35_66_x', '35_66_y', '35_67_x', '35_67_y', '36_37_x', '36_37_y', '36_38_x', '36_38_y', '36_39_x', '36_39_y', '36_40_x', '36_40_y', '36_41_x', '36_41_y', '36_42_x', '36_42_y', '36_43_x', '36_43_y', '36_44_x', '36_44_y', '36_45_x', '36_45_y', '36_46_x', '36_46_y', '36_47_x', '36_47_y', '36_48_x', '36_48_y', '36_49_x', '36_49_y', '36_50_x', '36_50_y', '36_51_x', '36_51_y', '36_52_x', '36_52_y', '36_53_x', '36_53_y', '36_54_x', '36_54_y', '36_55_x', '36_55_y', '36_56_x', '36_56_y', '36_57_x', '36_57_y', '36_58_x', '36_58_y', '36_59_x', '36_59_y', '36_60_x', '36_60_y', '36_61_x', '36_61_y', '36_62_x', '36_62_y', '36_63_x', '36_63_y', '36_64_x', '36_64_y', '36_65_x', '36_65_y', '36_66_x', '36_66_y', '36_67_x', '36_67_y', '37_38_x', '37_38_y', '37_39_x', '37_39_y', '37_40_x', '37_40_y', '37_41_x', '37_41_y', '37_42_x', '37_42_y', '37_43_x', '37_43_y', '37_44_x', '37_44_y', '37_45_x', '37_45_y', '37_46_x', '37_46_y', '37_47_x', '37_47_y', '37_48_x', '37_48_y', '37_49_x', '37_49_y', '37_50_x', '37_50_y', '37_51_x', '37_51_y', '37_52_x', '37_52_y', '37_53_x', '37_53_y', '37_54_x', '37_54_y', '37_55_x', '37_55_y', '37_56_x', '37_56_y', '37_57_x', '37_57_y', '37_58_x', '37_58_y', '37_59_x', '37_59_y', '37_60_x', '37_60_y', '37_61_x', '37_61_y', '37_62_x', '37_62_y', '37_63_x', '37_63_y', '37_64_x', '37_64_y', '37_65_x', '37_65_y', '37_66_x', '37_66_y', '37_67_x', '37_67_y', '38_39_x', '38_39_y', '38_40_x', '38_40_y', '38_41_x', '38_41_y', '38_42_x', '38_42_y', '38_43_x', '38_43_y', '38_44_x', '38_44_y', '38_45_x', '38_45_y', '38_46_x', '38_46_y', '38_47_x', '38_47_y', '38_48_x', '38_48_y', '38_49_x', '38_49_y', '38_50_x', '38_50_y', '38_51_x', '38_51_y', '38_52_x', '38_52_y', '38_53_x', '38_53_y', '38_54_x', '38_54_y', '38_55_x', '38_55_y', '38_56_x', '38_56_y', '38_57_x', '38_57_y', '38_58_x', '38_58_y', '38_59_x', '38_59_y', '38_60_x', '38_60_y', '38_61_x', '38_61_y', '38_62_x', '38_62_y', '38_63_x', '38_63_y', '38_64_x', '38_64_y', '38_65_x', '38_65_y', '38_66_x', '38_66_y', '38_67_x', '38_67_y', '39_40_x', '39_40_y', '39_41_x', '39_41_y', '39_42_x', '39_42_y', '39_43_x', '39_43_y', '39_44_x', '39_44_y', '39_45_x', '39_45_y', '39_46_x', '39_46_y', '39_47_x', '39_47_y', '39_48_x', '39_48_y', '39_49_x', '39_49_y', '39_50_x', '39_50_y', '39_51_x', '39_51_y', '39_52_x', '39_52_y', '39_53_x', '39_53_y', '39_54_x', '39_54_y', '39_55_x', '39_55_y', '39_56_x', '39_56_y', '39_57_x', '39_57_y', '39_58_x', '39_58_y', '39_59_x', '39_59_y', '39_60_x', '39_60_y', '39_61_x', '39_61_y', '39_62_x', '39_62_y', '39_63_x', '39_63_y', '39_64_x', '39_64_y', '39_65_x', '39_65_y', '39_66_x', '39_66_y', '39_67_x', '39_67_y', '3_10_x', '3_10_y', '3_11_x', '3_11_y', '3_12_x', '3_12_y', '3_13_x', '3_13_y', '3_14_x', '3_14_y', '3_15_x', '3_15_y', '3_16_x', '3_16_y', '3_17_x', '3_17_y', '3_18_x', '3_18_y', '3_19_x', '3_19_y', '3_20_x', '3_20_y', '3_21_x', '3_21_y', '3_22_x', '3_22_y', '3_23_x', '3_23_y', '3_24_x', '3_24_y', '3_25_x', '3_25_y', '3_26_x', '3_26_y', '3_27_x', '3_27_y', '3_28_x', '3_28_y', '3_29_x', '3_29_y', '3_30_x', '3_30_y', '3_31_x', '3_31_y', '3_32_x', '3_32_y', '3_33_x', '3_33_y', '3_34_x', '3_34_y', '3_35_x', '3_35_y', '3_36_x', '3_36_y', '3_37_x', '3_37_y', '3_38_x', '3_38_y', '3_39_x', '3_39_y', '3_40_x', '3_40_y', '3_41_x', '3_41_y', '3_42_x', '3_42_y', '3_43_x', '3_43_y', '3_44_x', '3_44_y', '3_45_x', '3_45_y', '3_46_x', '3_46_y', '3_47_x', '3_47_y', '3_48_x', '3_48_y', '3_49_x', '3_49_y', '3_4_x', '3_4_y', '3_50_x', '3_50_y', '3_51_x', '3_51_y', '3_52_x', '3_52_y', '3_53_x', '3_53_y', '3_54_x', '3_54_y', '3_55_x', '3_55_y', '3_56_x', '3_56_y', '3_57_x', '3_57_y', '3_58_x', '3_58_y', '3_59_x', '3_59_y', '3_5_x', '3_5_y', '3_60_x', '3_60_y', '3_61_x', '3_61_y', '3_62_x', '3_62_y', '3_63_x', '3_63_y', '3_64_x', '3_64_y', '3_65_x', '3_65_y', '3_66_x', '3_66_y', '3_67_x', '3_67_y', '3_6_x', '3_6_y', '3_7_x', '3_7_y', '3_8_x', '3_8_y', '3_9_x', '3_9_y', '40_41_x', '40_41_y', '40_42_x', '40_42_y', '40_43_x', '40_43_y', '40_44_x', '40_44_y', '40_45_x', '40_45_y', '40_46_x', '40_46_y', '40_47_x', '40_47_y', '40_48_x', '40_48_y', '40_49_x', '40_49_y', '40_50_x', '40_50_y', '40_51_x', '40_51_y', '40_52_x', '40_52_y', '40_53_x', '40_53_y', '40_54_x', '40_54_y', '40_55_x', '40_55_y', '40_56_x', '40_56_y', '40_57_x', '40_57_y', '40_58_x', '40_58_y', '40_59_x', '40_59_y', '40_60_x', '40_60_y', '40_61_x', '40_61_y', '40_62_x', '40_62_y', '40_63_x', '40_63_y', '40_64_x', '40_64_y', '40_65_x', '40_65_y', '40_66_x', '40_66_y', '40_67_x', '40_67_y', '41_42_x', '41_42_y', '41_43_x', '41_43_y', '41_44_x', '41_44_y', '41_45_x', '41_45_y', '41_46_x', '41_46_y', '41_47_x', '41_47_y', '41_48_x', '41_48_y', '41_49_x', '41_49_y', '41_50_x', '41_50_y', '41_51_x', '41_51_y', '41_52_x', '41_52_y', '41_53_x', '41_53_y', '41_54_x', '41_54_y', '41_55_x', '41_55_y', '41_56_x', '41_56_y', '41_57_x', '41_57_y', '41_58_x', '41_58_y', '41_59_x', '41_59_y', '41_60_x', '41_60_y', '41_61_x', '41_61_y', '41_62_x', '41_62_y', '41_63_x', '41_63_y', '41_64_x', '41_64_y', '41_65_x', '41_65_y', '41_66_x', '41_66_y', '41_67_x', '41_67_y', '42_43_x', '42_43_y', '42_44_x', '42_44_y', '42_45_x', '42_45_y', '42_46_x', '42_46_y', '42_47_x', '42_47_y', '42_48_x', '42_48_y', '42_49_x', '42_49_y', '42_50_x', '42_50_y', '42_51_x', '42_51_y', '42_52_x', '42_52_y', '42_53_x', '42_53_y', '42_54_x', '42_54_y', '42_55_x', '42_55_y', '42_56_x', '42_56_y', '42_57_x', '42_57_y', '42_58_x', '42_58_y', '42_59_x', '42_59_y', '42_60_x', '42_60_y', '42_61_x', '42_61_y', '42_62_x', '42_62_y', '42_63_x', '42_63_y', '42_64_x', '42_64_y', '42_65_x', '42_65_y', '42_66_x', '42_66_y', '42_67_x', '42_67_y', '43_44_x', '43_44_y', '43_45_x', '43_45_y', '43_46_x', '43_46_y', '43_47_x', '43_47_y', '43_48_x', '43_48_y', '43_49_x', '43_49_y', '43_50_x', '43_50_y', '43_51_x', '43_51_y', '43_52_x', '43_52_y', '43_53_x', '43_53_y', '43_54_x', '43_54_y', '43_55_x', '43_55_y', '43_56_x', '43_56_y', '43_57_x', '43_57_y', '43_58_x', '43_58_y', '43_59_x', '43_59_y', '43_60_x', '43_60_y', '43_61_x', '43_61_y', '43_62_x', '43_62_y', '43_63_x', '43_63_y', '43_64_x', '43_64_y', '43_65_x', '43_65_y', '43_66_x', '43_66_y', '43_67_x', '43_67_y', '44_45_x', '44_45_y', '44_46_x', '44_46_y', '44_47_x', '44_47_y', '44_48_x', '44_48_y', '44_49_x', '44_49_y', '44_50_x', '44_50_y', '44_51_x', '44_51_y', '44_52_x', '44_52_y', '44_53_x', '44_53_y', '44_54_x', '44_54_y', '44_55_x', '44_55_y', '44_56_x', '44_56_y', '44_57_x', '44_57_y', '44_58_x', '44_58_y', '44_59_x', '44_59_y', '44_60_x', '44_60_y', '44_61_x', '44_61_y', '44_62_x', '44_62_y', '44_63_x', '44_63_y', '44_64_x', '44_64_y', '44_65_x', '44_65_y', '44_66_x', '44_66_y', '44_67_x', '44_67_y', '45_46_x', '45_46_y', '45_47_x', '45_47_y', '45_48_x', '45_48_y', '45_49_x', '45_49_y', '45_50_x', '45_50_y', '45_51_x', '45_51_y', '45_52_x', '45_52_y', '45_53_x', '45_53_y', '45_54_x', '45_54_y', '45_55_x', '45_55_y', '45_56_x', '45_56_y', '45_57_x', '45_57_y', '45_58_x', '45_58_y', '45_59_x', '45_59_y', '45_60_x', '45_60_y', '45_61_x', '45_61_y', '45_62_x', '45_62_y', '45_63_x', '45_63_y', '45_64_x', '45_64_y', '45_65_x', '45_65_y', '45_66_x', '45_66_y', '45_67_x', '45_67_y', '46_47_x', '46_47_y', '46_48_x', '46_48_y', '46_49_x', '46_49_y', '46_50_x', '46_50_y', '46_51_x', '46_51_y', '46_52_x', '46_52_y', '46_53_x', '46_53_y', '46_54_x', '46_54_y', '46_55_x', '46_55_y', '46_56_x', '46_56_y', '46_57_x', '46_57_y', '46_58_x', '46_58_y', '46_59_x', '46_59_y', '46_60_x', '46_60_y', '46_61_x', '46_61_y', '46_62_x', '46_62_y', '46_63_x', '46_63_y', '46_64_x', '46_64_y', '46_65_x', '46_65_y', '46_66_x', '46_66_y', '46_67_x', '46_67_y', '47_48_x', '47_48_y', '47_49_x', '47_49_y', '47_50_x', '47_50_y', '47_51_x', '47_51_y', '47_52_x', '47_52_y', '47_53_x', '47_53_y', '47_54_x', '47_54_y', '47_55_x', '47_55_y', '47_56_x', '47_56_y', '47_57_x', '47_57_y', '47_58_x', '47_58_y', '47_59_x', '47_59_y', '47_60_x', '47_60_y', '47_61_x', '47_61_y', '47_62_x', '47_62_y', '47_63_x', '47_63_y', '47_64_x', '47_64_y', '47_65_x', '47_65_y', '47_66_x', '47_66_y', '47_67_x', '47_67_y', '48_49_x', '48_49_y', '48_50_x', '48_50_y', '48_51_x', '48_51_y', '48_52_x', '48_52_y', '48_53_x', '48_53_y', '48_54_x', '48_54_y', '48_55_x', '48_55_y', '48_56_x', '48_56_y', '48_57_x', '48_57_y', '48_58_x', '48_58_y', '48_59_x', '48_59_y', '48_60_x', '48_60_y', '48_61_x', '48_61_y', '48_62_x', '48_62_y', '48_63_x', '48_63_y', '48_64_x', '48_64_y', '48_65_x', '48_65_y', '48_66_x', '48_66_y', '48_67_x', '48_67_y', '49_50_x', '49_50_y', '49_51_x', '49_51_y', '49_52_x', '49_52_y', '49_53_x', '49_53_y', '49_54_x', '49_54_y', '49_55_x', '49_55_y', '49_56_x', '49_56_y', '49_57_x', '49_57_y', '49_58_x', '49_58_y', '49_59_x', '49_59_y', '49_60_x', '49_60_y', '49_61_x', '49_61_y', '49_62_x', '49_62_y', '49_63_x', '49_63_y', '49_64_x', '49_64_y', '49_65_x', '49_65_y', '49_66_x', '49_66_y', '49_67_x', '49_67_y', '4_10_x', '4_10_y', '4_11_x', '4_11_y', '4_12_x', '4_12_y', '4_13_x', '4_13_y', '4_14_x', '4_14_y', '4_15_x', '4_15_y', '4_16_x', '4_16_y', '4_17_x', '4_17_y', '4_18_x', '4_18_y', '4_19_x', '4_19_y', '4_20_x', '4_20_y', '4_21_x', '4_21_y', '4_22_x', '4_22_y', '4_23_x', '4_23_y', '4_24_x', '4_24_y', '4_25_x', '4_25_y', '4_26_x', '4_26_y', '4_27_x', '4_27_y', '4_28_x', '4_28_y', '4_29_x', '4_29_y', '4_30_x', '4_30_y', '4_31_x', '4_31_y', '4_32_x', '4_32_y', '4_33_x', '4_33_y', '4_34_x', '4_34_y', '4_35_x', '4_35_y', '4_36_x', '4_36_y', '4_37_x', '4_37_y', '4_38_x', '4_38_y', '4_39_x', '4_39_y', '4_40_x', '4_40_y', '4_41_x', '4_41_y', '4_42_x', '4_42_y', '4_43_x', '4_43_y', '4_44_x', '4_44_y', '4_45_x', '4_45_y', '4_46_x', '4_46_y', '4_47_x', '4_47_y', '4_48_x', '4_48_y', '4_49_x', '4_49_y', '4_50_x', '4_50_y', '4_51_x', '4_51_y', '4_52_x', '4_52_y', '4_53_x', '4_53_y', '4_54_x', '4_54_y', '4_55_x', '4_55_y', '4_56_x', '4_56_y', '4_57_x', '4_57_y', '4_58_x', '4_58_y', '4_59_x', '4_59_y', '4_5_x', '4_5_y', '4_60_x', '4_60_y', '4_61_x', '4_61_y', '4_62_x', '4_62_y', '4_63_x', '4_63_y', '4_64_x', '4_64_y', '4_65_x', '4_65_y', '4_66_x', '4_66_y', '4_67_x', '4_67_y', '4_6_x', '4_6_y', '4_7_x', '4_7_y', '4_8_x', '4_8_y', '4_9_x', '4_9_y', '50_51_x', '50_51_y', '50_52_x', '50_52_y', '50_53_x', '50_53_y', '50_54_x', '50_54_y', '50_55_x', '50_55_y', '50_56_x', '50_56_y', '50_57_x', '50_57_y', '50_58_x', '50_58_y', '50_59_x', '50_59_y', '50_60_x', '50_60_y', '50_61_x', '50_61_y', '50_62_x', '50_62_y', '50_63_x', '50_63_y', '50_64_x', '50_64_y', '50_65_x', '50_65_y', '50_66_x', '50_66_y', '50_67_x', '50_67_y', '51_52_x', '51_52_y', '51_53_x', '51_53_y', '51_54_x', '51_54_y', '51_55_x', '51_55_y', '51_56_x', '51_56_y', '51_57_x', '51_57_y', '51_58_x', '51_58_y', '51_59_x', '51_59_y', '51_60_x', '51_60_y', '51_61_x', '51_61_y', '51_62_x', '51_62_y', '51_63_x', '51_63_y', '51_64_x', '51_64_y', '51_65_x', '51_65_y', '51_66_x', '51_66_y', '51_67_x', '51_67_y', '52_53_x', '52_53_y', '52_54_x', '52_54_y', '52_55_x', '52_55_y', '52_56_x', '52_56_y', '52_57_x', '52_57_y', '52_58_x', '52_58_y', '52_59_x', '52_59_y', '52_60_x', '52_60_y', '52_61_x', '52_61_y', '52_62_x', '52_62_y', '52_63_x', '52_63_y', '52_64_x', '52_64_y', '52_65_x', '52_65_y', '52_66_x', '52_66_y', '52_67_x', '52_67_y', '53_54_x', '53_54_y', '53_55_x', '53_55_y', '53_56_x', '53_56_y', '53_57_x', '53_57_y', '53_58_x', '53_58_y', '53_59_x', '53_59_y', '53_60_x', '53_60_y', '53_61_x', '53_61_y', '53_62_x', '53_62_y', '53_63_x', '53_63_y', '53_64_x', '53_64_y', '53_65_x', '53_65_y', '53_66_x', '53_66_y', '53_67_x', '53_67_y', '54_55_x', '54_55_y', '54_56_x', '54_56_y', '54_57_x', '54_57_y', '54_58_x', '54_58_y', '54_59_x', '54_59_y', '54_60_x', '54_60_y', '54_61_x', '54_61_y', '54_62_x', '54_62_y', '54_63_x', '54_63_y', '54_64_x', '54_64_y', '54_65_x', '54_65_y', '54_66_x', '54_66_y', '54_67_x', '54_67_y', '55_56_x', '55_56_y', '55_57_x', '55_57_y', '55_58_x', '55_58_y', '55_59_x', '55_59_y', '55_60_x', '55_60_y', '55_61_x', '55_61_y', '55_62_x', '55_62_y', '55_63_x', '55_63_y', '55_64_x', '55_64_y', '55_65_x', '55_65_y', '55_66_x', '55_66_y', '55_67_x', '55_67_y', '56_57_x', '56_57_y', '56_58_x', '56_58_y', '56_59_x', '56_59_y', '56_60_x', '56_60_y', '56_61_x', '56_61_y', '56_62_x', '56_62_y', '56_63_x', '56_63_y', '56_64_x', '56_64_y', '56_65_x', '56_65_y', '56_66_x', '56_66_y', '56_67_x', '56_67_y', '57_58_x', '57_58_y', '57_59_x', '57_59_y', '57_60_x', '57_60_y', '57_61_x', '57_61_y', '57_62_x', '57_62_y', '57_63_x', '57_63_y', '57_64_x', '57_64_y', '57_65_x', '57_65_y', '57_66_x', '57_66_y', '57_67_x', '57_67_y', '58_59_x', '58_59_y', '58_60_x', '58_60_y', '58_61_x', '58_61_y', '58_62_x', '58_62_y', '58_63_x', '58_63_y', '58_64_x', '58_64_y', '58_65_x', '58_65_y', '58_66_x', '58_66_y', '58_67_x', '58_67_y', '59_60_x', '59_60_y', '59_61_x', '59_61_y', '59_62_x', '59_62_y', '59_63_x', '59_63_y', '59_64_x', '59_64_y', '59_65_x', '59_65_y', '59_66_x', '59_66_y', '59_67_x', '59_67_y', '5_10_x', '5_10_y', '5_11_x', '5_11_y', '5_12_x', '5_12_y', '5_13_x', '5_13_y', '5_14_x', '5_14_y', '5_15_x', '5_15_y', '5_16_x', '5_16_y', '5_17_x', '5_17_y', '5_18_x', '5_18_y', '5_19_x', '5_19_y', '5_20_x', '5_20_y', '5_21_x', '5_21_y', '5_22_x', '5_22_y', '5_23_x', '5_23_y', '5_24_x', '5_24_y', '5_25_x', '5_25_y', '5_26_x', '5_26_y', '5_27_x', '5_27_y', '5_28_x', '5_28_y', '5_29_x', '5_29_y', '5_30_x', '5_30_y', '5_31_x', '5_31_y', '5_32_x', '5_32_y', '5_33_x', '5_33_y', '5_34_x', '5_34_y', '5_35_x', '5_35_y', '5_36_x', '5_36_y', '5_37_x', '5_37_y', '5_38_x', '5_38_y', '5_39_x', '5_39_y', '5_40_x', '5_40_y', '5_41_x', '5_41_y', '5_42_x', '5_42_y', '5_43_x', '5_43_y', '5_44_x', '5_44_y', '5_45_x', '5_45_y', '5_46_x', '5_46_y', '5_47_x', '5_47_y', '5_48_x', '5_48_y', '5_49_x', '5_49_y', '5_50_x', '5_50_y', '5_51_x', '5_51_y', '5_52_x', '5_52_y', '5_53_x', '5_53_y', '5_54_x', '5_54_y', '5_55_x', '5_55_y', '5_56_x', '5_56_y', '5_57_x', '5_57_y', '5_58_x', '5_58_y', '5_59_x', '5_59_y', '5_60_x', '5_60_y', '5_61_x', '5_61_y', '5_62_x', '5_62_y', '5_63_x', '5_63_y', '5_64_x', '5_64_y', '5_65_x', '5_65_y', '5_66_x', '5_66_y', '5_67_x', '5_67_y', '5_6_x', '5_6_y', '5_7_x', '5_7_y', '5_8_x', '5_8_y', '5_9_x', '5_9_y', '60_61_x', '60_61_y', '60_62_x', '60_62_y', '60_63_x', '60_63_y', '60_64_x', '60_64_y', '60_65_x', '60_65_y', '60_66_x', '60_66_y', '60_67_x', '60_67_y', '61_62_x', '61_62_y', '61_63_x', '61_63_y', '61_64_x', '61_64_y', '61_65_x', '61_65_y', '61_66_x', '61_66_y', '61_67_x', '61_67_y', '62_63_x', '62_63_y', '62_64_x', '62_64_y', '62_65_x', '62_65_y', '62_66_x', '62_66_y', '62_67_x', '62_67_y', '63_64_x', '63_64_y', '63_65_x', '63_65_y', '63_66_x', '63_66_y', '63_67_x', '63_67_y', '64_65_x', '64_65_y', '64_66_x', '64_66_y', '64_67_x', '64_67_y', '65_66_x', '65_66_y', '65_67_x', '65_67_y', '66_67_x', '66_67_y', '6_10_x', '6_10_y', '6_11_x', '6_11_y', '6_12_x', '6_12_y', '6_13_x', '6_13_y', '6_14_x', '6_14_y', '6_15_x', '6_15_y', '6_16_x', '6_16_y', '6_17_x', '6_17_y', '6_18_x', '6_18_y', '6_19_x', '6_19_y', '6_20_x', '6_20_y', '6_21_x', '6_21_y', '6_22_x', '6_22_y', '6_23_x', '6_23_y', '6_24_x', '6_24_y', '6_25_x', '6_25_y', '6_26_x', '6_26_y', '6_27_x', '6_27_y', '6_28_x', '6_28_y', '6_29_x', '6_29_y', '6_30_x', '6_30_y', '6_31_x', '6_31_y', '6_32_x', '6_32_y', '6_33_x', '6_33_y', '6_34_x', '6_34_y', '6_35_x', '6_35_y', '6_36_x', '6_36_y', '6_37_x', '6_37_y', '6_38_x', '6_38_y', '6_39_x', '6_39_y', '6_40_x', '6_40_y', '6_41_x', '6_41_y', '6_42_x', '6_42_y', '6_43_x', '6_43_y', '6_44_x', '6_44_y', '6_45_x', '6_45_y', '6_46_x', '6_46_y', '6_47_x', '6_47_y', '6_48_x', '6_48_y', '6_49_x', '6_49_y', '6_50_x', '6_50_y', '6_51_x', '6_51_y', '6_52_x', '6_52_y', '6_53_x', '6_53_y', '6_54_x', '6_54_y', '6_55_x', '6_55_y', '6_56_x', '6_56_y', '6_57_x', '6_57_y', '6_58_x', '6_58_y', '6_59_x', '6_59_y', '6_60_x', '6_60_y', '6_61_x', '6_61_y', '6_62_x', '6_62_y', '6_63_x', '6_63_y', '6_64_x', '6_64_y', '6_65_x', '6_65_y', '6_66_x', '6_66_y', '6_67_x', '6_67_y', '6_7_x', '6_7_y', '6_8_x', '6_8_y', '6_9_x', '6_9_y', '7_10_x', '7_10_y', '7_11_x', '7_11_y', '7_12_x', '7_12_y', '7_13_x', '7_13_y', '7_14_x', '7_14_y', '7_15_x', '7_15_y', '7_16_x', '7_16_y', '7_17_x', '7_17_y', '7_18_x', '7_18_y', '7_19_x', '7_19_y', '7_20_x', '7_20_y', '7_21_x', '7_21_y', '7_22_x', '7_22_y', '7_23_x', '7_23_y', '7_24_x', '7_24_y', '7_25_x', '7_25_y', '7_26_x', '7_26_y', '7_27_x', '7_27_y', '7_28_x', '7_28_y', '7_29_x', '7_29_y', '7_30_x', '7_30_y', '7_31_x', '7_31_y', '7_32_x', '7_32_y', '7_33_x', '7_33_y', '7_34_x', '7_34_y', '7_35_x', '7_35_y', '7_36_x', '7_36_y', '7_37_x', '7_37_y', '7_38_x', '7_38_y', '7_39_x', '7_39_y', '7_40_x', '7_40_y', '7_41_x', '7_41_y', '7_42_x', '7_42_y', '7_43_x', '7_43_y', '7_44_x', '7_44_y', '7_45_x', '7_45_y', '7_46_x', '7_46_y', '7_47_x', '7_47_y', '7_48_x', '7_48_y', '7_49_x', '7_49_y', '7_50_x', '7_50_y', '7_51_x', '7_51_y', '7_52_x', '7_52_y', '7_53_x', '7_53_y', '7_54_x', '7_54_y', '7_55_x', '7_55_y', '7_56_x', '7_56_y', '7_57_x', '7_57_y', '7_58_x', '7_58_y', '7_59_x', '7_59_y', '7_60_x', '7_60_y', '7_61_x', '7_61_y', '7_62_x', '7_62_y', '7_63_x', '7_63_y', '7_64_x', '7_64_y', '7_65_x', '7_65_y', '7_66_x', '7_66_y', '7_67_x', '7_67_y', '7_8_x', '7_8_y', '7_9_x', '7_9_y', '8_10_x', '8_10_y', '8_11_x', '8_11_y', '8_12_x', '8_12_y', '8_13_x', '8_13_y', '8_14_x', '8_14_y', '8_15_x', '8_15_y', '8_16_x', '8_16_y', '8_17_x', '8_17_y', '8_18_x', '8_18_y', '8_19_x', '8_19_y', '8_20_x', '8_20_y', '8_21_x', '8_21_y', '8_22_x', '8_22_y', '8_23_x', '8_23_y', '8_24_x', '8_24_y', '8_25_x', '8_25_y', '8_26_x', '8_26_y', '8_27_x', '8_27_y', '8_28_x', '8_28_y', '8_29_x', '8_29_y', '8_30_x', '8_30_y', '8_31_x', '8_31_y', '8_32_x', '8_32_y', '8_33_x', '8_33_y', '8_34_x', '8_34_y', '8_35_x', '8_35_y', '8_36_x', '8_36_y', '8_37_x', '8_37_y', '8_38_x', '8_38_y', '8_39_x', '8_39_y', '8_40_x', '8_40_y', '8_41_x', '8_41_y', '8_42_x', '8_42_y', '8_43_x', '8_43_y', '8_44_x', '8_44_y', '8_45_x', '8_45_y', '8_46_x', '8_46_y', '8_47_x', '8_47_y', '8_48_x', '8_48_y', '8_49_x', '8_49_y', '8_50_x', '8_50_y', '8_51_x', '8_51_y', '8_52_x', '8_52_y', '8_53_x', '8_53_y', '8_54_x', '8_54_y', '8_55_x', '8_55_y', '8_56_x', '8_56_y', '8_57_x', '8_57_y', '8_58_x', '8_58_y', '8_59_x', '8_59_y', '8_60_x', '8_60_y', '8_61_x', '8_61_y', '8_62_x', '8_62_y', '8_63_x', '8_63_y', '8_64_x', '8_64_y', '8_65_x', '8_65_y', '8_66_x', '8_66_y', '8_67_x', '8_67_y', '8_9_x', '8_9_y', '9_10_x', '9_10_y', '9_11_x', '9_11_y', '9_12_x', '9_12_y', '9_13_x', '9_13_y', '9_14_x', '9_14_y', '9_15_x', '9_15_y', '9_16_x', '9_16_y', '9_17_x', '9_17_y', '9_18_x', '9_18_y', '9_19_x', '9_19_y', '9_20_x', '9_20_y', '9_21_x', '9_21_y', '9_22_x', '9_22_y', '9_23_x', '9_23_y', '9_24_x', '9_24_y', '9_25_x', '9_25_y', '9_26_x', '9_26_y', '9_27_x', '9_27_y', '9_28_x', '9_28_y', '9_29_x', '9_29_y', '9_30_x', '9_30_y', '9_31_x', '9_31_y', '9_32_x', '9_32_y', '9_33_x', '9_33_y', '9_34_x', '9_34_y', '9_35_x', '9_35_y', '9_36_x', '9_36_y', '9_37_x', '9_37_y', '9_38_x', '9_38_y', '9_39_x', '9_39_y', '9_40_x', '9_40_y', '9_41_x', '9_41_y', '9_42_x', '9_42_y', '9_43_x', '9_43_y', '9_44_x', '9_44_y', '9_45_x', '9_45_y', '9_46_x', '9_46_y', '9_47_x', '9_47_y', '9_48_x', '9_48_y', '9_49_x', '9_49_y', '9_50_x', '9_50_y', '9_51_x', '9_51_y', '9_52_x', '9_52_y', '9_53_x', '9_53_y', '9_54_x', '9_54_y', '9_55_x', '9_55_y', '9_56_x', '9_56_y', '9_57_x', '9_57_y', '9_58_x', '9_58_y', '9_59_x', '9_59_y', '9_60_x', '9_60_y', '9_61_x', '9_61_y', '9_62_x', '9_62_y', '9_63_x', '9_63_y', '9_64_x', '9_64_y', '9_65_x', '9_65_y', '9_66_x', '9_66_y', '9_67_x', '9_67_y', 'skin_0', 'skin_1', 'skin_10', 'skin_11', 'skin_12', 'skin_13', 'skin_14', 'skin_15', 'skin_16', 'skin_17', 'skin_18', 'skin_19', 'skin_2', 'skin_20', 'skin_21', 'skin_22', 'skin_23', 'skin_24', 'skin_25', 'skin_3', 'skin_4', 'skin_5', 'skin_6', 'skin_7', 'skin_8', 'skin_9'] beauty_data = beauty_data[select_cols] print(beauty_data.shape) beauty_data.drop(['Image'], axis=1, inplace=True) X_train, X_test, y_train, y_test = train_test_split(beauty_data.drop('label', axis=1), beauty_data['label'], train_size=0.75, test_size=0.25) # tpot = TPOTRegressor(scoring='r2', n_jobs=-1, early_stop=5, verbosity=2) # tpot.fit(X_train, y_train) # print(tpot.score(X_test, y_test)) # tpot.export('../model/tpot_beauty_pipeline.py') atm = ATM() atm.run()
python
from .descriptor import DescriptorType from .object_type import ObjectDict __all__ = ["ObjectDict", "DescriptorType"]
python
from typing import List class Solution: # 141, 逆波兰表达式求值, Medium def evalRPN(self, tokens: List[str]) -> int: stack = [] for token in tokens: if token == "+": oprand2 = stack.pop() oprand1 = stack.pop() stack.append(oprand1 + oprand2) elif token == "*": oprand2 = stack.pop() oprand1 = stack.pop() stack.append(oprand1 * oprand2) elif token == "/": oprand2 = stack.pop() oprand1 = stack.pop() stack.append(int(oprand1 / oprand2)) elif token == "-": oprand2 = stack.pop() oprand1 = stack.pop() stack.append(oprand1 - oprand2) else: stack.append(int(token)) # print(stack) return stack[0] def main(): s = Solution() print(s.evalRPN(tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"])) if __name__ == "__main__": main()
python
# we are here to get weighted-5-node-subgraph, # given edge-count/bi-edge-count/strong-tie-count/weak-tie-count only to distinguish # to leverage on weighte 4 node subgraphs(edge_count, biedge_count, strong_count, weak_count, subNo) # next to share not edge import re,sys,random, os def subg(edges,s4,lf,sf,sfv,ror): # subgraph counts, range from 1 to 13 for 3-node subgraph #subgraph = {} distinct = {} ec = 0 #ec_ij = 0 # edge count within subgraph so as to cluster subgraph bc = 0 #bc_ij = 0 # double directed edges count sc = 0 wc = 0 unit = {} # key as subgraph, and value as features of subgraph fcount = {} # vetex count in the front seat #fcount_ij = {} bcount = {} # vetex count in the back seat #bcount_ij = {} bi_boolean = False # for bi-edge check pair = [] temp = [] third = 0 key = '' #rpair = '' seq = [] # for every subgraph to store all connections #seq_ij = [] # for i,j related conenctions only # sort to begin edges.sort() unit_seq = {} unit_seq_sorted = {} # motif detection take place in edges and e_copy pair = [] key = '' temp = [] nodes = [] features = [] new = '' sub_can = [] for sub in s4: # strong edge count, weak edge count, and sub-no, giving #13 at most #lf.write('') lf.write('We are considering 4 node subgraph: <'+sub+'>\n') for c in edges: nodes = re.split(',',re.split(':',sub)[0]) features = re.split(',',re.split(':',sub)[1]) sub_can = re.split('\'',re.split(':',sub)[2][1:-1]) lf.write('\n') lf.write('============= New Inner Loop ==============\n') lf.write('Innner connection is <'+c+'>\n') key = '' temp = re.split(',',c) if temp[0] in nodes and temp[1] in nodes or \ temp[0] not in nodes and temp[1] not in nodes: continue if temp[0] not in nodes: new = temp[0] nodes.append(new) else: new = temp[1] nodes.append(new) nodes.sort() key = nodes[0]+','+nodes[1]+','+nodes[2]+','+nodes[3]+','+nodes[4] if key in unit.keys(): continue # to see new to other's connection ec = int(features[0]) bc = int(features[1]) sc = int(features[2]) wc = int(features[3]) #fcount = {} #bcount = {} bi_boolean = False seq = [] ### Get edges from this 4-node-subgraph ### for x in sub_can: if len(x)<4: continue seq.append(x) ##### new subgraph found ##### lf.write('We found a new 5_node_subgraph: <'+key+'>\n') lf.write('@@@@@seq for now we have:@@@@@\n') for s in seq: lf.write(s+'\n') # we got a subgraph now, they are e and c # next, get detail relationships across e and c k = '' for n in nodes: if n!=new: bi_boolean = False k = n+','+new+',20' if k in edges: ec += 1 sc += 1 bi_boolean = True seq.append(k) # # if p in fcount.keys(): # fcount[p] = fcount[p] + 1 # else: # fcount[p] = 1 # if third in bcount.keys(): # bcount[third] = bcount[third] + 1 # else: # bcount[third] = 1 k = n+','+new+',10' if k in edges: ec = ec + 1 wc = wc + 1 bi_boolean = True seq.append(k) k = new+','+n+',20' if k in edges: seq.append(k) ec = ec + 1 sc = sc + 1 if bi_boolean == True: bc = bc + 1 bi_boolean = False k = new+','+n+',10' if k in edges: seq.append(k) ec = ec + 1 sc = sc + 1 if bi_boolean == True: bc = bc + 1 bi_boolean = False #lf.write('@@@@@@@@@@Here comes sequences of connections\n') #for s in seq: # lf.write(s+'\n') #lf.write('\n') # check if ec overflow if ec>20: print 'ERROR: ec overflowed!!!'+str(ec) lf.write('ERROR: ec overflowed!!!'+str(ec)+'\n') # subgraph is about to complete # value of unit: unit[key]=str(ec)+','+str(bc)+','+str(sc)+','+str(wc) unit_seq[key]=seq # in order to only maitain single edge, we put it into (small edge no, larger edge no) form temp = [] for s in seq: ss = s[:-3] # get rid of ',20' or ',10' first = re.split(',',ss)[0] second = re.split(',',ss)[1] new = second+','+first if first>second and new not in temp:# in alphabet order, not int order temp.append(new) elif ss not in temp: temp.append(ss) unit_seq_sorted[key]=temp temp = [] lf.write('We appending following binary direction-free edges to unit_seq_sorted as :\n') lf.write(str(unit_seq_sorted[key])+'\n') #double loop ended #print unit lf.write('\n') lf.write('*********Here comes subgraphs************\n') c = 0 for k,v in unit.iteritems(): lf.write(k+':'+v+'\n') sfv.write(k+':'+v+':') sfv.write(str(unit_seq[k])+'\n') c = c+1 lf.write('\n' + str(c) + ' subgraph count has been written into file.\n') # Here we are about to count the distinct number of every single subgraph pp = [] ing_weighted = {} # put ec,bc,sc,wc,sub_no as distinct feature ing = {} #only put sub_no as distinct feature # compute weighted_subgraphs # IT IS the true weighted_subgraphs weighted_subgraph = {} binary_subgraph = {} distinct_weighted = {} for k, v in unit.iteritems(): pp = re.split(',',k) lf.write('We consider key: '+str(k)+'\n') if v not in weighted_subgraph.keys(): weighted_subgraph[v] = 1 else: weighted_subgraph[v] = weighted_subgraph[v] + 1 if v not in ing_weighted.keys(): distinct_weighted[v] = 1 ing_weighted[v]=[] for edge in unit_seq[k]: ing_weighted[v].append(edge) else: temp_temp = [] for edge in unit_seq[k]: if edge not in ing_weighted[v]: temp_temp.append(edge) if len(temp_temp)==len(unit_seq[k]): distinct_weighted[v] += 1 for edge in temp_temp: ing_weighted[v].append(edge) vv = int(re.split(',',v)[-1]) # vv is the exact binary 3 node subgraph no if vv not in binary_subgraph.keys(): binary_subgraph[vv] = 1 else: binary_subgraph[vv] = binary_subgraph[vv] + 1 if vv not in ing.keys(): distinct[vv] = 1 ing[vv]=[] for edge in unit_seq_sorted[k]: ing[vv].append(edge) else: temp_temp = [] for edge in unit_seq_sorted[k]: if edge not in ing[vv]: temp_temp.append(edge) if len(temp_temp)==len(unit_seq_sorted[k]): distinct[vv] += 1 for edge in unit_seq_sorted[k]: ing[vv].append(edge) lf.write('Newly appended a distinct subgraph: \n') # to count the number of ditinct subgraphs # it may not that precise cauz <sc,wc,13_sub> is short for weighted_3_subgraph #lf.write('Here comes the distinct version of subgraphs.\n') #for k,v in ing.iteritems(): # lf.write(str(k)+':'+str(len(v)/4)+'\n') # distinct[k] = len(v)/4 #print subgraph #sf.write('\n') sf.write('Subgraph to be: \n') if ror==0:# it is real network # write subgraph.txt with distinct no in for k,v in weighted_subgraph.iteritems(): vv = int(re.split(',',k)[-1]) #print vv # weighted subgraph: weighted appearance, distinct count on binary subgraph (1~13): raw appearance, distinct count on weighted subgraph sf.write(str(k)+':'+str(v)+','+str(distinct_weighted[k])+':'+str(binary_subgraph[vv])+','+str(distinct[vv])+'\n') else: for k,v in weighted_subgraph.iteritems(): sf.write(str(k)+':'+str(v)+'\n') def main(argv): # to store edges from file edges = [] subgraph_of_4_node = [] subgraph_file_verbose ='' pair = [] rf = '' f = '' log_file = '' #log_file_random = '' subgraph_file = '' line = '' sub4 = '' for parents,dirnames,filenames in os.walk(argv[1]): for fn in filenames: if '_edges.txt' in fn: print '------Begin Processing '+fn+'--------' edges = [] subgraph_of_4_node = [] line = '' rf = open(argv[1]+'/'+fn,'r') sub4 = open(argv[1]+'/'+fn[:fn.index('_')]+'_weighted_4_node_subgraph_verbose.txt','r') f = open(argv[1]+'/'+fn[:fn.index('_')]+'_weighted_5_node_simple.txt','w+') log_file = open(argv[1]+'/'+fn[:fn.index('_')]+'_weighted_5_node_log.txt','w') #log_file_random = open(argv[1]+'/'+fn[:str(fn).index('_')]+'_weighted_4_node_random_log.txt','w') subgraph_file = open(argv[1]+'/'+fn[:str(fn).index('_')]+'_weighted_5_node_subgraph.txt','w+') subgraph_file_verbose = open(argv[1]+'/'+fn[:str(fn).index('_')]+'_weighted_5_node_subgraph_verbose.txt','w+') #get 3_node_subgraphs for line in sub4: subgraph_of_4_node.append(line.strip()) for line in rf: if('Source' in line): continue line = line[:line.index(',D')]+line[line.index('d,')+1:] # weight is considered here f.write(line) #into set f.seek(0) for line in f: pair = re.split(',',line[:-1]) key = pair[0]+','+pair[1]+','+pair[2] edges.append(key) edges.sort() # call to find subgraphs # for original network subg(edges,subgraph_of_4_node, log_file,subgraph_file,subgraph_file_verbose,0) # for randomized network #for m in range(M): # randomize(edges,single,double,log_file_random,subgraph_file,len(edges))# motif detection print '======End Processing '+fn+'======' if __name__ == '__main__': main(sys.argv)
python
#!/usr/bin/env python from distutils.core import setup setup(name="Eng Phys Office Space Tools", description="A set of scripts to work with the Eng Phys office space committee", version="0.1dev", author="Tim van Boxtel", author_email="[email protected]", py_modules=['parse-grad-students'], classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Development Status :: 4 - Beta", "Environment :: Other Environment", "Intended Audience :: Developers", "License :: OSI Approved :: MIT", ])
python
import tweepy #https://github.com/tweepy/tweepy import csv import pandas as pd # Used for progress bar import time import sys #Twitter API credentials consumer_key = "NBNgPGCBeGv80PcsYU3QWU94d" consumer_secret = "lvAaoSInlF9mPonoMMldFq5ZE96oAAl30TLh6ynVwK2tauvOQC" access_key = "1311728151265832961-AaFHXfZtozEgfoVZoFnNqzqRZEWQAr" access_secret = "Az8Ezlg77NtkZ8coTqXGsXW2wVh7Wbpm3JTsAkoPsrq7z" OAUTH_KEYS = {'consumer_key':consumer_key, 'consumer_secret':consumer_secret, 'access_token_key':access_key, 'access_token_secret':access_secret} auth = tweepy.OAuthHandler(OAUTH_KEYS['consumer_key'], OAUTH_KEYS['consumer_secret']) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) search = tweepy.Cursor(api.search, q='#Trump').items(4000) # Create lists for each field desired from the tweets. sn = [] text = [] timestamp =[] for tweet in search: #print tweet.user.screen_name, tweet.created_at, tweet.text timestamp.append(tweet.created_at) sn.append(tweet.user.screen_name) text.append(tweet.text) # Convert lists to dataframe df = pd.DataFrame() df['timestamp'] = timestamp df['sn'] = sn df['text'] = text # Prepare ford date filtering. Adding an EST time column since chat hosted by people in that time zone. df['timestamp'] = pd.to_datetime(df['timestamp']) df['EST'] = df['timestamp'] - pd.Timedelta(hours=5) #Convert to EST df['EST'] = pd.to_datetime(df['EST']) # Subset for the dates required. Can select a specific date or time to examine. import time df = df[(pd.to_datetime("2015-12-14 20:00:00", format='%Y-%m-%d %H:%M:%S') < df['EST']) & (df['EST'] < pd.to_datetime("2015-12-14 21:00:00", format='%Y-%m-%d %H:%M:%S'))] # Write out Tweets in case they are needed later. df.to_csv('edtechtweets.csv',index = False,encoding='utf-8') # Create a list of the unique usernames in order to see which users we need to retrieve friends for. allNames = list(df['sn'].unique()) # Initialize dataframe of users that will hold the edge relationships dfUsers = pd.DataFrame() dfUsers['userFromName'] =[] dfUsers['userFromId'] =[] dfUsers['userToId'] = [] count = 0 nameCount = len(allNames) # The choice to retrieve friends (who the user is following) rather than followers is intentional. # Either would work. However, many Twitter users follow fewer users than are following them, especially the most popular accounts. # This reduces the number of very large calls to Twitter API, which seemed to cause problems. for name in allNames: # Build list of friends currentFriends = [] for page in tweepy.Cursor(api.friends_ids, screen_name=name).pages(): currentFriends.extend(page) currentId = api.get_user(screen_name=name).id currentId = [currentId] * len(currentFriends) currentName = [name] * len(currentFriends) dfTemp = pd.DataFrame() dfTemp['userFromName'] = currentName dfTemp['userFromId'] = currentId dfTemp['userToId'] = currentFriends dfUsers = pd.concat([dfUsers,dfTemp]) time.sleep(70) # avoids hitting Twitter rate limit # Progress bar to track approximate progress count +=1 per = round(count*100.0/nameCount,1) sys.stdout.write("\rTwitter call %s%% complete." % per) sys.stdout.flush() # Again, to limit the number of calls to Twitter API, just do lookups on followers that connect to those in our user group. # We are not interested in "friends" that are not part of this community. fromId = dfUsers['userFromId'].unique() dfChat = dfUsers[dfUsers['userToId'].apply(lambda x: x in fromId)] # No more Twitter API lookups are necessary. Create a lookup table that we will use to get the verify the userToName dfLookup = dfChat[['userFromName','userFromId']] dfLookup = dfLookup.drop_duplicates() dfLookup.columns = ['userToName','userToId'] dfCommunity = dfUsers.merge(dfLookup, on='userToId') dfCommunity.to_csv('dfCommunity.csv',index = False,encoding='utf-8')
python
#Pygments Tk Text from http://code.google.com/p/pygments-tk-text/ #Original Developer: Jonathon Eunice: [email protected] __author__ = 'Robert Cope' __original__author__ = 'Jonathan Eunice'
python
import random def generatePassword(pwlength): alphabet = "abcdefghijklmnopqrstuvwxyz" passwords = [] for i in pwlength: password = "" for j in range(i): next_letter_index = random.randrange(len(alphabet)) password = password + alphabet[next_letter_index] password = replaceWithNumber(password) password = replaceWithUppercaseLetter(password) passwords.append(password) return passwords def replaceWithNumber(pword): for i in range(random.randrange(1,3)): replace_index = random.randrange(len(pword)//2) pword = pword[0:replace_index] + str(random.randrange(10)) + pword[replace_index+1:] return pword def replaceWithUppercaseLetter(pword): for i in range(random.randrange(1,3)): replace_index = random.randrange(len(pword)//2,len(pword)) pword = pword[0:replace_index] + pword[replace_index].upper() + pword[replace_index+1:] return pword def main(): numPasswords = int(input("How many passwords do you want to generate? ")) print("Generating " +str(numPasswords)+" passwords") passwordLengths = [] print("Minimum length of password should be 3") for i in range(numPasswords): length = int(input("Enter the length of Password #" + str(i+1) + " ")) if length<3: length = 3 passwordLengths.append(length) Password = generatePassword(passwordLengths) for i in range(numPasswords): print ("Password #"+str(i+1)+" = " + Password[i]) main() #This program is created by Harsh Sharma
python
GAME_SIZE = 4 SCORE_TO_WIN1 = 512 SCORE_TO_WIN2 = 1024 SCORE_TO_WIN3 = 2048 SCORE_TO_WIN0 = 256 from game2048.game import Game from game2048.agents import ExpectiMaxAgent # save the dataset f1 = open("dataset_256_3.txt", "w") f2 = open("dataset_512_3.txt", "w") f3 = open("dataset_1024_3.txt", "w") # for i in range(100): # print("i = ", i) # game = Game(size=GAME_SIZE,score_to_win=SCORE_TO_WIN1) # agent = ExpectiMaxAgent(game=game) # while True: # direction = agent.step() # if (game.end != 0): # break # # print (game.board) # # print ("direction: ", direction) # for i in range(4): # for j in range(4): # #f.write(game.board[i,j]) # print(game.board[i, j], file = f1) # print(direction, file = f1) # #f.write(direction) # game.move(direction) # #f.write('\n') # for i in range(100): # print("i = ", i) # game = Game(size=GAME_SIZE,score_to_win=SCORE_TO_WIN2) # agent = ExpectiMaxAgent(game=game) # while True: # direction = agent.step() # if (game.end != 0): # break # # print (game.board) # # print ("direction: ", direction) # for i in range(4): # for j in range(4): # #f.write(game.board[i,j]) # print(game.board[i, j], file = f2) # print(direction, file = f2) # #f.write(direction) # game.move(direction) # #f.write('\n') for i in range(300): print("i = ", i) game = Game(size=GAME_SIZE,score_to_win=SCORE_TO_WIN0) agent = ExpectiMaxAgent(game=game) while True: direction = agent.step() if (game.end != 0): break # print (game.board) # print ("direction: ", direction) if game.board.max() <256: for i in range(4): for j in range(4): #f.write(game.board[i,j]) print(game.board[i, j], file = f1) print(direction, file = f1) elif game.board.max() <512: for i in range(4): for j in range(4): #f.write(game.board[i,j]) print(game.board[i, j], file = f2) print(direction, file = f2) else: for i in range(4): for j in range(4): #f.write(game.board[i,j]) print(game.board[i, j], file = f3) print(direction, file = f3) #f.write(direction) game.move(direction) #f.write('\n')
python
""" #################################################################################################### # Copyright Info : Copyright (c) Davar Lab @ Hikvision Research Institute. All rights reserved. # Filename : embedding.py # Abstract : torch.nn.Embedding function encapsulation. # Current Version: 1.0.0 # Date : 2021-05-20 ###################################################################################################### """ from torch import nn from mmcv.runner import load_checkpoint from davarocr.davar_common.models.builder import EMBEDDING from davarocr.davar_common.utils import get_root_logger @EMBEDDING.register_module() class Embedding(nn.Module): """ Embedding layer. Raw implementation: nn.Embedding(vocab_size, embedding_dim)""" def __init__(self, vocab_size, embedding_dim, drop_out=0.): """ Args: vocab_size (int): size of vocabulary. embedding_dim (int): dim of input features drop_out (float): drop_out ratio if required. """ super().__init__() self.drop_out = drop_out self.embedding = nn.Embedding(vocab_size, embedding_dim) self.drop_out_layer = nn.Dropout(self.drop_out) def init_weights(self, pretrained=None): """ Weight initialization Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() logger.info("Embedding:") load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: return else: raise TypeError('pretrained must be a str or None') def forward(self, input_feature): """ Forward computation Args: input_feature (Tensor): in shape of [B x N x L] Returns: Tensor: in shape of [B x N x L x D], where D is the embedding_dim. """ embed_vector = self.embedding(input_feature) embed_vector = self.drop_out_layer(embed_vector) return embed_vector
python
from tweepy import Stream from stream_tweets import StockListener import get_old_tweets import logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) def getTweets(stock_name): twitter_stream = Stream(get_old_tweets.auth, StockListener(stock_name)) twitter_stream.filter(track=[("$"+stock_name)]) logging.info("Stream for", stock_name, "is active...") get_old_tweets.get_past_tweets(stock_name) logging.info("Past tweets of", stock_name, "added to db...")
python
from painter.config import NAME, PATH, SHELVES from templates import app # Painter base PAINTER = app.App(NAME, PATH, SHELVES)
python
"""Various lower-level functions to support the computation of steady states""" import warnings import numpy as np import scipy.optimize as opt from numbers import Real from functools import partial from ...utilities import misc, solvers def instantiate_steady_state_mutable_kwargs(dissolve, block_kwargs, solver_kwargs, constrained_kwargs): """Instantiate mutable types from `None` default values in the steady_state function""" if dissolve is None: dissolve = [] if block_kwargs is None: block_kwargs = {} if solver_kwargs is None: solver_kwargs = {} if constrained_kwargs is None: constrained_kwargs = {} return dissolve, block_kwargs, solver_kwargs, constrained_kwargs def provide_solver_default(unknowns): if len(unknowns) == 1: bounds = list(unknowns.values())[0] if not isinstance(bounds, tuple) or bounds[0] > bounds[1]: raise ValueError("Unable to find a compatible one-dimensional solver with provided `unknowns`.\n" " Please provide valid lower/upper bounds, e.g. unknowns = {`a`: (0, 1)}") else: return "brentq" elif len(unknowns) > 1: init_values = list(unknowns.values()) if not np.all([isinstance(v, Real) for v in init_values]): raise ValueError("Unable to find a compatible multi-dimensional solver with provided `unknowns`.\n" " Please provide valid initial values, e.g. unknowns = {`a`: 1, `b`: 2}") else: return "broyden_custom" else: raise ValueError("`unknowns` is empty! Please provide a dict of keys/values equal to the number of unknowns" " that need to be solved for.") def run_consistency_check(cresid, ctol=1e-9, fragile=False): if cresid > ctol: if fragile: raise RuntimeError(f"The target values evaluated for the proposed set of unknowns produce a " f"maximum residual value of {cresid}, which is greater than the ctol {ctol}.\n" f" If used, check if HelperBlocks are indeed compatible with the DAG.\n" f" If this is not an issue, adjust ctol accordingly.") else: warnings.warn(f"The target values evaluated for the proposed set of unknowns produce a " f"maximum residual value of {cresid}, which is greater than the ctol {ctol}.\n" f" If used, check if HelperBlocks are indeed compatible with the DAG.\n" f" If this is not an issue, adjust ctol accordingly.") # Allow targets to be specified in the following formats # 1) target = {"asset_mkt": 0} or ["asset_mkt"] (the standard case, where the target = 0) # 2) target = {"r": 0.01} (allowing for the target to be non-zero) # 3) target = {"K": "A"} (allowing the target to be another variable in potential_args) def compute_target_values(targets, potential_args): """ For a given set of target specifications and potential arguments available, compute the targets. Called as the return value for the residual function when utilizing the numerical solver. targets: Refer to `steady_state` function docstring potential_args: Refer to the `steady_state` function docstring for the "calibration" variable return: A `float` (if computing a univariate target) or an `np.ndarray` (if using a multivariate target) """ target_values = np.empty(len(targets)) for (i, t) in enumerate(targets): v = targets[t] if isinstance(targets, dict) else 0 if type(v) == str: target_values[i] = potential_args[t] - potential_args[v] else: target_values[i] = potential_args[t] - v # Univariate solvers require float return values (and not lists) if len(targets) == 1: return target_values[0] else: return target_values def compare_steady_states(ss_ref, ss_comp, tol=1e-8, name_map=None, internal=True, check_same_keys=True, verbose=False): """Check if two steady state dicts (can be flat dicts or SteadyStateDict objects) are the same up to a tolerance""" if name_map is None: name_map = {} valid = True # Compare the steady state values present in both ss_ref and ss_comp if internal: if not hasattr(ss_ref, "internal") or not hasattr(ss_comp, "internal"): warnings.warn("The provided steady state dicts do not both have .internal attrs. Will only compare" " top-level values") ds_to_check = [(ss_ref, ss_comp, "toplevel")] else: ds_to_check = [(ss_ref, ss_comp, "toplevel")] + [(ss_ref.internal[i], ss_comp.internal[i], i + "_internal") for i in ss_ref.internal] else: ds_to_check = [(ss_ref, ss_comp, "toplevel")] for ds in ds_to_check: d_ref, d_comp, level = ds for key_ref in d_ref.keys(): if key_ref in d_comp.keys(): key_comp = key_ref elif key_ref in name_map: key_comp = name_map[key_ref] else: continue if np.isscalar(d_ref[key_ref]): resid = abs(d_ref[key_ref] - d_comp[key_comp]) else: resid = np.linalg.norm(d_ref[key_ref].ravel() - d_comp[key_comp].ravel(), np.inf) if verbose: print(f"{key_ref} resid: {resid}") else: if not np.all(np.isclose(resid, 0., atol=tol)): valid = False # Show the steady state values present in only one of d_ref or d_comp, i.e. if there are missing keys if check_same_keys: d_ref_incl_mapped = set(d_ref.keys()) - set(name_map.keys()) d_comp_incl_mapped = set(d_comp.keys()) - set(name_map.values()) diff_keys = d_ref_incl_mapped.symmetric_difference(d_comp_incl_mapped) if diff_keys: if verbose: print(f"At level '{level}', the keys present only one of the two steady state dicts are {diff_keys}") valid = False return valid def solve_for_unknowns(residual, unknowns, solver, solver_kwargs, residual_kwargs=None, constrained_method="linear_continuation", constrained_kwargs=None, tol=2e-12, verbose=False): """Given a residual function (constructed within steady_state) and a set of bounds or initial values for the set of unknowns, solve for the root. residual: `function` A function to be supplied to a numerical solver that takes unknown values as arguments and returns computed targets. unknowns: `dict` Refer to the `steady_state` function docstring for the "unknowns" variable targets: `dict` Refer to the `steady_state` function docstring for the "targets" variable tol: `float` The absolute convergence tolerance of the computed target to the desired target value in the numerical solver solver: `str` Refer to the `steady_state` function docstring for the "solver" variable solver_kwargs: Refer to the `steady_state` function docstring for the "solver_kwargs" variable return: The root[s] of the residual function as either a scalar (float) or a list of floats """ if residual_kwargs is None: residual_kwargs = {} scipy_optimize_uni_solvers = ["bisect", "brentq", "brenth", "ridder", "toms748", "newton", "secant", "halley"] scipy_optimize_multi_solvers = ["hybr", "lm", "broyden1", "broyden2", "anderson", "linearmixing", "diagbroyden", "excitingmixing", "krylov", "df-sane"] # Wrap kwargs into the residual function residual_f = partial(residual, **residual_kwargs) if solver is None: raise RuntimeError("Must provide a numerical solver from the following set: brentq, broyden, solved") elif solver in scipy_optimize_uni_solvers: initial_values_or_bounds = extract_univariate_initial_values_or_bounds(unknowns) result = opt.root_scalar(residual_f, method=solver, xtol=tol, **initial_values_or_bounds, **solver_kwargs) if not result.converged: raise ValueError(f"Steady-state solver, {solver}, did not converge.") unknown_solutions = result.root elif solver in scipy_optimize_multi_solvers: initial_values, bounds = extract_multivariate_initial_values_and_bounds(unknowns) # If no bounds were provided if not bounds: result = opt.root(residual_f, initial_values, method=solver, tol=tol, **solver_kwargs) else: constrained_residual = constrained_multivariate_residual(residual_f, bounds, verbose=verbose, method=constrained_method, **constrained_kwargs) result = opt.root(constrained_residual, initial_values, method=solver, tol=tol, **solver_kwargs) if not result.success: raise ValueError(f"Steady-state solver, {solver}, did not converge." f" The termination status is {result.status}.") unknown_solutions = list(result.x) # TODO: Implement a more general interface for custom solvers, so we don't need to add new elifs at this level # everytime a new custom solver is implemented. elif solver == "broyden_custom": initial_values, bounds = extract_multivariate_initial_values_and_bounds(unknowns) # If no bounds were provided if not bounds: unknown_solutions, _ = solvers.broyden_solver(residual_f, initial_values, tol=tol, verbose=verbose, **solver_kwargs) else: constrained_residual = constrained_multivariate_residual(residual_f, bounds, verbose=verbose, method=constrained_method, **constrained_kwargs) unknown_solutions, _ = solvers.broyden_solver(constrained_residual, initial_values, verbose=verbose, tol=tol, **solver_kwargs) unknown_solutions = list(unknown_solutions) elif solver == "newton_custom": initial_values, bounds = extract_multivariate_initial_values_and_bounds(unknowns) # If no bounds were provided if not bounds: unknown_solutions, _ = solvers.newton_solver(residual_f, initial_values, tol=tol, verbose=verbose, **solver_kwargs) else: constrained_residual = constrained_multivariate_residual(residual_f, bounds, verbose=verbose, method=constrained_method, **constrained_kwargs) unknown_solutions, _ = solvers.newton_solver(constrained_residual, initial_values, tol=tol, verbose=verbose, **solver_kwargs) unknown_solutions = list(unknown_solutions) elif solver == "solved": # If the model either doesn't require a numerical solution or is being evaluated at a candidate solution # simply call residual_f once to populate the `ss_values` dict residual_f(unknowns.values()) unknown_solutions = unknowns.values() else: raise RuntimeError(f"steady_state is not yet compatible with {solver}.") return dict(misc.smart_zip(unknowns.keys(), unknown_solutions)) def extract_univariate_initial_values_or_bounds(unknowns): val = next(iter(unknowns.values())) if np.isscalar(val): return {"x0": val} else: return {"bracket": (val[0], val[1])} def extract_multivariate_initial_values_and_bounds(unknowns, fragile=False): """Provided a dict mapping names of unknowns to initial values/bounds, return separate dicts of the initial values and bounds. Note: For one-sided bounds, simply put np.inf/-np.inf as the other side of the bounds, so there is no ambiguity about which is the unconstrained side. """ initial_values = [] multi_bounds = {} for k, v in unknowns.items(): if np.isscalar(v): initial_values.append(v) elif len(v) == 2: if fragile: raise ValueError(f"{len(v)} is an invalid size for the value of an unknown." f" the values of `unknowns` must either be a scalar, pertaining to a" f" single initial value for the root solver to begin from," f" a length 2 tuple, pertaining to a lower bound and an upper bound," f" or a length 3 tuple, pertaining to a lower bound, initial value, and upper bound.") else: warnings.warn("Interpreting values of `unknowns` from length 2 tuple as lower and upper bounds" " and averaging them to get a scalar initial value to provide to the solver.") initial_values.append((v[0] + v[1])/2) elif len(v) == 3: lb, iv, ub = v assert lb < iv < ub initial_values.append(iv) multi_bounds[k] = (lb, ub) else: raise ValueError(f"{len(v)} is an invalid size for the value of an unknown." f" the values of `unknowns` must either be a scalar, pertaining to a" f" single initial value for the root solver to begin from," f" a length 2 tuple, pertaining to a lower bound and an upper bound," f" or a length 3 tuple, pertaining to a lower bound, initial value, and upper bound.") return np.asarray(initial_values), multi_bounds def residual_with_linear_continuation(residual, bounds, eval_at_boundary=False, boundary_epsilon=1e-4, penalty_scale=1e1, verbose=False): """Modify a residual function to implement bounds by an additive penalty for exceeding the boundaries provided, scaled by the amount the guess exceeds the boundary. e.g. For residual function f(x), desiring x in (0, 1) (so assuming eval_at_boundary = False) If the guess for x is 1.1 then we will censor to x_censored = 1 - boundary_epsilon, and return f(x_censored) + penalty (where the penalty does not require re-evaluating f() which may be costly) residual: `function` The function whose roots we want to solve for bounds: `dict` A dict mapping the names of the unknowns (`str`) to length two tuples corresponding to the lower and upper bounds. eval_at_boundary: `bool` Whether to allow the residual function to be evaluated at exactly the boundary values or not. Think of it as whether the solver will treat the bounds as creating a closed or open set for the search space. boundary_epsilon: `float` The amount to adjust the proposed guess, x, by to calculate the censored value of the residual function, when the proposed guess exceeds the boundaries. penalty_scale: `float` The linear scaling factor for adjusting the penalty for the proposed unknown values exceeding the boundary. verbose: `bool` Whether to print out additional information for how the constrained residual function is behaving during optimization. Useful for tuning the solver. """ lbs = np.asarray([v[0] for v in bounds.values()]) ubs = np.asarray([v[1] for v in bounds.values()]) def constr_residual(x, residual_cache=[]): """Implements a constrained residual function, where any attempts to evaluate x outside of the bounds provided will result in a linear penalty function scaled by `penalty_scale`. Note: We are purposefully using residual_cache as a mutable default argument to cache the most recent valid evaluation (maintain state between function calls) of the residual function to induce solvers to backstep if they encounter a region of the search space that returns nan values. See Hitchhiker's Guide to Python post on Mutable Default Arguments: "When the Gotcha Isn't a Gotcha" """ if eval_at_boundary: x_censored = np.where(x < lbs, lbs, x) x_censored = np.where(x > ubs, ubs, x_censored) else: x_censored = np.where(x < lbs, lbs + boundary_epsilon, x) x_censored = np.where(x > ubs, ubs - boundary_epsilon, x_censored) residual_censored = residual(x_censored) if verbose: print(f"Attempted x is {x}") print(f"Censored x is {x_censored}") print(f"The residual_censored is {residual_censored}") if np.any(np.isnan(residual_censored)): # Provide a scaled penalty to the solver when trying to evaluate residual() in an undefined region residual_censored = residual_cache[0] * penalty_scale if verbose: print(f"The new residual_censored is {residual_censored}") else: if not residual_cache: residual_cache.append(residual_censored) else: residual_cache[0] = residual_censored if verbose: print(f"The residual_cache is {residual_cache[0]}") # Provide an additive, scaled penalty to the solver when trying to evaluate residual() outside of the boundary residual_with_boundary_penalty = residual_censored + \ (x - x_censored) * penalty_scale * residual_censored return residual_with_boundary_penalty return constr_residual def constrained_multivariate_residual(residual, bounds, method="linear_continuation", verbose=False, **constrained_kwargs): """Return a constrained version of the residual function, which accounts for bounds, using the specified method. See the docstring of the specific method of interest for further details.""" if method == "linear_continuation": return residual_with_linear_continuation(residual, bounds, verbose=verbose, **constrained_kwargs) # TODO: Implement logistic transform as another option for constrained multivariate residual else: raise ValueError(f"Method {method} for constrained multivariate root-finding has not yet been implemented.")
python
from django.db import models from .book import Book from .language import Language class BookLanguage(models.Model): id = models.AutoField( primary_key=True, editable=False) book = models.ForeignKey( Book, db_column='book_id', blank=False, null=False, on_delete=models.PROTECT) language = models.ForeignKey( Language, db_column='language_id', blank=False, null=False, on_delete=models.PROTECT ) name = models.CharField( max_length=100, blank=False, null=False) abreviation = models.CharField( max_length=100, blank=True, null=True) class Meta: verbose_name = 'Book language' verbose_name_plural = 'Book language' db_table = 'believe_book_lang' def __str__(self): return self.name
python
from __future__ import absolute_import, unicode_literals from appearance.classes import Icon icon_acl_list = Icon(driver_name='fontawesome', symbol='lock')
python
#!/usr/bin/env/python3 import os import sys import typing THIS_SCRIPT_DIR = sys.path[0] INCLUDE_DIR = THIS_SCRIPT_DIR + "/../src/include/cleantype/" ALL_IN_ONE_FILE = THIS_SCRIPT_DIR + "/include/cleantype/cleantype.hpp" MAIN_TITLE = """ // CleanType : amalgamated version // // This file is part of CleanType: Clean Types for C++ // Copyright Pascal Thomet - 2018 // Distributed under the Boost Software License, Version 1.0. (see LICENSE.md) """ TITLE = """ ////////////////////////////////////////// //// Header: HEADER_FILE ////////////////////////////////////////// """ FileName = typing.NewType("Filename", str) FileContent = typing.NewType("FileContent", str) CodeLine = typing.NewType("CodeLine", str) def read_file(file: FileName) -> FileContent: with open(file, "r") as f: r = f.read() return r def get_included_file(codeline: CodeLine) -> typing.Optional[FileName]: search = "#include <cleantype/" if search in codeline: included_file = codeline.replace(search, "") included_file = included_file[:-1] return included_file else: return None def process_header_file(header_file: FileName, already_processed_headers: [FileName] = []) -> FileContent: if header_file in already_processed_headers: return "" already_processed_headers.append(header_file) dst_file_content = TITLE.replace("HEADER_FILE", header_file) original_file_content = read_file(INCLUDE_DIR + header_file) for line in original_file_content.split("\n"): included_file = get_included_file(line) if included_file is not None: dst_file_content = dst_file_content + \ process_header_file(included_file, already_processed_headers) else: if "#pragma once" not in line: dst_file_content = dst_file_content + line + "\n" return dst_file_content def make_all_in_one() -> str: c = process_header_file("cleantype.hpp") c = "#pragma once\n" + MAIN_TITLE + c return c if __name__ == "__main__": content = make_all_in_one() # print(make_all_in_one()) with open(ALL_IN_ONE_FILE, "w") as f: f.write(content) print("{} was created".format(ALL_IN_ONE_FILE))
python
import datetime from bs4 import BeautifulSoup from kik_unofficial.utilities.cryptographic_utilities import CryptographicUtils from kik_unofficial.datatypes.xmpp.base_elements import XMPPElement, XMPPResponse class GetMyProfileRequest(XMPPElement): def __init__(self): super().__init__() def serialize(self) -> bytes: data = ('<iq type="get" id="{}">' '<query xmlns="kik:iq:user-profile" />' '</iq>').format(self.message_id) return data.encode() class GetMyProfileResponse(XMPPResponse): def __init__(self, data: BeautifulSoup): super().__init__(data) self.first_name = get_text_safe(data, "first") self.last_name = get_text_safe(data, "last") self.username = get_text_safe(data, "username") # Birthday set upon registration using date format yyyy-MM-dd # Server seems to default to 2000-01-01 if a birthday wasn't set during sign up self.birthday = get_text_safe(data, "birthday") # Token that is used to start the OAuth flow for Kik Live API requests self.session_token = get_text_safe(data, "session-token") # Token expiration date in ISO 8601 format # When the token expires, requesting your profile information again # should return the new session token. self.session_token_expiration = get_text_safe(data, "session-token-expiration") self.notify_new_people = True if get_text_safe(data, "notify-new-people") == "true" else False self.verified = True if data.verified else False if data.find("email"): self.email = data.find("email").text self.email_is_confirmed = "true" == data.find("email").get("confirmed") else: self.email = None self.email_is_confirmed = False if data.find("pic"): # append /orig.jpg for the full resolution # append /thumb.jpg for a smaller resolution self.pic_url = data.find("pic").text else: self.pic_url = None # Once the session token is expired, call get_my_profile again to get the new token def is_valid_token(self): if self.session_token is None or self.session_token_expiration is None: return False now = datetime.datetime.now() try: expire_time = datetime.datetime.strptime(self.session_token_expiration, "%Y-%m-%dT%H:%M:%S.%fZ") except ValueError: return False return now < expire_time def __str__(self): return f'Username: {self.username}' \ f'\nDisplay name: {self.first_name} {self.last_name}' \ f'\nBirthday: {self.birthday}' \ f'\nEmail: {self.email} (confirmed: {self.email_is_confirmed})' \ f'\nPic: {self.pic_url + "/orig.jpg" if self.pic_url else "none"}' def __repr__(self): return "GetMyProfileResponse(first_name={}, last_name={}, username={}, birthday={}, " \ "session_token={}, session_token_expiration={}, notify_new_people={}, " \ "verified={}, email={}, email_is_confirmed={}, pic_url={})".format(self.first_name, self.last_name, self.username, self.birthday, self.session_token, self.session_token_expiration, self.notify_new_people, self.verified, self.email, self.email_is_confirmed, self.pic_url) def get_text_safe(data: BeautifulSoup, tag: str): return data.find(tag).text if data.find(tag) else None class ChangeNameRequest(XMPPElement): def __init__(self, first_name, last_name): super().__init__() self.first_name = first_name self.last_name = last_name def serialize(self) -> bytes: data = ('<iq type="set" id="{}">' '<query xmlns="kik:iq:user-profile">' '<first>{}</first>' '<last>{}</last>' '</query>' '</iq>').format(self.message_id, self.first_name, self.last_name) return data.encode() class ChangePasswordRequest(XMPPElement): def __init__(self, old_password, new_password, email, username): super().__init__() self.old_password = old_password self.new_password = new_password self.email = email self.username = username def serialize(self): passkey_e = CryptographicUtils.key_from_password(self.email, self.old_password) passkey_u = CryptographicUtils.key_from_password(self.username, self.new_password) data = ('<iq type="set" id="{}">' '<query xmlns="kik:iq:user-profile">' '<passkey-e>{}</passkey-e>' '<passkey-u>{}</passkey-u>' '</query>' '</iq>').format(self.message_id, passkey_e, passkey_u) return data.encode() class ChangeEmailRequest(XMPPElement): def __init__(self, password, old_email, new_email): super().__init__() self.password = password self.old_email = old_email self.new_email = new_email def serialize(self): passkey_e = CryptographicUtils.key_from_password(self.old_email, self.password) data = ('<iq type="set" id="{}">' '<query xmlns="kik:iq:user-profile">' '<email>{}</email>' '<passkey-e>{}</passkey-e>' '</query>' '</iq>').format(self.message_id, self.new_email, passkey_e) return data.encode()
python
import sys sys.path.append('../../../') import unittest import numpy as np from spiketag.base import ProbeFactory class TestProbe(unittest.TestCase): def test_linear_probe(self): linear_probe = ProbeFactory.genLinearProbe(25e3, 32) expected_type = 'linear' expected_n_group = 32 expected_n_ch = 32 expected_len_group = 3 self.assertEqual(expected_type, linear_probe.type) self.assertEqual(expected_n_group, linear_probe.n_group) self.assertEqual(expected_n_ch, linear_probe.n_ch) self.assertEqual(expected_len_group, linear_probe.len_group) expected_near_ch_1 = [4, 5, 6] near_ch_1 = linear_probe.get_group_ch(5) self.assertListEqual(list(near_ch_1), expected_near_ch_1) expected_near_ch_2 = [-1, 0, 1] near_ch_2 = linear_probe.get_group_ch(0) self.assertListEqual(list(near_ch_2), expected_near_ch_2) expected_near_ch_3 = [30, 31, -1] near_ch_3 = linear_probe.get_group_ch(31) self.assertListEqual(list(near_ch_3), expected_near_ch_3) def test_tetrode_probe(self): tetrode_probe = ProbeFactory.genTetrodeProbe(25e3, 100) expected_type = 'tetrode' expected_n_group = 25 expected_n_ch = 100 expected_len_group = 4 self.assertEqual(expected_type, tetrode_probe.type) self.assertEqual(expected_n_group, tetrode_probe.n_group) self.assertEqual(expected_n_ch, tetrode_probe.n_ch) self.assertEqual(expected_len_group, tetrode_probe._len_group) expected_near_ch_1 = [0, 1, 2, 3] near_ch_1 = tetrode_probe.get_group_ch(0) self.assertListEqual(list(near_ch_1), expected_near_ch_1) near_ch_1 = tetrode_probe.get_group_ch(3) self.assertListEqual(list(near_ch_1), expected_near_ch_1) expected_near_ch_2 = [4, 5, 6, 7] near_ch_2 = tetrode_probe.get_group_ch(4) self.assertListEqual(list(near_ch_2), expected_near_ch_2) expected_near_ch_3 = [96, 97, 98, 99] near_ch_3 = tetrode_probe.get_group_ch(96) self.assertListEqual(list(near_ch_3), expected_near_ch_3) near_ch_3 = tetrode_probe.get_group_ch(99) self.assertListEqual(list(near_ch_3), expected_near_ch_3)
python
"""{{cookiecutter.project_description}}""" import logging from {{cookiecutter.package_name}}.wsgi import ApplicationLoader from {{cookiecutter.package_name}}.version import __version__ # noqa: F401 # initialize logging log = logging.getLogger(__name__) log.addHandler(logging.NullHandler())
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Date : Mar-27-21 01:06 # @Author : Kan HUANG ([email protected]) # @RefLink : https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html from __future__ import unicode_literals, print_function, division import os import random import string import unicodedata from io import open import glob import torch def findFiles(path): return glob.glob(path) all_letters = string.ascii_letters + " .,;'" # Five extra letters n_letters = len(all_letters) def unicodeToAscii(s): """unicodeToAscii Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427 For example, 'Ślusàrski' -> 'Slusarski' """ return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) def readLines(filename): """ Read a file and split into lines. Each file of 'data/names/*.txt' is a text file with names belonging to a category. Every line of these files is a name string belonging to the category of the file. """ lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] def letterToIndex(letter): # Find letter index from all_letters, e.g. "a" = 0 return all_letters.find(letter) def letterToIndex_test(): for l in all_letters: index = all_letters.find(l) print(f"{l}: {index}; ", end='') def letterToTensor(letter): # Just for demonstration, turn a letter into a <1 x n_letters> Tensor tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 # One-hot encoding return tensor def lineToTensor(line): # Turn a line into a <line_length x 1 x n_letters>, # or an array of one-hot letter vectors tensor = torch.zeros(len(line), 1, n_letters) for li, letter in enumerate(line): tensor[li][0][letterToIndex(letter)] = 1 return tensor def categoryFromOutput(output): top_n, top_i = output.topk(1) category_i = top_i[0].item() return all_categories[category_i], category_i # Build the category_lines dictionary, a list of names per language category_lines = {} all_categories = [] for filename in findFiles('data/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories) def randomChoice(l): return l[random.randint(0, len(l) - 1)] def randomTrainingExample(): category = randomChoice(all_categories) line = randomChoice(category_lines[category]) category_tensor = torch.tensor( [all_categories.index(category)], dtype=torch.long) line_tensor = lineToTensor(line) return category, line, category_tensor, line_tensor def main(): # All categories print(f"n_categories: {n_categories}") print(f"all_categories: {all_categories}") # Prepare data's pipeline print(findFiles('data/names/*.txt')) print(unicodeToAscii('Ślusàrski')) print("First 5 names in category Italian:") print(category_lines['Italian'][:5]) # Turning Names into Tensors # A letter is turned into a <1 x n_letters> one-hot Tensor print(letterToTensor('J')) # A name string is turned into a <line_length x 1 x n_letters> one-hot matrix, or an array of one-hot letter vectors # This will make the encoded input matrix very sparse. # print(lineToTensor('Jones')) print(lineToTensor('Jones').size()) # Random choosed exammples for i in range(10): category, line, category_tensor, line_tensor = randomTrainingExample() print('category =', category, '/ line =', line) # print(f"line_tensor.size(): {line_tensor.size()}") if __name__ == "__main__": main()
python
from . import db from flask.ext.login import UserMixin, AnonymousUserMixin from datetime import datetime class ScrapeCount(db.Model): __tablename__ = 'scrapecounts' id = db.Column(db.Integer, primary_key=True) websitename = db.Column(db.String(200)) count = db.Column(db.Integer) date = db.Column(db.DateTime(), default=datetime.utcnow) #user_id = db.Column(db.Integer, db.ForeignKey('users.id')) class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(70), unique=True, index=True) username = db.Column(db.String(70), unique=True, index=True)
python
import json import torchvision import data as data_module from examples.NIPS.generate_data_utils import gather_examples import pandas as pd preprocessable = pd.read_pickle('/home/roigvilamalam/projects/Urban-Sound-Classification/preprocessable.pkl') preprocessable = preprocessable[preprocessable['preprocessable']] preprocessable_filenames = set(preprocessable['filename']) def sound_true_values(dataset): return [ ( "'examples/NIPS/UrbanSounds8K{}'".format(sample['path'][2:]), sample['class'] ) for sample in dataset.dataset.data_arr if sample['path'][3:] in preprocessable_filenames ] def generate_data(): config = json.load(open('../my-config_generate.json')) data_manager = getattr(data_module, config['data']['type'])(config['data']) t_loader = data_manager.get_loader('train', transfs=None) v_loader = data_manager.get_loader('val', transfs=None) def scenario_function(digit, last_digits, threshold, available_digits): if digit == last_digits[-1]: return digit, True return None, None gather_examples( t_loader, 'in_train_data.txt', 'init_train_data.txt', 'holds_train_data.txt', 'sounds_train_data.txt', 'init_sound_train_data.txt', get_true_values=sound_true_values, network_clause='sound', start_sequence=['air_conditioner', 'children_playing', 'drilling', 'gun_shot', 'siren'], end_sequence=['car_horn', 'dog_bark', 'engine_idling', 'jackhammer', 'street_music'], relevant_digits=1, scenario_function=scenario_function, threshold=None ) gather_examples( v_loader, 'in_test_data.txt', 'init_test_data.txt', 'holds_test_data.txt', 'sounds_test_data.txt', 'init_sound_test_data.txt', get_true_values=sound_true_values, network_clause='sound', start_sequence=['air_conditioner', 'children_playing', 'drilling', 'gun_shot', 'siren'], end_sequence=['car_horn', 'dog_bark', 'engine_idling', 'jackhammer', 'street_music'], relevant_digits=1, scenario_function=scenario_function, threshold=None ) if __name__ == '__main__': generate_data()
python
from flask import Flask, render_template, url_for, request, redirect, g, jsonify, flash, session, Markup from bs4 import BeautifulSoup from pymongo import * from functools import wraps from datetime import datetime import requests import csv import boto3 import ckapi import validation from settings import * # FLASK CONFIG ########################### app = Flask(__name__) app.secret_key = APP_SECRET_KEY # with app.app_context(): client = MongoClient(MONGODB_DATABASE['uri']) db = client[MONGODB_DATABASE['database_name']] collection = db[MONGODB_DATABASE['collection_name']] def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): if not session.get('logged_in'): return redirect(url_for('index', next=request.url)) return f(*args, **kwargs) return decorated_function @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': admin_domain = request.form['admin'] username = request.form['username'] password = request.form['password'] session['api_key'] = ckapi.get_api_key( admin_domain, username, password) if session['api_key']: session['logged_in'] = True session['username'] = username return redirect(url_for('welcome')) else: flash_str = "Remote authentication failed. Please try again." flash(flash_str) return redirect(url_for('index')) else: if session.get('logged_in'): return redirect(url_for('welcome')) else: return render_template('login.html') @app.route("/logout") def logout(): session.clear() return redirect(url_for('index')) @app.route('/welcome', methods=['GET', 'POST']) def welcome(): if request.method == 'POST': start_date = request.form['start_date'] end_date = request.form['end_date'] start_date_convert = date_convert_for_api(start_date) #date format mm/dd/yyyy for running api end_date_convert = date_convert_for_api(end_date) #date format mm/dd/yyyy for running api job_id = 'report_{}_{}'.format(start_date.replace('-', ''), end_date.replace('-', '')) created_date = str(datetime.now().strftime('%d-%m-%Y %H:%M:%S')) queue_message = QueueMessage(start_date_convert, end_date_convert, job_id, created_date) sqs_job(queue_message) #collection_name = db[MONGODB_DATABASE['collection_name']] collection.insert({"job_id": job_id, "created_date": created_date, "start_date": start_date, "end_date": end_date, "status": "Queued", "file_link": ""}) message = "Job has been scheduled" job_list = retrieve_scheduled_report(collection) return render_template('welcome.html', message=message, jobs=job_list) else: job_list = retrieve_scheduled_report(collection) return render_template('welcome.html', jobs=job_list) class QueueJob(object): def __init__(self, job_id, start_date, end_date, created_date, status, file_link): self.job_id = job_id self.start_date = start_date self.end_date = end_date self.created_date = created_date self.status = status self.file_link = file_link class QueueMessage(object): def __init__(self, start_date, end_date, job_id, created_date): self.start_date = start_date self.end_date = end_date self.job_id = job_id self.created_date = created_date # TODO: experiment using an ORM so you don't have to create a list, directly pass Mongo query response to template def retrieve_scheduled_report(collection): job_list = [] for i in collection.find({}, {'_id':0}).sort('created_date', -1): job_temp = QueueJob(i['job_id'], i['start_date'], i['end_date'], i['created_date'], i['status'], i['file_link']) job_list.append(job_temp) return job_list def date_convert_for_api(date): date_result = datetime.strptime(date, '%d-%m-%Y').strftime('%m/%d/%y') return date_result def sqs_job(queue_message): message_content = str({ "start_date": "%s" % queue_message.start_date, "end_date": "%s" % queue_message.end_date, "job_id": "%s" %queue_message.job_id, "created_date": "%s" % queue_message.created_date }) client = boto3.client('sqs') client.create_queue(QueueName = SQS_QUEUE['name']) r = client.get_queue_url(QueueName = SQS_QUEUE['name']) queue_url = r['QueueUrl'] client.send_message(QueueUrl=queue_url, MessageBody=message_content, DelaySeconds=10) if __name__ == "__main__": app.run(debug=False)
python
# @Author: Leeroy P. Williams # @Date: 29/09/19 # @Problem: If we list all the natural numbers below 10 that are # multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. # Find the sum of all the multiples of 3 or 5 below 1000 # @Solution: Correct def multi(a, b, array): """ Then print the sum of the multiples """ MULTIPLES = [] for i in array: if (i%a == 0) or (i%b == 0): MULTIPLES.append(i) print(sum(MULTIPLES)) if __name__ == "__main__": nums = [nums for nums in range(1, 1000)] a = 3 b = 5 multi(a, b, nums)
python
# -*- coding: utf-8 -*- """ =============================================================================== Trajectory class for MD simulations (:mod:`sknano.core.atoms._trajectory`) =============================================================================== Classes for analyzing the atom trajectories of molecular dynamics simulations. .. currentmodule:: sknano.core.atoms._trajectory """ from __future__ import absolute_import, division, print_function from __future__ import unicode_literals __docformat__ = 'restructuredtext en' from operator import attrgetter import numpy as np from sknano.core import BaseClass, UserList from ._md_atoms import MDAtom as Atom, MDAtoms as Atoms __all__ = ['Snapshot', 'Trajectory'] class AtomSelection: """:class:`Trajectory` atom selection class. Parameters ---------- traj : :class:`Trajectory` """ def __init__(self, traj): self.traj = traj def all(self, ts=None): """Select all atoms for all snapshots or snapshot at given timestep. Parameters ---------- ts : {None, int}, optional """ if ts is None: for snapshot in self.traj: if not snapshot.selected: continue for i in range(snapshot.Natoms): snapshot.atom_selection[i] = True snapshot.nselected = snapshot.Natoms else: snapshot = self.traj.get_snapshot(ts) for i in range(snapshot.Natoms): snapshot.atom_selection[i] = True snapshot.nselected = snapshot.Natoms class TimeSelection: """:class:`Trajectory` time selection class. Parameters ---------- traj : :class:`Trajectory` """ def __init__(self, traj): self.traj = traj def all(self, ts=None): """Select all trajectory snapshots/timesteps.""" [setattr(snapshot, 'selected', True) for snapshot in self.traj] self.traj.nselected = self.traj.Nsnaps self.traj.atom_selection.all() self.print_fraction_selected() def one(self, ts): """Select only timestep `ts`.""" [setattr(snapshot, 'selected', False) for snapshot in self.traj] try: self.traj.get_snapshot(ts).selected = True self.traj.nselected = 1 except AttributeError: pass self.traj.atom_selection.all() self.print_fraction_selected() def none(self): """Deselect all timesteps.""" [setattr(snapshot, 'selected', False) for snapshot in self.traj] self.traj.nselected = 0 self.print_fraction_selected() def skip(self, n): """Select every `n`\ th timestep from currently selected timesteps.""" count = n - 1 for snapshot in self.traj: if not snapshot.selected: continue count += 1 if count == n: count = 0 continue snapshot.selected = False self.traj.nselected -= 1 self.traj.atom_selection.all() self.print_fraction_selected() def print_fraction_selected(self): print('{}/{} snapshots selected'.format( self.traj.nselected, self.traj.Nsnaps)) class Snapshot(BaseClass): """Container class for :class:`Trajectory` data at single timestep""" def __init__(self, trajectory=None): super().__init__() self.trajectory = trajectory self.atomattrs = None self.attr_dtypes = None self.timestep = None self._atoms = None self.fmtstr = "trajectory={trajectory!r}" @property def atoms(self): """Snapshot atoms.""" atoms = Atoms() for atom in self._atoms: try: reference_atom = \ self.trajectory.reference_atoms.get_atom( int(atom[self.atomattrs.index('id')])) except AttributeError: reference_atom = None try: t0_atom = self.trajectory.t0_atoms.get_atom( int(atom[self.atomattrs.index('id')])) except AttributeError: t0_atom = None attrs = [dtype(value) for dtype, value in zip(self.attr_dtypes, atom)] atoms.append(Atom(reference_atom=reference_atom, t0_atom=t0_atom, **dict(list(zip(self.atomattrs, attrs))))) return atoms @atoms.setter def atoms(self, value): self._atoms = value @property def atom_selection(self): """:class:`~numpy:numpy.ndarray` boolean array.""" return self._atom_selection @atom_selection.setter def atom_selection(self, value): if not isinstance(value, (list, np.ndarray)): raise ValueError('Expected an array_like object.') self._atom_selection = np.asarray(value, dtype=bool) @property def aselect(self): """Alias for :attr:`Snapshot.atom_selection`.""" return self.atom_selection @aselect.setter def aselect(self, value): self.atom_selection = value @property def selected(self): """True/False if this snapshot is selected.""" return self._selected @selected.setter def selected(self, value): self._selected = bool(value) @property def tselect(self): """Alias for :attr:`Snapshot.selected`.""" return self.selected @tselect.setter def tselect(self, value): self.selected = value @property def nselected(self): """Number of selected atoms in this snapshot.""" return self._nselected @nselected.setter def nselected(self, value): self._nselected = int(value) @property def nselect(self): """Alias for :attr:`Snapshot.nselected`.""" return self.nselected @nselect.setter def nselect(self, value): self.nselected = value def get_atoms(self, asarray=False): """Get atoms. Parameters ---------- asarray : :class:`~python:bool` Returns ------- :class:`~numpy:numpy.ndarray` or :class:`MDAtoms` if `asarray` is `True`, the atoms are returned as an :class:`~numpy:numpy.ndarray`, otherwise an :class:`MDAtoms` instance is returned. """ if asarray: return self._atoms return self.atoms def todict(self): return dict(trajectory=self.trajectory) class Trajectory(BaseClass, UserList): """Base class for trajectory analysis.""" def __init__(self, snapshots=None): super().__init__(initlist=snapshots) self.fmtstr = "snapshots={snapshots!r}" self.time_selection = TimeSelection(self) self.atom_selection = AtomSelection(self) self.nselected = 0 self.reference_atoms = None self._reference_snapshot = None self.t0_atoms = None self._t0_snapshot = None @property def Nsnaps(self): """Number of :class:`Snapshot`\ s in `Trajectory`.""" return len(self.data) @property def atom_selection(self): """`AtomSelection` class.""" return self._atom_selection @atom_selection.setter def atom_selection(self, value): if not isinstance(value, AtomSelection): raise ValueError('Expected an `AtomSelection` instance.') self._atom_selection = value @property def time_selection(self): return self._time_selection @time_selection.setter def time_selection(self, value): if not isinstance(value, TimeSelection): raise ValueError('Expected a `TimeSelection instance.') self._time_selection = value @property def aselect(self): """Alias for :attr:`Trajectory.atom_selection`.""" return self.atom_selection @aselect.setter def aselect(self, value): self.atom_selection = value @property def tselect(self): """Alias for :attr:`Trajectory.time_selection`.""" return self.time_selection @tselect.setter def tselect(self, value): self.time_selection = value @property def nselected(self): """Number of selected snapshots.""" return self._nselected @nselected.setter def nselected(self, value): self._nselected = int(value) @property def nselect(self): """Alias for :attr:`Trajectory.nselected`.""" return self.nselected @nselect.setter def nselect(self, value): self.nselected = value @property def snapshots(self): """Returns the list of :class:`Snapshot`\ s.""" return self.data def sort(self, key=attrgetter('timestep'), reverse=False): """Sort the trajectory :class:`Snapshot`\ s.""" super().sort(key=key, reverse=reverse) def cull(self): """Remove duplicate timesteps from `Trajectory`.""" i = 1 while i < len(self.data): if self.data[i].timestep == self.data[i-1].timestep: del self.data[i] else: i += 1 def get_snapshot(self, ts): """Return :class:`Snapshot` with timestep `ts`.""" for snapshot in self: if snapshot.timestep == ts: return snapshot print("No snapshot at ts={:d} exists".format(ts)) def timestep_index(self, ts): """Return index of :class:`Snapshot` with timestep `ts`.""" for i, snapshot in enumerate(self): if snapshot.timestep == ts: return i print("No timestep {:d} exists".format(ts)) @property def reference_snapshot(self): return self._reference_snapshot @reference_snapshot.setter def reference_snapshot(self, value): if not isinstance(value, Snapshot): raise TypeError('Expected a `Snapshot` instance.') self._reference_snapshot = value self.reference_atoms = self.reference_snapshot.atoms self.reference_atoms.update_attrs() @property def t0_snapshot(self): return self._t0_snapshot @t0_snapshot.setter def t0_snapshot(self, value): if not isinstance(value, Snapshot): raise TypeError('Expected a `Snapshot` instance.') self._t0_snapshot = value self.t0_atoms = self.t0_snapshot.atoms self.t0_atoms.update_attrs() @property def timesteps(self): v = np.zeros(self.nselected, dtype=int) for i, snapshot in enumerate(self.data): if snapshot.selected: v[i] = snapshot.timestep return v def todict(self): return dict(snapshots=self.data)
python
from django.http import HttpResponse, HttpResponseRedirect from django.contrib.auth import authenticate, login, logout from django.shortcuts import redirect, render, get_object_or_404 from django.urls import reverse from django.contrib.auth.decorators import login_required from ranbo.forms import * from django.core.exceptions import ObjectDoesNotExist def index(request): thoughts = Post.objects.order_by('-like_times')[:5] context_dict = {'thoughts': thoughts} return render(request, 'ranbo/index.html', context=context_dict) def sort_thought(request): thought = Post.objects.order_by('-post_id')[:5] if request.method == "POST": if 'like' in request.POST: thought = Post.objects.order_by('like_times')[:5] if 'view' in request.POST: thought = Post.objects.order_by('view_times')[:5] return render(request, 'ranbo/index.html', context=thought) def user_login(request): if request.method == "POST": username = request.POST.get('username') password = request.POST.get('password') user = authenticate(username=username, password=password) if user: login(request, user) return redirect(reverse('ranbo:index')) else: print(f"Invalid login details: {username}, {password}") return HttpResponse("Invalid login details supplied.") else: return render(request, 'ranbo/login.html', context={'disable_login_card': True}) @login_required def add_thought(request): form = PostForm() if request.method == 'POST': form = PostForm(request.POST) if form.is_valid(): thought = form.save(commit=False) thought.user = request.user thought.save() return redirect('/ranbo/') else: print(form.errors) return render(request, 'ranbo/add_thought.html', {'form': form}) def register(request): registered = False if request.method == 'POST': user_form = UserForm(request.POST) profile_form = UserProfileForm(request.POST) if user_form.is_valid() and profile_form.is_valid(): user = user_form.save() user.set_password(user.password) user.save() profile = profile_form.save(commit=False) profile.user = user if 'picture' in request.FILES: profile.picture = request.FILES['picture'] profile.save() return render(request, 'ranbo/index.html') else: print(user_form.errors, profile_form.errors) else: user_form = UserForm() profile_form = UserProfileForm() return render(request, 'ranbo/register.html', context={ 'user_form': user_form, 'profile_form': profile_form, 'disable_login_card': True, }) def show_more(request): if request.user.is_authenticated(): thought = Post.objects.order_by('like_times') return render(request, 'ranbo/index.html', context=thought) else: return HttpResponse("You need to login") # def add_comment(request, post_id): # thought = get_object_or_404(Post, Post_id=post_id) # if request.method == 'POST': # form = commentForm(request.POST) # if form.is_vaild(): # comment = form.save(commit=False) # return redirect('ranbo:thought') # else: # return HttpResponse("fail to add comment") def thought_detail(request, post_id): context_dict = {} thought = Post.objects.get(post_id=post_id) context_dict['like'] = thought.like_times context_dict['view'] = thought.view_times context_dict['comment'] = thought.comment return render(request, 'ranbo/thought_detail.html') def user_profile(request, user_id): try: user = User.objects.get(id=user_id) except ObjectDoesNotExist: return render(request, 'ranbo/user_profile.html') thoughts = Post.objects.filter(user=user) total_thoughts = 0 total_likes = 0 total_views = 0 for t in thoughts: total_thoughts += 1 total_likes += t.like_times total_views += t.view_times context_dict = { 'username': user.username, 'total_thoughts': total_thoughts, 'total_likes': total_likes, 'total_views': total_views, 'thoughts': thoughts, } return render(request, 'ranbo/user_profile.html', context=context_dict) @login_required def like_thought(request): if request.method == 'GET': thought_id = request.GET['post_id'] likes = 0 if thought_id: thought = Post.objects.get(post_id=int(thought_id)) if thought: likes = thought.like_times + 1 thought.like_times = likes thought.save() return HttpResponse(likes) def user_edit(request): user = User.object.get(user_id=request.user.user_id) if request.method == 'POST': user_form = UserForm(request.POST) if user_form.is_valid(): user.username = user_form.cleaned_data['username'] user.password = user_form.cleaned_data['password'] user.save() return HttpResponseRedirect('/ranbo/user_profile/') @login_required def user_logout(request): logout(request) return redirect(reverse('ranbo:index'))
python
import nltk, re, pprint from urllib.request import urlopen url = "http://nrs-projects.humboldt.edu/~st10/s20cs328/328lect15-1/328lect15-1-projected_txt.html" raw = urlopen(url).read() print(type(raw)) print(len(raw)) #natural language string nls = nltk.clean_html(raw) tokens = nltk.word_tokenize(raw) print(tokens)
python
import os from setuptools import ( setup, find_packages ) curr_dir = os.path.dirname(os.path.abspath(__file__)) install_requirements = [ "pydantic>=1.8", "cryptography>=3.4" ] setup( name="restless", version="0.0.1-dev", description="Just an easy-to-use cryptographic Python module", long_description="nope", license="WTFPL License", url=None, author="Paul Feuvraux", author_email="[email protected]", classifier=[ "Intended Audience :: Developers", "Programming Language :: Python :: 3.8", "Programming Language :: Python", "Programming Language :: Python :: 3", "Topic :: Security :: Cryptography" ], package_dir={"": "src"}, packages=find_packages(where="src"), python_requires=">=3.8", install_requires=install_requirements, zip_safe=False, )
python
from django.apps import apps from rest_framework import serializers from common.constants import models Profile = apps.get_model(models.PROFILE_MODEL) User = apps.get_model(models.USER_MODEL) class ProfileSerializer(serializers.ModelSerializer): """ API serializer for :class:`Profile`. """ class Meta: model = Profile fields = ( 'user', 'bio', 'birthday', 'language', 'alias', 'web', 'image', ) class UserSerializer(serializers.ModelSerializer): """ API serializer for :class:`User`. Parameter `auth_token` is taken as secure since nobody but admin and user itself can access this data. """ profile = ProfileSerializer() class Meta: model = User fields = ( 'id', 'last_login', 'username', 'first_name', 'last_name', 'is_active', 'date_joined', 'email', 'is_premium', 'profile', ) class SimpleUserSerializer(serializers.ModelSerializer): """ Simplified API serializer for :class:`User`. """ class Meta: model = User fields = ( 'id', 'username', 'first_name', 'last_name', 'email', )
python
# -*- coding: UTF-8 -*- # @Author : Chenyang Wang # @Email : [email protected] """ Caser Reference: "Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding" Jiaxi Tang et al., WSDM'2018. Reference code: https://github.com/graytowne/caser_pytorch Note: We use a maximum of L (instead of history_max) horizontal filters to prevent excessive CNN layers. Besides, to keep consistent with other sequential models, we do not use the sliding window to generate training instances in the paper, and set the parameter T as 1. CMD example: python main.py --model_name Caser --emb_size 64 --L 5 --num_horizon 64 --num_vertical 32 --lr 1e-3 --l2 1e-4 \ --history_max 20 --dataset 'Grocery_and_Gourmet_Food' """ import torch from torch import nn import torch.nn.functional as F from models.BaseModel import SequentialModel class Caser(SequentialModel): extra_log_args = ['emb_size', 'num_horizon', 'num_vertical', 'L'] @staticmethod def parse_model_args(parser): parser.add_argument('--emb_size', type=int, default=64, help='Size of embedding vectors.') parser.add_argument('--num_horizon', type=int, default=16, help='Number of horizon convolution kernels.') parser.add_argument('--num_vertical', type=int, default=8, help='Number of vertical convolution kernels.') parser.add_argument('--L', type=int, default=4, help='Union window size.') return SequentialModel.parse_model_args(parser) def __init__(self, args, corpus): self.emb_size = args.emb_size self.max_his = args.history_max self.num_horizon = args.num_horizon self.num_vertical = args.num_vertical self.l = args.L assert self.l <= self.max_his # use L instead of max_his to avoid excessive conv_h super().__init__(args, corpus) def _define_params(self): self.u_embeddings = nn.Embedding(self.user_num, self.emb_size) self.i_embeddings = nn.Embedding(self.item_num, self.emb_size, padding_idx=0) lengths = [i + 1 for i in range(self.l)] self.conv_h = nn.ModuleList( [nn.Conv2d(in_channels=1, out_channels=self.num_horizon, kernel_size=(i, self.emb_size)) for i in lengths]) self.conv_v = nn.Conv2d(in_channels=1, out_channels=self.num_vertical, kernel_size=(self.max_his, 1)) self.fc_dim_h = self.num_horizon * len(lengths) self.fc_dim_v = self.num_vertical * self.emb_size fc_dim_in = self.fc_dim_v + self.fc_dim_h self.fc = nn.Linear(fc_dim_in, self.emb_size) self.out = nn.Linear(self.emb_size * 2, self.emb_size) def forward(self, feed_dict): self.check_list = [] u_ids = feed_dict['user_id'] i_ids = feed_dict['item_id'] # [batch_size, -1] history = feed_dict['history_items'] # [batch_size, history_max] batch_size, seq_len = history.shape pad_len = self.max_his - seq_len history = F.pad(history, [0, pad_len]) his_vectors = self.i_embeddings(history).unsqueeze(1) # [batch_size, 1, history_max, emb_size] # Convolution Layers out, out_h, out_v = None, None, None # vertical conv layer if self.num_vertical > 0: out_v = self.conv_v(his_vectors) out_v = out_v.view(-1, self.fc_dim_v) # prepare for fully connect # horizontal conv layer out_hs = list() if self.num_horizon > 0: for conv in self.conv_h: conv_out = conv(his_vectors).squeeze(3).relu() pool_out = F.max_pool1d(conv_out, conv_out.size(2)).squeeze(2) out_hs.append(pool_out) out_h = torch.cat(out_hs, 1) # prepare for fully connect # Fully-connected Layers user_vector = self.u_embeddings(u_ids) z = self.fc(torch.cat([out_v, out_h], 1)).relu() his_vector = self.out(torch.cat([z, user_vector], 1)) i_vectors = self.i_embeddings(i_ids) prediction = (his_vector[:, None, :] * i_vectors).sum(-1) return {'prediction': prediction.view(batch_size, -1)}
python
from pseudo_python.builtin_typed_api import builtin_type_check from pseudo_python.errors import PseudoPythonTypeCheckError class Standard: ''' Standard classes should respond to expand and to return valid nodes on expand ''' pass class StandardCall(Standard): ''' converts to a standard call of the given namespace and function ''' def __init__(self, namespace, function, expander=None): self.namespace = namespace self.function = function self.expander = expander def expand(self, args): if not self.expander: q = builtin_type_check(self.namespace, self.function, None, args)[-1] return {'type': 'standard_call', 'namespace': self.namespace, 'function': self.function, 'args': args, 'pseudo_type': q} else: return self.expander(self.namespace, self.function, args) class StandardMethodCall(Standard): ''' converts to a method call of the same class ''' def __init__(self, type, message, default=None, expander=None): self.type = type self.message = message self.default = default self.expander = expander def expand(self, args): if self.default and len(args) - 1 in self.default: args += self.default[len(args) - 1] if not self.expander: q = builtin_type_check(self.type, self.message, args[0], args[1:])[-1] return {'type': 'standard_method_call', 'receiver': args[0], 'message': self.message, 'args': args[1:], 'pseudo_type': q} else: return self.expander(self.type, self.message, args) class StandardRegex(Standard): ''' converts re.compile(r'literal') to {type: regex} node re.compile(variable) to re.compile(variable) standard call ''' def expand(self, args): if args[0]['type'] == 'String': return {'type': 'regex', 'value': args[0]['value'], 'pseudo_type': 'Regexp'} else: return {'type': 'standard_call', 'namespace': 'regexp', 'function': 'compile', 'args': [args[0]], 'pseudo_type': 'Regexp'} class StandardSwapper(Standard): def __init__(self, type, message): self.type = type self.message = message def expand(self, args): if len(args) < 2: raise PseudoPythonTypeCheckError('%s expects more args' % self.message) q = builtin_type_check(self.type, self.message, args[1], [args[0]])[-1] return {'type': 'standard_method_call', 'receiver': args[1], 'args': [args[0]], 'message': self.message, 'pseudo_type': q} def to_int_expander(type, message, args): return len_expander(type, message, args) def len_expander(type, message, args): receiver_type = args[0]['pseudo_type'] if isinstance(receiver_type, list): a = receiver_type[0] else: a = receiver_type # print(a, message, args[0], args[1:]) # input(0) if message == 'length' and 'special' in args[0]: # len(sys.argv) return {'type': 'standard_call', 'namespace': 'system', 'function': 'arg_count', 'args': [], 'pseudo_type': 'Int'} else: q = builtin_type_check(a, message, args[0], args[1:]) return {'type': 'standard_method_call', 'receiver': args[0], 'message': message, 'args': [], 'pseudo_type': q[-1]} FUNCTION_API = { 'global': { 'input': StandardCall('io', 'read'), 'print': StandardCall('io', 'display'), 'str': StandardCall('global', 'to_string'), 'len': StandardMethodCall('List', 'length', expander=len_expander), 'int': StandardMethodCall('String', 'to_int', expander=to_int_expander) }, 'math': { 'log': { 1: StandardCall('math', 'ln'), 2: StandardCall('math', 'log') }, 'sin': StandardCall('math', 'sin'), 'cos': StandardCall('math', 'cos'), 'tan': StandardCall('math', 'tan'), 'pow': lambda left, right, pseudo_type: Node('binary_op', op='**', left=left, right=right, pseudo_type=pseudo_type) }, 're': { 'match': StandardMethodCall('Regexp', 'match'), 'sub': StandardMethodCall('Regexp', 'replace'), 'compile': StandardRegex(), 'escape': StandardCall('regexp', 'escape') } } METHOD_API = { 'String': { 'split': StandardMethodCall('String', 'split'), 'join': StandardSwapper('List', 'join'), 'upper': StandardMethodCall('String', 'upper'), 'lower': StandardMethodCall('String', 'lower'), 'title': StandardMethodCall('String', 'title'), 'center': StandardMethodCall('String', 'center', default={1: [{'type': 'string', 'value': ' ', 'pseudo_type': 'String'}]}), 'index': { 1: StandardMethodCall('String', 'find'), 2: StandardMethodCall('String', 'find_from') } }, 'List': { 'append': StandardMethodCall('List', 'push'), 'pop': StandardMethodCall('List', 'pop'), 'insert': { 1: StandardMethodCall('List', 'insert'), 2: StandardMethodCall('List', 'insert_at') }, 'remove': StandardMethodCall('List', 'remove'), 'extend': StandardMethodCall('List', 'push_many'), 'map': StandardMethodCall('List', 'map'), 'filter': StandardMethodCall('List', 'filter') }, 'Dictionary': { 'keys': StandardMethodCall('Dictionary', 'keys'), 'values': StandardMethodCall('Dictionary', 'values'), '[]': StandardMethodCall('Dictionary', 'getitem'), '[]=': StandardMethodCall('Dictionary', 'setitem') }, 'Array': { }, 'Tuple': { }, 'Set': { '|': StandardMethodCall('Set', 'union') }, 'Regexp': { 'match': StandardMethodCall('Regexp', 'match') }, 'RegexpMatch': { 'group': StandardMethodCall('RegexpMatch', 'group') } } OPERATOR_API = { 'List': { '+': 'concat', '*': 'repeat' }, 'Set': { '|': 'union', '&': 'intersection', '^': 'symmetric_diff', '-': 'diff' }, 'String': { '+': 'concat', '*': 'repeat', '%': 'c_format' } }
python
import tensorflow as tf def MaxAvgPooling2D(m,n, model): max = tf.keras.layers.MaxPool2D(pool_size=(2,2), strides=1, padding='SAME')(model) avg = tf.keras.layers.AveragePooling2D(pool_size=(2,2), strides=1, padding='SAME')(model) model = (max*m + avg*n)/(m+n) return model
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Preprocessing ZTF database to be saved as a samplesx21x21x3 numpy array in a pickle TODO: clean_NaN once cropped TODO: unit tests ToDo: instead of cascade implement as pipeline, in order to have single call and definition ToDo: smart way to shut down nans @author: asceta """ import os import sys PROJECT_PATH = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..')) sys.path.append(PROJECT_PATH) from parameters import param_keys # from modules.data_set_alerce import DatasetAlerce as Dataset from modules.data_set_generic import Dataset import numpy as np # Todo: refactor verbose # comopse as a pipeline to choose preprocessing steps class ZTFDataPreprocessor(object): """ Constructor """ def __init__(self, params, verbose=True): self.params = params self.channels_to_select = params[param_keys.CHANNELS_TO_USE] self.number_to_replace_nans = params[param_keys.NANS_TO] self.crop_size = params[param_keys.CROP_SIZE] self.preprocessing_pipeline = [self.identity] self.verbose = verbose """ define your preprocessing strategy here """ def preprocess_dataset(self, dataset: Dataset): print('%s' % self._get_string_label_count(dataset.data_label), flush=True) for preprocessing_function in self.preprocessing_pipeline: dataset = preprocessing_function(dataset) self.verbose = False return dataset def append_to_pipeline(self, method): self.preprocessing_pipeline.append(method) return self def set_pipeline(self, pipeline): self.preprocessing_pipeline = pipeline def identity(self, dataset: Dataset): return dataset def check_single_image(self, dataset: Dataset): if len(dataset.data_array.shape) == 3: dataset.data_array = dataset.data_array[np.newaxis, ...] return dataset # TODO: erase single image check; adding dummy at begining def select_channels(self, dataset: Dataset): if len(dataset.data_array.shape) == 3: dataset.data_array = dataset.data_array[np.newaxis, ...] selected_images_channels = dataset.data_array[ ..., self.channels_to_select] if len(selected_images_channels.shape) == 3: selected_images_channels = selected_images_channels[..., np.newaxis] dataset.data_array = selected_images_channels return dataset # TODO: normalize template to avoid replication with by_image def normalize_by_sample(self, dataset: Dataset): images = dataset.data_array images -= np.nanmin(images, axis=(1, 2, 3))[ ..., np.newaxis, np.newaxis, np.newaxis] images = images / np.nanmax(images, axis=(1, 2, 3))[ ..., np.newaxis, np.newaxis, np.newaxis] dataset.data_array = images return dataset def normalize_by_image(self, dataset: Dataset): images = dataset.data_array images -= np.nanmin(images, axis=(1, 2))[:, np.newaxis, np.newaxis, :] images = images / np.nanmax(images, axis=(1, 2))[ :, np.newaxis, np.newaxis, :] dataset.data_array = images return dataset def nan_to_num(self, dataset: Dataset): samples = dataset.data_array nans_sample_idx = self._get_nans_samples_idx(samples) if self.verbose: print('%i samples with NaNs. NaNs replaced with number %s' % ( len(nans_sample_idx), str(self.number_to_replace_nans))) samples[np.isnan(samples)] = self.number_to_replace_nans dataset.data_array = samples return dataset def _check_all_removed(self, remove_name, samples_list, idxs_to_remove): if len(samples_list) == len(idxs_to_remove): raise OverflowError( 'All samples have %s, thus batch is empty and cannot be processed' % remove_name) def _check_misshape_all_removed(self, samples_list, idxs_to_remove): self._check_all_removed('MISSHAPE', samples_list, idxs_to_remove) def _check_nan_all_removed(self, samples_list, idxs_to_remove): self._check_all_removed('NAN', samples_list, idxs_to_remove) def _get_misshaped_samples_idx(self, samples): miss_shaped_sample_idx = [] for i in range(len(samples)): sample = samples[i] if sample.shape[2] != 3 or sample.shape[1] != 63 or sample.shape[0] != 63: # print("sample %i of shape %s" % (i, str(sample.shape))) miss_shaped_sample_idx.append(i) self._check_misshape_all_removed(samples, miss_shaped_sample_idx) return miss_shaped_sample_idx def clean_misshaped(self, dataset: Dataset): samples_clone = list(dataset.data_array[:]) labels_clone = list(dataset.data_label[:]) metadata_clone = list(dataset.meta_data[:]) miss_shaped_sample_idx = self._get_misshaped_samples_idx(samples_clone) for index in sorted(miss_shaped_sample_idx, reverse=True): samples_clone.pop(index) labels_clone.pop(index) metadata_clone.pop(index) if self.verbose: print('%i misshaped samples removed\n%s' % ( len(miss_shaped_sample_idx), self._get_string_label_count(labels_clone)), flush=True) dataset = Dataset(data_array=samples_clone, data_label=labels_clone, meta_data=metadata_clone, batch_size=dataset.batch_size) return dataset def _get_nans_samples_idx(self, samples): nans_sample_idx = [] for i in range(len(samples)): sample = samples[i] if (np.isnan(sample).any()): # print("sample %i of shape %s" %(i,str(sample.shape))) nans_sample_idx.append(i) return nans_sample_idx # TODO: refactor; fuse with clean misshaped def clean_nans(self, dataset: Dataset): samples_clone = list(dataset.data_array[:]) labels_clone = list(dataset.data_label[:]) metadata_clone = list(dataset.meta_data[:]) nans_sample_idx = self._get_nans_samples_idx(samples_clone) self._check_nan_all_removed(samples_clone, nans_sample_idx) for index in sorted(nans_sample_idx, reverse=True): samples_clone.pop(index) labels_clone.pop(index) metadata_clone.pop(index) if self.verbose: print('%i samples with NaNs removed\n%s' % ( len(nans_sample_idx), self._get_string_label_count(labels_clone)), flush=True) dataset = Dataset(data_array=samples_clone, data_label=labels_clone, batch_size=dataset.batch_size, meta_data=metadata_clone) return dataset def crop_at_center(self, dataset: Dataset): if self.crop_size is None: return dataset samples = dataset.data_array assert (samples.shape[1] % 2 == self.crop_size % 2) center = int((samples.shape[1]) / 2) crop_side = int(self.crop_size / 2) crop_begin = center - crop_side if samples.shape[1] % 2 == 0: crop_end = center + crop_side elif samples.shape[1] % 2 == 1: crop_end = center + crop_side + 1 # print(center) # print(crop_begin, crop_end) cropped_samples = samples[:, crop_begin:crop_end, crop_begin:crop_end, :] dataset.data_array = cropped_samples return dataset def _get_string_label_count(self, labels, class_names=np.array(['AGN', 'SN', 'VS', 'asteroid', 'bogus'])): label_values, label_counts = np.unique(labels, return_counts=True) if len(label_values) != class_names.shape[0]: return "" count_dict = dict(zip(label_values, label_counts)) return_str = 'Label count ' for single_label_value in count_dict.keys(): return_str += '%s: %i -' % (class_names[single_label_value], count_dict[single_label_value]) return return_str def labels_to_real_bogus(self, dataset: Dataset): bogus_label_value = self.params[param_keys.BOGUS_LABEL_VALUE] if bogus_label_value is None: label_values = np.unique(dataset.data_label) bogus_label_value = label_values[-1] bogus_indexes = np.where(dataset.data_label == bogus_label_value)[0] real_indexes = np.where(dataset.data_label != bogus_label_value)[0] dataset.data_label[bogus_indexes] = 0 dataset.data_label[real_indexes] = 1 if self.verbose: print('Labels changed to Real - Bogus\n%s' % ( self._get_string_label_count(dataset.data_label, np.array(['bogus', 'real']))), flush=True) return dataset
python
import base64 import random from django.conf import settings from django.core.cache import caches from django.core.mail import send_mail from apps.user.models import User from libs.yuntongxun.sms import CCP from meiduoshop.celery import app @app.task def async_send_sms(to, datas, template_id): """异步发送短信验证码 注意结果不是直接返回,而是存到celery的backend中""" result = CCP().send_template_sms(to, datas, template_id) return result
python
import os from typing import Dict, List, Optional, Union, Callable from tinydb.storages import MemoryStorage, JSONStorage from ..custom_typings import DataDict, PathType class BaseDB(JSONStorage, MemoryStorage): """Base storage class that reads which extensions are available to feed the path handling functions To create a new storage, you will need to inherit this class, create a `extensions` variable containing a list of extensions the storage will support for example: .. code:: python extensions = ["yml", "yaml"] then implement a `read` and `write` method using the methods :meth:`~panda_core_data.storages.base_db.BaseDB.base_read` and :meth:`~panda_core_data.storages.base_db.BaseDB.base_write` all you need to do is follow the instructions contained in them""" extensions = False def __init_subclass__(cls): """Automatically generate an extension list containing the available raw extensions available together with their storage""" available_storages.append({ "name": cls.__name__, "extensions": cls.extensions, "storage": cls, }) def __init__(self, path: PathType, **kwargs): """Create a new instance :param str path: Path to file""" if(not globals().get("auto_convert_to_pathlib", False) or locals().get("auto_convert_to_pathlib", False)): from . import auto_convert_to_pathlib current_path = auto_convert_to_pathlib(path) self.path = current_path MemoryStorage.__init__(self) JSONStorage.__init__(self, current_path, **kwargs) def base_read(self, load_method: Callable, use_handle: bool) -> DataDict: """Base method used by children classes to read the file and transforms the string into a list of dictionaries, a good example of this method is the built in python :func:`json.load` however, since it needs a string as an input (or handler) you would need to set the parameter use_handler so the string, which is the contents of the raw file, will be passed to that method. For example the read method of our yaml parser: .. code:: python def read(self): return self.base_read(yaml.safe_load, True) And since the function :func:`yaml.safe_load` needs a string as an input, we set use_handle to True. An example of list of dictionaries would be like this: .. code:: python {"data": [ { 'field_name': 'value', 'another_field': 10, }, { 'field_name': 'value', 'another_field': 10, }, ]} The dict keys are fields of a :mod:`~dataclasses.dataclass` and the value, well, values :param load_method: method used to transform the raw file into a list of dictionaries :param use_handle: TinyDB offers a handle (More specifically, the handle of the class :class:`~tinydb.storages.JSONStorage`) to load the file and turn into a string automatically if you'd like to use it, just set this parameter to True :return: The generated data""" if not self.memory: if use_handle: data = load_method(self._handle.read()) else: data = load_method(self) desired_data = {} for table, table_items in data.items(): desired_data[table] = {} for item_index, current_item in enumerate(table_items): desired_data[table][item_index] = current_item self.memory = desired_data return self.memory def base_write(self, write_method: Callable, data: DataDict, use_handle: bool): """Transforms the data dictionary to a raw representation :param write_method: method used to transform the raw file into a list of dictionaries :param data: data dictionary""" if use_handle: self._handle.seek(0) serialized = write_method(data, **self.kwargs) self._handle.write(serialized) self._handle.flush() os.fsync(self._handle.fileno()) self._handle.truncate() else: write_method(self, data, **self.kwargs) #pylint: disable=invalid-name available_storages: Optional[List[Dict[str, Union[str, BaseDB]]]] = [] "List of available storages"
python
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from elastic_transport import QueryParams from .._utils import ( # noqa: F401 DEFAULT, SKIP_IN_PATH, to_array, to_deep_object, to_path, ) from ._base import BaseClient class AppSearch(BaseClient): def create_api_key( self, body, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Create an API key `<https://www.elastic.co/guide/en/app-search/master/credentials.html#credentials-create>`_ :arg body: API key details :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ params = QueryParams(params) return self.perform_request( "POST", "/api/as/v1/credentials", body=body, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def delete_api_key( self, api_key_name, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Delete an API key `<https://www.elastic.co/guide/en/app-search/master/credentials.html#credentials-destroy>`_ :arg api_key_name: Name of an API key :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if api_key_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "DELETE", to_path( "api", "as", "v1", "credentials", api_key_name, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_api_key( self, api_key_name, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Get the details of an API key `<https://www.elastic.co/guide/en/app-search/master/credentials.html#credentials-single>`_ :arg api_key_name: Name of an API key :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if api_key_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "GET", to_path( "api", "as", "v1", "credentials", api_key_name, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def put_api_key( self, api_key_name, body, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Update an API key `<https://www.elastic.co/guide/en/app-search/master/credentials.html#credentials-update>`_ :arg api_key_name: Name of an API key :arg body: API key details :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if api_key_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "PUT", to_path( "api", "as", "v1", "credentials", api_key_name, ), body=body, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def list_api_keys( self, current_page=None, page_size=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ List the details of all API keys `<https://www.elastic.co/guide/en/app-search/master/credentials.html#credentials-all>`_ :arg current_page: The page to fetch. Defaults to 1 :arg page_size: The number of results per page :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ params = QueryParams(params) if current_page is not None: params.add("page[current]", current_page) if page_size is not None: params.add("page[size]", page_size) return self.perform_request( "GET", "/api/as/v1/credentials", params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_api_logs( self, engine_name, from_date, to_date, current_page=None, page_size=None, query=None, http_status_filter=None, http_method_filter=None, sort_direction=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ The API Log displays API request and response data at the Engine level `<https://www.elastic.co/guide/en/app-search/master/api-logs.html>`_ :arg engine_name: Name of the engine :arg from_date: Filter date from :arg to_date: Filter date to :arg current_page: The page to fetch. Defaults to 1 :arg page_size: The number of results per page :arg query: Use this to specify a particular endpoint, like analytics, search, curations and so on :arg http_status_filter: Filter based on a particular status code: 400, 401, 403, 429, 200 :arg http_method_filter: Filter based on a particular HTTP method: GET, POST, PUT, PATCH, DELETE :arg sort_direction: Would you like to have your results ascending, oldest to newest, or descending, newest to oldest? :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, from_date, to_date, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if from_date is not None: params.add("filters[date][from]", from_date) if to_date is not None: params.add("filters[date][to]", to_date) if current_page is not None: params.add("page[current]", current_page) if page_size is not None: params.add("page[size]", page_size) if query is not None: params.add("query", query) if http_status_filter is not None: params.add("filters[status]", http_status_filter) if http_method_filter is not None: params.add("filters[method]", http_method_filter) if sort_direction is not None: params.add("sort_direction", sort_direction) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "logs", "api", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_count_analytics( self, engine_name, filters=None, interval=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Returns the number of clicks and total number of queries over a period `<https://www.elastic.co/guide/en/app-search/master/counts.html>`_ :arg engine_name: Name of the engine :arg filters: Analytics filters :arg interval: You can define an interval along with your date range. Can be either hour or day :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if filters is not None: for k, v in to_deep_object("filters", filters): params.add(k, v) if interval is not None: params.add("interval", interval) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "analytics", "counts", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def create_curation( self, engine_name, queries, promoted_doc_ids=None, hidden_doc_ids=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Create a new curation `<https://www.elastic.co/guide/en/app-search/master/curations.html#curations-create>`_ :arg engine_name: Name of the engine :arg queries: List of affected search queries :arg promoted_doc_ids: List of promoted document IDs :arg hidden_doc_ids: List of hidden document IDs :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, queries, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if queries is not None: for v in to_array(queries, param="queries"): params.add("queries[]", v) if promoted_doc_ids is not None: for v in to_array(promoted_doc_ids, param="promoted_doc_ids"): params.add("promoted[]", v) if hidden_doc_ids is not None: for v in to_array(hidden_doc_ids, param="hidden_doc_ids"): params.add("hidden[]", v) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "curations", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def delete_curation( self, engine_name, curation_id, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Delete a curation by ID `<https://www.elastic.co/guide/en/app-search/master/curations.html#curations-destroy>`_ :arg engine_name: Name of the engine :arg curation_id: Curation ID :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, curation_id, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "DELETE", to_path( "api", "as", "v1", "engines", engine_name, "curations", curation_id, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_curation( self, engine_name, curation_id, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieve a curation by ID `<https://www.elastic.co/guide/en/app-search/master/curations.html#curations-read>`_ :arg engine_name: Name of the engine :arg curation_id: Curation ID :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, curation_id, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "curations", curation_id, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def put_curation( self, engine_name, curation_id, queries, promoted_doc_ids=None, hidden_doc_ids=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Update an existing curation `<https://www.elastic.co/guide/en/app-search/master/curations.html#curations-update>`_ :arg engine_name: Name of the engine :arg curation_id: Curation ID :arg queries: List of affected search queries :arg promoted_doc_ids: List of promoted document IDs :arg hidden_doc_ids: List of hidden document IDs :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, curation_id, queries, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if queries is not None: for v in to_array(queries, param="queries"): params.add("queries[]", v) if promoted_doc_ids is not None: for v in to_array(promoted_doc_ids, param="promoted_doc_ids"): params.add("promoted[]", v) if hidden_doc_ids is not None: for v in to_array(hidden_doc_ids, param="hidden_doc_ids"): params.add("hidden[]", v) return self.perform_request( "PUT", to_path( "api", "as", "v1", "engines", engine_name, "curations", curation_id, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def list_curations( self, engine_name, current_page=None, page_size=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieve available curations for the engine `<https://www.elastic.co/guide/en/app-search/master/curations.html#curations-read>`_ :arg engine_name: Name of the engine :arg current_page: The page to fetch. Defaults to 1 :arg page_size: The number of results per page :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if current_page is not None: params.add("page[current]", current_page) if page_size is not None: params.add("page[size]", page_size) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "curations", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def delete_documents( self, engine_name, document_ids, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Delete documents by ID `<https://www.elastic.co/guide/en/app-search/master/documents.html#documents-delete>`_ :arg engine_name: Name of the engine :arg document_ids: List of document IDs :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "DELETE", to_path( "api", "as", "v1", "engines", engine_name, "documents", ), body=document_ids, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_documents( self, engine_name, document_ids, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieves one or more documents by ID `<https://www.elastic.co/guide/en/app-search/master/documents.html#documents-get>`_ :arg engine_name: Name of the engine :arg document_ids: List of document IDs :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "documents", ), body=document_ids, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def index_documents( self, engine_name, documents, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Create or update documents `<https://www.elastic.co/guide/en/app-search/master/documents.html#documents-create>`_ :arg engine_name: Name of the engine :arg documents: List of document to index :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "documents", ), body=documents, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def list_documents( self, engine_name, current_page=None, page_size=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ List all available documents with optional pagination support `<https://www.elastic.co/guide/en/app-search/master/documents.html#documents-list>`_ :arg engine_name: Name of the engine :arg current_page: The page to fetch. Defaults to 1 :arg page_size: The number of results per page :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if current_page is not None: params.add("page[current]", current_page) if page_size is not None: params.add("page[size]", page_size) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "documents", "list", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def put_documents( self, engine_name, documents, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Partial update of documents `<https://www.elastic.co/guide/en/app-search/master/documents.html#documents-partial>`_ :arg engine_name: Name of the engine :arg documents: List of documents to update :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "PATCH", to_path( "api", "as", "v1", "engines", engine_name, "documents", ), body=documents, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def create_engine( self, engine_name, language=None, type=None, source_engines=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Creates a new engine `<https://www.elastic.co/guide/en/app-search/master/engines.html#engines-create>`_ :arg engine_name: Engine name :arg language: Engine language (null for universal) :arg type: Engine type :arg source_engines: Sources engines list :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if engine_name is not None: params.add("name", engine_name) if language is not None: params.add("language", language) if type is not None: params.add("type", type) if source_engines is not None: for v in to_array(source_engines, param="source_engines"): params.add("source_engines[]", v) return self.perform_request( "POST", "/api/as/v1/engines", params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def delete_engine( self, engine_name, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Delete an engine by name `<https://www.elastic.co/guide/en/app-search/master/engines.html#engines-delete>`_ :arg engine_name: Name of the engine :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "DELETE", to_path( "api", "as", "v1", "engines", engine_name, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_engine( self, engine_name, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieves an engine by name `<https://www.elastic.co/guide/en/app-search/master/engines.html#engines-get>`_ :arg engine_name: Name of the engine :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def list_engines( self, current_page=None, page_size=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieves all engines with optional pagination support `<https://www.elastic.co/guide/en/app-search/master/engines.html#engines-list>`_ :arg current_page: The page to fetch. Defaults to 1 :arg page_size: The number of results per page :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ params = QueryParams(params) if current_page is not None: params.add("page[current]", current_page) if page_size is not None: params.add("page[size]", page_size) return self.perform_request( "GET", "/api/as/v1/engines", params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def log_clickthrough( self, engine_name, query_text, document_id, request_id=None, tags=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Send data about clicked results `<https://www.elastic.co/guide/en/app-search/master/clickthrough.html>`_ :arg engine_name: Name of the engine :arg query_text: Search query text :arg document_id: The ID of the document that was clicked on :arg request_id: The request ID returned in the meta tag of a search API response :arg tags: Array of strings representing additional information you wish to track with the clickthrough :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, query_text, document_id, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if query_text is not None: params.add("query", query_text) if document_id is not None: params.add("document_id", document_id) if request_id is not None: params.add("request_id", request_id) if tags is not None: for v in to_array(tags, param="tags"): params.add("tags[]", v) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "click", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def add_meta_engine_source( self, engine_name, source_engines, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Add a source engine to an existing meta engine `<https://www.elastic.co/guide/en/app-search/master/meta-engines.html#meta-engines-add-source-engines>`_ :arg engine_name: Name of the engine :arg source_engines: List of engine names :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "source_engines", ), body=source_engines, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def delete_meta_engine_source( self, engine_name, source_engines, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Delete a source engine from a meta engine `<https://www.elastic.co/guide/en/app-search/master/meta-engines.html#meta-engines-remove-source-engines>`_ :arg engine_name: Name of the engine :arg source_engines: List of engine names :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "DELETE", to_path( "api", "as", "v1", "engines", engine_name, "source_engines", ), body=source_engines, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def multi_search( self, engine_name, body, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Run several search in the same request `<https://www.elastic.co/guide/en/app-search/master/multi-search.html>`_ :arg engine_name: Name of the engine :arg body: One or more queries to execute in parallel :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "multi_search", ), body=body, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def query_suggestion( self, engine_name, query, fields=None, size=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Provide relevant query suggestions for incomplete queries `<https://www.elastic.co/guide/en/app-search/master/query-suggestion.html>`_ :arg engine_name: Name of the engine :arg query: A partial query for which to receive suggestions :arg fields: List of fields to use to generate suggestions. Defaults to all text fields :arg size: Number of query suggestions to return. Must be between 1 and 20. Defaults to 5 :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, query, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if query is not None: params.add("query", query) if fields is not None: for v in to_array(fields, param="fields"): params.add("types[documents][fields][]", v) if size is not None: params.add("size", size) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "query_suggestion", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_schema( self, engine_name, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieve current schema for the engine `<https://www.elastic.co/guide/en/app-search/master/schema.html#schema-read>`_ :arg engine_name: Name of the engine :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "schema", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def put_schema( self, engine_name, schema, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Update schema for the current engine `<https://www.elastic.co/guide/en/app-search/master/schema.html#schema-patch>`_ :arg engine_name: Name of the engine :arg schema: Schema description :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "schema", ), body=schema, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def search( self, engine_name, body, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Allows you to search over, facet and filter your data `<https://www.elastic.co/guide/en/app-search/master/search.html>`_ :arg engine_name: Name of the engine :arg body: Search options including query text, pages, sorting, facets, and filters :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "search", ), body=body, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_search_settings( self, engine_name, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieve current search settings for the engine `<https://www.elastic.co/guide/en/app-search/master/search-settings.html#search-settings-show>`_ :arg engine_name: Name of the engine :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "search_settings", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def put_search_settings( self, engine_name, body, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Update search settings for the engine `<https://www.elastic.co/guide/en/app-search/master/search-settings.html#search-settings-update>`_ :arg engine_name: Name of the engine :arg body: Search settings :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "PUT", to_path( "api", "as", "v1", "engines", engine_name, "search_settings", ), body=body, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def reset_search_settings( self, engine_name, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Reset search settings for the engine `<https://www.elastic.co/guide/en/app-search/master/search-settings.html#search-settings-reset>`_ :arg engine_name: Name of the engine :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "search_settings", "reset", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def create_synonym_set( self, engine_name, body, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Create a new synonym set `<https://www.elastic.co/guide/en/app-search/master/synonyms.html#synonyms-create>`_ :arg engine_name: Name of the engine :arg body: Synonym set description :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "POST", to_path( "api", "as", "v1", "engines", engine_name, "synonyms", ), body=body, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def delete_synonym_set( self, engine_name, synonym_set_id, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Delete a synonym set by ID `<https://www.elastic.co/guide/en/app-search/master/synonyms.html#synonyms-delete>`_ :arg engine_name: Name of the engine :arg synonym_set_id: Synonym set ID :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, synonym_set_id, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "DELETE", to_path( "api", "as", "v1", "engines", engine_name, "synonyms", synonym_set_id, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_synonym_set( self, engine_name, synonym_set_id, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieve a synonym set by ID `<https://www.elastic.co/guide/en/app-search/master/synonyms.html#synonyms-list-one>`_ :arg engine_name: Name of the engine :arg synonym_set_id: Synonym set ID :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, synonym_set_id, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "synonyms", synonym_set_id, ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def put_synonym_set( self, engine_name, synonym_set_id, body, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Update a synonym set by ID `<https://www.elastic.co/guide/en/app-search/master/synonyms.html#synonyms-update>`_ :arg engine_name: Name of the engine :arg synonym_set_id: Synonym set ID :arg body: Synonym set description :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ for param in ( engine_name, synonym_set_id, ): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) return self.perform_request( "PUT", to_path( "api", "as", "v1", "engines", engine_name, "synonyms", synonym_set_id, ), body=body, params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def list_synonym_sets( self, engine_name, current_page=None, page_size=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Retrieve available synonym sets for the engine `<https://www.elastic.co/guide/en/app-search/master/synonyms.html#synonyms-get>`_ :arg engine_name: Name of the engine :arg current_page: The page to fetch. Defaults to 1 :arg page_size: The number of results per page :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if current_page is not None: params.add("page[current]", current_page) if page_size is not None: params.add("page[size]", page_size) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "synonyms", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_top_clicks_analytics( self, engine_name, query=None, current_page=None, page_size=None, filters=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Returns the number of clicks received by a document in descending order `<https://www.elastic.co/guide/en/app-search/master/clicks.html>`_ :arg engine_name: Name of the engine :arg query: Filter clicks over a search query :arg current_page: The page to fetch. Defaults to 1 :arg page_size: The number of results per page :arg filters: Analytics filters :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if query is not None: params.add("query", query) if current_page is not None: params.add("page[current]", current_page) if page_size is not None: params.add("page[size]", page_size) if filters is not None: for k, v in to_deep_object("filters[]", filters): params.add(k, v) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "analytics", "clicks", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, ) def get_top_queries_analytics( self, engine_name, current_page=None, page_size=None, filters=None, params=None, headers=None, http_auth=DEFAULT, request_timeout=DEFAULT, ignore_status=(), ): """ Returns queries analytics by usage count `<https://www.elastic.co/guide/en/app-search/master/queries.html#queries-top-queries>`_ :arg engine_name: Name of the engine :arg current_page: The page to fetch. Defaults to 1 :arg page_size: The number of results per page :arg filters: Analytics filters :arg params: Additional query params to send with the request :arg headers: Additional headers to send with the request :arg http_auth: Access token or HTTP basic auth username and password to send with the request :arg request_timeout: Timeout in seconds :arg ignore_status: HTTP status codes to not raise an error """ if engine_name in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument") params = QueryParams(params) if current_page is not None: params.add("page[current]", current_page) if page_size is not None: params.add("page[size]", page_size) if filters is not None: for k, v in to_deep_object("filters[]", filters): params.add(k, v) return self.perform_request( "GET", to_path( "api", "as", "v1", "engines", engine_name, "analytics", "queries", ), params=params, headers=headers, http_auth=http_auth, request_timeout=request_timeout, ignore_status=ignore_status, )
python
""" utility functions """ import collections def flatten(d, parent_key="", sep="_"): """ flatten nested dictionary, preserving lists Arguments: parent_key (str): sep (str): """ items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if v and isinstance(v, collections.MutableMapping): items.extend(flatten(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def degToCompass(num): val = int((num / 22.5) + 0.5) arr = [ "N", "NNE", "NE", "ENE", "E", "ESE", "SE", "SSE", "S", "SSW", "SW", "WSW", "W", "WNW", "NW", "NNW", ] return arr[(val % 16)]
python
import tensorflow as tf import datetime as dt import pandas as pd import os def load_data(): col_names = [ 'id', 'event_timestamp', 'course_over_ground', 'machine_id', 'vehicle_weight_type', 'speed_gps_kph', 'latitude', 'longitude'] data = pd.DataFrame(columns=col_names) files = os.listdir('./machine-data') for f in files: d = pd.read_csv('./machine-data/' + f, sep=';') d.loc[d.course_over_ground == -1, 'course_over_ground'] = None d['north_proportion'] = north_proportion(d.course_over_ground) data = data.append(d) # data.to_csv("./machine-data-processed/raw.csv", index=False) # data = pd.read_csv('./machine-data-processed/raw.csv') return(data) def north_proportion(vehicle_course_over_ground): north_count = sum( (vehicle_course_over_ground < 90) | (vehicle_course_over_ground > 269) ) return(float(north_count) / len(vehicle_course_over_ground)) def clean(data): data = data.drop(columns=['id']) data = split_dates_and_times(data, 'event_timestamp') data.speed_gps_kph = pd.to_numeric(data.speed_gps_kph) data = week_days(data) return(data) def split_dates_and_times(data, column): data['year'] = pd.to_numeric(year(data[column])) data['month'] = pd.to_numeric(month(data[column])) data['day'] = pd.to_numeric(day(data[column])) data['hour'] = pd.to_numeric(hour(data[column])) data['minute'] = pd.to_numeric(minute(data[column])) data = data.drop(columns=[column]) return(data) def year(strings): return split(strings, 0, '-', 0) def month(strings): return split(strings, 0, '-', 1) def day(strings): return split(strings, 0, '-', 2) def hour(strings): return split(strings, 1, ':', 0) def minute(strings): return split(strings, 1, ':', 1) def split(strings, first, separator, second): return [s.split(' ')[first].split(separator)[second] for s in strings] def week_days(data): data.loc[:, 'weekday'] = data.apply(get_row_weekday, axis=1) return(data) WEEKDAYS = { 0: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday', 4: 'Friday', 5: 'Saturday', 6: 'Sunday' } def get_row_weekday(row): date = dt.datetime(row.year, row.month, row.day) return WEEKDAYS[date.weekday()] WEATHER = pd.read_csv('./weather.csv') WEATHER = split_dates_and_times(WEATHER, 'dt_iso') def join_with_weather(data): for index, row in WEATHER.iterrows(): selection = (data.day == row.day) & (data.hour == row.hour) data.loc[selection, 'weather_description'] = row.weather_description data.loc[selection, 'weather_main'] = row.weather_main data.loc[selection, 'temperature'] = row.temp data.temperature = data.temperature - 273.15 # data = pd.read_csv("./machine-data-processed/clean.csv") # data.to_csv("./machine-data-processed/clean.csv", index=False) return(data) def input_fn(train_X, train_Y, batch_size): dataset = tf.data.Dataset.from_tensor_slices((dict(train_X), train_Y)) dataset = dataset.batch(batch_size) return dataset
python
from jenkinsapi.jenkins import Jenkins import xml.etree.ElementTree as ET J = Jenkins('http://localhost:8080') EMPTY_JOB_CONFIG = ''' <?xml version='1.0' encoding='UTF-8'?> <project> <actions>jkkjjk</actions> <description></description> <keepDependencies>false</keepDependencies> <properties/> <scm class="hudson.scm.NullSCM"/> <canRoam>true</canRoam> <disabled>false</disabled> <blockBuildWhenDownstreamBuilding>false</blockBuildWhenDownstreamBuilding> <blockBuildWhenUpstreamBuilding>false</blockBuildWhenUpstreamBuilding> <triggers class="vector"/> <concurrentBuild>false</concurrentBuild> <builders/> <publishers/> <buildWrappers/> </project> ''' jobname = 'foo_job' new_job = J.create_job(jobname, EMPTY_JOB_CONFIG) new_conf = new_job.get_config() root = ET.fromstring(new_conf.strip()) builders = root.find('builders') shell = ET.SubElement(builders, 'hudson.tasks.Shell') command = ET.SubElement(shell, 'command') command.text = "ls" print ET.tostring(root) J[jobname].update_config(ET.tostring(root)) #J.delete_job(jobname)
python
import os from typing import List, Optional from uuid import uuid4 import PIL import pytest import arcade import arcade.gui from arcade.gui import UIClickable, UIManager from arcade.gui.ui_style import UIStyle class TestUIManager(UIManager): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.event_history: List[arcade.gui.UIEvent] = [] self.push_handlers(on_ui_event=self._on_ui_event) def move_mouse(self, x: int, y: int): self.dispatch_ui_event(arcade.gui.UIEvent( arcade.gui.MOUSE_MOTION, x=x, y=y, button=1, modifier=0 )) def click_and_hold(self, x: int, y: int, button=arcade.MOUSE_BUTTON_LEFT): self.dispatch_ui_event(arcade.gui.UIEvent( arcade.gui.MOUSE_PRESS, x=x, y=y, button=button, modifier=0 )) def release(self, x: int, y: int, button=arcade.MOUSE_BUTTON_LEFT): self.dispatch_ui_event(arcade.gui.UIEvent( arcade.gui.MOUSE_RELEASE, x=x, y=y, button=button, modifier=0 )) def click(self, x: int, y: int): self.click_and_hold(x, y) self.release(x, y) def right_click(self, x: int, y: int): self.click_and_hold(x, y, button=arcade.MOUSE_BUTTON_RIGHT) self.release(x, y, button=arcade.MOUSE_BUTTON_RIGHT) def _on_ui_event(self, event: arcade.gui.UIEvent): self.event_history.append(event) @property def last_event(self): return self.event_history[-1] if self.event_history else None def T(name, *args): return pytest.param(*args, id=name) class MockHolder(dict): """ MockHolder, dict like object with property access """ __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ class Env: def __init__(self, **kwargs): self.variables = kwargs self.old_vars = {} def __enter__(self): for key, value in self.variables.items(): if key in os.environ: self.old_vars[key] = os.environ[key] os.environ[key] = value def __exit__(self, exc_type, exc_val, exc_tb): for key in self.variables.keys(): del os.environ[key] for key, value in self.old_vars.items(): os.environ[key] = value class MockButton(UIClickable): on_hover_called = False on_unhover_called = False on_press_called = False on_release_called = False on_click_called = False on_focus_called = False on_unfocus_called = False def __init__(self, center_x=0, center_y=0, width=40, height=40, id: Optional[str] = None, style: UIStyle = None, **kwargs): super().__init__(center_x=center_x, center_y=center_y, id=id, style=style, **kwargs) self.event_history: List[arcade.gui.UIEvent] = [] self._width = width self._height = height def render(self): self.normal_texture = arcade.Texture( image=PIL.Image.new("RGBA", (self._width, self._height), color=(255, 0, 0)), name=str(uuid4())) self.hover_texture = arcade.Texture( image=PIL.Image.new("RGBA", (self._width, self._height), color=(255, 0, 0)), name=str(uuid4())) self.press_texture = arcade.Texture( image=PIL.Image.new("RGBA", (self._width, self._height), color=(255, 0, 0)), name=str(uuid4())) self.focus_texture = arcade.Texture( image=PIL.Image.new("RGBA", (self._width, self._height), color=(255, 0, 0)), name=str(uuid4())) self.set_proper_texture() def on_ui_event(self, event: arcade.gui.UIEvent): self.event_history.append(event) super().on_ui_event(event) @property def last_event(self): return self.event_history[-1] if self.event_history else None def on_hover(self): super().on_hover() self.on_hover_called = True def on_unhover(self): super().on_unhover() self.on_unhover_called = True def on_press(self): super().on_press() self.on_press_called = True def on_release(self): super().on_release() self.on_release_called = True def on_click(self): super().on_click() self.on_click_called = True def on_focus(self): super().on_focus() self.on_focus_called = True def on_unfocus(self): super().on_unfocus() self.on_unfocus_called = True
python
class Solution(object): def deleteDuplicates(self, head): ht = {} it = head while head: if head.val in ht: ht[head.val] += 1 else: ht[head.val] = 1 head = head.next headRef = None last = None while it: if ht[it.val] > 1: if last: last.next = it.next it = it.next else: it = it.next else: if not last: headRef = it last = it it = it.next return headRef
python
#!/usr/bin/env python import sys from os.path import exists as path_exists from pyscaffold.api import create_project from pyscaffold.cli import run from pyscaffold.extensions.github_actions import GithubActions def test_create_project_with_github_actions(tmpfolder): # Given options with the GithubActions extension, opts = dict(project_path="proj", extensions=[GithubActions()]) # when the project is created, create_project(opts) # then files from GithubActions extension should exist assert path_exists("proj/.github/workflows/ci.yml") def test_create_project_without_github_actions(tmpfolder): # Given options without the GithubActions extension, opts = dict(project_path="proj") # when the project is created, create_project(opts) # then GithubActions files should not exist assert not path_exists("proj/.github/workflows/ci.yml") def test_cli_with_github_actions(tmpfolder): # Given the command line with the GithubActions option, sys.argv = ["pyscaffold", "--github-actions", "proj"] # when pyscaffold runs, run() # then files from GithubActions and other extensions automatically added should # exist assert path_exists("proj/.github/workflows/ci.yml") assert path_exists("proj/tox.ini") assert path_exists("proj/.pre-commit-config.yaml") def test_cli_with_github_actions_and_pretend(tmpfolder): # Given the command line with the GithubActions and pretend options sys.argv = ["pyscaffold", "--pretend", "--github-actions", "proj"] # when pyscaffold runs, run() # then GithubActions files should not exist assert not path_exists("proj/.github/workflows/ci.yml") # (or the project itself) assert not path_exists("proj") def test_cli_without_github_actions(tmpfolder): # Given the command line without the GithubActions option, sys.argv = ["pyscaffold", "proj"] # when pyscaffold runs, run() # then GithubActions files should not exist assert not path_exists("proj/.github/workflows/ci.yml")
python
import glob from os.path import join import numpy as n import astropy.io.fits as fits import lib_functions_1pt as lib import os import sys #Quantity studied version = 'v4' qty = "mvir" # one point function lists fileC = n.array(glob.glob( join(os.environ['MD_DIR'], "MD_*Gpc*", version, qty,"out_*_Central_JKresampling.pkl"))) fileB = n.array(glob.glob( join( os.environ['MD_DIR'], "MD_*Gpc*", version, qty,"out_*_"+qty+"_JKresampling.bins"))) fileS = n.array(glob.glob( join( os.environ['MD_DIR'], "MD_*Gpc*", version, qty,"out_*_Satellite_JKresampling.pkl"))) fileC.sort() fileS.sort() fileB.sort() print len(fileC), len(fileB), len(fileS) print "considers ",len(fileC), qty , " function files" for ii, el in enumerate(fileC): print el print fileS[ii] print fileB[ii] lib.convert_pkl_mass(fileC[ii], fileS[ii], fileB[ii], qty) fileC = n.array(glob.glob( join(os.environ['DS_DIR'], version, qty,"ds*_Central_JKresampling.pkl"))) fileB = n.array(glob.glob( join( os.environ['DS_DIR'], version, qty,"ds*_"+qty+"_JKresampling.bins"))) fileS = n.array(glob.glob( join( os.environ['DS_DIR'], version, qty,"ds*_Satellite_JKresampling.pkl"))) fileC.sort() fileS.sort() fileB.sort() print len(fileC), len(fileB), len(fileS) print "considers ",len(fileC), qty , " function files" for ii, el in enumerate(fileC): print el print fileS[ii] print fileB[ii] lib.convert_pkl_mass(fileC[ii], fileS[ii], fileB[ii], qty) print qty af = n.array(glob.glob(join(os.environ['MVIR_DIR'], "data", "*_"+qty+".fits") ) ) print af[0] d0 = fits.open(af[0])[1].data #print len(d0['log_mvir']), d0['log_mvir'] for ii in range(1,len(af),1): d1 = fits.open(af[ii])[1].data d0 = n.hstack((d0,d1)) hdu2 = fits.BinTableHDU.from_columns(d0) writeName = join(os.environ['MVIR_DIR'], qty+"_summary.fits") if os.path.isfile(writeName): os.remove(writeName) hdu2.writeto( writeName ) """ sys.exit() # rebinning here #solve bins = 0 problem n.arange() n.hstack((n.arange(8,14,0.25), n.arange(14,16,0.05))) #if logmvir < 14 : Nrb = 5. idSplit = int(n.searchsorted(d0['log_mvir'],14)/Nrb)*Nrb split_array= lambda array: [array[:idSplit], array[idSplit:]] #variables : # def rebinMe(trb, mod, Nrb = 5): # split part1, part2 = split_array(trb) # rebin take_middle_val = lambda part: part[2::Nrb] take_mean_val = lambda part: (part[0::Nrb] + part[1::Nrb] + part[2::Nrb] + part[3::Nrb] + part[4::Nrb])/Nrb. take_sum_val = lambda part: part[0::Nrb] + part[1::Nrb] + part[2::3] + part[3::Nrb] + part[4::Nrb] if mode == 'middle' : part1b = take_middle_val(part1) if mode == 'mean' : part1b = take_mean_val(part1) if mode == 'sum' : part1b = take_sum_val(part1) return n.hstack((part1b, part2)) trb = d0['log_mvir'] mode = 'middle' trb_o = rebinMe(trb, mode) """
python
# -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright 2002 Ben Escoto <[email protected]> # Copyright 2007 Kenneth Loafman <[email protected]> # # This file is part of duplicity. # # Duplicity is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2 of the License, or (at your # option) any later version. # # Duplicity is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with duplicity; if not, write to the Free Software Foundation, # Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ Functions for producing signatures and deltas of directories Note that the main processes of this module have two parts. In the first, the signature or delta is constructed of a ROPath iterator. In the second, the ROPath iterator is put into tar block form. """ import cStringIO, types, math from duplicity import statistics from duplicity import util from duplicity import globals from duplicity.path import * #@UnusedWildImport from duplicity.lazy import * #@UnusedWildImport from duplicity import progress # A StatsObj will be written to this from DirDelta and DirDelta_WriteSig. stats = None tracker = None class DiffDirException(Exception): pass def DirSig(path_iter): """ Alias for SigTarBlockIter below """ return SigTarBlockIter(path_iter) def DirFull(path_iter): """ Return a tarblock full backup of items in path_iter A full backup is just a diff starting from nothing (it may be less elegant than using a standard tar file, but we can be sure that it will be easy to split up the tar and make the volumes the same sizes). """ return DirDelta(path_iter, cStringIO.StringIO("")) def DirFull_WriteSig(path_iter, sig_outfp): """ Return full backup like above, but also write signature to sig_outfp """ return DirDelta_WriteSig(path_iter, cStringIO.StringIO(""), sig_outfp) def DirDelta(path_iter, dirsig_fileobj_list): """ Produce tarblock diff given dirsig_fileobj_list and pathiter dirsig_fileobj_list should either be a tar fileobj or a list of those, sorted so the most recent is last. """ global stats stats = statistics.StatsDeltaProcess() if type(dirsig_fileobj_list) is types.ListType: sig_iter = combine_path_iters(map(sigtar2path_iter, dirsig_fileobj_list)) else: sig_iter = sigtar2path_iter(dirsig_fileobj_list) delta_iter = get_delta_iter(path_iter, sig_iter) if globals.dry_run or (globals.progress and not progress.tracker.has_collected_evidence()): return DummyBlockIter(delta_iter) else: return DeltaTarBlockIter(delta_iter) def delta_iter_error_handler(exc, new_path, sig_path, sig_tar = None): """ Called by get_delta_iter, report error in getting delta """ if new_path: index_string = new_path.get_relative_path() elif sig_path: index_string = sig_path.get_relative_path() else: assert 0, "Both new and sig are None for some reason" log.Warn(_("Error %s getting delta for %s") % (str(exc), util.ufn(index_string))) return None def get_delta_path(new_path, sig_path, sigTarFile = None): """ Return new delta_path which, when read, writes sig to sig_fileobj, if sigTarFile is not None """ assert new_path if sigTarFile: ti = new_path.get_tarinfo() index = new_path.index delta_path = new_path.get_ropath() log.Debug(_("Getting delta of %s and %s") % (new_path, sig_path)) def callback(sig_string): """ Callback activated when FileWithSignature read to end """ ti.size = len(sig_string) ti.name = "signature/" + "/".join(index) sigTarFile.addfile(ti, cStringIO.StringIO(sig_string)) if new_path.isreg() and sig_path and sig_path.isreg() and sig_path.difftype == "signature": delta_path.difftype = "diff" old_sigfp = sig_path.open("rb") newfp = FileWithReadCounter(new_path.open("rb")) if sigTarFile: newfp = FileWithSignature(newfp, callback, new_path.getsize()) delta_path.setfileobj(librsync.DeltaFile(old_sigfp, newfp)) else: delta_path.difftype = "snapshot" if sigTarFile: ti.name = "snapshot/" + "/".join(index) if not new_path.isreg(): if sigTarFile: sigTarFile.addfile(ti) if stats: stats.SourceFileSize += delta_path.getsize() else: newfp = FileWithReadCounter(new_path.open("rb")) if sigTarFile: newfp = FileWithSignature(newfp, callback, new_path.getsize()) delta_path.setfileobj(newfp) new_path.copy_attribs(delta_path) delta_path.stat.st_size = new_path.stat.st_size return delta_path def log_delta_path(delta_path, new_path = None, stats = None): """ Look at delta path and log delta. Add stats if new_path is set """ if delta_path.difftype == "snapshot": if new_path and stats: stats.add_new_file(new_path) log.Info(_("A %s") % (util.ufn(delta_path.get_relative_path())), log.InfoCode.diff_file_new, util.escape(delta_path.get_relative_path())) else: if new_path and stats: stats.add_changed_file(new_path) log.Info(_("M %s") % (util.ufn(delta_path.get_relative_path())), log.InfoCode.diff_file_changed, util.escape(delta_path.get_relative_path())) def get_delta_iter(new_iter, sig_iter, sig_fileobj=None): """ Generate delta iter from new Path iter and sig Path iter. For each delta path of regular file type, path.difftype with be set to "snapshot", "diff". sig_iter will probably iterate ROPaths instead of Paths. If sig_fileobj is not None, will also write signatures to sig_fileobj. """ collated = collate2iters(new_iter, sig_iter) if sig_fileobj: sigTarFile = util.make_tarfile("w", sig_fileobj) else: sigTarFile = None for new_path, sig_path in collated: log.Debug(_("Comparing %s and %s") % (new_path and util.uindex(new_path.index), sig_path and util.uindex(sig_path.index))) if not new_path or not new_path.type: # File doesn't exist (but ignore attempts to delete base dir; # old versions of duplicity could have written out the sigtar in # such a way as to fool us; LP: #929067) if sig_path and sig_path.exists() and sig_path.index != (): # but signature says it did log.Info(_("D %s") % (util.ufn(sig_path.get_relative_path())), log.InfoCode.diff_file_deleted, util.escape(sig_path.get_relative_path())) if sigTarFile: ti = ROPath(sig_path.index).get_tarinfo() ti.name = "deleted/" + "/".join(sig_path.index) sigTarFile.addfile(ti) stats.add_deleted_file() yield ROPath(sig_path.index) elif not sig_path or new_path != sig_path: # Must calculate new signature and create delta delta_path = robust.check_common_error(delta_iter_error_handler, get_delta_path, (new_path, sig_path, sigTarFile)) if delta_path: # log and collect stats log_delta_path(delta_path, new_path, stats) yield delta_path else: # if not, an error must have occurred stats.Errors += 1 else: stats.add_unchanged_file(new_path) stats.close() if sigTarFile: sigTarFile.close() def sigtar2path_iter(sigtarobj): """ Convert signature tar file object open for reading into path iter """ tf = util.make_tarfile("r", sigtarobj) tf.debug = 1 for tarinfo in tf: tiname = util.get_tarinfo_name(tarinfo) for prefix in ["signature/", "snapshot/", "deleted/"]: if tiname.startswith(prefix): # strip prefix and '/' from name and set it to difftype name, difftype = tiname[len(prefix):], prefix[:-1] break else: raise DiffDirException("Bad tarinfo name %s" % (tiname,)) index = tuple(name.split("/")) if not index[-1]: index = index[:-1] # deal with trailing /, "" ropath = ROPath(index) ropath.difftype = difftype if difftype == "signature" or difftype == "snapshot": ropath.init_from_tarinfo(tarinfo) if ropath.isreg(): ropath.setfileobj(tf.extractfile(tarinfo)) yield ropath sigtarobj.close() def collate2iters(riter1, riter2): """ Collate two iterators. The elements yielded by each iterator must be have an index variable, and this function returns pairs (elem1, elem2), (elem1, None), or (None, elem2) two elements in a pair will have the same index, and earlier indicies are yielded later than later indicies. """ relem1, relem2 = None, None while 1: if not relem1: try: relem1 = riter1.next() except StopIteration: if relem2: yield (None, relem2) for relem2 in riter2: yield (None, relem2) break index1 = relem1.index if not relem2: try: relem2 = riter2.next() except StopIteration: if relem1: yield (relem1, None) for relem1 in riter1: yield (relem1, None) break index2 = relem2.index if index1 < index2: yield (relem1, None) relem1 = None elif index1 == index2: yield (relem1, relem2) relem1, relem2 = None, None else: # index2 is less yield (None, relem2) relem2 = None def combine_path_iters(path_iter_list): """ Produce new iterator by combining the iterators in path_iter_list This new iter will iterate every path that is in path_iter_list in order of increasing index. If multiple iterators in path_iter_list yield paths with the same index, combine_path_iters will discard all paths but the one yielded by the last path_iter. This is used to combine signature iters, as the output will be a full up-to-date signature iter. """ path_iter_list = path_iter_list[:] # copy before destructive reverse path_iter_list.reverse() def get_triple(iter_index): """ Represent the next element as a triple, to help sorting """ try: path = path_iter_list[iter_index].next() except StopIteration: return None return (path.index, iter_index, path) def refresh_triple_list(triple_list): """ Update all elements with path_index same as first element """ path_index = triple_list[0][0] iter_index = 0 while iter_index < len(triple_list): old_triple = triple_list[iter_index] if old_triple[0] == path_index: new_triple = get_triple(old_triple[1]) if new_triple: triple_list[iter_index] = new_triple iter_index += 1 else: del triple_list[iter_index] else: break # assumed triple_list sorted, so can exit now triple_list = filter(lambda x: x, map(get_triple, range(len(path_iter_list)))) while triple_list: triple_list.sort() yield triple_list[0][2] refresh_triple_list(triple_list) def DirDelta_WriteSig(path_iter, sig_infp_list, newsig_outfp): """ Like DirDelta but also write signature into sig_fileobj Like DirDelta, sig_infp_list can be a tar fileobj or a sorted list of those. A signature will only be written to newsig_outfp if it is different from (the combined) sig_infp_list. """ global stats stats = statistics.StatsDeltaProcess() if type(sig_infp_list) is types.ListType: sig_path_iter = get_combined_path_iter(sig_infp_list) else: sig_path_iter = sigtar2path_iter(sig_infp_list) delta_iter = get_delta_iter(path_iter, sig_path_iter, newsig_outfp) if globals.dry_run or (globals.progress and not progress.tracker.has_collected_evidence()): return DummyBlockIter(delta_iter) else: return DeltaTarBlockIter(delta_iter) def get_combined_path_iter(sig_infp_list): """ Return path iter combining signatures in list of open sig files """ return combine_path_iters(map(sigtar2path_iter, sig_infp_list)) class FileWithReadCounter: """ File-like object which also computes amount read as it is read """ def __init__(self, infile): """FileWithReadCounter initializer""" self.infile = infile def read(self, length = -1): try: buf = self.infile.read(length) except IOError, ex: buf = "" log.Warn(_("Error %s getting delta for %s") % (str(ex), util.ufn(self.infile.name))) if stats: stats.SourceFileSize += len(buf) return buf def close(self): return self.infile.close() class FileWithSignature: """ File-like object which also computes signature as it is read """ blocksize = 32 * 1024 def __init__(self, infile, callback, filelen, *extra_args): """ FileTee initializer The object will act like infile, but whenever it is read it add infile's data to a SigGenerator object. When the file has been read to the end the callback will be called with the calculated signature, and any extra_args if given. filelen is used to calculate the block size of the signature. """ self.infile, self.callback = infile, callback self.sig_gen = librsync.SigGenerator(get_block_size(filelen)) self.activated_callback = None self.extra_args = extra_args def read(self, length = -1): buf = self.infile.read(length) self.sig_gen.update(buf) return buf def close(self): # Make sure all of infile read if not self.activated_callback: while self.read(self.blocksize): pass self.activated_callback = 1 self.callback(self.sig_gen.getsig(), *self.extra_args) return self.infile.close() class TarBlock: """ Contain information to add next file to tar """ def __init__(self, index, data): """ TarBlock initializer - just store data """ self.index = index self.data = data class TarBlockIter: """ A bit like an iterator, yield tar blocks given input iterator Unlike an iterator, however, control over the maximum size of a tarblock is available by passing an argument to next(). Also the get_footer() is available. """ def __init__(self, input_iter): """ TarBlockIter initializer """ self.input_iter = input_iter self.offset = 0l # total length of data read self.process_waiting = False # process_continued has more blocks self.process_next_vol_number = None # next volume number to write in multivol self.previous_index = None # holds index of last block returned self.previous_block = None # holds block of last block returned self.remember_next = False # see remember_next_index() self.remember_value = None # holds index of next block self.remember_block = None # holds block of next block self.queued_data = None # data to return in next next() call def tarinfo2tarblock(self, index, tarinfo, file_data = ""): """ Make tarblock out of tarinfo and file data """ tarinfo.size = len(file_data) headers = tarinfo.tobuf(errors='replace') blocks, remainder = divmod(tarinfo.size, tarfile.BLOCKSIZE) #@UnusedVariable if remainder > 0: filler_data = "\0" * (tarfile.BLOCKSIZE - remainder) else: filler_data = "" return TarBlock(index, "%s%s%s" % (headers, file_data, filler_data)) def process(self, val): """ Turn next value of input_iter into a TarBlock """ assert not self.process_waiting XXX # Override in subclass @UndefinedVariable def process_continued(self): """ Get more tarblocks If processing val above would produce more than one TarBlock, get the rest of them by calling process_continue. """ assert self.process_waiting XXX # Override in subclass @UndefinedVariable def next(self): """ Return next block and update offset """ if self.queued_data is not None: result = self.queued_data self.queued_data = None # Keep rest of metadata as is (like previous_index) return result if self.process_waiting: result = self.process_continued() else: # Below a StopIteration exception will just be passed upwards result = self.process(self.input_iter.next()) block_number = self.process_next_vol_number self.offset += len(result.data) self.previous_index = result.index self.previous_block = block_number if self.remember_next: self.remember_value = result.index self.remember_block = block_number self.remember_next = False return result def get_read_size(self): # read size must always be the same, because if we are restarting a # backup volume where the previous volume ended in a data block, we # have to be able to assume it's length in order to continue reading # the file from the right place. return 64 * 1024 def get_previous_index(self): """ Return index of last tarblock, or None if no previous index """ return self.previous_index, self.previous_block def queue_index_data(self, data): """ Next time next() is called, we will return data instead of processing """ self.queued_data = data def remember_next_index(self): """ When called, remember the index of the next block iterated """ self.remember_next = True self.remember_value = None self.remember_block = None def recall_index(self): """ Retrieve index remembered with remember_next_index """ return self.remember_value, self.remember_block def get_footer(self): """ Return closing string for tarfile, reset offset """ blocks, remainder = divmod(self.offset, tarfile.RECORDSIZE) #@UnusedVariable self.offset = 0l return '\0' * (tarfile.RECORDSIZE - remainder) # remainder can be 0 def __iter__(self): return self class DummyBlockIter(TarBlockIter): """ TarBlockIter that does no file reading """ def process(self, delta_ropath): """ Get a fake tarblock from delta_ropath """ ti = delta_ropath.get_tarinfo() index = delta_ropath.index # Return blocks of deleted files or fileless snapshots if not delta_ropath.type or not delta_ropath.fileobj: return self.tarinfo2tarblock(index, ti) if stats: # Since we don't read the source files, we can't analyze them. # Best we can do is count them raw. stats.SourceFiles += 1 stats.SourceFileSize += delta_ropath.getsize() log.Progress(None, stats.SourceFileSize) return self.tarinfo2tarblock(index, ti) class SigTarBlockIter(TarBlockIter): """ TarBlockIter that yields blocks of a signature tar from path_iter """ def process(self, path): """ Return associated signature TarBlock from path """ ti = path.get_tarinfo() if path.isreg(): sfp = librsync.SigFile(path.open("rb"), get_block_size(path.getsize())) sigbuf = sfp.read() sfp.close() ti.name = "signature/" + "/".join(path.index) return self.tarinfo2tarblock(path.index, ti, sigbuf) else: ti.name = "snapshot/" + "/".join(path.index) return self.tarinfo2tarblock(path.index, ti) class DeltaTarBlockIter(TarBlockIter): """ TarBlockIter that yields parts of a deltatar file Unlike SigTarBlockIter, the argument to __init__ is a delta_path_iter, so the delta information has already been calculated. """ def process(self, delta_ropath): """ Get a tarblock from delta_ropath """ def add_prefix(tarinfo, prefix): """Add prefix to the name of a tarinfo file""" if tarinfo.name == ".": tarinfo.name = prefix + "/" else: tarinfo.name = "%s/%s" % (prefix, tarinfo.name) ti = delta_ropath.get_tarinfo() index = delta_ropath.index # Return blocks of deleted files or fileless snapshots if not delta_ropath.type or not delta_ropath.fileobj: if not delta_ropath.type: add_prefix(ti, "deleted") else: assert delta_ropath.difftype == "snapshot" add_prefix(ti, "snapshot") return self.tarinfo2tarblock(index, ti) # Now handle single volume block case fp = delta_ropath.open("rb") data, last_block = self.get_data_block(fp) if stats: stats.RawDeltaSize += len(data) if last_block: if delta_ropath.difftype == "snapshot": add_prefix(ti, "snapshot") elif delta_ropath.difftype == "diff": add_prefix(ti, "diff") else: assert 0, "Unknown difftype" return self.tarinfo2tarblock(index, ti, data) # Finally, do multivol snapshot or diff case full_name = "multivol_%s/%s" % (delta_ropath.difftype, ti.name) ti.name = full_name + "/1" self.process_prefix = full_name self.process_fp = fp self.process_ropath = delta_ropath self.process_waiting = 1 self.process_next_vol_number = 2 return self.tarinfo2tarblock(index, ti, data) def get_data_block(self, fp): """ Return pair (next data block, boolean last data block) """ read_size = self.get_read_size() buf = fp.read(read_size) if len(buf) < read_size: if fp.close(): raise DiffDirException("Error closing file") return (buf, True) else: return (buf, False) def process_continued(self): """ Return next volume in multivol diff or snapshot """ assert self.process_waiting ropath = self.process_ropath ti, index = ropath.get_tarinfo(), ropath.index ti.name = "%s/%d" % (self.process_prefix, self.process_next_vol_number) data, last_block = self.get_data_block(self.process_fp) if stats: stats.RawDeltaSize += len(data) if last_block: self.process_prefix = None self.process_fp = None self.process_ropath = None self.process_waiting = None self.process_next_vol_number = None else: self.process_next_vol_number += 1 return self.tarinfo2tarblock(index, ti, data) def write_block_iter(block_iter, out_obj): """ Write block_iter to filename, path, or file object """ if isinstance(out_obj, Path): fp = open(out_obj.name, "wb") elif type(out_obj) is types.StringType: fp = open(out_obj, "wb") else: fp = out_obj for block in block_iter: fp.write(block.data) fp.write(block_iter.get_footer()) assert not fp.close() if isinstance(out_obj, Path): out_obj.setdata() def get_block_size(file_len): """ Return a reasonable block size to use on files of length file_len If the block size is too big, deltas will be bigger than is necessary. If the block size is too small, making deltas and patching can take a really long time. """ if file_len < 1024000: return 512 # set minimum of 512 bytes else: # Split file into about 2000 pieces, rounding to 512 file_blocksize = long((file_len / (2000 * 512)) * 512) return min(file_blocksize, globals.max_blocksize)
python
from django.test import TestCase from rest_framework.test import APIClient from teams.models import Team class TeamTestCase(TestCase): """ Test set for Team CRD (there is no update here) """ client = APIClient() trainer_id = 0 team_id = 0 def setUp(self): """ Set up case. Creates a trainer to work with. """ response = self.client.post('/trainer/create/', {"name": "Blue", "las_name": "Oak"}) self.trainer_id = response.json()["id"] def test_create_team(self): """ Creates a new team for the trainer. Asserts that the team is created. """ response = self.client.post("/teams/create/", { "trainer": str(self.trainer_id), }) self.assertEqual(response.status_code, 201) self.team_id = response.json()["id"] team = Team.objects.get(pk=self.team_id, trainer=self.trainer_id) self.assertAlmostEqual(self.trainer_id, team.trainer.pk) def test_create_team_empty_data(self): """ Tries to create a team with an empty json. Expects a bad request error. """ response = self.client.post("/teams/create/", { }) self.assertEqual(response.status_code, 400) def test_create_team_bad_data(self): """ Tries to create a team with bad data. Expects a bad request error. """ response = self.client.post("/teams/create/", { "Pokemon_Master": str(self.trainer_id), }) self.assertEqual(response.status_code, 400) def test_create_team_trainer_not_exist(self): """ Tries to create a team with a trainer that doesn't exists. Expects a bad request error. """ response = self.client.post("/teams/create/", { "trainer": "2", }) self.assertEqual(response.status_code, 400) def test_get_team(self): """ Retrieves a team using the team pk. Expects a 200 code. """ response = self.client.post("/teams/create/", { "trainer": str(self.trainer_id), }) team_pk = response.json()["id"] response = self.client.get( "/teams/get/"+str(team_pk)+"/") self.assertEqual(response.status_code, 200) self.assertEqual(response.json()["id"], team_pk) self.assertEqual( response.json()["trainer"], self.trainer_id) def test_get_team_bad_id(self): """ Tries to retrieve a team that doesn't exist. Error not found expected. """ response = self.client.get( "/teams/get/15555/") self.assertEqual(response.status_code, 404) def test_get_team_bad_param(self): """ Tries to retrieve a team with the wrong type of path param, a string instead of a number. Error not found expected. """ response = self.client.get( "/teams/get/15555/") self.assertEqual(response.status_code, 404) def test_delete_team(self): """ Deletes an existing team. Code 204 expected """ response = self.client.post("/teams/create/", { "trainer": str(self.trainer_id), }) team_pk = response.json()["id"] response = self.client.delete( "/teams/get/"+str(team_pk)+"/") self.assertEqual(response.status_code, 204) def test_delete_team_no_team_exists(self): """ Tries to delete a team that doesn't exist. Not Found error expected. """ response = self.client.delete( "/teams/get/50000/") self.assertEqual(response.status_code, 404)
python
import os import sqlite3 from datetime import datetime from flask import g DATABASE = 'test.db' def get_db(): if not os.path.isfile(DATABASE): create_database() db = getattr(g, '_database', None) if db is None: db = g._database = sqlite3.connect(DATABASE) return db def save_msg(msg_text: str): conn = get_db() c = conn.cursor() c.execute("INSERT INTO Message (Date, UserID, MessageText) VALUES (?, 0, ?)", (datetime.utcnow().replace(microsecond=0).isoformat(), msg_text)) conn.commit() def create_database(): db = sqlite3.connect(DATABASE) db.cursor().execute("""CREATE TABLE Message ( MessageID INTEGER PRIMARY KEY, Date TEXT NOT NULL, UserID INTEGER NOT NULL, MessageText TEXT NOT NULL )""") db.commit() db.close()
python
__author__ = "Hangi,Kim" __copyright__ = "Copyright 2012-2013, The SAGA Project" __license__ = "MIT" """ IBM LoadLeveler job adaptor implementation reference for pbs job adaptor & sge job adaptor implementation Hangi, Kim [email protected] """ import os import re import time from urllib.parse import parse_qs from datetime import datetime import radical.utils as ru from .. import base from .. import cpi from ...job import constants as c from ...exceptions import * from ... import job as sj from ...utils import pty_shell as sups from ..sge.sgejob import SgeKeyValueParser SYNC_CALL = cpi.decorators.SYNC_CALL ASYNC_CALL = cpi.decorators.ASYNC_CALL # -------------------------------------------------------------------- # def _ll_to_saga_jobstate(lljs): """ translates a loadleveler one-letter state to saga pbs_loadl_comparison.xlsx """ if lljs == 'C' : return c.DONE elif lljs == 'S' : return c.PENDING elif lljs == 'ST': return c.PENDING elif lljs == 'I' : return c.PENDING elif lljs == 'R' : return c.RUNNING else : return c.UNKNOWN def getId(out): t = out.split('\n') jobId = None for line in t: if line.startswith('Job'): tmpStr = line.split(' ') jobId = tmpStr[1] break elif re.search('The job ".+" has been submitted.', line): # Format: llsubmit: The job "srv03-ib.443336" has been submitted. jobId = re.findall(r'"(.*?)"', line)[0] break if not jobId: raise Exception("Failed to detect jobId.") return jobId # -------------------------------------------------------------------- # some private defs # _PTY_TIMEOUT = 2.0 # -------------------------------------------------------------------- # the adaptor name # _ADAPTOR_NAME = "radical.saga.adaptors.loadljob" _ADAPTOR_SCHEMAS = ["loadl", "loadl+ssh", "loadl+gsissh"] # -------------------------------------------------------------------- # the adaptor capabilities & supported attributes # _ADAPTOR_CAPABILITIES = { "jdes_attributes": [c.NAME, c.EXECUTABLE, c.ARGUMENTS, c.ENVIRONMENT, c.INPUT, c.OUTPUT, c.ERROR, c.QUEUE, c.PROJECT, c.JOB_CONTACT, c.WALL_TIME_LIMIT, c.WORKING_DIRECTORY, c.TOTAL_PHYSICAL_MEMORY, c.PROCESSES_PER_HOST, c.CANDIDATE_HOSTS, c.TOTAL_CPU_COUNT], "job_attributes": [c.EXIT_CODE, c.EXECUTION_HOSTS, c.CREATED, c.STARTED, c.FINISHED], "metrics": [c.STATE], "contexts": {"ssh": "SSH public/private keypair", "x509": "GSISSH X509 proxy context", "userpass": "username/password pair (ssh)"} } # -------------------------------------------------------------------- # the adaptor documentation # _ADAPTOR_DOC = { "name": _ADAPTOR_NAME, "capabilities": _ADAPTOR_CAPABILITIES, "description": """ The LoadLeveler adaptor allows to run and manage jobs on ` IBM LoadLeveler<http://www-03.ibm.com/systems/software/loadleveler/>`_ controlled HPC clusters. """, "example": "examples/jobs/loadljob.py", "schemas": {"loadl": "connect to a local cluster", "loadl+ssh": "conenct to a remote cluster via SSH", "loadl+gsissh": "connect to a remote cluster via GSISSH"} } # -------------------------------------------------------------------- # the adaptor info is used to register the adaptor with SAGA # _ADAPTOR_INFO = { "name" : _ADAPTOR_NAME, "version": "v0.1", "schemas": _ADAPTOR_SCHEMAS, "cpis" : [ { "type": "radical.saga.job.Service", "class": "LOADLJobService" }, { "type": "radical.saga.job.Job", "class": "LOADLJob" } ] } ############################################################################### # # The adaptor class # class Adaptor (base.Base): """ this is the actual adaptor class, which gets loaded by SAGA (i.e. by the SAGA engine), and which registers the CPI implementation classes which provide the adaptor's functionality. """ # ---------------------------------------------------------------- # def __init__(self): base.Base.__init__(self, _ADAPTOR_INFO) self.id_re = re.compile('^\[(.*)\]-\[(.*?)\]$') self.epoch = datetime(1970,1,1) self.purge_on_start = self._cfg['purge_on_start'] self.purge_older_than = self._cfg['purge_older_than'] # ---------------------------------------------------------------- # def sanity_check(self): # FIXME: also check for gsissh pass # ---------------------------------------------------------------- # def parse_id(self, id): # split the id '[rm]-[pid]' in its parts, and return them. match = self.id_re.match(id) if not match or len(match.groups()) != 2: raise BadParameter("Cannot parse job id '%s'" % id) return (match.group(1), match.group(2)) ############################################################################### # class LOADLJobService (cpi.job.Service): """ implements cpi.job.Service """ # ---------------------------------------------------------------- # def __init__(self, api, adaptor): self._cpi_base = super(LOADLJobService, self) self._cpi_base.__init__(api, adaptor) self._adaptor = adaptor # ---------------------------------------------------------------- # def __del__(self): self.finalize(kill_shell=True) # ---------------------------------------------------------------- # @SYNC_CALL def init_instance(self, adaptor_state, rm_url, session): """ service instance constructor """ self.rm = rm_url self.session = session self.ppn = 0 # check for remove self.jobs = dict() self.cluster_option = '' self.energy_policy_tag = None self.island_count = None self.node_usage = None self.network_mpi = None self.blocking = None self.job_type = 'MPICH' # TODO: Is this a sane default? self.enforce_resource_submission = False self.enforce_consumable_cpus = False self.enforce_consumable_memory = False self.enforce_consumable_virtual_memory = False self.enforce_consumable_large_page_memory = False self.temp_path = "$HOME/.radical/saga/adaptors/loadl_job" # LoadLeveler has two ways of specifying the executable and arguments. # - Explicit: the executable and arguments are specified as parameters. # - Implicit: the (remainder of the) job script is the task. # # Currently we don't know how this policy can be detected at runtime. # We know that providing both will not work in all cases. # # As the IBM Red Book documents the explicit exec only, # we should use that as a default. # Currently we just use a hack to workaround Joule. # # Note: does this now simply become a Joule hack? # # TODO: Split script into submission file and script and use that for # explicit exec? self.explicit_exec = False rm_scheme = rm_url.scheme pty_url = ru.Url (rm_url) # this adaptor supports options that can be passed via the # 'query' component of the job service URL. if rm_url.query is not None: for key, val in parse_qs(rm_url.query).items(): if key == 'cluster': self.cluster_option = " -X %s" % val[0] elif key == 'energy_policy_tag': self.energy_policy_tag = val[0] elif key == 'island_count': self.island_count = val[0] elif key == 'node_usage': self.node_usage = val[0] elif key == 'network_mpi': self.network_mpi = val[0] elif key == 'blocking': self.blocking = val[0] elif key == 'job_type': self.job_type = val[0] elif key == 'enforce_consumable_cpus': self.enforce_consumable_cpus = True self.enforce_resource_submission = True elif key == 'enforce_consumable_memory': self.enforce_consumable_memory = True self.enforce_resource_submission = True elif key == 'enforce_consumable_virtual_memory': self.enforce_consumable_virtual_memory = True self.enforce_resource_submission = True elif key == 'enforce_consumable_large_page_memory': self.enforce_consumable_large_page_memory = True self.enforce_resource_submission = True elif key == 'explicit_exec': self.explicit_exec = True # we need to extract the scheme for PTYShell. That's basically the # job.Service Url without the loadl+ part. We use the PTYShell to execute # loadleveler commands either locally or via gsissh or ssh. if rm_scheme == "loadl": pty_url.scheme = "fork" elif rm_scheme == "loadl+ssh": pty_url.scheme = "ssh" elif rm_scheme == "loadl+gsissh": pty_url.scheme = "gsissh" # these are the commands that we need in order to interact with Load # Leveler. the adaptor will try to find them during initialize(self) # and bail out in case they are note avaialbe. self._commands = {'llq' : None, 'llsubmit': None, 'llcancel': None} self.shell = sups.PTYShell(pty_url, self.session) # self.shell.set_initialize_hook(self.initialize) # self.shell.set_finalize_hook(self.finalize) self.initialize() return self.get_api () # ---------------------------------------------------------------- # def close (self) : if self.shell : self.shell.finalize (True) # ---------------------------------------------------------------- # def initialize(self): # check if all required loadleveler tools are available for cmd in self._commands: ret, out, _ = self.shell.run_sync("which %s " % cmd) self._logger.info(ret) self._logger.info(out) if ret != 0: raise NoSuccess("Error finding LoadLeveler tools: %s" % out) else: path = out.strip() # strip removes newline ret, out, _ = self.shell.run_sync("%s -v" % cmd) if ret != 0: raise NoSuccess("Error finding LoadLeveler tools: %s" % out) else: # version is reported as: "version: x.y.z" version = out.strip().split()[1] # add path and version to the command dictionary self._commands[cmd] = {"path": path, "version": version} self._logger.info("Found LoadLeveler tools: %s" % self._commands) # see if we can get some information about the cluster, e.g., # different queues, number of processes per node, etc. # TODO: this is quite a hack. however, it *seems* to work quite # well in practice. # modi by hgkim # purge temporary files if self._adaptor.purge_on_start: cmd = "find $HOME/.radical/saga/adaptors/loadl_job" \ " -type f -mtime +%d -print -delete | wc -l" \ % self._adaptor.purge_older_than ret, out, _ = self.shell.run_sync(cmd) if ret == 0 and out != "0": self._logger.info("Purged %s temporary files" % out) # ---------------------------------------------------------------- # def finalize(self, kill_shell=False): if kill_shell : if self.shell : self.shell.finalize (True) def __remote_mkdir(self, path): """ Creates a directory on the remote host. :param path: the remote directory to be created. """ # check if the path exists ret, out, _ = self.shell.run_sync( "(test -d %s && echo -n 0) || (mkdir -p %s && echo -n 1)" % (path, path)) if ret == 0 and out == "1": self._logger.info("Remote directory created: %s" % path) elif ret != 0: # something went wrong raise NoSuccess("Couldn't create remote directory - %s\n%s" % (out, path)) def __remote_job_info_path(self, loadl_job_id="$LOADL_JOB_NAME"): """ Returns the path of the remote job info file. :param loadl_job_id: the LoadLeveler job id. if omitted an environment variable representing the job id will be used. :return: path to the remote job info file """ return "%s/%s" % (self.temp_path, loadl_job_id) def __clean_remote_job_info(self, loadl_job_id): """ Removes the temporary remote file containing job info. :param loadl_job_id: the LoadLeveler job id """ path = self.__remote_job_info_path(loadl_job_id) ret, out, _ = self.shell.run_sync("rm %s" % path) if ret != 0: self._logger.debug("Remote job info couldn't be removed: %s" % path) def __get_remote_job_info(self, loadl_job_id): """ Obtains the job info from a temporary remote file created by the llsubmit script. :param loadl_job_id: the LoadLeveler job id :return: a dictionary with the job info """ ret, out, _ = self.shell.run_sync("cat %s" % self.__remote_job_info_path(loadl_job_id)) if ret != 0: return None qres = SgeKeyValueParser(out, key_suffix=":").as_dict() if "signal" in qres : state = c.CANCELED elif "exit_status" not in qres : state = c.RUNNING elif not int(qres["exit_status"]): state = c.DONE else : state = c.FAILED job_info = { 'state' : state, 'exec_hosts' : qres.get("hostname"), 'create_time' : qres.get("qsub_time"), 'start_time' : qres.get("start_time"), 'end_time' : qres.get("end_time"), 'returncode' : int(qres.get("exit_status", -1)), 'gone' : False } return job_info def __generate_llsubmit_script(self, jd): """ generates a IMB LoadLeveler script from a SAGA job description :param jd: job descriptor :return: the llsubmit script """ loadl_params = '' exec_string = '' args_strings = '' if jd.executable is not None: exec_string = "%s" % (jd.executable) if jd.arguments is not None: for arg in jd.arguments: args_strings += "%s " % (arg) if jd.name is not None: loadl_params += "#@ job_name = %s \n" % jd.name if jd.environment is not None: variable_list = '' for key in list(jd.environment.keys()): variable_list += "%s=%s;" % (key, jd.environment[key]) loadl_params += "#@ environment = %s \n" % variable_list # Energy if self.energy_policy_tag: loadl_params += "#@ energy_policy_tag = %s\n" % self.energy_policy_tag loadl_params += "#@ minimize_time_to_solution = yes\n" if jd.working_directory is not None: loadl_params += "#@ initialdir = %s\n" % jd.working_directory if jd.output is not None: loadl_params += "#@ output = %s\n" % jd.output if jd.error is not None: loadl_params += "#@ error = %s\n" % jd.error if jd.wall_time_limit is not None: hours = int(jd.wall_time_limit / 60) minutes = jd.wall_time_limit % 60 loadl_params += "#@ wall_clock_limit = %s:%s:00\n" \ % (str(hours), str(minutes)) if jd.total_cpu_count is None: # try to come up with a sensible (?) default value jd.total_cpu_count = 1 else: if jd.total_cpu_count > 1: if self.job_type not in ['bluegene']: # 'bluegene' and total_tasks dont live well together loadl_params += "#@ total_tasks = %s\n" % jd.total_cpu_count loadl_params += "#@ job_type = %s\n" % self.job_type if self.job_type == 'bluegene': BGQ_CORES_PER_NODE = 16 # Only true for BG/Q if jd.total_cpu_count % BGQ_CORES_PER_NODE > 0: raise Exception("#cores requested is no multiple of 16.") loadl_params += "#@ bg_size = %d\n" \ % (jd.total_cpu_count / BGQ_CORES_PER_NODE) if self.blocking: loadl_params += "#@ blocking = %s\n" % self.blocking if self.enforce_resource_submission: loadl_params += "#@ resources =" if self.enforce_consumable_cpus: loadl_params += " ConsumableCpus(%d)" % jd.total_cpu_count if self.enforce_consumable_memory: if jd.total_physical_memory is None: raise Exception("total_physical_memory is not set, but required by enforce_consumable_memory.") loadl_params += " ConsumableMemory(%dmb)" % jd.total_physical_memory if self.enforce_consumable_large_page_memory: # TODO: Not sure how to get a sensible value for this if jd.total_physical_memory is None: raise Exception("total_physical_memory is not set, but required by enforce_consumable_large_page_memory.") loadl_params += " ConsumableLargePageMemory(%dmb)" % jd.total_physical_memory if self.enforce_consumable_virtual_memory: # TODO: Not sure how to get a sensible value for this if jd.total_physical_memory is None: raise Exception("total_physical_memory is not set, but required by enforce_consumable_virtual_memory.") loadl_params += " ConsumableVirtualMemory(%dmb)" % jd.total_physical_memory loadl_params += "\n" # Number of islands to allocate resources on, can specify a number, or a min/max if self.island_count: loadl_params += "#@ island_count = %s\n" % self.island_count # Specify network configuration if self.network_mpi: loadl_params += "#@ network.MPI = %s\n" % self.network_mpi # Specify node usage policy if self.node_usage: loadl_params += "#@ node_usage = %s\n" % self.node_usage if jd.job_contact is not None: if len(jd.job_contact) > 1: raise Exception("Only one notify user supported.") loadl_params += "#@ notify_user = %s\n" % jd.job_contact[0] loadl_params += "#@ notification = always\n" # some default (?) parameter that seem to work fine everywhere... if jd.queue is not None: loadl_params += "#@ class = %s\n" % jd.queue else: loadl_params += "#@ class = edison\n" # finally, we 'queue' the job loadl_params += "#@ queue\n" # Job info, executable and arguments job_info_path = self.__remote_job_info_path() script_body = [ 'function aborted() {', ' echo Aborted with signal $1.', ' echo "signal: $1" >>%s' % job_info_path, ' echo "end_time: $(LC_ALL=en_US.utf8 date \'+%%s\')" >>%s' % job_info_path, ' exit -1', '}', 'mkdir -p %s' % self.temp_path, 'for sig in SIGHUP SIGINT SIGQUIT SIGTERM SIGUSR1 SIGUSR2; do trap "aborted $sig" $sig; done', 'echo "hostname: $HOSTNAME" > %s' % job_info_path, 'echo "qsub_time: %s" >>%s' % (time.time(), job_info_path), 'echo "start_time: $(LC_ALL=en_US.utf8 date \'+%%s\')" >>%s' % job_info_path ] script_body += ['%s %s' % (exec_string, args_strings)] script_body += [ 'echo "exit_status: $?" >>%s' % job_info_path, 'echo "end_time: $(LC_ALL=en_US.utf8 date \'+%%s\')" >>%s' % job_info_path ] # convert exec and args into an string and # escape all double quotes and dollar signs, otherwise 'echo |' # further down won't work. # only escape '$' in args and exe. not in the params script_body = "\n".join(script_body).replace('$', '\\$') # Dirty Trick for Joule: it expects an "executable" parameter, # but doesn't really need it, therefore we pass it after the queue # parameter, where it is not used anymore. if self.explicit_exec: loadl_params += "#@ executable = BOGUS\n" loadlscript = "\n%s%s" % (loadl_params, script_body) return loadlscript.replace('"', '\\"') # ---------------------------------------------------------------- # def _job_run(self, jd): """ runs a job via llsubmit """ try: # create a LoadLeveler job script from SAGA job description script = self.__generate_llsubmit_script(jd) self._logger.debug("Generated LoadLeveler script: %s" % script) except Exception as e: raise BadParameter('error creating batch script') from e # try to create the working/output/error directories (if defined) # WARNING: this assumes a shared filesystem between login node and # compute nodes. if jd.working_directory is not None and len(jd.working_directory) > 0: self.__remote_mkdir(jd.working_directory) if jd.output is not None and len(jd.output) > 0: self.__remote_mkdir(os.path.dirname(jd.output)) if jd.error is not None and len(jd.error) > 0: self.__remote_mkdir(os.path.dirname(jd.error)) # submit the LoadLeveler script # Now we want to execute the script. This process consists of two steps: # (1) we create a temporary file with 'mktemp' and write the contents of # the generated Load Leveler script into it # (2) we call 'llsubmit <tmpfile>' to submit the script to the queueing system cmdline = """SCRIPTFILE=`mktemp -t RS-LOADLJobScript.XXXXXX` && echo "%s" > $SCRIPTFILE && %s%s $SCRIPTFILE && rm -f $SCRIPTFILE""" % (script, self._commands['llsubmit']['path'], self.cluster_option) self._logger.info("cmdline: %r", cmdline) ret, out, _ = self.shell.run_sync(cmdline) if ret != 0: # something went wrong raise NoSuccess("Error running 'llsubmit' job: %s. Script: %s" % (out, script)) else: # stdout contains the job id #job_id = "[%s]-[%s]" % (self.rm, out.strip().split('.')[0]) job_id = "[%s]-[%s]" % (self.rm, getId(out)) self._logger.info("Submitted LoadLeveler job with id: %s" % job_id) # add job to internal list of known jobs. self.jobs[job_id] = { 'state': c.PENDING, 'exec_hosts': None, 'returncode': None, 'create_time': None, 'start_time': None, 'end_time': None, 'gone': False } return job_id # ---------------------------------------------------------------- # def _retrieve_job(self, job_id, max_retries=10): """ see if we can get some info about a job that we don't know anything about refactoring by referencing sgejob.py """ rm, pid = self._adaptor.parse_id(job_id) # run the LoadLeveler 'llq' command to get some info about our job ret, out, _ = self.shell.run_sync("%s -j %s -r %%st %%dd %%cc %%jt %%c %%Xs" % (self._commands['llq']['path'], pid)) # output is something like # R!03/25/2014 13:47!!Serial!normal!kisti.kim # OR # llq: There is currently no job status to report. if ret != 0: raise NoSuccess("Couldn't reconnect to job '%s': %s" % (job_id, out)) else: # the job seems to exist on the backend. let's gather some data job_info = { 'state': c.UNKNOWN, 'exec_hosts': None, 'returncode': None, 'create_time': None, 'start_time': None, 'end_time': None, 'gone': False } # lastStr = out.rstrip().split('\n')[-1] lastStr = out.rstrip() self._logger.debug(lastStr) if lastStr.startswith('llq:'): # llq: There is currently no job status to report job_info = None retries = 0 while job_info is None and retries < max_retries: job_info = self.__get_remote_job_info(pid) # print("llq:", job_info) if job_info is None and retries > 0: message = "__get_remote_job_info get None, pid: %s and retries: %d" % (pid, retries) self._logger.debug(message) # Exponential back-off time.sleep(2**retries) retries += 1 if job_info is None: raise NoSuccess("__get_remote_job_info exceed %d times(s), " "pid: %s" % (max_retries, pid)) self._logger.info("_retrieve_job: %r", job_info) else: # job is still in the queue results = lastStr.split('!') self._logger.info("results: %r",results) job_info['state'] = _ll_to_saga_jobstate(results[0]) job_info['returncode'] = None # still running job_info['start_time'] = results[1] # job_info['exec_hosts'] = results[5] return job_info # ---------------------------------------------------------------- # def _job_get_info(self, job_id): """ get job attributes via llq """ # if we don't have the job in our dictionary, we don't want it if job_id not in self.jobs: raise NoSuccess("Unknown job ID: %s. Can't update state." % job_id) # prev. info contains the info collect when _job_get_info # was called the last time prev_info = self.jobs[job_id] # if the 'gone' flag is set, there's no need to query the job # state again. it's gone forever if prev_info['gone'] is True: self._logger.warning("Job information is not available anymore.") return prev_info # if the job is in a terminal state don't expect it to change anymore if prev_info["state"] in [c.CANCELED, c.FAILED, c.DONE]: return prev_info # retrieve updated job information curr_info = self._retrieve_job(job_id) if curr_info is None: prev_info["gone"] = True return prev_info # update the job info cache and return it self.jobs[job_id] = curr_info return curr_info # ---------------------------------------------------------------- # def _job_get_state(self, job_id): """ get the job's state """ # check if we have already reach a terminal state if self.jobs[job_id]['state'] in [c.CANCELED, c.FAILED, c.DONE]: return self.jobs[job_id]['state'] # check if we can / should update if (self.jobs[job_id]['gone'] is not True): self.jobs[job_id] = self._job_get_info(job_id=job_id) return self.jobs[job_id]['state'] # ---------------------------------------------------------------- # def _job_get_exit_code(self, job_id): """ get the job's exit code """ # check if we can / should update if (self.jobs[job_id]['gone'] is not True) \ and (self.jobs[job_id]['returncode'] is None): self.jobs[job_id] = self._job_get_info(job_id=job_id) return self.jobs[job_id]['returncode'] # ---------------------------------------------------------------- # def _job_get_execution_hosts(self, job_id): """ get the job's exit code """ # check if we can / should update if (self.jobs[job_id]['gone'] is not True) \ and (self.jobs[job_id]['exec_hosts'] is None): self.jobs[job_id] = self._job_get_info(job_id=job_id) return self.jobs[job_id]['exec_hosts'] # ---------------------------------------------------------------- # def _job_get_create_time(self, job_id): """ get the job's creation time """ # check if we can / should update if (self.jobs[job_id]['gone'] is not True) \ and (self.jobs[job_id]['create_time'] is None): self.jobs[job_id] = self._job_get_info(job_id=job_id) return self.jobs[job_id]['create_time'] # ---------------------------------------------------------------- # def _job_get_start_time(self, job_id): """ get the job's start time """ # check if we can / should update if (self.jobs[job_id]['gone'] is not True) \ and (self.jobs[job_id]['start_time'] is None): self.jobs[job_id] = self._job_get_info(job_id=job_id) return self.jobs[job_id]['start_time'] # ---------------------------------------------------------------- # def _job_get_end_time(self, job_id): """ get the job's end time """ # check if we can / should update if not self.jobs[job_id]['gone'] and not self.jobs[job_id]['end_time']: self.jobs[job_id] = self._job_get_info(job_id=job_id) return self.jobs[job_id]['end_time'] # ---------------------------------------------------------------- # def _job_cancel(self, job_id): """ cancel the job via 'llcancel' """ rm, pid = self._adaptor.parse_id(job_id) ret, out, _ = self.shell.run_sync("%s%s %s\n" \ % (self._commands['llcancel']['path'], self.cluster_option, pid)) if ret != 0: raise NoSuccess("Error canceling job via 'llcancel': %s" % out) #self.__clean_remote_job_info(pid) # assume the job was succesfully canceld self.jobs[job_id]['state'] = c.CANCELED # ---------------------------------------------------------------- # def _job_wait(self, job_id, timeout): """ wait for the job to finish or fail """ time_start = time.time() time_now = time_start rm, pid = self._adaptor.parse_id(job_id) while True: state = self._job_get_state(job_id=job_id) if state == c.UNKNOWN : raise IncorrectState("cannot get job state") if state in [c.DONE, c.FAILED, c.CANCELED]: # self.__clean_remote_job_info(pid) return True # avoid busy poll time.sleep(0.5) # check if we hit timeout if timeout >= 0: time_now = time.time() if time_now - time_start > timeout: return False # ---------------------------------------------------------------- # @SYNC_CALL def create_job(self, jd): """ implements cpi.job.Service.get_url() """ # check that only supported attributes are provided for attribute in jd.list_attributes(): if attribute not in _ADAPTOR_CAPABILITIES["jdes_attributes"]: raise BadParameter("'jd.%s' is not supported by this adaptor" % attribute) # this dict is passed on to the job adaptor class -- use it to pass any # state information you need there. adaptor_state = {"job_service": self, "job_description": jd, "job_schema": self.rm.schema, "reconnect": False } return sj.Job(_adaptor=self._adaptor, _adaptor_state=adaptor_state) # ---------------------------------------------------------------- # @SYNC_CALL def get_job(self, jobid): """ Implements cpi.job.Service.get_job() """ self._logger.info("get_job: %r", jobid) # try to get some information about this job and throw it into # our job dictionary. self.jobs[jobid] = self._retrieve_job(jobid) # this dict is passed on to the job adaptor class -- use it to pass any # state information you need there. adaptor_state = {"job_service": self, # TODO: fill job description "job_description": sj.Description(), "job_schema": self.rm.schema, "reconnect": True, "reconnect_jobid": jobid } return sj.Job(_adaptor=self._adaptor, _adaptor_state=adaptor_state) # ---------------------------------------------------------------- # @SYNC_CALL def get_url(self): """ implements cpi.job.Service.get_url() """ return self.rm # ---------------------------------------------------------------- # @SYNC_CALL def list(self): """ implements cpi.job.Service.list() """ ids = [] ret, out, _ = self.shell.run_sync("unset GREP_OPTIONS; %s | grep `whoami`" % self._commands['llq']['path']) if ret != 0 and len(out) > 0: raise NoSuccess("failed to list jobs via 'llq': %s" % out) elif ret != 0 and len(out) == 0: # llq | grep `` exits with 1 if the list is empty pass else: for line in out.split("\n"): # output looks like this: # v4c064.8637.0 ydkim 3/27 13:33 R 50 normal v4c064 # v4c064.8638.0 ydkim 3/27 13:37 R 50 normal v4c064 # v4c064.8639.0 ydkim 3/27 13:37 R 50 normal v4c065 # v4c064.8640.0 ydkim 3/27 13:37 R 50 normal v4c065 # v4c064.8641.0 ydkim 3/27 13:37 I 50 normal lineArray=line.split() if len(lineArray) > 1: # lineArray[0] : v4c064.8637.0 tmpStr=lineArray[0].split('.') jobid = "[%s]-[%s]" % (self.rm, ".".join(tmpStr[:2])) ids.append(str(jobid)) return ids # # ---------------------------------------------------------------- # # # def container_run (self, jobs) : # self._logger.debug ("container run: %s" % str(jobs)) # # TODO: this is not optimized yet # for job in jobs: # job.run () # # # # ---------------------------------------------------------------- # # # def container_wait (self, jobs, mode, timeout) : # self._logger.debug ("container wait: %s" % str(jobs)) # # TODO: this is not optimized yet # for job in jobs: # job.wait () # # # # ---------------------------------------------------------------- # # # def container_cancel (self, jobs, timeout) : # self._logger.debug ("container cancel: %s" % str(jobs)) # raise NoSuccess ("Not Implemented"); ############################################################################### # class LOADLJob (cpi.job.Job): """ implements cpi.job.Job """ def __init__(self, api, adaptor): # initialize parent class self._cpi_base = super(LOADLJob, self) self._cpi_base.__init__(api, adaptor) @SYNC_CALL def init_instance(self, job_info): """ implements cpi.job.Job.init_instance() """ # init_instance is called for every new sj.Job object # that is created self.jd = job_info["job_description"] self.js = job_info["job_service"] if job_info['reconnect'] is True: self._id = job_info['reconnect_jobid'] self._name = self.jd.get(c.NAME) self._started = True else: self._id = None self._name = self.jd.get(c.NAME) self._started = False return self.get_api() # ---------------------------------------------------------------- # @SYNC_CALL def get_state(self): """ implements cpi.job.Job.get_state() """ if self._started is False: # jobs that are not started are always in 'NEW' state return c.NEW else: return self.js._job_get_state(self._id) # ---------------------------------------------------------------- # @SYNC_CALL def wait(self, timeout): """ implements cpi.job.Job.wait() """ if self._started is False: raise IncorrectState("Can't wait for job that hasn't been started") else: self.js._job_wait(self._id, timeout) # ---------------------------------------------------------------- # @SYNC_CALL def cancel(self, timeout): """ implements cpi.job.Job.cancel() """ if self._started is False: raise IncorrectState("Can't wait for job that hasn't been started") else: self.js._job_cancel(self._id) # ---------------------------------------------------------------- # @SYNC_CALL def run(self): """ implements cpi.job.Job.run() """ self._id = self.js._job_run(self.jd) self._started = True # ---------------------------------------------------------------- # @SYNC_CALL def get_service_url(self): """ implements cpi.job.Job.get_service_url() """ return self.js.rm # ---------------------------------------------------------------- # @SYNC_CALL def get_id(self): """ implements cpi.job.Job.get_id() """ return self._id # ---------------------------------------------------------------- # @SYNC_CALL def get_name (self): """ Implements cpi.job.Job.get_name() """ return self._name # ---------------------------------------------------------------- # @SYNC_CALL def get_exit_code(self): """ implements cpi.job.Job.get_exit_code() """ if self._started is False: return None else: return self.js._job_get_exit_code(self._id) # ---------------------------------------------------------------- # @SYNC_CALL def get_created(self): """ implements cpi.job.Job.get_created() """ if self._started is False: return None else: # FIXME: convert to EPOCH return self.js._job_get_create_time(self._id) # ---------------------------------------------------------------- # @SYNC_CALL def get_started(self): """ implements cpi.job.Job.get_started() """ if self._started is False: return None else: # FIXME: convert to EPOCH return self.js._job_get_start_time(self._id) # ---------------------------------------------------------------- # @SYNC_CALL def get_finished(self): """ implements cpi.job.Job.get_finished() """ if self._started is False: return None else: return self.js._job_get_end_time(self._id) # ---------------------------------------------------------------- # @SYNC_CALL def get_execution_hosts(self): """ implements cpi.job.Job.get_execution_hosts() """ if self._started is False: return None else: return self.js._job_get_execution_hosts(self._id) # ------------------------------------------------------------------------------
python
# Privacy Policy Browser # Credit: Josiah Baldwin, Eric Dale, Ethan Fleming, Jacob Hilt, # Darian Hutchinson, Joshua Lund, Bennett Wright # # The alexa skill is implemented as a collection of handlers for certain types of user input. # This is paired with a S3 bucket that is holding data about location & acceptance in privacy policy. # These are paired together to implement a kind of state machine. # # The components of the privacy policy are handled in the privacy_policy module, go there for more info. import logging import ask_sdk_core.utils as ask_utils import sys import os sys.path.append(os.path.dirname(__file__)) from ask_sdk_s3.adapter import S3Adapter s3_adapter = S3Adapter(bucket_name=os.environ["S3_PERSISTENCE_BUCKET"]) from ask_sdk_core.skill_builder import CustomSkillBuilder from ask_sdk_core.dispatch_components import AbstractRequestHandler, AbstractExceptionHandler from ask_sdk_core.handler_input import HandlerInput from ask_sdk_model.ui import PlayBehavior, Reprompt, SsmlOutputSpeech, PlainTextOutputSpeech from ask_sdk_model import Response, IntentRequest, Intent, Slot, SlotConfirmationStatus from privacy_policy import PrivacyPolicy logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) policy = PrivacyPolicy("policy.xml") max_section_num = len(policy.sections) repeat = False cont = False quit = False persistent_variables = { "lastSectionRead": -1, "acceptedSections": policy.accepted_sections } def load_attributes(handler_input): """Load persistent variables from S3 storage.""" attributes_manager = handler_input.attributes_manager persistent_variables = handler_input.attributes_manager.persistent_attributes def save_attributes(handler_input): """Save persistent variables to S3 storage.""" attributes_manager = handler_input.attributes_manager attributes_manager.persistent_attributes = persistent_variables attributes_manager.save_persistent_attributes() def create_section_response(handler_input, section_number): """Return a response object that reads the specified section number.""" if section_number >= max_section_num: return ( handler_input.response_builder .speak("The end of the policy was reached.") .ask("Would you like to accept the policy?") .response ) section = policy.sections[section_number] persistent_variables["lastSectionRead"] = section_number speak_output = 'Starting from section {num}'.format(num = section_number + 1) speak_output += ". " + section.all_atoms_as_string() speak_output += "To accept or decline this section of the policy, say accept or decline. Otherwise, say continue." return ( handler_input.response_builder .speak(speak_output) .ask("Would you like to continue reading the next section? To do so, say continue.") .response ) def have_read_section(): """Return true if a section was previously read.""" return persistent_variables["lastSectionRead"] >= 0 def list_accepted_sections(): """Return a string stating which sections of the policy have been read.""" count = 0 speak_output = "" for i in range(len(policy.accepted_sections)): if policy.is_section_accepted(i): if count == 0: speak_output += ": " else: speak_output += ", " count += 1 speak_output += str(i + 1) if count == len(policy.accepted_sections): return "You have accepted all sections of this policy." elif count == 1: return "You have accepted section" + speak_output + "." elif count > 0: return "You have accepted sections" + speak_output + "." else: return "You have not accepted any sections in this policy." class LaunchRequestHandler(AbstractRequestHandler): """Handler run when the skill first launches.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_request_type("LaunchRequest")(handler_input) def handle(self, handler_input): """Return a response object that plays at launch.""" # Maybe we should change up this opening dialog to something like: # # "Welcome to the privacy policy reader. I can read through privacy policies and keep track # of which sections you would like to accept or decline. Say, 'list options' to hear all that I can do for you, # or say, 'Start from the beginning' to start reading." # # This might make it sound less overwhelming on startup - Darian speak_output = "Welcome to the privacy policy reader. Here are some things I can do for you: 1. list options, " \ + "2. hear the table of contents, " \ + "3. Start from the beginning, " \ + "4. start from section by saying the word section followed by the desired section number," \ + "5. 'skip section' or 'continue', " \ + "6. 'repeat that', " \ + "7. 'accept or decline section' optionally followed by the section number, " \ + "8. 'read accepted sections', " \ + "or 'quit.'" load_attributes(handler_input) if persistent_variables["lastSectionRead"] >= 0: speak_output = "Welcome back to the privacy policy reader. To continue from where you left off say continue, " \ + "or to hear other options say 1, help, or menu." return ( handler_input.response_builder .speak(speak_output) .ask(speak_output) .response ) # OUR CODE ################################################################################################# def get_toc_string(): """Return a string stating the top-level titles of the privacy policy.""" titles = "Here are the Privacy Policy section titles" i = 1 for title in policy.section_titles: titles += f". {i}. " + str(title).rstrip(".") i += 1 return titles class TableOfContentsHandler(AbstractRequestHandler): """Handler run when the user requests the table of contents.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("TableOfContents")(handler_input) def handle(self, handler_input): """Return a response object that plays the table of contents.""" return ( handler_input.response_builder .speak(get_toc_string()) .ask("What would you like to do?") .response ) class ReadAcceptedHandler(AbstractRequestHandler): """Handler run when the user requests a list of accepted sections.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("readAccepted")(handler_input) def handle(self, handler_input): """Return a response object that plays a list of accepted sections.""" load_attributes(handler_input) speak_output = list_accepted_sections() return ( handler_input.response_builder .speak(speak_output) .ask("What would you like to do?") .response ) class ListOptionsHandler(AbstractRequestHandler): """Handler run when the user requests help or menu options.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("ListOptions")(handler_input) or ask_utils.is_intent_name("AMAZON.HelpIntent")(handler_input) def handle(self, handler_input): """Return a response object that plays a list of menu options.""" speak_output = "OK, you can tell me " \ + "1. 'menu' to listen to this menu, " \ + "2. 'table of contents', " \ + "3. 'read from beginning', " \ + "4. 'read section' followed by the section number, " \ + "5. 'skip section' or 'continue', " \ + "6. 'repeat that', " \ + "7. 'accept or decline section' optionally followed by the section number, " \ + "8. 'read accepted sections', " \ + "or 'quit.'" return ( handler_input.response_builder .speak(speak_output) .ask("What would you like to do?") .response ) class ResetHandler(AbstractRequestHandler): """Debug handle to reset AWS slots Invoke with "Erase all data" """ def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("Reset")(handler_input) def handle(self, handler_input): """Delete persistent variables and return a response object that reports success.""" policy.decline_all_sections() persistent_variables["lastSectionRead"] = -1 persistent_variables["acceptedSections"] = policy.accepted_sections response = "Okay, I've forgotten everything. What was my name again?" save_attributes(handler_input) return ( handler_input.response_builder .speak(response) .ask("What would you like to do?") .response ) class StartFromSectionHandler(AbstractRequestHandler): """Handler run when the user asks to start from a section.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("StartFromSection")(handler_input) def handle(self, handler_input): """Update the last section read variable and return a response object that plays the requested section.""" load_attributes(handler_input) slots = handler_input.request_envelope.request.intent.slots num = int(slots["num"].value) - 1 response = create_section_response(handler_input, num) save_attributes(handler_input) return response class AcceptPolicyHandler(AbstractRequestHandler): """Handler run when the user asks to accept a section of the policy.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("AcceptPolicy")(handler_input) def handle(self, handler_input): """Update the accepted sections variable and return a response object that reports success or failure.""" load_attributes(handler_input) slots = handler_input.request_envelope.request.intent.slots user_acceptence = slots["userAcceptence"].value speak_output = "" if slots["acceptNum"].value: num = int(slots["acceptNum"].value) - 1 elif slots["acceptWhat"].value: num = -1 else: if not have_read_section(): return ( handler_input.response_builder .speak("Sorry, you haven't read any sections yet.") .ask("What would you like to do?") .response ) num = persistent_variables["lastSectionRead"] policy.set_accepted_sections(persistent_variables["acceptedSections"]) if user_acceptence == "accept": if num >= 0: policy.accept_section(num) speak_output += "Ok. Section " + str(num + 1) + " has been accepted." else: policy.accept_all_sections() speak_output += "Ok. All sections of the policy have been accepted." elif user_acceptence == "decline": if num >= 0: policy.decline_section(num) speak_output += "Ok. Section " + str(num + 1) + " has been declined." else: policy.decline_all_sections() speak_output += "Ok. All sections of the policy have been declined." persistent_variables["acceptedSections"] = policy.accepted_sections save_attributes(handler_input) return ( handler_input.response_builder .speak(speak_output) # .ask("add a reprompt if you want to keep the session open for the user to respond") .response ) class StartFromBeginningHandler(AbstractRequestHandler): """Handler run when the user asks to start reading from the beginning the policy.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("StartFromBeginning")(handler_input) def handle(self, handler_input): """Update the last section read variable and return a response object that plays the first section of the policy.""" load_attributes(handler_input) response = create_section_response(handler_input, 0) save_attributes(handler_input) return response # can we have 'next section' call this handler as well? class ContinueHandler(AbstractRequestHandler): """Handler run when the user asks to continue reading the next section of the policy.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("Continue")(handler_input) def handle(self, handler_input): """Update the last section read variable and return a response object that plays the next section of the policy.""" load_attributes(handler_input) persistent_variables["lastSectionRead"] += 1 num = persistent_variables["lastSectionRead"] response = create_section_response(handler_input, num) save_attributes(handler_input) return response # INTENTS TO BE CALLED WHILE READING: class RepeatWhileReadingHandler(AbstractRequestHandler): """Handler run when the user asks to repeat the current section of the policy.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("RepeatWhileReading")(handler_input) def handle(self, handler_input): """Return a response object that plays the current section of the policy or reports failure if no section has been read.""" load_attributes(handler_input) if not have_read_section(): return ( handler_input.response_builder .speak("Sorry, I'm not sure which section you want me to repeat.") .ask("What would you like to do?") .response ) num = persistent_variables["lastSectionRead"] return create_section_response(handler_input, num) # PREGEN CODE ################################################################################################# class CancelOrStopIntentHandler(AbstractRequestHandler): """Handler run when the user asks to cancel the skill.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return (ask_utils.is_intent_name("AMAZON.CancelIntent")(handler_input) or ask_utils.is_intent_name("AMAZON.StopIntent")(handler_input)) def handle(self, handler_input): """Return a response object that plays a goodbye message and leaves the skill.""" speak_output = "Goodbye!" return ( handler_input.response_builder .speak(speak_output) .response ) class FallbackIntentHandler(AbstractRequestHandler): """Handler run when the user issues a command we don't handle.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_intent_name("AMAZON.FallbackIntent")(handler_input) def handle(self, handler_input): """Return a response object that reports we don't understand that command, and await further commands.""" logger.info("In FallbackIntentHandler") speech = "Hmm, I'm not sure. You can say Hello or Help. What would you like to do?" reprompt = "I didn't catch that. What can I help you with?" return handler_input.response_builder.speak(speech).ask(reprompt).response class SessionEndedRequestHandler(AbstractRequestHandler): """Handler run when the session ends.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_request_type("SessionEndedRequest")(handler_input) def handle(self, handler_input): """Return a blank response object that terminates the session.""" return handler_input.response_builder.response class IntentReflectorHandler(AbstractRequestHandler): """The intent reflector is used for interaction model testing and debugging. It will simply repeat the intent the user said. You can create custom handlers for your intents by defining them above, then also adding them to the request handler chain below.""" def can_handle(self, handler_input): """Return true if this handler can handle the specified handler input.""" return ask_utils.is_request_type("IntentRequest")(handler_input) def handle(self, handler_input): """Return a response object reporting the intent that was triggered.""" intent_name = ask_utils.get_intent_name(handler_input) speak_output = "You just triggered " + intent_name + "." return ( handler_input.response_builder .speak(speak_output) # .ask("add a reprompt if you want to keep the session open for the user to respond") .response ) class CatchAllExceptionHandler(AbstractExceptionHandler): """Generic error handling to capture any syntax or routing errors. If you receive an error stating the request handler chain is not found, you have not implemented a handler for the intent being invoked or included it in the skill builder below.""" def can_handle(self, handler_input, exception): """Return true if this handler can handle the specified handler input.""" return True def handle(self, handler_input, exception): """Log an error and return a response object indicating an error occurred.""" logger.error(exception, exc_info=True) speak_output = "Sorry, I had trouble doing what you asked. Please try again." return ( handler_input.response_builder .speak(speak_output) .ask(speak_output) .response ) # END PREGEN CODE ################################################################################################# # The SkillBuilder object acts as the entry point for your skill, routing all request and response # payloads to the handlers above. Make sure any new handlers or interceptors you've # defined are included below. The order matters - they're processed top to bottom. sb = CustomSkillBuilder(persistence_adapter=s3_adapter) sb.add_request_handler(LaunchRequestHandler()) # OUR INTENTS sb.add_request_handler(ListOptionsHandler()) sb.add_request_handler(TableOfContentsHandler()) sb.add_request_handler(ReadAcceptedHandler()) sb.add_request_handler(StartFromSectionHandler()) sb.add_request_handler(StartFromBeginningHandler()) sb.add_request_handler(ContinueHandler()) sb.add_request_handler(ResetHandler()) # READING INTENTS sb.add_request_handler(AcceptPolicyHandler()) sb.add_request_handler(RepeatWhileReadingHandler()) # OUR INTENTS ^ sb.add_request_handler(CancelOrStopIntentHandler()) sb.add_request_handler(FallbackIntentHandler()) sb.add_request_handler(SessionEndedRequestHandler()) sb.add_request_handler(IntentReflectorHandler()) # make sure IntentReflectorHandler is last so it doesn't override your custom intent handlers sb.add_exception_handler(CatchAllExceptionHandler()) lambda_handler = sb.lambda_handler()
python
from sklearn.preprocessing import StandardScaler from scipy import ndimage import nilearn from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import PowerTransformer from scipy.stats import variation import numpy as np from densratio import densratio from sklearn.neighbors import LocalOutlierFactor from sklearn.utils import resample from sklearn.utils import shuffle from imblearn.over_sampling import ADASYN from sklearn import preprocessing from scipy.stats import ks_2samp from sklearn.decomposition import FastICA, PCA import nibabel as nib from skimage.util import random_noise from scipy.signal import wiener from skimage.filters import unsharp_mask from scipy import signal import math import load_data import data_augmentation ####2D transformation def standarization(data): scaler = StandardScaler() scaler.fit(data) data = scaler.transform(data) return data def quantile_transform(data, random_state): quantile_transformer = preprocessing.QuantileTransformer(n_quantiles=36, random_state=random_state) data = quantile_transformer.fit_transform(data) return data def gussian_filter(data, sigma): for i in range(len(data)): data[i] = ndimage.gaussian_filter(data[i], sigma) return data def signal_clean(data): data = nilearn.signal.clean(data) return data def robust_scaler(data): scaler = RobustScaler() data = scaler.fit_transform(data) return data def MinMax_scaler(data): scaler = MinMaxScaler() data = scaler.fit_transform(data) return data def dublicate(data, number): data_stacked = data.copy() for i in range(number): data_stacked = np.vstack((data, data_stacked)) return data_stacked def concat(data1, data2): data1 = np.vstack((data1, data2)) return data1 def shuffling(data, labels): idx = np.random.permutation(len(labels)) data, labels = data[idx], labels[idx] return data, labels def PowerTransform(data): power_transform = PowerTransformer() data = power_transform.fit_transform(data) return data def coefficient_of_variance(data): data = MinMax_scaler(data) data = variation(data, axis=1) return data def density_ratio_estimation(train_data, test_data): result = densratio(train_data, test_data) sample_weight = result.compute_density_ratio(train_data) return sample_weight def outliers(train_data, train_labels, number_of_neighbours): neigh = LocalOutlierFactor(n_neighbors=number_of_neighbours) indices = neigh.fit_predict(train_data) train_data_inlier = train_data[np.where(indices == 1)] train_labels_inlier = train_labels[np.where(indices == 1)] outlier_indices = np.where(indices == -1) return train_data_inlier, train_labels_inlier, outlier_indices def novelty(train_data, train_labels, test_data, test_labels, number_of_neighbours): neigh = LocalOutlierFactor(n_neighbors=number_of_neighbours, novelty=True) indices = neigh.fit(train_data) indices = indices.predict(test_data) test_data_inlier = test_data[np.where(indices == 1)] print('test_labels[np.where(indices == 1)]',np.shape(test_labels[np.where(indices == 1)])) test_labels_inlier = test_labels[np.where(indices == 1)] outlier_indices = np.where(indices == -1) return test_data_inlier, test_labels_inlier, outlier_indices def upsampling(data,labels): X = np.hstack((data, labels)) if (len(X[X[:, -1] == 0])>len(X[X[:, -1]==1])): not_fewsamples = X[np.where(X[:, -1] == 0)] fewsamples = X[np.where(X[:, -1] == 1)] else: not_fewsamples = X[np.where(X[:, -1] == 1)] fewsamples = X[np.where(X[:, -1] == 0)] if len(fewsamples)==0: return data,labels print('np.shape(fewsamples)',np.shape(fewsamples)) if (np.shape((np.unique(fewsamples,axis=0)))[0]<(len(not_fewsamples[:, -1])-len(fewsamples[:, -1]))): fewsamples_upsampled = resample(fewsamples, replace=True, # sample with replacement n_samples=len(not_fewsamples[:, -1]) - len(fewsamples[:, -1]), # match number in majority class random_state=1) # reproducible results else: fewsamples_upsampled = resample(fewsamples, replace=False, # sample with replacement n_samples=len(not_fewsamples[:, -1])-len(fewsamples[:, -1]), # match number in majority class random_state=1) # reproducible results fewsamples_upsampled=np.vstack((fewsamples_upsampled, fewsamples)) fewsamples_upsampled = np.vstack((fewsamples_upsampled, not_fewsamples)) fewsamples_upsampled = shuffle(fewsamples_upsampled, random_state=42) labels = fewsamples_upsampled[:, -1] data = fewsamples_upsampled[:, 0:np.shape(fewsamples_upsampled)[1] - 1] return data,labels def resampling(data, labels): AD_data = data[np.where(labels == 1)] AD_labels = labels[np.where(labels == 1)] Con_data = data[np.where(labels == 0)] Con_labels = labels[np.where(labels == 0)] indices = np.random.randint(0, len(AD_labels), len(AD_labels)) AD_data = AD_data[indices].copy() AD_labels = AD_labels[indices].copy() indices = np.random.randint(0, len(Con_labels), len(Con_labels)) Con_data = Con_data[indices].copy() Con_labels = Con_labels[indices].copy() data = concat(Con_data, AD_data) labels = concat(Con_labels[:, np.newaxis], AD_labels[:, np.newaxis]) data, labels = shuffling(data, labels) return data, labels def synthetic(data, labels, num): smote = ADASYN(ratio='all', n_neighbors=num) data, labels = smote.fit_sample(data, labels) return data, labels def KSTest(train_data, test_data, step): index = [] for i in range(0, len(train_data) - step, step): for j in range(train_data.shape[1]): r = ks_2samp(train_data[i:i + step, j], test_data[:, j]) if r[1] > 0.05: index = np.append(index, j) if index==[]: return train_data,test_data index = index[:, np.newaxis] index = index.astype(int) index = removeDuplicates(index) train_data[:, index] = 0 test_data[:, index] = 0 return train_data, test_data def removeDuplicates(listofElements): # Create an empty list to store unique elements uniqueList = [] # Iterate over the original list and for each element # add it to uniqueList, if its not already there. for elem in listofElements: if elem not in uniqueList: uniqueList.append(elem) # Return the list of unique elements return uniqueList def ica(data, number_of_combonents): ica = FastICA(n_components=number_of_combonents) ICA_combonents = ica.fit_transform(data) # ICA_combonents = ica.inverse_transform(ICA_combonents) return ICA_combonents def pca(data, number_of_combonents): pca_m = PCA(n_components=number_of_combonents) PCA_combonents = pca_m.fit_transform(data) # ICA_combonents = pca_m.inverse_transform(ICA_combonents) return PCA_combonents ####3D transformation def g_po_sk(input=None): input = input shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): sigma = 0.155 input[:, :, :, i] = random_noise(input[:, :, :, i], var=sigma ** 2) input[:, :, :, i] = random_noise(input[:, :, :, i], mode='poisson') input[:, :, :, i] = random_noise(input[:, :, :, i], mode='speckle') input = np.moveaxis(input, 2, 1) return input def sp(input): input = input shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = random_noise(input[:, :, :, i], mode='s&p') input = np.moveaxis(input, 2, 1) return input def po(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = random_noise(input[:, :, :, i], mode='poisson') input = np.moveaxis(input, 2, 1) return input def g_sp(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): sigma = 0.155 input[:, :, :, i] = random_noise(input[:, :, :, i], var=sigma ** 2) input[:, :, :, i] = random_noise(input[:, :, :, i], mode='s&p') input = np.moveaxis(input, 2, 1) return input def g_po(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): sigma = 0.155 input[:, :, :, i] = random_noise(input[:, :, :, i], var=sigma ** 2) input[:, :, :, i] = random_noise(input[:, :, :, i], mode='poisson') input = np.moveaxis(input, 2, 1) return input def g_sk(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): sigma = 0.155 input[:, :, :, i] = random_noise(input[:, :, :, i], var=sigma ** 2) input[:, :, :, i] = random_noise(input[:, :, :, i], mode='speckle') input = np.moveaxis(input, 2, 1) return input def sp_sk(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = random_noise(input[:, :, :, i], mode='s&p') input[:, :, :, i] = random_noise(input[:, :, :, i], mode='speckle') input = np.moveaxis(input, 2, 1) return input def sp_po(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = random_noise(input[:, :, :, i], mode='s&p') input[:, :, :, i] = random_noise(input[:, :, :, i], mode='poisson') input = np.moveaxis(input, 2, 1) return input def po_sk(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = random_noise(input[:, :, :, i], mode='poisson') input[:, :, :, i] = random_noise(input[:, :, :, i], mode='speckle') input = np.moveaxis(input, 2, 1) return input def noise_all(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): sigma = 0.155 input[:, :, :, i] = random_noise(input[:, :, :, i], var=sigma ** 2) input[:, :, :, i] = random_noise(input[:, :, :, i], mode='s&p') input[:, :, :, i] = random_noise(input[:, :, :, i], mode='poisson') input[:, :, :, i] = random_noise(input[:, :, :, i], mode='speckle') input = np.moveaxis(input, 2, 1) return input def apply_noise_manytypes(data): data_noised = concatination(data, sp(data.copy())) data_noised = concatination(data_noised, g_po_sk(data.copy())) data_noised = concatination(data_noised, po(data.copy())) data_noised = concatination(data_noised, g_sp(data.copy())) data_noised = concatination(data_noised, g_po(data.copy())) data_noised = concatination(data_noised, g_sk(data.copy())) data_noised = concatination(data_noised, sp_sk(data.copy())) data_noised = concatination(data_noised, sp_po(data.copy())) data_noised = concatination(data_noised, po_sk(data.copy())) data_noised = concatination(data_noised, noise_all(data.copy())) return data_noised def g_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def m_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def us_f(input): # unsharp filter shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = unsharp_mask(input[:, :, :, i], radius=5, amount=2) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def c_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def w_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = wiener(input[:, :, :, i], mysize=7) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def g_m_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def g_us_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) input[:, :, :, i] = unsharp_mask(input[:, :, :, i], radius=5, amount=2) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def m_us_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) input[:, :, :, i] = unsharp_mask(input[:, :, :, i], radius=5, amount=2) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def g_c_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def g_w_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) input[:, :, :, i] = wiener(input[:, :, :, i], mysize=7) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def c_w_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) input[:, :, :, i] = wiener(input[:, :, :, i], mysize=7) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def m_w_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) input[:, :, :, i] = wiener(input[:, :, :, i], mysize=7) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def m_c_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def m_g_c_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def m_g_us_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) input[:, :, :, i] = unsharp_mask(input[:, :, :, i], radius=5, amount=2) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def c_w_us_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) input[:, :, :, i] = wiener(input[:, :, :, i], mysize=7) input[:, :, :, i] = unsharp_mask(input[:, :, :, i], radius=5, amount=2) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def c_w_us_g_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) input[:, :, :, i] = wiener(input[:, :, :, i], mysize=7) input[:, :, :, i] = unsharp_mask(input[:, :, :, i], radius=5, amount=2) input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def c_w_us_m_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) input[:, :, :, i] = wiener(input[:, :, :, i], mysize=7) input[:, :, :, i] = unsharp_mask(input[:, :, :, i], radius=5, amount=2) input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def all_f(input): shape = np.shape(input) num_of_inputs = shape[3] input = np.moveaxis(input, 1, 2) # print('input shape', np.shape(input)) for i in range(num_of_inputs): input[:, :, :, i] = ndimage.gaussian_filter(input[:, :, :, i], .5) input[:, :, :, i] = nilearn.signal.clean(input[:, :, :, i]) input[:, :, :, i] = wiener(input[:, :, :, i], mysize=7) input[:, :, :, i] = unsharp_mask(input[:, :, :, i], radius=5, amount=2) input[:, :, :, i] = signal.medfilt(input[:, :, :, i]) # print(np.shape(input)) input = np.moveaxis(input, 2, 1) return input def apply_filter_manytypes(data): data_filter = g_f(data.copy()) data_filter = concatination(data_filter, m_f(data.copy())) data_filter = concatination(data_filter, us_f(data.copy())) data_filter = concatination(data_filter, c_f(data.copy())) data_filter = concatination(data_filter, w_f(data.copy())) data_filter = concatination(data_filter, g_m_f(data.copy())) data_filter = concatination(data_filter, g_us_f(data.copy())) data_filter = concatination(data_filter, m_us_f(data.copy())) data_filter = concatination(data_filter, g_c_f(data.copy())) data_filter = concatination(data_filter, g_w_f(data.copy())) data_filter = concatination(data_filter, c_w_f(data.copy())) data_filter = concatination(data_filter, m_w_f((data.copy()))) data_filter = concatination(data_filter, m_c_f(data.copy())) data_filter = concatination(data_filter, m_g_c_f(data.copy())) data_filter = concatination(data_filter, m_g_us_f(data.copy())) data_filter = concatination(data_filter, c_w_us_f(data.copy())) data_filter = concatination(data_filter, c_w_us_g_f(data.copy())) data_filter = concatination(data_filter, c_w_us_m_f(data.copy())) data_filter = concatination(data_filter, all_f(data.copy())) return data_filter def concatination(data1, data2): shape_data1 = np.shape(data1) shape_data2 = np.shape(data2) matrix_data = np.zeros((shape_data1[0], shape_data1[1], shape_data1[2], shape_data1[3] + shape_data2[3])) matrix_data[:, :, :, 0:shape_data1[3]] = data1 matrix_data[:, :, :, shape_data1[3]:shape_data1[3] + shape_data2[3]] = data2 return matrix_data def flatten(data): data = np.reshape(data, (np.shape(data)[0], -1)) return data def deflatten(data, shape): data = np.reshape(data, (-1, shape[1], shape[2], shape[3])) return data def select_max_features(mask, number_of_featrues): mask_reduces = np.zeros((len(mask))) argsmask = np.argsort((-mask).copy()) for i in range(number_of_featrues): mask_reduces[argsmask[i]] = mask[argsmask[i]] return mask_reduces def transposnig(input_data, order): return input_data.transpose(order) def size_editing(data, final_height): data_length = data.shape[1] if (data_length > final_height): diff = abs(data_length - final_height) / 2 if (round(diff) > diff): start = round(diff) end = data_length - round(diff) + 1 return data[:, start:end, start:end, :] else: start = int(diff) end = int(data_length - diff) return data[:, start:end, start:end, :] else: diff = abs(data_length - final_height) / 2 if (round(diff) > diff): resized_data = np.pad(data, ((0, 0), (round(diff), round(diff) - 1), (round(diff), round(diff) - 1), (0, 0)), 'constant', constant_values=(0, 0)) else: resized_data = np.pad(data, ((0, 0), (round(diff), round(diff)), (round(diff), round(diff)), (0, 0)), 'constant', constant_values=(0, 0)) return resized_data def depth_reshapeing(data): depth = int(data.shape[3]) dim0 = int(data.shape[0]) dim1 = int(data.shape[1]) dim2 = int(data.shape[2]) step = math.floor(depth / 3) reshaped_data = np.empty((dim0, dim1, dim2, 3)) for i in range(3): if i == 2: reshaped_data[:, :, :, i] = np.mean(data[:, :, :, step * i:depth], axis=3) else: reshaped_data[:, :, :, i] = np.mean(data[:, :, :, step * i:step * (i + 1)], axis=3) return reshaped_data def converting_nii_to_npz(file_name): file_path = load_data.find_path(file_name) nii_file = data_augmentation.load_obj(file_path) np.savez(file_path[0:len(file_path) - 7] + '.npz', masked_voxels=nii_file) def labels_convert_one_hot(labels): length = len(labels) if labels.all() == 0: ones = np.ones((length, 1)) labels = np.hstack((ones, labels)) elif labels.all() == 1: zeros = np.zeros((length, 1)) labels = np.hstack((zeros, labels)) else: zeros = np.zeros((length, 1)) labels = np.hstack((zeros, labels)) indecies = np.where(labels[:, 1] == 0) labels[indecies[0], 0] = 1 return labels
python
class Player(object): def __init__(self, name, connection): self.connection = connection self.name = name self.score = 0
python
import json from typing import List, Tuple import boto3 from botocore.client import BaseClient from logger.decorator import lambda_auto_logging from logger.my_logger import MyLogger from utils.lambda_tool import get_environ_values from utils.s3_tool import ( create_key_of_eorzea_database_merged_item, create_key_of_irregular_data, create_key_of_match_data, create_key_of_xivapi_merged_item, ) environ_names = ["TMP_DATA_BUCKET_NAME"] logger = MyLogger(__name__) @lambda_auto_logging(*environ_names) def handler(event, context): main(event) def main(event: dict, s3_client: BaseClient = boto3.client("s3")): (tmp_data_bucket_name,) = get_environ_values(environ_names) process_id = get_process_id_from_event(event) key_of_eorzea_database = create_key_of_eorzea_database_merged_item(process_id) key_of_xivapi = create_key_of_xivapi_merged_item(process_id) eorzea_database = get_s3_data( tmp_data_bucket_name, key_of_eorzea_database, s3_client ) xivapi = get_s3_data(tmp_data_bucket_name, key_of_xivapi, s3_client) match, irregular = exec_matching(eorzea_database, xivapi) key_of_match = create_key_of_match_data(process_id) put_s3_data(tmp_data_bucket_name, key_of_match, match, s3_client) if len(irregular) > 0: key_of_irregular = create_key_of_irregular_data(process_id) put_s3_data(tmp_data_bucket_name, key_of_irregular, irregular, s3_client) logger.error("has irregular data", count=len(irregular)) def get_process_id_from_event(event: dict) -> str: return event["id"] def get_s3_data(bucket_name: str, key: str, s3_client: BaseClient) -> List[dict]: option = {"Bucket": bucket_name, "Key": key} resp = s3_client.get_object(**option) return json.load(resp["Body"]) def exec_matching( eorzea_database: List[dict], xivapi: List[dict] ) -> Tuple[List[dict], List[dict]]: match = [] irregular = [] for item in eorzea_database: parsed = [x for x in xivapi if x["Name_en"] == item["name"]] if len(parsed) == 1: api_item = parsed[0] match.append({**api_item, **{"EorzeaDatabaseId": item["id"]}}) else: irregular.append({"eorzea_database": item, "xivapi": parsed}) return match, irregular def put_s3_data(bucket_name: str, key: str, data: List[dict], s3_client: BaseClient): option = { "Bucket": bucket_name, "Key": key, "Body": json.dumps(data, ensure_ascii=False).encode(), "ContentType": "application/json", } s3_client.put_object(**option)
python
#!/usr/bin/python """ `yap_ipython.external.mathjax` is deprecated with yap_ipython 4.0+ mathjax is now install by default with the notebook package """ import sys if __name__ == '__main__' : sys.exit("yap_ipython.external.mathjax is deprecated, Mathjax is now installed by default with the notebook package")
python
from random import random from player import Player from pokerUtils import PokerUtils from board import Board def decide(playerdecision, player, callamount, raiseamount=0): # fold if playerdecision == 2: print(player.getname() + " loses") players.remove(player) # raise if playerdecision == 1: print(player.getname() + " raises by " + str(raiseamount)) player.chips = player.chips - callamount + raiseamount # call if playerdecision == 0: print(player.getname() + " called") player.chips = player.chips - callamount # init players p1 = Player("Alice", True, 1500) p2 = Player("Bob", False, 1500) players = [p1, p2] roundIndex = 0 blindSize = [10, 15, 20, 30, 50, 75, 100, 150, 200, 300, 400, 500, 600, 800, 1000] startPlayerValue = round(random() * len(players)) while True: # setup blinds and variables roundIndex = roundIndex + 1 smallBlind = blindSize[roundIndex] smallBlindPlayer = players[(startPlayerValue + roundIndex) % len(players)] bigBlindPlayer = players[(startPlayerValue + roundIndex + 1) % len(players)] bigBlind = smallBlind * 2 callamount = bigBlind # set new order accordingly oldPlayerOrder = players players = [smallBlindPlayer, bigBlindPlayer] for player in oldPlayerOrder: if player is not smallBlindPlayer and player is not bigBlindPlayer: players.append(player) # init deck deck = PokerUtils.createdeck() """ START GAME """ smallBlindPlayer.chips = smallBlindPlayer.chips - smallBlind bigBlindPlayer.chips = bigBlindPlayer.chips - bigBlind # players draw for player in players: player.draw(deck) player.draw(deck) # decide while not all(x.hasCalled for x in players): for player in players: if not player.hasCalled: # call, raise or fold # returns: [max(rankings), decision, raiseamount] decision = player.decide(player.gethandranking(), callamount) # check if raised if decision[1] == 1: # reset callstatus for x in (players[:players.index(player)] + players[players.index(player) + 1:]): x.hasCalled = False decide(decision[1], player, callamount, decision[2]) """ DRAW FLOP (first 3 cards) """ myBoard = Board(deck) # decide while not all(x.hasCalled for x in players): for player in players: if not player.hasCalled: # call, raise or fold # returns: [max(rankings), decision, raiseamount] decision = player.decide(player.gethandranking(), callamount) # check if raised if decision[1] == 1: # reset callstatus for x in (players[:players.index(player)] + players[players.index(player) + 1:]): x.hasCalled = False decide(decision[1], player, callamount, decision[2]) """ DRAW TURN (4th card) """ myBoard.draw(deck) # decide while not all(x.hasCalled for x in players): for player in players: if not player.hasCalled: # call, raise or fold # returns: [max(rankings), decision, raiseamount] decision = player.decide(player.gethandranking(myBoard.getcommunitycards()), callamount) # check if raised if decision[1] == 1: # reset callstatus for x in (players[:players.index(player)] + players[players.index(player) + 1:]): x.hasCalled = False decide(decision[1], player, callamount, decision[2]) """ DRAW RIVER (5th card) """ myBoard.draw(deck) # decide ranks = [] for player in players: decision = player.decide(player.gethandranking(myBoard.getcommunitycards())) decide(decision[1]) ranks.append([decision[0], player.getname()]) print(ranks) winners = [] for rank in ranks: if max(ranks)[0] == rank[0]: winners.append(rank[1]) if len(winners) > 1: print("Draw between " + ' & '.join(winners)) else: print(max(ranks)[1] + " wins!")
python
# # # This script compiles and runs all examples in /examples # by mpifort and mpirun on four processors. # # # Glob: https://docs.python.org/2/library/glob.html import glob # OS: https://docs.python.org/2/library/os.html import os for ftest in glob.glob('examples/*.f90'): print("compile "+ftest) os.system('mpifort '+ftest+' -J./build/include -L./build/lib -lmpifw') print("run "+ftest) os.system('mpirun -n 4 a.out') print("\n") os.system('rm a.out')
python
from django_unicorn.components import UnicornView import requests from bs4 import BeautifulSoup class ContcompView(UnicornView): url = "https://example.com" headers = { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Methods': 'GET', 'Access-Control-Allow-Headers': 'Content-Type', 'Access-Control-Max-Age': '3600', 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0' } cuenta = dict() palabras = [] def count(self,*args,**kwargs): self.page = requests.get(self.url) self.data = self.page.text self.soup = BeautifulSoup(self.data,features="html.parser") self.text = self.soup.get_text() self.palabras = self.text.split() self.auxpalabras = [] for palabra in self.palabras: if palabra in self.cuenta: self.cuenta[palabra] += 1 else: self.cuenta[palabra] = 1 self.auxpalabras.append(palabra) self.palabras = self.auxpalabras #TODO: Ordenar por palabras mas repeditas
python
from flask import Blueprint, render_template, jsonify, app from edinet import edinet_methods from eve_docs.config import get_cfg def edinet_docs(): blueprints = [edinet_methods.edinet_methods] eve_docs = Blueprint('eve_docs', __name__, template_folder='templates') @eve_docs.route('/') def index(): cfg = get_cfg(blueprints) return render_template('index.html', cfg=cfg) @eve_docs.route('/v1/docs') def indexv1(): cfg = get_cfg(blueprints) return render_template('indexv1.html', cfg=cfg) @eve_docs.route('/v1/spec.json') def spec(): cfg = get_cfg(blueprints) return jsonify(cfg) return eve_docs
python
from app.dao.permissions_dao import permission_dao from tests.app.db import create_service def test_get_permissions_by_user_id_returns_all_permissions(sample_service): permissions = permission_dao.get_permissions_by_user_id(user_id=sample_service.users[0].id) assert len(permissions) == 8 assert sorted(["manage_users", "manage_templates", "manage_settings", "send_texts", "send_emails", "send_letters", "manage_api_keys", "view_activity"]) == sorted([i.permission for i in permissions]) def test_get_permissions_by_user_id_returns_only_active_service(sample_user): active_service = create_service(user=sample_user, service_name="Active service") inactive_service = create_service(user=sample_user, service_name="Inactive service", active=False) permissions = permission_dao.get_permissions_by_user_id(user_id=sample_user.id) assert len(permissions) == 8 assert active_service in [i.service for i in permissions] assert inactive_service not in [i.service for i in permissions]
python
from django.urls import path from .views import * from .import views app_name = 'offers' urlpatterns = [ # Renda Fixa # ------------------------------------------------------------------------------------------------------------------ # Listar path('rf/listar/', OfferRfListView.as_view(), name="listar-rf"), # Adicionar path('rf/adicionar/', views.createrf, name="create-rf"), # Editar path('rf/editar/<int:pk>/', views.editrf, name="edit-rf"), # Deletar path('rf/deletar/<int:pk>/', DeleteOfferRfView.as_view(), name="delete-rf"), # Send Mail path('rf/enviar-email-rf/<int:pk>/', views.sendemailrf, name="send-mail-rf"), # Sent View path('rf/email-enviado-rf/<int:id>/', views.sentmailrf, name="sent-mail-rf"), # Renda Variável # ------------------------------------------------------------------------------------------------------------------ # IPO # ------------------------------------------------------------------------------------------------------------------ # Listar path('rv/ipo/listar/', OfferRvIpoListView.as_view(), name="listar-rv-ipo"), # Adicionar path('rv/ipo/adicionar/', views.creatervipo, name="create-rv-ipo"), # Editar path('rv/ipo/editar/<int:pk>/', views.editrvipo, name="edit-rv-ipo"), # Deletar path('rv/ipo/deletar/<int:pk>/', DeleteOfferRvIpoView.as_view(), name="delete-rv-ipo"), # Send Mail path('rv/ipo/enviar-email-rv-ipo/<int:pk>/', views.sendmailrvipo, name="send-mail-rv-ipo"), # Sent View path('rv/ipo/email-enviado-rv-ipo/<int:id>/', views.sentmailrvviewipo, name="sent-mail-rv-view-ipo"), # Direito de Subscrição # ------------------------------------------------------------------------------------------------------------------ # Listar path('rv/direito-de-subscricao/listar/', OfferRvSubscriptionListView.as_view(), name="listar-rv-subscription"), # Adicionar path('rv/direito-de-subscricao/adicionar/', OfferRvSubscriptionCreateView.as_view(), name="create-rv-subscription"), # Editar path('rv/direito-de-subscricao/editar/<int:pk>/', OfferRvSubscriptionEditView.as_view(), name="edit-rv-subscription"), # Deletar path('rv/direito-de-subscricao/deletar/<int:pk>/', OfferRvSubscriptionDeleteView.as_view(), name="delete-rv-subscription"), # Get Ticker path('rv/get_ticker/', views.get_ticker_price, name="get-ticker"), # Fii # ------------------------------------------------------------------------------------------------------------------ # Listar path('rv/fii/listar/', views.ofertarvfiiview, name="listar-rv-fii"), # Eviar Email path('rv/fii/enviar-email-rv-fii/<str:id>/<str:ticker>/', views.sendemailrvfii, name="send-mail-rv-fii"), # Enviar path('rv/fii/envia_email_fii/', views.envia_email_fii, name="envia-email-fii"), #EDIT FII # Adicionar TESTE path('adicionarFII', views.addFii, name="add-fii"), # Adicionar path('rv/fii/adicionar/<str:ticker>/<str:emissor>/', OfferRvFiiCreateView.as_view(), name="create-rv-fii-edit"), # Editar path('rv/fii/editar/<int:pk>/', OfferRvFiiEditView.as_view(), name="edit-rv-fii-edit"), # Deletar path('rv/fii/deletar/<int:pk>/', OfferRvFiiDeleteView.as_view(), name="delete-rv-fii-edit"), # --- # Scrape TICKER11 path('rv/fii/ticker11/', views.scrapy_ticker11, name="scrape-ticker11"), # Scrape ClubeFii path('rv/fii/clubefii/', views.scrapy_clubefii, name="scrape-clubefii"), # Fiis File Upload path('rv/fii/fii-files-upload/', views.fii_files_upload, name="fii-files-upload"), ]
python
from ..legend import Legend def size_continuous_legend(title=None, description=None, footer=None, prop='size', variable='size_value', dynamic=True, ascending=False, format=None): """Helper function for quickly creating a size continuous legend. Args: prop (str, optional): Allowed properties are 'size' and 'stroke_width'. dynamic (boolean, optional): Update and render the legend depending on viewport changes. Defaults to ``True``. title (str, optional): Title of legend. description (str, optional): Description in legend. footer (str, optional): Footer of legend. This is often used to attribute data sources. variable (str, optional): If the information in the legend depends on a different value than the information set to the style property, it is possible to set an independent variable. ascending (boolean, optional): If set to ``True`` the values are sorted in ascending order. Defaults to ``False``. format (str, optional): Format to apply to number values in the widget, based on d3-format specifier (https://github.com/d3/d3-format#locale_format). Returns: cartoframes.viz.legend.Legend Example: >>> size_continuous_legend( ... title='Legend title', ... description='Legend description', ... footer='Legend footer', ... dynamic=False, ... format='.2~s') """ return Legend('size-continuous', title, description, footer, prop, variable, dynamic, ascending, format)
python
import unittest from app.models import Role class RoleModelTest(unittest.TestCase): def setUp(self): self.new_role = Role('1','admin') if __name__ =='__main__': unittest.main()
python
""" dotfiles ~~~~~~~~ Dotfiles is a tool to make managing your dotfile symlinks in $HOME easy, allowing you to keep all your dotfiles in a single directory. :copyright: (c) 2011-2016 by Jon Bernard. :license: ISC, see LICENSE.rst for more details. """ __version__ = '0.9.dev0'
python
""" """ import sys sys.path.append("..") # import one subdirectory up in files import numpy as np from networks.networks import IsoMPS #%% XXZ Tenpy MPO from tenpy.models.model import CouplingMPOModel, NearestNeighborModel from tenpy.tools.params import asConfig from tenpy.networks.site import SpinHalfSite #__all__ = ['XXZModel', 'XXChain'] class XXZModel(CouplingMPOModel): def init_sites(self, model_params): conserve = model_params.get('conserve', 'parity') assert conserve != 'Sz' if conserve == 'best': conserve = 'parity' if self.verbose >= 1.: print(self.name + ": set conserve to", conserve) site = SpinHalfSite(conserve=conserve) return site def init_terms(self, model_params): J = np.asarray(model_params.get('J', 1.)) d = np.asarray(model_params.get('d', 1.)) for u1, u2, dx in self.lat.pairs['nearest_neighbors']: self.add_coupling(J, u1, 'Sigmax', u2, 'Sigmax', dx) self.add_coupling(J, u1, 'Sigmay', u2, 'Sigmay', dx) self.add_coupling(J*d, u1, 'Sigmaz', u2, 'Sigmaz', dx) # done class XXZChain(XXZModel, NearestNeighborModel): def __init__(self, model_params): model_params = asConfig(model_params, self.__class__.__name__) model_params.setdefault('lattice', "Chain") CouplingMPOModel.__init__(self, model_params) def xxz_mpo(J,Delta,hz=0): model_params = dict(J=J, d=Delta, bc_MPS='infinite', conserve=None, verbose=False) return XXZChain(model_params).H_MPO #%% (Free) Energy calculators def energy_tp(param_vals,*args): """ function to calculate energy using MPO/MPS contraction in tenpy inputs: - param_vals = dict {parameter:value} - *args, args[0] should be psi: state as IsoMPS args[1] should be H_mpo: Hamiltonian as MPO (input made this way to be compatible w/ scipy.optimize) outputs: - float, <psi|H|psi> computed w/ tenpy """ # parse inputs psi=args[0] # state as isoMPS H_mpo = args[1] # Hamiltonian as tenpy MPO param_dict = dict(zip(psi.param_list,param_vals)) # convert state from holoPy isoMPS to tenpy MPS psi_tp = psi.to_tenpy(param_dict,L=np.inf) # compute energy E = (H_mpo.expectation_value(psi_tp)).real return E # def energy_tp_corr(param_vals,*args): # psi=args[0] # J,Delta,h = args[1] # psi_tp=psi.to_tenpy(opt_params,L=np.inf) # Cxx_tp = np.mean([4*psi_tp.correlation_function("Sx", "Sx", # sites1=[j], # sites2=[j+1], # opstr=None, str_on_first=False, hermitian=False, autoJW=False) # for j in range(l_uc)]) # Cyy_tp = np.mean([4*psi_tp.correlation_function("Sy", "Sy", # sites1=[j], # sites2=[j+1], # opstr=None, str_on_first=False, hermitian=False, autoJW=False) # for j in range(l_uc)]) # Czz_tp = np.mean([4*psi_tp.correlation_function("Sz", "Sz", # sites1=[j], # sites2=[j+1], # opstr=None, str_on_first=False, hermitian=False, autoJW=False) # for j in range(l_uc)]) # return J*(Cxx_tp+Cyy_tp+Delta*Czz_tp) def entropy(prob_list,L): # entropy function taken from Shahin's code; L should be viewed as L*l_uc in his convention """ Returns the von Neumann entropy (per site) of a given list probability weight list (the form of Shannon entropy). -------------- --the input assumes thermal_state_class-based prob_list-- L: int Length (number) of repetitions of unit cell in the main network chain. """ new_prob_list = [np.array(j)[np.array(j) > 1.e-30] for j in prob_list] # avoiding NaN in numpy.log() function s_list1 = [] d=1 for j in range(len(new_prob_list)): for p in new_prob_list[j]: s_list1.append(-p*np.log(p)) # converting to form of Shannon entropy s_list2 = [sum(s_list1[j:j+d]) for j in range(0,len(s_list1),d)] s_tot = sum(s_list2)/L # average entropy of chain return s_tot def free_energy_tp(tot_param_vals,*args): #we need to define psi each time we call the function under our current circuit construction; #tot_param_vals is just a list (array) of prams with first L*l_uc terms being the prob list on #each site and the rest being the regular parameters L,l_uc = args[0] H_mpo = args[1] prob, param_vals = np.split(tot_param_vals,[L*l_uc]) prob = np.reshape(prob,(L,l_uc,1)) psi = IsoMPS(preg,breg,site_pcircs,boundary_circuit=bond_prep_pcirc,L=L,thermal = True,thermal_prob=prob) E = energy_tp(param_vals,psi,H_mpo) S = entropy(prob,L*l_uc) F = E - T*S return F
python
#!/usr/bin/env python """booleanRules.py: Infers network from pseudotime and binary expression. To run type python booleanRules.py gene expressionFile step orderFile maxAct maxRep networkFile threshold thresholdStep gene: name of gene e.g. Gata1. This should match gene names in expression and network files. expressionFile: path to expression file. This is a binary gene expression matrix with colnames equal to genes and rownames equal to cell names. step: e.g. 5. This is how far back in pseudotime to take as input for the boolean function evaluated at current time t. So for step=5 the input to the boolean function at time t is given by the gene expression states at time t=t-5. orderFile: path to pseudotime order file. This should be a list of cell names indicating the pseudotime ordering of cells. These cells names should be the same form as those in expressionFile. maxAct: e.g. 4. The number of activators allowed for each gene maxRep: e.g. 2. The number of repressors allowed for each gene. Note, if these two parameters are high finding rules will be very slow. networkFile: path to the network file. This indicates possible activators and repressorrs of each gene. Each line should be of the form "from.gene relation to.gene" where relation is either 1 (activation) or -1 (repression). threshold: Starting threshold for agreement of rules. thresholdStep: Increments in which the threshold will be lowered if no rules are found. """ __author__ = "Fiona Hamey" import pandas as pd import numpy as np import math import sys sys.path.append('/Users/fiona/z3/build') import z3 sys.path.append('Users/fiona/Desktop/PhD/MRes/Rotation_2/Code/Python/') gene = sys.argv[1] expressionFile = sys.argv[2] step = int(sys.argv[3]) orderFile = sys.argv[4] maxAct = int(sys.argv[5]) maxRep = int(sys.argv[6]) networkFile = sys.argv[7] threshold = float(sys.argv[8]) thresholdStep = float(sys.argv[9]) # Read in expression matrix expression = pd.read_table(expressionFile, sep = "\t", index_col = 0, header = 0) # Read in path cells names as list pathNames = list(pd.read_table(orderFile, sep = "\n").iloc[:,0]) from encodingFunctions import * step = step inputOutput = [(pathNames[i-step-1], pathNames[i-step], pathNames[i-step+1], pathNames[i]) for i in range(step+1,len(pathNames))] inputOutputSelection = inputOutput # Read in network network = pd.read_table(networkFile, sep = "\t", header = 0) # Define node class class node: def __init__(self, pos_in, neg_in): self.p = pos_in self.n = neg_in # Node list for network nodeList = {} nodeNames = list(set(network['to.gene'])) for n in nodeNames: allRelations = network[network['to.gene'] == n] posRelations = allRelations[allRelations['relation'] == 1] posGenes = list(posRelations['from.gene']) if 'FoxH1' in posGenes: posGenes.remove('FoxH1') if 'FoxO4' in posGenes: posGenes.remove('FoxO4') negRelations = allRelations[allRelations['relation'] == -1] negGenes = list(negRelations['from.gene']) if 'FoxH1' in negGenes: negGenes.remove('FoxH1') if 'FoxO4' in negGenes: negGenes.remove('FoxO4') nodeList[n] = node(posGenes, negGenes) # Need to add some penalties in, remember she allowed self-activation # Penalties penAll = 0 penSelf = 0.005 # Dictionary to look up node names number equivalent allNames = list(expression.columns) nodeLookUp = {allNames[j]:j+2 for j in range(len(allNames))} # Add constraints to the solver def constraintsBitVec(ctor, model, d): x = z3.BitVecVal(int(str(model[d])), 32) return ctor(str(d)) != x def addConstraintsCircuitVar(solver, model, ds): constraints = z3.Or([constraintsBitVec(makeCircuitVar, model, d) for d in ds]) return constraints def modeCalc(lst): return max(set(lst), key=lst.count) # Function which enforces minimum agreeing counts def totalAgreement(inputOutputPair, gene, aVars, rVars, expressionValues, counter): inputName0 = inputOutputPair[0] inputName1 = inputOutputPair[1] inputName2 = inputOutputPair[2] outputName = inputOutputPair[3] input0 = expressionValues.loc[inputName0,:] input1 = expressionValues.loc[inputName1,:] input2 = expressionValues.loc[inputName2,:] input = [modeCalc([input0[i], input1[i], input2[i]]) for i in range(len(input0))] output = expressionValues.loc[outputName,:] #counter += 1 score = makeEnforcedVar("counter_%i" %counter) (encoding, match) = circuitEvaluatesTo(gene, aVars, rVars, input, output, counter) return (z3.And(encoding, z3.If(match, score == z3.BitVecVal(1,32), score == z3.BitVecVal(0,32))), score) def agreesAtLeastNTimes(inputOutputList, expressionValues, gene, aVars, rVars, n): both = [totalAgreement(inputOutputList[p], gene, aVars, rVars, expressionValues, p) for p in range(len(inputOutputList))] encodings = [both[i][0] for i in range(len(both))] scoreValues = [both[i][1] for i in range(len(both))] return z3.And(z3.And(encodings), z3.Sum(scoreValues) >= n) # Genes seems a bit pointless? def findFunctions(solver, gene, genes, nodeLookUp, nodeList, maxActivators, maxRepressors, inputOutput, expression, agreementThreshold): expressionBool = expression == 1 possAct = nodeList[gene].p possAct = [nodeLookUp[i] for i in possAct] possRep = nodeList[gene].n possRep = [nodeLookUp[i] for i in possRep] gene = nodeLookUp[gene] genes = [nodeLookUp[genes[i]] for i in range(len(genes))] circuitEncoding, aVars, rVars = encodeUpdateFunction(gene, genes, maxActivators, maxRepressors, possAct, possRep) circuitVars = aVars + rVars # Choose number of agreement threshold agreementThreshold = int(agreementThreshold*len(inputOutput)) solver.reset() allConstraints = z3.And(circuitEncoding, agreesAtLeastNTimes(inputOutput, expressionBool, gene, aVars, rVars, \ agreementThreshold)) solver.add(allConstraints) constraints = True possibleRules = [] while str(solver.check()) == 'sat': m = solver.model() modelVariables = [m[i] for i in range(len(m))] circuitDecls = filter(lambda x: str(x) in [str(s) for s in circuitVars], modelVariables) enforceDecls = filter(lambda x: str(x)[0:7] == "counter", modelVariables) totalScore = sum([int(str( m[d])) for d in enforceDecls]) newConstraints = addConstraintsCircuitVar(solver, m, circuitDecls) constraints = z3.And(constraints, newConstraints) solver.reset() solver.add(z3.And(allConstraints, constraints)) possibleRules.append((m, totalScore)) print 'found rule' if len(possibleRules) >= 100: newThreshold = max([s[1] for s in possibleRules]) displayThreshold = float(newThreshold)/len(inputOutput) print 'Finding too many rules. So now increase threshold to %f' %displayThreshold solver.reset() allConstraints = z3.And(circuitEncoding, agreesAtLeastNTimes(inputOutput, expressionBool, gene, aVars, rVars, \ newThreshold)) solver.add(allConstraints) constraints = True possibleRules = [] while str(solver.check()) == 'sat': m = solver.model() modelVariables = [m[i] for i in range(len(m))] circuitDecls = filter(lambda x: str(x) in [str(s) for s in circuitVars], modelVariables) enforceDecls = filter(lambda x: str(x)[0:7] == "counter", modelVariables) totalScore = sum([int(str( m[d])) for d in enforceDecls]) newConstraints = addConstraintsCircuitVar(solver, m, circuitDecls) constraints = z3.And(constraints, newConstraints) solver.reset() solver.add(z3.And(allConstraints, constraints)) possibleRules.append((m, totalScore)) print "found rule" return possibleRules, z3.And(allConstraints) def findBestRuleForGene(gene, genes, nodeLookUp, nodeList, maxActivators, maxRepressors, inputOutput, expression): s = z3.Solver() for k in range(20): s.reset() agreement = threshold - thresholdStep*k print 'Lowered threshold to %f' %agreement rules, allConstraints = findFunctions(s, gene, genes, nodeLookUp, nodeList, maxActivators, maxRepressors, inputOutput, expression, agreement) convertedRules = [ruleConvert(r) for r in rules] geneInRules = [] conRules = [x[0] for x in convertedRules] for r in conRules: geneInRules.append(s[1] for s in r) if len(rules) > 0 and not all(g in r for r in geneInRules): break print 'Found %d rules for gene satisfying threshold %f' %(len(rules),agreement) return rules, agreement, allConstraints def ruleConvert(model): score = model[1]/len(inputOutput) modelRules = model[0] def int2gene(i): i = int(str(i)) if i == AND: return 'and' elif i == OR: return 'or' else: return allNames[i-2] namedVariables = ["a%i" %i for i in range(7)] + ["r%i" %i for i in range(7)] modelVariables = [modelRules[i] for i in range(len(modelRules))] usefulVariables = filter(lambda x: str(x) in namedVariables, modelVariables) modelConstraints = [(str(v), int2gene(modelRules[v])) for v in usefulVariables if str(modelRules[v]) != str(NOTHING)] return modelConstraints, score def evaluateRule(rule, input0, input1, input2): # Remember to input boolean expression rules = {'a%d'%i : NOTHING for i in range(7)} rules.update({'r%d'%i : NOTHING for i in range(7)}) convertBack = {'and':0, 'or':1} convertBack.update({gene:nodeLookUp[gene] for gene in allNames}) for r in rule: rules[r[0]] = convertBack[r[1]] def getValue(v): return modeCalc([input0[v-2], input1[v-2], input2[v-2]]) # Find intermediate variables v = {'va%d'%i: getValue(rules['a%d'%i]) for i in range(7) if rules['a%d'%i] in range(2,NOTHING)} v.update({'vr%d'%i: getValue(rules['r%d'%i]) for i in range(7) if rules['r%d'%i] in range(2,NOTHING)}) # Evaluate activators if rules['a1'] == 0: inter_a1 = v['va3'] and v['va4'] elif rules['a1'] == 1: inter_a1 = v['va3'] or v['va4'] elif rules['a1'] in range(2,NOTHING): inter_a1 = v['va1'] else: inter_a1 = True if rules['a2'] == 0: inter_a2 = v['va5'] and v['va6'] elif rules['a2'] == 1: inter_a2 = v['va5'] or v['va6'] elif rules['a2'] in range(2,NOTHING): inter_a2 = v['va2'] else: inter_a2 = True if rules['a0'] == 0: inter_a0 = inter_a1 and inter_a2 elif rules['a0'] == 1: inter_a0 = inter_a1 or inter_a2 else: inter_a0 = v['va0'] # Evaluate repressors if rules['r0'] != NOTHING: if rules['r1'] == 0: inter_r1 = v['vr3'] and v['vr4'] elif rules['r1'] == 1: inter_r1 = v['vr3'] or v['vr4'] elif rules['r1'] in range(2,NOTHING): inter_r1 = v['vr1'] else: inter_r1 = True if rules['r2'] == 0: inter_r2 = v['vr5'] and v['vr6'] elif rules['r2'] == 1: inter_r2 = v['vr5'] or v['vr6'] elif rules['r2'] in range(2,NOTHING): inter_r2 = v['vr2'] else: inter_r2 = True if rules['r0'] == 0: inter_r0 = inter_r1 and inter_r2 elif rules['r0'] == 1: inter_r0 = inter_r1 or inter_r2 else: inter_r0 = v['vr0'] return inter_a0 and not inter_r0 else: return inter_a0 g = sys.argv[1] print 'Trying to find rules for %s' %g expressBool = expression == 1 geneRules, agreement, solver = findBestRuleForGene(g, allNames, nodeLookUp, nodeList, maxAct, maxRep, inputOutputSelection, expression) rulesForGene = [ruleConvert(r) for r in geneRules] print 'Converted to readable format' def scoreForRule(rule): raw = 0 for io in range(len(inputOutput)): inputName0 = inputOutput[io][0] inputName1 = inputOutput[io][1] inputName2 = inputOutput[io][2] outputName = inputOutput[io][3] input0 = expressBool.loc[inputName0,:] input1 = expressBool.loc[inputName1,:] input2 = expressBool.loc[inputName2,:] output = expressBool.loc[outputName,g] predictedOutput = evaluateRule(rule, input0, input1, input2) if predictedOutput == output: raw += 1 score = penalty = len(rule)*penAll if any(g in x for x in rule): penalty = penalty + (penSelf - penAll) score = raw-penalty # Might want to return more things? return (score, rule) scoreRules = [(scoreForRule(r[0]),'z3 score %f' %r[1]) for r in rulesForGene] print 'Found agreement level for each rule' bestRule = max(scoreRules, key=lambda x: x[0]) maxValue = bestRule[0][0] allBest = [] for rule in scoreRules: if rule[0][0] == maxValue: allBest.append(rule) print 'The best rules are %s' %str(allBest) scoreRules = sorted(scoreRules, key=lambda x: x[0][0], reverse = True) print 'Writing the rules to a file' f=open('%s_boolean_rules_%d.txt' % (g, step),'w') f.write('Agreement level = %f \n' %agreement) f.write('The best rules were:\n') for item in allBest: f.write("%s\n" %str(item)) f.write('Other rules found were:\n') for item in scoreRules: f.write("%s\n" %str(item)) f.close() print 'Found rules for %s' %g # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
python
"""Ekea for EAM model""" import os, subprocess, json, shutil from ekea.e3smapp import E3SMApp, here from ekea.utils import xmlquery # EAM app class EAMKernel(E3SMApp): _name_ = "eam" _version_ = "0.1.0" # main entry def perform(self, args): self.generate(args, "exclude_e3sm_eam.ini")
python
import os import sys from pathlib import Path from data_pipeline.config import settings from data_pipeline.utils import ( download_file_from_url, get_module_logger, ) logger = get_module_logger(__name__) def check_score_data_source( score_csv_data_path: Path, score_data_source: str, ) -> None: """Checks if census data is present, and exits gracefully if it doesn't exist. It will download it from S3 if census_data_source is set to "aws" Args: score_csv_data_path (str): Path for local Score CSV data score_data_source (str): Source for the score data Options: - local: fetch census data from the local data directory - aws: fetch census from AWS S3 J40 data repository Returns: None """ TILE_SCORE_CSV_S3_URL = ( settings.AWS_JUSTICE40_DATAPIPELINE_URL + "/data/score/csv/tiles/usa.csv" ) TILE_SCORE_CSV = score_csv_data_path / "tiles" / "usa.csv" # download from s3 if census_data_source is aws if score_data_source == "aws": logger.info("Fetching Score Tile data from AWS S3") download_file_from_url( file_url=TILE_SCORE_CSV_S3_URL, download_file_name=TILE_SCORE_CSV ) else: # check if score data is found locally if not os.path.isfile(TILE_SCORE_CSV): logger.info( "No local score tiles data found. Please use '-d aws` to fetch from AWS" ) sys.exit()
python
""" This file contains the implementation of the class GameObject. Author: Alejandro Mujica ([email protected]) Date: 07/22/20 """ from src.mixins import DrawableMixin, CollisionMixin class GameObject(DrawableMixin, CollisionMixin): # Object sides TOP = 'top' RIGHT = 'right' BOTTOM = 'bottom' LEFT = 'left' def __init__(self, x, y, width, height, texture, frame, solidness): self.x = x self.y = y self.width = width self.height = height self.texture = texture self.frame = frame self.solidness = solidness self.inverted = False
python
#!/usr/bin/env python2 # Fill in checksum/size of an option rom, and pad it to proper length. # # Copyright (C) 2009 Kevin O'Connor <[email protected]> # # This file may be distributed under the terms of the GNU GPLv3 license. import sys def alignpos(pos, alignbytes): mask = alignbytes - 1 return (pos + mask) & ~mask def checksum(data): ords = map(ord, data) return sum(ords) def main(): inname = sys.argv[1] outname = sys.argv[2] # Read data in f = open(inname, 'rb') data = f.read() count = len(data) # Pad to a 512 byte boundary data += "\0" * (alignpos(count, 512) - count) count = len(data) # Fill in size field; clear checksum field data = data[:2] + chr(count/512) + data[3:6] + "\0" + data[7:] # Checksum rom newsum = (256 - checksum(data)) & 0xff data = data[:6] + chr(newsum) + data[7:] # Write new rom f = open(outname, 'wb') f.write(data) if __name__ == '__main__': main()
python
# We start by importing all the modules we will need, as well as the helper document with all our functions import argparse import torch import numpy as np from torch import nn from torch import optim import torch.nn.functional as F import os from torchvision import datasets, transforms, models from collections import OrderedDict from PIL import Image from torch.optim import lr_scheduler import helper def main(): # We display a short prompt print('Hello! This script will train a neural network with a Resnet or VGG architecture with only one layer.' + '\n' + 'You can consult the help for other command line arguments.') nb_categories = int(input('Please input the number of categories of your target variable: ')) print('\n') args = helper.get_input_args_train() data_dir = args.dir save_dir = args.save_dir arch = args.arch learning_rate = args.learning_rate hidden_units = args.hidden_units epochs = args.epochs gpu = args.gpu # We check the user used one of the possible architecture while not arch in ('vgg16', 'resnet152'): arch = input('You can only choose between vgg16 and resnet152 for an architecture: ') # We now create our train, validation and test loaders with our images # This assumes our files follow the appropriate structure dataloaders = helper.load_images(data_dir) # We create the architecture of our model model = helper.build_model(arch, hidden_units, nb_categories) # We choose our criterion and our optimizer criterion = nn.NLLLoss() optimizer = optim.Adam(model.classifier.parameters(), lr=learning_rate) scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) # Train our model model = helper.train_model(model, criterion, optimizer, scheduler, dataloaders, epochs, gpu) # Save the checkpoint helper.save_checkpoint(model, criterion, optimizer, learning_rate, epochs, save_dir, arch) main()
python
from django.contrib import admin from django.urls import path, include from django.contrib.sitemaps.views import sitemap from website.sitemaps import PostSitemap sitemaps = { 'posts': PostSitemap } urlpatterns = [ path('mkubwa/', admin.site.urls), path('accounts/', include('accounts.urls', namespace='accounts')), path('accounts/', include('django.contrib.auth.urls')), path('', include('website.urls', namespace='website')), path('sitemap.xml', sitemap, {'sitemaps': sitemaps}, name='django.contrib.sitemaps.views.sitemap'), ]
python
import multiprocessing import time from multiprocessing.connection import Listener, Client from typing import Dict, Any, List import tqdm from autopandas_v2.ml.inference.interfaces import RelGraphInterface class ModelStore: def __init__(self, path_map: Dict[Any, str]): self.path_map = path_map self.model_store: Dict[str, RelGraphInterface] = {} self.cache = None self.setup() def setup(self): iterator = self.path_map.items() if len(self.path_map) > 3: iterator = tqdm.tqdm(iterator) for key, path in iterator: self.model_store[key] = RelGraphInterface.from_model_dir(path) def wait_till_ready(self): return True def predict_graphs(self, key, encodings: List[Dict], top_k: int = 10): return self.model_store[key].predict_graphs(encodings, top_k=top_k) def __contains__(self, item): return item in self.path_map def get_path_map(self): return self.path_map def close(self): for model in self.model_store.values(): pass # model.close() def start_caching(self): self.cache = {} def stop_caching(self): self.cache = None class ModelStoreServer(ModelStore): def __init__(self, path_map: Dict[Any, str], port: int = 6543): self.port = port self.process: multiprocessing.Process = None super().__init__(path_map) def setup(self): self.process = multiprocessing.Process(target=ModelStoreServer.serve, args=(self.path_map, self.port)) self.process.start() def predict_graphs(self, key, encodings: List[Dict], **kwargs): conn = Client(('localhost', self.port)) conn.send((key, encodings, kwargs)) result = conn.recv() conn.close() return result def wait_till_ready(self): ready = False while not ready: try: conn = Client(('localhost', self.port)) conn.close() ready = True except ConnectionRefusedError: time.sleep(2) @staticmethod def serve(path_map: Dict[Any, str], port: int): model_store = ModelStore(path_map) listener = Listener(('localhost', port)) while True: conn = listener.accept() try: key, encodings, kwargs = conn.recv() if key == 'autopandas-exit': # Hacky AF conn.close() break conn.send(model_store.predict_graphs(key, encodings, **kwargs)) conn.close() except: continue finally: conn.close() listener.close() def close(self): conn = Client(('localhost', self.port)) conn.send(('autopandas-exit', [], {})) conn.close() self.process.join()
python
# -*- coding: utf-8 -*- """This module populates the tables of bio2bel_reactome.""" import logging from collections import defaultdict from typing import Dict, List, Mapping, Optional, Set import pandas as pd from tqdm import tqdm from bio2bel.compath import CompathManager from pyobo import get_name_id_mapping from .constants import MODULE_NAME, SPECIES_REMAPPING from .models import Base, Chemical, Pathway, Protein, Species, chemical_pathway, protein_pathway from .parsers.entity_pathways import get_procesed_chemical_pathways_df, get_procesed_proteins_pathways_df from .parsers.pathway_hierarchy import get_pathway_hierarchy_df, parse_pathway_hierarchy from .parsers.pathway_names import get_pathway_names_df, parse_pathway_names logger = logging.getLogger(__name__) __all__ = [ 'Manager', ] class Manager(CompathManager): """Protein-pathway and chemical-pathway memberships.""" module_name = MODULE_NAME protein_model = Protein _base = Base edge_model = [protein_pathway, chemical_pathway] namespace_model = pathway_model = Pathway flask_admin_models = [Pathway, Protein, Species, Chemical] has_hierarchy = True # Indicates that this manager can handle hierarchies with the Pathway Model def __init__(self, *args, **kwargs) -> None: # noqa: D107 super().__init__(*args, **kwargs) # Global dictionary self.uniprot_id_to_protein: Dict[str, Protein] = {} self.chebi_id_to_chemical: Dict[str, Chemical] = {} def summarize(self) -> Mapping[str, int]: """Summarize the database.""" return { 'pathways': self.count_pathways(), 'proteins': self.count_proteins(), 'chemicals': self.count_chemicals(), 'species': self.count_species(), } def count_chemicals(self) -> int: """Count the chemicals in the database.""" return self.session.query(Chemical).count() def count_species(self) -> int: """Count the species in the database.""" return self.session.query(Species).count() def get_gene_sets(self, only_human: bool = False) -> Mapping[str, Set[str]]: """Return pathway - genesets mapping.""" if only_human: pathways = self.get_human_pathways() else: pathways = self.list_pathways() return { pathway.name: { protein.hgnc_symbol for protein in pathway.proteins if protein.hgnc_symbol } for pathway in pathways if pathway.proteins } def get_or_create_pathway( self, *, reactome_id: str, name: str, species: Species, chemicals: Optional[List[Chemical]], ) -> Pathway: """Get a pathway from the database or creates it. :param reactome_id: pathway identifier :param name: name of the pathway :param species: Species object :param chemicals: An optional list of chemicals that belong too this pathway """ pathway = self.get_pathway_by_id(reactome_id) if pathway is None: pathway = Pathway( identifier=reactome_id, name=name, species=species, chemicals=chemicals, ) self.session.add(pathway) return pathway def get_or_create_chemical(self, *, chebi_id: str, chebi_name: str) -> Chemical: """Get a Chemical from the database or creates it. :param chebi_id: ChEBI identifier :param chebi_name: ChEBI name """ chemical = self.get_chemical_by_chebi_id(chebi_id) if chemical is None: chemical = Chemical( chebi_id=chebi_id, name=chebi_name, ) self.session.add(chemical) return chemical def get_or_create_species(self, *, taxonomy_id: str, name: str) -> Species: """Get a Species from the database or creates it.""" species = self.get_species_by_name(name) if species is None: species = Species(taxonomy_id=taxonomy_id, name=name) self.session.add(species) return species def get_or_create_protein( self, uniprot_id: str, hgnc_symbol: Optional[str] = None, hgnc_id: Optional[str] = None, ) -> Protein: """Get a protein from the database or creates it. :param uniprot_id: pathway identifier :param hgnc_symbol: name of the pathway :param hgnc_id: Species object """ protein = self.get_protein_by_uniprot_id(uniprot_id) if protein is not None: return protein protein = self.uniprot_id_to_protein.get(uniprot_id) if protein is not None: self.session.add(protein) return protein protein = self.uniprot_id_to_protein[uniprot_id] = Protein( uniprot_id=uniprot_id, hgnc_symbol=hgnc_symbol, hgnc_id=hgnc_id, ) self.session.add(protein) return protein def get_species_by_name(self, species_name: str) -> Optional[Species]: """Get a Species by its species_name. :param species_name: name """ return self.session.query(Species).filter(Species.name == species_name).one_or_none() def get_pathway_names_to_ids(self, only_human: bool = False): """Return a dictionary of pathway names to ids. :rtype: dict[str,str] """ if only_human: pathways = self.get_human_pathways() else: pathways = self.list_pathways() return { pathway.name: pathway.identifier for pathway in pathways } def get_pathway_parent_by_id(self, reactome_id: str) -> Optional[Pathway]: """Get parent pathway by its reactome id. :param reactome_id: reactome identifier """ pathway = self.get_pathway_by_id(reactome_id) if not pathway or not pathway.parent: return None return pathway.parent def get_top_hiearchy_parent_by_id(self, reactome_id: str) -> Optional[Pathway]: """Get the oldest pathway at the top of the hierarchy a pathway by its reactome id. :param reactome_id: reactome identifier """ pathway = self.get_pathway_by_id(reactome_id) if not pathway.parent: return pathway return self.get_top_hiearchy_parent_by_id(pathway.parent.identifier) def get_all_top_hierarchy_pathways(self) -> List[Pathway]: """Get all pathways without a parent (top hierarchy).""" all_pathways = self.list_pathways() return [ pathway for pathway in all_pathways if not pathway.parent_id ] def get_human_pathways(self) -> List[Pathway]: """Get human pathways.""" return self.get_pathways_by_species('Homo sapiens') def get_pathways_by_species(self, species_name: str) -> Optional[List[Pathway]]: """Get pathways by species.""" filtered_species = self.session.query(Species).filter(Species.name == species_name).one_or_none() if not filtered_species: return None return filtered_species.pathways def get_chemical_by_chebi_id(self, chebi_id: str) -> Optional[Chemical]: """Get chemical by ChEBI id.""" return self.session.query(Chemical).filter(Chemical.chebi_id == chebi_id).one_or_none() def get_protein_by_uniprot_id(self, uniprot_id: str) -> Optional[Protein]: """Get protein by UniProt id.""" return self.session.query(Protein).filter(Protein.uniprot_id == uniprot_id).one_or_none() """Custom Methods to Populate the DB""" def _populate_pathways( self, chemical_mapping: Mapping[str, List[Chemical]], url: Optional[str] = None, ) -> None: """Populate the pathway table. :param url: url from pathway table file """ df = get_pathway_names_df(url=url) pathways_dict, species_set = parse_pathway_names(df) species_name_to_id = get_name_id_mapping('ncbitaxon') species_name_to_model = {} for species_name in tqdm(species_set, desc='populating species'): species_name = SPECIES_REMAPPING.get(species_name, species_name) species_name_to_model[species_name] = self.get_or_create_species( name=species_name, taxonomy_id=species_name_to_id[species_name], ) for reactome_id, (name, species_name) in tqdm(pathways_dict.items(), desc='populating pathways'): species_name = SPECIES_REMAPPING.get(species_name, species_name) pathway = self.get_or_create_pathway( reactome_id=reactome_id, name=name, species=species_name_to_model[species_name], chemicals=chemical_mapping.get(reactome_id, []), ) self.session.add(pathway) self.session.commit() def _pathway_hierarchy(self, url: Optional[str] = None) -> None: """Links pathway models through hierarchy. :param url: url from pathway hierarchy file """ df = get_pathway_hierarchy_df(url=url) pathways_hierarchy = parse_pathway_hierarchy(df) for parent_id, child_id in tqdm(pathways_hierarchy, desc='populating pathway hierarchy'): if parent_id is None: logger.warning('parent id is None') continue if child_id is None: logger.warning('child id is None') continue parent = self.get_pathway_by_id(parent_id) child = self.get_pathway_by_id(child_id) parent.children.append(child) self.session.commit() def _pathway_protein(self, url: Optional[str] = None) -> None: """Populate UniProt tables. :param url: url from pathway protein file """ pathways_proteins_df = get_procesed_proteins_pathways_df(url=url) missing_reactome_ids = set() missing_hgnc_info = set() protein_info_df = pathways_proteins_df[ ['uniprot_id', 'uniprot_accession', 'hgnc_id', 'hgnc_symbol']].drop_duplicates() it = tqdm(protein_info_df.values, total=len(protein_info_df.index), desc='populating proteins') for uniprot_id, uniprot_accession, hgnc_id, hgnc_symbol in it: self.uniprot_id_to_protein[uniprot_id] = Protein( uniprot_id=uniprot_id, uniprot_accession=uniprot_accession, hgnc_id=hgnc_id, hgnc_symbol=hgnc_symbol, ) it = tqdm( pathways_proteins_df[['uniprot_id', 'reactome_id']].values, total=len(pathways_proteins_df.index), desc='populating proteins-pathway relations', ) for uniprot_id, reactome_id in it: if uniprot_id is None: logger.debug('uniprot_id is none') continue protein = self.uniprot_id_to_protein[uniprot_id] pathway = self.get_pathway_by_id(reactome_id) if pathway is None: if reactome_id not in missing_reactome_ids: it.write(f'protein/pathway mapping: could not find reactome:{reactome_id}') missing_reactome_ids.add(reactome_id) continue if pathway not in protein.pathways: protein.pathways.append(pathway) self.session.commit() if missing_reactome_ids: logger.warning('missing %d reactome ids', len(missing_reactome_ids)) if missing_hgnc_info: logger.warning('missing %d hgncs', len(missing_hgnc_info)) def _get_chemical_mapping(self, url: Optional[str] = None) -> Mapping[str, List[Chemical]]: """Populate ChEBI tables. :param url: url from pathway chemical file """ chemical_pathways_df = get_procesed_chemical_pathways_df(url=url) chemicals_df = chemical_pathways_df[['chebi_id', 'chebi_name']].drop_duplicates() it = tqdm(chemicals_df.values, total=len(chemicals_df.index), desc='populating chemicals') chebi_id_to_chemical = {} for chebi_id, chebi_name in it: if pd.isna(chebi_id): continue chebi_id_to_chemical[chebi_id] = Chemical(chebi_id=chebi_id, name=chebi_name) rv = defaultdict(list) _slim_chemical_pathways_df = chemical_pathways_df[['chebi_id', 'reactome_id']].drop_duplicates() it = tqdm( _slim_chemical_pathways_df.values, total=len(_slim_chemical_pathways_df.index), desc='populating chemical/reactome', ) for chebi_id, reactome_id in it: chemical = chebi_id_to_chemical[chebi_id] rv[reactome_id].append(chemical) return dict(rv) def populate( self, pathways_path: Optional[str] = None, pathways_hierarchy_path: Optional[str] = None, pathways_proteins_path: Optional[str] = None, pathways_chemicals_path: Optional[str] = None, ) -> None: """Populate all tables. :param pathways_path: url from pathway table file :param pathways_hierarchy_path: url from pathway hierarchy file :param pathways_proteins_path: url from pathway protein file :param pathways_chemicals_path: url from pathway chemical file """ chemical_mapping = self._get_chemical_mapping(url=pathways_chemicals_path) self._populate_pathways(url=pathways_path, chemical_mapping=chemical_mapping) self._pathway_hierarchy(url=pathways_hierarchy_path) self._pathway_protein(url=pathways_proteins_path) def _add_admin(self, app, **kwargs): from flask_admin import Admin from flask_admin.contrib.sqla import ModelView class PathwayView(ModelView): """Pathway view in Flask-admin.""" column_searchable_list = ( Pathway.identifier, Pathway.name, ) class ProteinView(ModelView): """Protein view in Flask-admin.""" column_searchable_list = ( Protein.hgnc_symbol, Protein.uniprot_id, Protein.hgnc_id, ) class SpeciesView(ModelView): """Species view in Flask-admin.""" column_searchable_list = ( Species.taxonomy_id, Species.name, ) class ChemicalView(ModelView): """Chemical view in Flask-admin.""" column_searchable_list = ( Chemical.chebi_id, Chemical.name, ) admin = Admin(app, **kwargs) admin.add_view(PathwayView(Pathway, self.session)) admin.add_view(ProteinView(Protein, self.session)) admin.add_view(ChemicalView(Chemical, self.session)) admin.add_view(SpeciesView(Species, self.session)) return admin
python
from collections import namedtuple from sqlalchemy.orm.exc import NoResultFound from parks.models import DBSession from parks.models import Park from parks.models import StampCollection from parks.models import User from parks.models import UserEmail def get_user_by_id(user_id): return DBSession.query( User, ).filter( User.id == user_id ).one() def get_user_by_username_or_email(username_or_email): user = DBSession.query( User, ).filter( User.username == username_or_email ).all() if len(user) == 1: return user[0] user = DBSession.query( User, ).join( UserEmail, User.id == UserEmail.user_id ).filter( UserEmail.email == username_or_email ).all() if len(user) == 1: return user[0] raise NoResultFound('No user with that email or username was found') def get_recent_user_collections(limit, after_date=None): """Returns up to limit recent stamp collections.""" if limit > 10 or limit < 0: raise ValueError('Too much recent activity requested') # We need to load the various types of activity, then sort by the # time_created and just return a few items # TODO(bskari|2013-02-02) Load collection data CollectionNamedTuple = namedtuple( 'CollectionNamedTuple', ['username', 'park_name', 'park_url'] ) query = DBSession.query( StampCollection.id, User, Park, ).join( User, User.id == StampCollection.user_id ).join( Park, Park.id == StampCollection.park_id ) if after_date is not None: query = query.filter(StampCollection.date_collected > after_date) query = query.order_by( # id and time_created should be correlated StampCollection.id.desc() ).limit( limit ) recent_collections = query.all() collections = [ CollectionNamedTuple( rc.User.username, rc.Park.name, rc.Park.url ) for rc in recent_collections ] return collections
python
from tkinter import * from tkinter.ttk import * from cep_price_console.cntr_upload.CntrUploadTab import CntrUploadTab from cep_price_console.utils.log_utils import CustomAdapter, debug from cep_price_console.cntr_upload.Treeview import TreeviewConstructor, TreeColumn, TreeRow import logging class Step5ReviewUpload(CntrUploadTab): logger = CustomAdapter(logging.getLogger(str(__name__)), None) @debug(lvl=logging.NOTSET, prefix='') def __init__(self, master, tab_text, tab_state='normal'): CntrUploadTab.__init__(self, master, tab_text, tab_state) # Instructions Frame self.instr_frame = Frame(self.frame_main) self.instr_lbl = Label(self.instr_frame) # Review upload values self.review_frame = Frame(self.frame_main) self.review_treeview = None self.upload_matched_tbl = None self.csv_results = None self.column_lst = [] # noinspection PyProtectedMember @debug(lvl=logging.DEBUG, prefix='') def populate_frame(self): # Main Frame self.btn_prev.grid_remove() self.frame_main.columnconfigure(0, weight=1) self.frame_main.rowconfigure(1, weight=1) self.upload_matched_tbl = self.cont.fetch_upload_matched_tbl() self.instr_frame.grid(row=0, column=0) self.instr_lbl.config(text="This is the header", font=('Verdana Bold', '20')) self.instr_lbl.grid(row=0, column=0) self.review_frame.grid(row=1, column=0, sticky=NSEW) self.review_frame.columnconfigure(0, weight=1) self.review_frame.rowconfigure(0, weight=1) self.review_treeview = TreeviewConstructor(self, self.review_frame, False) self.btn_next.state(['!disabled']) self.btn_next.bind("<ButtonRelease-1>", self.proceeding) for _ in self.upload_matched_tbl.column_descriptions: name = _.get('name').replace(" ", "_").replace("'", "").replace('"', "") Step5ReviewUpload.logger.log(logging.DEBUG, "Name: {0}".format(name)) self.column_lst.append(name) col_order = 1 for col in self.column_lst: Step5ReviewUpload.logger.log(logging.DEBUG, "Column ID: {0}".format(col)) obj = TreeColumn(order=col_order, col_id=col, hdr_txt=col.replace("_", " ")) if col in ("UploadMatched_ID", "UploadMono_ID", "UploadMulti_ID"): Step5ReviewUpload.logger.log(logging.DEBUG, "Hiding Column.") obj.display = False self.review_treeview.col_obj_dict[col] = obj col_order += 1 self.review_treeview.populate_cols() for query_row in self.upload_matched_tbl.all(): Step5ReviewUpload.logger.log(logging.NOTSET, "Row Info: {0}".format(query_row)) item = TreeRow( treeview_const=self.review_treeview, iid=query_row.UploadMatched_ID ) for col_obj in self.review_treeview.col_obj_dict.values(): item.values_dict[str(col_obj.order)] = query_row._asdict().get(col_obj.col_id) self.review_treeview.item_obj_dict[str(item.iid)] = item self.review_treeview.populate_items() self.review_treeview.stripe_rows() # noinspection PyUnusedLocal def proceeding(self, events): self.manager.busy() self.cont.prepare_repository_and_filename() self.cont.save_csv_export() self.cont.move_contract_wb() self.manager.not_busy()
python
# start_chrome -> input_date -> scroll_down-> find_cards_info -> save -> find_next (goto) from selenium import webdriver from selenium.webdriver.common.keys import Keys import time import csv import os def start_chrome(): driver = webdriver.Chrome(executable_path='./chromedriver.exe') driver.start_client() return driver def q(st, et): return f'?is_text=1&is_pic=1&key_word=&start_time=2017-12-17&end_time=2018-12-17&is_search=1&is_searchadv=1#_0' def scroll_down(): html_page = driver.find_element_by_tag_name('html') for i in range(5): print(i) html_page.send_keys(Keys.END) time.sleep(0.9) def find_cards_info(): cards_sel = 'div.WB_feed_detail' cards = driver.find_elements_by_css_selector(cards_sel) info_list = [] for card in cards: content_sel = 'div.WB_text.W_f14' time_sel = 'div.WB_from.S_txt2' link_sel = 'div.WB_from.S_txt2 > a:nth-child(1)' content = card.find_element_by_css_selector(content_sel).text time = card.find_element_by_css_selector(time_sel).text link = card.find_element_by_css_selector(link_sel).get_attribute('href') info_list.append([content, time, link]) return info_list def find_next(): next_sel = 'a.page.next' next_page = driver.find_elements_by_css_selector(next_sel) if next_page: return next_page[0].get_attribute('href') def save(info_list, name): full_path = './' + name + '.csv' if os.path.exists(full_path): with open(full_path, 'a') as f: writer = csv.writer(f) writer.writerows(info_list) print('Done') else: with open(full_path, 'w+') as f: writer = csv.writer(f) # writer.writerows(info_list) print('Done') def run_crawler(base, duration): if not base.endswith('feedtop'): st, et = duration.split('~') driver.get(base + q(st, et)) else: driver.get(base) time.sleep(5) scroll_down() time.sleep(5) info_list = find_cards_info() save(info_list, duration) next_page = find_next() if next_page: run_crawler(next_page, duration) base = 'https://weibo.com/5767028504/profile?rightmod=1&wvr=6&mod=personinfo' driver = start_chrome() input() run_crawler(base, '2017-12-17~2018-12-17')
python
import client import get_plant import time import RPi.GPIO as GPIO import picamera import math import numpy as np import argparse import cv2 import json import MPU9250 # GPIO setup GPIO.setmode(GPIO.BCM) GPIO.setup(17, GPIO.OUT) GPIO.setup(25, GPIO.OUT) servo=GPIO.PWM(17, 100) # Connect to the server and take possession of the motors. c = client.create_client("test") c.conn() import time time.sleep(1) c.send("take/9999999/motor1:1\n") time.sleep(1) c.send("take/9999999/odometry:1\n") i = [0, 0, 0, 0] last_time = time.time() def update_pos(): """Get odometry data and store the result in i. """ global i while True: msg = c.recv(10000) try: i = list(map(int, msg.rsplit(":", 1)[1].split(" "))) except: continue time.sleep(0.25) #set GPIO Pins GPIO_TRIGGER = 23 GPIO_ECHO = 24 pos = [10, 10] #set GPIO direction (IN / OUT) GPIO.setup(GPIO_TRIGGER, GPIO.OUT) GPIO.setup(GPIO_ECHO, GPIO.IN) def distance(): # set Trigger to HIGH GPIO.output(GPIO_TRIGGER, True) # set Trigger after 0.01ms to LOW time.sleep(0.00001) GPIO.output(GPIO_TRIGGER, False) StartTime = time.time() StopTime = time.time() # save StartTime while GPIO.input(GPIO_ECHO) == 0: StartTime = time.time() # save time of arrival while GPIO.input(GPIO_ECHO) == 1: StopTime = time.time() # time difference between start and arrival TimeElapsed = StopTime - StartTime # multiply with the sonic speed (34300 cm/s) # and divide by 2, because there and back distance = (TimeElapsed * 34300) / 2 return distance import threading a = threading.Thread(target=update_pos) a.start() def get_angle(): """Get 400 readings from the MPU9250 """ angles = [] xs = [] ys = [] data = mpu.readMagnet() for i in range(400): data = mpu.readMagnet() while (data["x"] == 0 and data["y"] == 0): time.sleep(0.01) data = mpu.readMagnet() data["x"] -= 39.66 data["x"] /= 24.47 data["y"] -= 2.8675 data["y"] /= 23.84 xs.append(data["x"]) ys.append(data["y"]) a = math.atan2(data["y"], data["x"]) angles.append(a) time.sleep(0.015) avg = sum(angles) / len(angles) avg = math.atan2(sum(ys), sum(xs)) return avg def get_pos(vals): return (vals[1] + vals[2]) / 2, (vals[0] + vals[3]) / 2 def move(dist, to_left=1, to_right=1): dist /= 0.90 vals = list(i) left, right = get_pos(vals) left_init = left right_init = right end_left = left + dist end_right = right + dist last_left, last_right = left, right sl = 120 sr = 120 cu_l = 0 cu_r = 0 distance_obj_cm = 3000 while distance_obj_cm > 55 and (left < end_left or right < end_right): # Stop if finished or an obstacle is nearby. old_sl = sl old_sr = sr cur_left, cur_right = get_pos(i) dl = cur_left - last_left dr = cur_right - last_right cu_l += dl cu_r += dr # Compute ratio used to choose the new speeds. ratio = (cu_l + 0.1) / (cu_r + 0.1) ratio2 = (cu_r + 0.1) / (cu_l + 0.1) cur_ratio = (dl + 0.1) / (dr + 0.1) cur_ratio2 = (dr + 0.1) / (dl + 0.1) if cu_l < cu_r: if sl < 125 or sr < 125: sl *= ratio2 else: sr /= ratio2 elif cu_l > cu_r: if sr < 125 or sl < 125: sr *= ratio else: sl /= ratio if sl < 100: sl = 100 if sr < 100: sr = 100 if sl > 170: sl = 170 if sr > 170: sr = 170 # Send data to the arduino. c.sendtoserial("motor1", int(sr) * to_left) c.sendtoserial("motor2", int(sl) * to_right) c.sendtoserial("motor3", int(sl) * to_right) c.sendtoserial("motor4", int(sr) * to_left) left, right = cur_left, cur_right last_left, last_right = cur_left, cur_right distance_obj_cm = distance() print("DIST: ", distance_obj_cm) time.sleep(0.25) c.sendtoserial("motor1", "0") c.sendtoserial("motor2", "0") c.sendtoserial("motor3", "0") c.sendtoserial("motor4", "0") time.sleep(0.5) if distance_obj_cm < 60: return (1, left - left_init) return (0, left - left_init) def move_centimeter(cm): """Move n centimeters, recalibrating every meter. """ global init_angle, pos, tunny_right unit_per_cm = 290 / 71 / 2 / 1.44 ret = [] while cm > 0.1: cur = min(cm, 100) cm -= cur ret = move(unit_per_cm * cur) if ret[0] == 1: break angle = get_angle() old_angle = init_angle init_angle = angle turn(get_angle_diff(angle, old_angle)[1]) time.sleep(1) if tunny_right == 1: pos[1] += ret[1] / unit_per_cm else: pos[0] += ret[1] / unit_per_cm if ret[0] == 1 and tunny_right: found_obstacle(pos[0], pos[1] + 50) else: found_obstacle(pos[0] + 50, pos[1]) print(ret[1] / unit_per_cm) def iset_servo_angle(angle_idx): """Set the servomotor angle to -90, -45, 0, 45 or 90 degrees. """ vals = [5, 9, 13, 17, 21] servo.start(vals[angle_idx]) time.sleep(1.5) servo.start(0) mpu=MPU9250.MPU9250() def get_angle_diff(angle1, angle2): """Return the angle, between 0 and 2*pi, between angle1 and angle2. """ diff = angle2 - angle1 while diff < -3.1415: diff += 3.1415*2 while diff > 3.1415: diff -= 3.1415*2 return abs(diff), diff def turn(rad, first=True): """Turn until reaching rad angles difference from the current direction. """ global init_angle target_angle = init_angle + rad while target_angle > 3.1415: target_angle -= 3.1415 * 2 while target_angle < -3.1415: target_angle += 3.1415 * 2 rad *= -1 left_val = -1 if rad > 0 else 1 right_val = -left_val c.sendtoserial("motor1", str(160 * left_val)) c.sendtoserial("motor2", str(160 * right_val)) c.sendtoserial("motor3", str(160 * right_val)) c.sendtoserial("motor4", str(160 * left_val)) time.sleep(abs(rad) / 2 + 0.1) c.sendtoserial("motor1", "0") c.sendtoserial("motor2", "0") c.sendtoserial("motor3", "0") c.sendtoserial("motor4", "0") time.sleep(0.2) angle = get_angle() diff, dir = get_angle_diff(angle, target_angle) if diff > 0.05: time.sleep(0.1) init_angle = angle turn(dir, False) if first: init_angle=target_angle time.sleep(0.5) def overwrite_mapinit(x, y): map_data = [] f_size = 4.5 print("x: " + str(x)) print("y: " + str(y)) with open('fetch/map.capture_init', 'r+') as map_file: f_size = float(map_file.readline()) print(str(f_size)) map_data = list(map_file.read().replace('\n', '')) n = y * f_size * 900 + x * f_size for j in range(0, 60): for i in range(0, 60): map_data[int(900 * j + i + n)] = 'P' map_file.close() with open('fetch/map.capture_init', 'w+') as f: f.write(str(f_size) + "\n") map_str = ''.join(map_data) f.write(map_str) f.close() def process_image(image_path): name = image_path source_image = cv2.imread(name) average_color_per_row = np.average(source_image, axis=0) average_color = np.average(average_color_per_row, axis=0) average_color = np.uint8(average_color) print(average_color) average_color_img = np.array([[average_color]*100]*100, np.uint8) return average_color nb_photo = 0 camera = picamera.PiCamera() camera.rotation = 90 camera.contrast = 60 def found_obstacle(x, y): global nb_photo camera.capture("fetch/pics/photo_" + str(nb_photo) + ".jpg"); is_plant = get_plant.get_plant("fetch/pics/photo_" + str(nb_photo) + ".jpg"); if is_plant: # Water the plant GPIO.output(25, True) time.sleep(2) GPIO.output(25, False) print("True") # Write data in data_json try: with open("fetch/data_json", "rt") as file: data = json.load(file) except IOError: data = {} if 'plants' not in data: data['plants'] = [] str_pos = str(str(int(x)) + ',' + str(int(y))) data['plants'].append({ 'position' : str_pos, 'to_water' : '0', 'picture_path': "../fetch/pics/photo_" + str(nb_photo) + ".jpg" }) with open("fetch/data_json", "wt") as outfile: json.dump(data, outfile) # Write data in map.capture_init overwrite_mapinit(int(x), int(y)) else: print("FALSE") nb_photo += 1 init_angle = get_angle() tunny_right = 0 move_centimeter(100) time.sleep(2) turn(-3.14/2) tunny_right = 1 move_centimeter(100)
python
from marshmallow_sqlalchemy import SQLAlchemyAutoSchema from variance.models.muscle import MuscleModel, MuscleGroupModel class MuscleSchema(SQLAlchemyAutoSchema): class Meta: model = MuscleModel load_instance = False class MuscleGroupSchema(SQLAlchemyAutoSchema): class Meta: model = MuscleGroupModel load_instance = False
python
from django.contrib import admin from .models import PageCheckResult @admin.register(PageCheckResult) class PageCheckResultAdmin(admin.ModelAdmin): list_display = ('buschenschank', 'created', 'tag_name', 'website', 'return_code') list_filter = ('created', 'return_code', 'tag_name') search_fields = ('buschenschank__name', 'website')
python
from player import Player class Human(Player): def __init__(self, symbol: str, name: str = "You"): super().__init__(name, symbol) def move(self, state: list[str]): print(f"{self.name} is to move!") while True: inp = input("Enter an integer between 1 and 9 representing an empty cell: ") if not inp.isdigit(): print("Input is not integer!", end=" ") continue pos = int(inp) if pos > 9 or pos < 1: print("Input is not between 1 and 9!", end=" ") continue if state[pos - 1] == '-': state[pos - 1] = self.symbol return pos - 1 else: print("Cell is not empty!", end=" ")
python
import mnist_loader import network2 from task_gen import TaskGen import numpy as np training_data2, validation_data2, test_data2 = mnist_loader.load_data_wrapper() task_gen = TaskGen() training_data = task_gen.generate(1000) validation_data = task_gen.generate(1000, False) ''' print training_data2[0][1] print training_data[0][1] print validation_data2[0][1] print validation_data[0][1] ''' net = network2.Network([32, 30, 8]) net.SGD(training_data, 30, 10, 0.005, lmbda = 5.0, evaluation_data=validation_data, monitor_evaluation_accuracy=True)
python
# -*- coding: utf-8 -*- import hashlib import unicodedata from collections import Counter, defaultdict from six import text_type from hayes.analysis import builtin_simple_analyzer from hayes.ext.stopwords import ( english_stopwords, finnish_stopwords, russian_stopwords, swedish_stopwords, unicode_punctuation_chars) from hayes.indexing import DocumentIndex, IntegerField, TextField from hayes.search import Search from hayes.search.queries import MatchAllQuery, PrefixQuery def default_tokenizer(content): return content.split() def smart_tokenizer(content, stopwords=()): words = text_type(content).split() words = [word.strip(unicode_punctuation_chars) for word in words] words = [word for word in words if len( word) > 3 and word.lower() not in stopwords] # Filter out full numbers words = [word for word in words if not word.isdigit()] return words def smart_finnish_tokenizer(content): return smart_tokenizer(content, stopwords=finnish_stopwords) def smart_swedish_tokenizer(content): return smart_tokenizer(content, stopwords=swedish_stopwords) def smart_russian_tokenizer(content): return smart_tokenizer(content, stopwords=russian_stopwords) def smart_english_tokenizer(content): return smart_tokenizer(content, stopwords=english_stopwords) class WordGatherer(object): def __init__(self, connection, target_type, coll_name=None): """ :type connection: hayes.conn.Hayes """ self.connection = connection self.target_type = target_type self.target_coll_name = ( coll_name or self.connection.default_coll_name) self.index = index = DocumentIndex() index.name = self.target_type index.fields = { "word": TextField(analyzer=builtin_simple_analyzer), "count": IntegerField(), } def reset(self): """ Reset target collection (rebuild index). """ self.connection.rebuild_index( self.index, coll_name=self.target_coll_name) def _tokenize_documents(self, index, fields, tokenizer=default_tokenizer): search = Search(MatchAllQuery()) for doc in self.connection.search_iter( search, indexes=[index], count=200): for field in fields: value = doc.get(field) if not value: continue words = tokenizer(value) yield doc, words def _gather_words(self, index, fields, tokenizer=default_tokenizer): word_counts = Counter() for _doc, words in self._tokenize_documents( index, fields, tokenizer=tokenizer): if words: for word in words: word_counts[word] += 1 return word_counts def update(self, index, fields, tokenizer=default_tokenizer, cutoff=1): """ Update (upsert) the wordgatherer collection. :param index: Source index. :param fields: Fields to read. :param tokenizer: Tokenizer callable. Should split unicode to words :param cutoff: Ignore words with less than this many occurrences. """ counts_by_uid = defaultdict(Counter) for word, count in self._gather_words( index, fields, tokenizer=tokenizer).items(): uid = hashlib.sha1(unicodedata.normalize( "NFKD", word.lower()).encode("UTF-8")).hexdigest() counts_by_uid[uid][word] += count for uid, word_to_count in counts_by_uid.items(): word = word_to_count.most_common(1)[0][0] count = sum(word_to_count.values()) if count <= cutoff: continue self.connection.session.post( "/%s/%s/%s/_update" % (self.target_coll_name, self.target_type, uid), data={ "script": "ctx._source.count += count", "params": {"count": count}, "upsert": {"word": word, "count": count} }) def search(self, word, limit=30): """ Search for a word within the wordgatherer collection. :param word: Word to search for. :param limit: Maximum number of results to return. """ search = Search(PrefixQuery("word", word), sort={"count": "desc"}) for doc in self.connection.search( search, indexes=[self.index], count=limit): yield (doc["word"], doc["count"])
python
from app import db from datetime import datetime from werkzeug.security import generate_password_hash,check_password_hash from flask_login import UserMixin from app import login class User(UserMixin,db.Model): id=db.Column(db.Integer,primary_key=True) username = db.Column(db.String(64),index=True,unique=True) email = db.Column(db.String(120),index=True,unique=True) password_hash=db.Column(db.String(128)) posts = db.relationship('Post', backref='author', lazy='dynamic') def __repr__(self): return '<user {}'.format(self.username) def set_password(self,password): self.password_hash=generate_password_hash(password) def check_password(self,password): return check_password_hash(self.password_hash,password) @login.user_loader def load_user(id): return User.query.get(int(id)) class Post(db.Model): id = db.Column(db.Integer, primary_key=True) body = db.Column(db.String(140)) timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) def __repr__(self): return '<Post {}'.format(self.body)
python
from dataclasses import dataclass from typing import Sequence from .phrase import Phrase from .translation_sources import TranslationSources from .word_alignment_matrix import WordAlignmentMatrix @dataclass(frozen=True) class TranslationResult: source_segment: Sequence[str] target_segment: Sequence[str] word_confidences: Sequence[float] word_sources: Sequence[TranslationSources] alignment: WordAlignmentMatrix phrases: Sequence[Phrase] def __post_init__(self) -> None: if len(self.word_confidences) != len(self.target_segment): raise ValueError("The confidences must the same length as the target segment.") if len(self.word_sources) != len(self.target_segment): raise ValueError("The sources must the same length as the target segment.") if self.alignment.row_count != len(self.source_segment): raise ValueError("The alignment source length must be the same length as the source segment.") if self.alignment.column_count != len(self.target_segment): raise ValueError("The alignment target length must be the same length as the target segment.")
python
#!/usr/bin/env python from collections import defaultdict # 000000000111111111122222222222333333333344444444 # 123456789012345678901234567890123456789012345678 # Step G must be finished before step X can begin. def parse_line(input_line): return input_line[5], input_line[36] def parse_input(content): return [parse_line(line) for line in content] def get_yet_unavailable(requirements): unavailable_yet = set() for required_step, for_steps in requirements.iteritems(): for step in for_steps: unavailable_yet.add(step) return unavailable_yet def task1(steps): backlog = set() requirements = defaultdict(list) for required_step, for_step in steps: backlog.add(required_step) backlog.add(for_step) requirements[required_step].append(for_step) instruction = "" while backlog: unavailable_yet = get_yet_unavailable(requirements) as_list = sorted(list(backlog.difference(unavailable_yet))) next_step, _ = as_list[0], set(as_list[1:]) backlog.discard(next_step) instruction += next_step requirements.pop(next_step, None) return instruction def task2(steps, workers, initial_step_work): backlog = set() requirements = defaultdict(list) unavailable_yet = set() for required_step, for_step in steps: backlog.add(required_step) backlog.add(for_step) requirements[required_step].append(for_step) unavailable_yet.add(for_step) assigned = set() # (Step, Accomplish Time) time = 0 while backlog or assigned: accomplished = set([step for step, accomplish_time in assigned if accomplish_time <= time]) assigned = set([(step, accomplish_time) for step, accomplish_time in assigned if accomplish_time > time]) if accomplished: for accomplished_item in accomplished: requirements.pop(accomplished_item, None) unavailable_yet = get_yet_unavailable(requirements) backlog = backlog.difference(accomplished) tmp = set([step for step, _ in assigned]) steps_to_go = sorted(list(backlog.difference(unavailable_yet).difference(tmp))) while len(assigned) < workers and len(steps_to_go) > 0: next, steps_to_go = steps_to_go[0], steps_to_go[1:] assigned.add((next, time + initial_step_work + ord(next) - ord('A') + 1)) time += 1 return time - 1 # print task1(parse_input(open("input7.test").readlines())) print task1(parse_input(open("input7.txt").readlines())) # print task2(parse_input(open("input7.test").readlines()), 2, 0) print task2(parse_input(open("input7.txt").readlines()), 5, 60)
python
from lxml.builder import E from sciencebeam_lab.lxml_to_svg import ( iter_svg_pages_for_lxml, SVG_TEXT, SVG_G, SVG_DOC ) SOME_TEXT = "some text" SOME_X = "10" SOME_Y = "20" SOME_BASE = "25" SOME_HEIGHT = "30" SOME_FONT_SIZE = "40" SOME_FONT_FAMILY = "Fontastic" SOME_FONT_COLOR = '#123' class LXML(object): X = 'x' Y = 'y' BASE = 'base' HEIGHT = 'height' FONT_SIZE = 'font-size' FONT_NAME = 'font-name' FONT_COLOR = 'font-color' class SVG(object): X = 'x' Y = 'y' HEIGHT = 'height' FONT_SIZE = 'font-size' FONT_FAMILY = 'font-family' FILL = 'fill' COMMON_LXML_TOKEN_ATTRIBS = { LXML.X: SOME_X, LXML.Y: SOME_Y, LXML.HEIGHT: SOME_HEIGHT, LXML.FONT_SIZE: SOME_FONT_SIZE, LXML.FONT_NAME: SOME_FONT_FAMILY, LXML.FONT_COLOR: SOME_FONT_COLOR } def dict_extend(*dicts): d = dict() for x in dicts: d.update(x) return d class TestIterSvgPagesForLxml(object): def test_should_return_one_page(self): lxml_root = E.DOCUMENT( E.PAGE( ) ) svg_pages = list(iter_svg_pages_for_lxml(lxml_root)) assert len(svg_pages) == 1 def test_should_return_multiple_pages(self): lxml_root = E.DOCUMENT( E.PAGE( ), E.PAGE( ), E.PAGE( ) ) svg_pages = list(iter_svg_pages_for_lxml(lxml_root)) assert len(svg_pages) == 3 def test_should_create_text_node_with_common_attributes(self): lxml_root = E.DOCUMENT( E.PAGE( E.TEXT( E.TOKEN( SOME_TEXT, COMMON_LXML_TOKEN_ATTRIBS ) ) ) ) svg_pages = list(iter_svg_pages_for_lxml(lxml_root)) assert len(svg_pages) == 1 first_page = svg_pages[0] svg_text = first_page.find('.//' + SVG_TEXT) assert svg_text is not None assert svg_text.text == SOME_TEXT assert float(svg_text.attrib[SVG.X]) == float(SOME_X) assert float(svg_text.attrib[SVG.Y]) == float(SOME_Y) assert float(svg_text.attrib[SVG.FONT_SIZE]) == float(SOME_FONT_SIZE) assert svg_text.attrib[SVG.FONT_FAMILY] == SOME_FONT_FAMILY assert svg_text.attrib[SVG.FILL] == SOME_FONT_COLOR def test_should_use_base_as_y_in_svg_if_available(self): lxml_root = E.DOCUMENT( E.PAGE( E.TEXT( E.TOKEN( SOME_TEXT, dict_extend(COMMON_LXML_TOKEN_ATTRIBS, { LXML.BASE: SOME_BASE }) ) ) ) ) svg_pages = list(iter_svg_pages_for_lxml(lxml_root)) assert len(svg_pages) == 1 first_page = svg_pages[0] svg_text = first_page.find('.//' + SVG_TEXT) assert float(svg_text.attrib[SVG.Y]) == float(SOME_BASE) def test_should_keep_text_block_structure_without_block(self): lxml_root = E.DOCUMENT( E.PAGE( E.TEXT( E.TOKEN( SOME_TEXT, dict_extend(COMMON_LXML_TOKEN_ATTRIBS, { LXML.BASE: SOME_BASE }) ) ) ) ) svg_pages = list(iter_svg_pages_for_lxml(lxml_root)) assert len(svg_pages) == 1 first_page = svg_pages[0] svg_text = first_page.find('.//' + SVG_TEXT) assert svg_text is not None assert svg_text.getparent().tag == SVG_G assert svg_text.getparent().getparent().tag == SVG_DOC def test_should_keep_text_block_structure_with_block(self): lxml_root = E.DOCUMENT( E.PAGE( E.BLOCK( E.TEXT( E.TOKEN( SOME_TEXT, dict_extend(COMMON_LXML_TOKEN_ATTRIBS, { LXML.BASE: SOME_BASE }) ) ) ) ) ) svg_pages = list(iter_svg_pages_for_lxml(lxml_root)) assert len(svg_pages) == 1 first_page = svg_pages[0] svg_text = first_page.find('.//' + SVG_TEXT) assert svg_text is not None assert svg_text.getparent().tag == SVG_G assert svg_text.getparent().getparent().tag == SVG_G assert svg_text.getparent().getparent().getparent().tag == SVG_DOC
python
# coding: utf8 from __future__ import print_function import os, sys, re from xml.dom import minidom class HamshahriReader(): """ interfaces [Hamshahri Corpus](http://ece.ut.ac.ir/dbrg/hamshahri/files/HAM2/Corpus.zip) that you must download and extract it. >>> hamshahri = HamshahriReader(root='corpora/hamshahri') >>> next(hamshahri.docs())['id'] 'HAM2-750403-001' """ def __init__(self, root): self._root = root self._invalids = set(['hamshahri.dtd', 'HAM2-960622.xml', 'HAM2-960630.xml', 'HAM2-960701.xml', 'HAM2-960709.xml', 'HAM2-960710.xml', 'HAM2-960711.xml', 'HAM2-960817.xml', 'HAM2-960818.xml', 'HAM2-960819.xml', 'HAM2-960820.xml', 'HAM2-961019.xml', 'HAM2-961112.xml', 'HAM2-961113.xml', 'HAM2-961114.xml', 'HAM2-970414.xml', 'HAM2-970415.xml', 'HAM2-970612.xml', 'HAM2-970614.xml', 'HAM2-970710.xml', 'HAM2-970712.xml', 'HAM2-970713.xml', 'HAM2-970717.xml', 'HAM2-970719.xml', 'HAM2-980317.xml', 'HAM2-040820.xml', 'HAM2-040824.xml', 'HAM2-040825.xml', 'HAM2-040901.xml', 'HAM2-040917.xml', 'HAM2-040918.xml', 'HAM2-040920.xml', 'HAM2-041025.xml', 'HAM2-041026.xml', 'HAM2-041027.xml', 'HAM2-041230.xml', 'HAM2-041231.xml', 'HAM2-050101.xml', 'HAM2-050102.xml', 'HAM2-050223.xml', 'HAM2-050224.xml', 'HAM2-050406.xml', 'HAM2-050407.xml', 'HAM2-050416.xml']) self._paragraph_pattern = re.compile(r'(\n.{0,50})(?=\n)') def docs(self): for root, dirs, files in os.walk(self._root): for name in sorted(files): if name in self._invalids: continue try: elements = minidom.parse(os.path.join(root, name)) for element in elements.getElementsByTagName('DOC'): doc = {} doc['id'] = element.getElementsByTagName('DOCID')[0].childNodes[0].data doc['issue'] = element.getElementsByTagName('ISSUE')[0].childNodes[0].data for cat in element.getElementsByTagName('CAT'): doc['categories_'+ cat.attributes['xml:lang'].value] = cat.childNodes[0].data.split('.') elm = element.getElementsByTagName('TITLE')[0] doc['title'] = elm.childNodes[1].data if len(elm.childNodes) > 1 else '' doc['text'] = '' for item in element.getElementsByTagName('TEXT')[0].childNodes: if item.nodeType == 4: # CDATA doc['text'] += item.data # refine text doc['text'] = self._paragraph_pattern.sub(r'\1\n', doc['text']).replace('\no ', '\n') yield doc except Exception as e: print('error in reading', name, e, file=sys.stderr) def texts(self): for doc in self.docs(): yield doc['text']
python
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2019 all rights reserved # # class declaration class Mapping: """ Mix-in class that forms the basis of the representation of mappings Mappings are dictionaries with arbitrary keys whose values are nodes """ # types from .exceptions import CircularReferenceError # constants category = "mapping" # public data @property def operands(self): """ Iterate over my operands """ # easy enough yield from self.data.values() # all done return # classifiers @property def mappings(self): """ Return a sequence over mappings in my dependency graph """ # i am one yield self # nothing further return # value management def getValue(self, **kwds): """ Compute and return my value """ # return the value of each operand return {name: op.value for name, op in self.data.items()} def setValue(self, value): """ Add the {key, node} pair in {value} to the mapping """ # unpack key, node = value # store self.data[key] = noe # all done return self # meta-methods def __init__(self, operands, **kwds): # chain up with an empty pile of dependencies super().__init__(operands=(), **kwds) # my operands are in a dict self.data = dict(**operands) # all done return def __getitem__(self, key): # return the value of the node stored under {key} return self.data[key].value def __setitem__(self, key, node): # store {node} under {key} self.data[key] = node # all done return # implementation details def _substitute(self, current, replacement): """ Adjust the operands by substituting {replacement} for {current} in the set of operands """ # go through my data for name, operand in self.data.items(): # if we found the match if operand is current: # replace it self.data[name] = replacement # all done return self # end of file
python
import streamlit as st st.title('titulo') st.button('cl') st.sidebar.radio('radio',[1,2,3]) for i in range(10): st.write('holla')
python
#!python from __future__ import print_function import time from arduino_device import findArduinoDevicePorts from arduino_olfactometer import ArduinoOlfactometers from arduino_olfactometer import isOlfactometerPortInfo from faa_actuation import PwmController from faa_actuation import CurrentController from faa_actuation import isPwmControllerPortInfo from faa_actuation import isCurrentControllerPortInfo DEBUG = True class Actuation(object): def __init__(self,*args,**kwargs): t_start = time.time() pwm_controller_port = None olfactometer_ports = [] current_controller_port = None self.pwm_controller = None self.olfactometers = None self.current_controller = None arduino_device_ports = findArduinoDevicePorts() for port in arduino_device_ports: port_info = arduino_device_ports[port] if isPwmControllerPortInfo(port_info): pwm_controller_port = port elif isOlfactometerPortInfo(port_info): olfactometer_ports.append(port) elif isCurrentControllerPortInfo(port_info): current_controller_port = port if pwm_controller_port is not None: self.pwm_controller = PwmController(port=pwm_controller_port) self.pwm_controller.setDeviceName('pwm_controller') if len(olfactometer_ports) != 0: self.olfactometers = ArduinoOlfactometers(use_ports=olfactometer_ports) self.olfactometers.sortBySerialNumber() try: self.olfactometers[0].setDeviceName('olfactometer_odor1') self.olfactometers[1].setDeviceName('olfactometer_odor2') self.olfactometers[2].setDeviceName('olfactometer_ethanol') except IndexError: pass if current_controller_port is not None: self.current_controller = CurrentController(port=current_controller_port) self.current_controller.setDeviceName('current_controller') t_end = time.time() print('Initialization time =', (t_end - t_start))
python