File size: 4,210 Bytes
04ca61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074ee68
04ca61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074ee68
04ca61b
 
 
eaf122e
04ca61b
 
 
 
eaf122e
 
 
074ee68
eaf122e
 
 
 
 
 
074ee68
eaf122e
7365314
 
 
 
 
 
 
 
 
 
 
 
 
eaf122e
04ca61b
 
eaf122e
7365314
61f8c8e
 
 
 
441e8de
04ca61b
 
 
 
 
 
 
 
eaf122e
 
 
 
04ca61b
 
 
 
 
 
 
 
 
074ee68
04ca61b
 
 
074ee68
04ca61b
 
074ee68
 
04ca61b
074ee68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The CodeMMLU benchmark."""

import os
import json
from glob import glob

import datasets


_CITATION = """\
@article{nguyen2024codemmlu,
  title={CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities},
  author={Nguyen, Dung Manh and Phan, Thang Chau and Le, Nam Hai and Doan, Thong T. and Nguyen, Nam V. and Pham, Quang and Bui, Nghi D. Q.},
  journal={arXiv preprint},
  year={2024}
}
"""

_DESCRIPTION = """\
CodeMMLU is a comprehensive benchmark designed to evaluate the capabilities of large language models (LLMs) in coding and software knowledge
"""

_HOMEPAGE = "https://fsoft-ai4code.github.io/codemmlu/"

_URL = "./data/test"

_SUBJECTS = [
    "programming_syntax", "api_frameworks",
    "software_principles", "dbms_sql", "others",
    "code_completion", "fill_in_the_middle", "code_repair", "defect_detection"
]


class CodeMMLUConfig(datasets.BuilderConfig):
    """BuilderConfig for SuperGLUE."""

    def __init__(self, features, data_url, **kwargs):
        """BuilderConfig for CodeMMLU.
        """
        # Version history:
        # 0.0.1: Initial release.
        super().__init__(version=datasets.Version("0.0.1"), **kwargs)
        self.features = features
        self.data_url = data_url

CONFIGS = []
for sub in _SUBJECTS:
    features = ['task_id', 'question', 'choices']
    if sub == "fill_in_the_middle":
        features.append('problem_description')
    
    CONFIGS.append(CodeMMLUConfig(
        name=sub, 
        features=features,
        data_url=os.path.join(_URL, sub + ".jsonl"),
        description="CodeMMLU test subject {}".format(sub),
    ))


class CodeMMLU(datasets.GeneratorBasedBuilder):
    """CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities"""
    BUILDER_CONFIG_CLASS = CodeMMLUConfig
    BUILDER_CONFIGS = CONFIGS

    def __init__(self,  **config_kwargs):
        super().__init__(**config_kwargs)
        print(self.BUILDER_CONFIGS)

    def _info(self):
        features = datasets.Features(
            {
                "task_id": datasets.Value("string"),
                "question": datasets.Value("string"),
                "choices": datasets.features.Sequence(datasets.Value("string")),
            }
        )
        
        if self.config.name == "fill_in_the_middle":
            features["problem_description"] = datasets.Value("string")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download(self.config.data_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data_path": dl_dir},
            ),
        ]

    def _generate_examples(self, data_path):
        """This function returns the examples in the raw (text) form."""
        if data_path.endswith(".jsonl"):
            lines = open(data_path, "r", encoding="utf-8").readlines()
            reader = [json.loads(line) for line in lines]
            for data in reader:
                id_ = data['task_id']

                return_dict = {
                    "question": data['question'], 
                    "choices": data['choices'],
                }

                if "fill_in_the_middle" in data_path:
                    return_dict['problem_description'] = data['problem_description']

                yield id_, return_dict