fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
infinite_of_charZero (R A : Type*) [CommRing R] [Ring A] [Algebra R A] [CharZero A] : { x : A | IsAlgebraic R x }.Infinite := by letI := MulActionWithZero.nontrivial R A exact infinite_of_injective_forall_mem Nat.cast_injective isAlgebraic_nat
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
infinite_of_charZero
null
aleph0_le_cardinalMk_of_charZero (R A : Type*) [CommRing R] [Ring A] [Algebra R A] [CharZero A] : ℵ₀ ≤ #{ x : A // IsAlgebraic R x } := infinite_iff.1 (Set.infinite_coe_iff.2 <| infinite_of_charZero R A)
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
aleph0_le_cardinalMk_of_charZero
null
cardinalMk_lift_le_mul : Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ Cardinal.lift.{v} #R[X] * ℵ₀ := by rw [← mk_uLift, ← mk_uLift] choose g hg₁ hg₂ using fun x : { x : A | IsAlgebraic R x } => x.coe_prop refine lift_mk_le_lift_mk_mul_of_lift_mk_preimage_le g fun f => ?_ rw [lift_le_aleph0, le_aleph0_iff_set_countable] suffices MapsTo (↑) (g ⁻¹' {f}) (f.rootSet A) from this.countable_of_injOn Subtype.coe_injective.injOn (f.rootSet_finite A).countable rintro x (rfl : g x = f) exact mem_rootSet.2 ⟨hg₁ x, hg₂ x⟩
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
cardinalMk_lift_le_mul
null
cardinalMk_lift_le_max : Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ max (Cardinal.lift.{v} #R) ℵ₀ := (cardinalMk_lift_le_mul R A).trans <| (mul_le_mul_right' (lift_le.2 cardinalMk_le_max) _).trans <| by simp @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
cardinalMk_lift_le_max
null
cardinalMk_lift_of_infinite [Infinite R] : Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } = Cardinal.lift.{v} #R := ((cardinalMk_lift_le_max R A).trans_eq (max_eq_left <| aleph0_le_mk _)).antisymm <| lift_mk_le'.2 ⟨⟨fun x => ⟨algebraMap R A x, isAlgebraic_algebraMap _⟩, fun _ _ h => FaithfulSMul.algebraMap_injective R A (Subtype.ext_iff.1 h)⟩⟩ variable [Countable R] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
cardinalMk_lift_of_infinite
null
protected countable : Set.Countable { x : A | IsAlgebraic R x } := by rw [← le_aleph0_iff_set_countable, ← lift_le_aleph0] apply (cardinalMk_lift_le_max R A).trans simp @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
countable
null
cardinalMk_of_countable_of_charZero [CharZero A] : #{ x : A // IsAlgebraic R x } = ℵ₀ := (Algebraic.countable R A).le_aleph0.antisymm (aleph0_le_cardinalMk_of_charZero R A)
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
cardinalMk_of_countable_of_charZero
null
cardinalMk_le_mul : #{ x : A // IsAlgebraic R x } ≤ #R[X] * ℵ₀ := by rw [← lift_id #_, ← lift_id #R[X]] exact cardinalMk_lift_le_mul R A @[stacks 09GK]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
cardinalMk_le_mul
null
cardinalMk_le_max : #{ x : A // IsAlgebraic R x } ≤ max #R ℵ₀ := by rw [← lift_id #_, ← lift_id #R] exact cardinalMk_lift_le_max R A @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
cardinalMk_le_max
null
cardinalMk_of_infinite [Infinite R] : #{ x : A // IsAlgebraic R x } = #R := lift_inj.1 <| cardinalMk_lift_of_infinite R A
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Cardinal", "Mathlib.RingTheory.Algebraic.Basic" ]
Mathlib/Algebra/AlgebraicCard.lean
cardinalMk_of_infinite
null
@[ext] Cubic (R : Type*) where /-- The degree-3 coefficient -/ a : R /-- The degree-2 coefficient -/ b : R /-- The degree-1 coefficient -/ c : R /-- The degree-0 coefficient -/ d : R
structure
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
Cubic
The structure representing a cubic polynomial.
toPoly (P : Cubic R) : R[X] := C P.a * X ^ 3 + C P.b * X ^ 2 + C P.c * X + C P.d
def
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
toPoly
Convert a cubic polynomial to a polynomial.
C_mul_prod_X_sub_C_eq [CommRing S] {w x y z : S} : C w * (X - C x) * (X - C y) * (X - C z) = toPoly ⟨w, w * -(x + y + z), w * (x * y + x * z + y * z), w * -(x * y * z)⟩ := by simp only [toPoly, C_neg, C_add, C_mul] ring1
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
C_mul_prod_X_sub_C_eq
null
prod_X_sub_C_eq [CommRing S] {x y z : S} : (X - C x) * (X - C y) * (X - C z) = toPoly ⟨1, -(x + y + z), x * y + x * z + y * z, -(x * y * z)⟩ := by rw [← one_mul <| X - C x, ← C_1, C_mul_prod_X_sub_C_eq, one_mul, one_mul, one_mul] /-! ### Coefficients -/
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
prod_X_sub_C_eq
null
private coeffs : (∀ n > 3, P.toPoly.coeff n = 0) ∧ P.toPoly.coeff 3 = P.a ∧ P.toPoly.coeff 2 = P.b ∧ P.toPoly.coeff 1 = P.c ∧ P.toPoly.coeff 0 = P.d := by simp only [toPoly, coeff_add, coeff_C, coeff_C_mul_X, coeff_C_mul_X_pow] norm_num intro n hn repeat' rw [if_neg] any_goals cutsat repeat' rw [zero_add] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
coeffs
null
coeff_eq_zero {n : ℕ} (hn : 3 < n) : P.toPoly.coeff n = 0 := coeffs.1 n hn @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
coeff_eq_zero
null
coeff_eq_a : P.toPoly.coeff 3 = P.a := coeffs.2.1 @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
coeff_eq_a
null
coeff_eq_b : P.toPoly.coeff 2 = P.b := coeffs.2.2.1 @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
coeff_eq_b
null
coeff_eq_c : P.toPoly.coeff 1 = P.c := coeffs.2.2.2.1 @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
coeff_eq_c
null
coeff_eq_d : P.toPoly.coeff 0 = P.d := coeffs.2.2.2.2
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
coeff_eq_d
null
a_of_eq (h : P.toPoly = Q.toPoly) : P.a = Q.a := by rw [← coeff_eq_a, h, coeff_eq_a]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
a_of_eq
null
b_of_eq (h : P.toPoly = Q.toPoly) : P.b = Q.b := by rw [← coeff_eq_b, h, coeff_eq_b]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
b_of_eq
null
c_of_eq (h : P.toPoly = Q.toPoly) : P.c = Q.c := by rw [← coeff_eq_c, h, coeff_eq_c]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
c_of_eq
null
d_of_eq (h : P.toPoly = Q.toPoly) : P.d = Q.d := by rw [← coeff_eq_d, h, coeff_eq_d]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
d_of_eq
null
toPoly_injective (P Q : Cubic R) : P.toPoly = Q.toPoly ↔ P = Q := ⟨fun h ↦ Cubic.ext (a_of_eq h) (b_of_eq h) (c_of_eq h) (d_of_eq h), congr_arg toPoly⟩
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
toPoly_injective
null
of_a_eq_zero (ha : P.a = 0) : P.toPoly = C P.b * X ^ 2 + C P.c * X + C P.d := by rw [toPoly, ha, C_0, zero_mul, zero_add]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
of_a_eq_zero
null
of_a_eq_zero' : toPoly ⟨0, b, c, d⟩ = C b * X ^ 2 + C c * X + C d := of_a_eq_zero rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
of_a_eq_zero'
null
of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly = C P.c * X + C P.d := by rw [of_a_eq_zero ha, hb, C_0, zero_mul, zero_add]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
of_b_eq_zero
null
of_b_eq_zero' : toPoly ⟨0, 0, c, d⟩ = C c * X + C d := of_b_eq_zero rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
of_b_eq_zero'
null
of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly = C P.d := by rw [of_b_eq_zero ha hb, hc, C_0, zero_mul, zero_add]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
of_c_eq_zero
null
of_c_eq_zero' : toPoly ⟨0, 0, 0, d⟩ = C d := of_c_eq_zero rfl rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
of_c_eq_zero'
null
of_d_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 0) : P.toPoly = 0 := by rw [of_c_eq_zero ha hb hc, hd, C_0]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
of_d_eq_zero
null
of_d_eq_zero' : (⟨0, 0, 0, 0⟩ : Cubic R).toPoly = 0 := of_d_eq_zero rfl rfl rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
of_d_eq_zero'
null
zero : (0 : Cubic R).toPoly = 0 := of_d_eq_zero'
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
zero
null
toPoly_eq_zero_iff (P : Cubic R) : P.toPoly = 0 ↔ P = 0 := by rw [← zero, toPoly_injective]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
toPoly_eq_zero_iff
null
private ne_zero (h0 : P.a ≠ 0 ∨ P.b ≠ 0 ∨ P.c ≠ 0 ∨ P.d ≠ 0) : P.toPoly ≠ 0 := by contrapose! h0 rw [(toPoly_eq_zero_iff P).mp h0] exact ⟨rfl, rfl, rfl, rfl⟩
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
ne_zero
null
ne_zero_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly ≠ 0 := (or_imp.mp ne_zero).1 ha
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
ne_zero_of_a_ne_zero
null
ne_zero_of_b_ne_zero (hb : P.b ≠ 0) : P.toPoly ≠ 0 := (or_imp.mp (or_imp.mp ne_zero).2).1 hb
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
ne_zero_of_b_ne_zero
null
ne_zero_of_c_ne_zero (hc : P.c ≠ 0) : P.toPoly ≠ 0 := (or_imp.mp (or_imp.mp (or_imp.mp ne_zero).2).2).1 hc
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
ne_zero_of_c_ne_zero
null
ne_zero_of_d_ne_zero (hd : P.d ≠ 0) : P.toPoly ≠ 0 := (or_imp.mp (or_imp.mp (or_imp.mp ne_zero).2).2).2 hd @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
ne_zero_of_d_ne_zero
null
leadingCoeff_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.leadingCoeff = P.a := leadingCoeff_cubic ha
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
leadingCoeff_of_a_ne_zero
null
leadingCoeff_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).leadingCoeff = a := by simp [ha] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
leadingCoeff_of_a_ne_zero'
null
leadingCoeff_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.leadingCoeff = P.b := by rw [of_a_eq_zero ha, leadingCoeff_quadratic hb]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
leadingCoeff_of_b_ne_zero
null
leadingCoeff_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).leadingCoeff = b := by simp [hb] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
leadingCoeff_of_b_ne_zero'
null
leadingCoeff_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) : P.toPoly.leadingCoeff = P.c := by rw [of_b_eq_zero ha hb, leadingCoeff_linear hc]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
leadingCoeff_of_c_ne_zero
null
leadingCoeff_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).leadingCoeff = c := by simp [hc] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
leadingCoeff_of_c_ne_zero'
null
leadingCoeff_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly.leadingCoeff = P.d := by rw [of_c_eq_zero ha hb hc, leadingCoeff_C]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
leadingCoeff_of_c_eq_zero
null
leadingCoeff_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).leadingCoeff = d := leadingCoeff_of_c_eq_zero rfl rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
leadingCoeff_of_c_eq_zero'
null
monic_of_a_eq_one (ha : P.a = 1) : P.toPoly.Monic := by nontriviality R rw [Monic, leadingCoeff_of_a_ne_zero (ha ▸ one_ne_zero), ha]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
monic_of_a_eq_one
null
monic_of_a_eq_one' : (toPoly ⟨1, b, c, d⟩).Monic := monic_of_a_eq_one rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
monic_of_a_eq_one'
null
monic_of_b_eq_one (ha : P.a = 0) (hb : P.b = 1) : P.toPoly.Monic := by nontriviality R rw [Monic, leadingCoeff_of_b_ne_zero ha (hb ▸ one_ne_zero), hb]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
monic_of_b_eq_one
null
monic_of_b_eq_one' : (toPoly ⟨0, 1, c, d⟩).Monic := monic_of_b_eq_one rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
monic_of_b_eq_one'
null
monic_of_c_eq_one (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 1) : P.toPoly.Monic := by nontriviality R rw [Monic, leadingCoeff_of_c_ne_zero ha hb (hc ▸ one_ne_zero), hc]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
monic_of_c_eq_one
null
monic_of_c_eq_one' : (toPoly ⟨0, 0, 1, d⟩).Monic := monic_of_c_eq_one rfl rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
monic_of_c_eq_one'
null
monic_of_d_eq_one (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 1) : P.toPoly.Monic := by rw [Monic, leadingCoeff_of_c_eq_zero ha hb hc, hd]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
monic_of_d_eq_one
null
monic_of_d_eq_one' : (toPoly ⟨0, 0, 0, 1⟩).Monic := monic_of_d_eq_one rfl rfl rfl rfl
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
monic_of_d_eq_one'
null
@[simps] equiv : Cubic R ≃ { p : R[X] // p.degree ≤ 3 } where toFun P := ⟨P.toPoly, degree_cubic_le⟩ invFun f := ⟨coeff f 3, coeff f 2, coeff f 1, coeff f 0⟩ left_inv P := by ext <;> simp only [coeffs] right_inv f := by ext n obtain hn | hn := le_or_gt n 3 · interval_cases n <;> simp only <;> ring_nf <;> try simp only [coeffs] · rw [coeff_eq_zero hn, (degree_le_iff_coeff_zero (f : R[X]) 3).mp f.2] simpa using hn @[simp]
def
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
equiv
The equivalence between cubic polynomials and polynomials of degree at most three.
degree_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.degree = 3 := degree_cubic ha
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_a_ne_zero
null
degree_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).degree = 3 := by simp [ha]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_a_ne_zero'
null
degree_of_a_eq_zero (ha : P.a = 0) : P.toPoly.degree ≤ 2 := by simpa only [of_a_eq_zero ha] using degree_quadratic_le
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_a_eq_zero
null
degree_of_a_eq_zero' : (toPoly ⟨0, b, c, d⟩).degree ≤ 2 := degree_of_a_eq_zero rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_a_eq_zero'
null
degree_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.degree = 2 := by rw [of_a_eq_zero ha, degree_quadratic hb]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_b_ne_zero
null
degree_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).degree = 2 := by simp [hb]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_b_ne_zero'
null
degree_of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly.degree ≤ 1 := by simpa only [of_b_eq_zero ha hb] using degree_linear_le
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_b_eq_zero
null
degree_of_b_eq_zero' : (toPoly ⟨0, 0, c, d⟩).degree ≤ 1 := degree_of_b_eq_zero rfl rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_b_eq_zero'
null
degree_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) : P.toPoly.degree = 1 := by rw [of_b_eq_zero ha hb, degree_linear hc]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_c_ne_zero
null
degree_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).degree = 1 := by simp [hc]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_c_ne_zero'
null
degree_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly.degree ≤ 0 := by simpa only [of_c_eq_zero ha hb hc] using degree_C_le
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_c_eq_zero
null
degree_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).degree ≤ 0 := degree_of_c_eq_zero rfl rfl rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_c_eq_zero'
null
degree_of_d_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d ≠ 0) : P.toPoly.degree = 0 := by rw [of_c_eq_zero ha hb hc, degree_C hd]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_d_ne_zero
null
degree_of_d_ne_zero' (hd : d ≠ 0) : (toPoly ⟨0, 0, 0, d⟩).degree = 0 := by simp [hd] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_d_ne_zero'
null
degree_of_d_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 0) : P.toPoly.degree = ⊥ := by rw [of_d_eq_zero ha hb hc hd, degree_zero]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_d_eq_zero
null
degree_of_d_eq_zero' : (⟨0, 0, 0, 0⟩ : Cubic R).toPoly.degree = ⊥ := degree_of_d_eq_zero rfl rfl rfl rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_d_eq_zero'
null
degree_of_zero : (0 : Cubic R).toPoly.degree = ⊥ := degree_of_d_eq_zero' @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
degree_of_zero
null
natDegree_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.natDegree = 3 := natDegree_cubic ha
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_a_ne_zero
null
natDegree_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).natDegree = 3 := by simp [ha]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_a_ne_zero'
null
natDegree_of_a_eq_zero (ha : P.a = 0) : P.toPoly.natDegree ≤ 2 := by simpa only [of_a_eq_zero ha] using natDegree_quadratic_le
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_a_eq_zero
null
natDegree_of_a_eq_zero' : (toPoly ⟨0, b, c, d⟩).natDegree ≤ 2 := natDegree_of_a_eq_zero rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_a_eq_zero'
null
natDegree_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.natDegree = 2 := by rw [of_a_eq_zero ha, natDegree_quadratic hb]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_b_ne_zero
null
natDegree_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).natDegree = 2 := by simp [hb]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_b_ne_zero'
null
natDegree_of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly.natDegree ≤ 1 := by simpa only [of_b_eq_zero ha hb] using natDegree_linear_le
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_b_eq_zero
null
natDegree_of_b_eq_zero' : (toPoly ⟨0, 0, c, d⟩).natDegree ≤ 1 := natDegree_of_b_eq_zero rfl rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_b_eq_zero'
null
natDegree_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) : P.toPoly.natDegree = 1 := by rw [of_b_eq_zero ha hb, natDegree_linear hc]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_c_ne_zero
null
natDegree_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).natDegree = 1 := by simp [hc] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_c_ne_zero'
null
natDegree_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly.natDegree = 0 := by rw [of_c_eq_zero ha hb hc, natDegree_C]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_c_eq_zero
null
natDegree_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).natDegree = 0 := natDegree_of_c_eq_zero rfl rfl rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_c_eq_zero'
null
natDegree_of_zero : (0 : Cubic R).toPoly.natDegree = 0 := natDegree_of_c_eq_zero'
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
natDegree_of_zero
null
map (φ : R →+* S) (P : Cubic R) : Cubic S := ⟨φ P.a, φ P.b, φ P.c, φ P.d⟩
def
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
map
Map a cubic polynomial across a semiring homomorphism.
map_toPoly : (map φ P).toPoly = Polynomial.map φ P.toPoly := by simp only [map, toPoly, map_C, map_X, Polynomial.map_add, Polynomial.map_mul, Polynomial.map_pow]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
map_toPoly
null
roots [IsDomain R] (P : Cubic R) : Multiset R := P.toPoly.roots
def
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
roots
The roots of a cubic polynomial.
map_roots [IsDomain S] : (map φ P).roots = (Polynomial.map φ P.toPoly).roots := by rw [roots, map_toPoly]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
map_roots
null
mem_roots_iff [IsDomain R] (h0 : P.toPoly ≠ 0) (x : R) : x ∈ P.roots ↔ P.a * x ^ 3 + P.b * x ^ 2 + P.c * x + P.d = 0 := by rw [roots, mem_roots h0, IsRoot, toPoly] simp only [eval_C, eval_X, eval_add, eval_mul, eval_pow]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
mem_roots_iff
null
card_roots_le [IsDomain R] [DecidableEq R] : P.roots.toFinset.card ≤ 3 := by apply (toFinset_card_le P.toPoly.roots).trans by_cases hP : P.toPoly = 0 · exact (card_roots' P.toPoly).trans (by rw [hP, natDegree_zero]; exact zero_le 3) · exact WithBot.coe_le_coe.1 ((card_roots hP).trans degree_cubic_le)
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
card_roots_le
null
splits_iff_card_roots (ha : P.a ≠ 0) : Splits φ P.toPoly ↔ Multiset.card (map φ P).roots = 3 := by replace ha : (map φ P).a ≠ 0 := (_root_.map_ne_zero φ).mpr ha nth_rw 1 [← RingHom.id_comp φ] rw [roots, ← splits_map_iff, ← map_toPoly, Polynomial.splits_iff_card_roots, ← ((degree_eq_iff_natDegree_eq <| ne_zero_of_a_ne_zero ha).1 <| degree_of_a_ne_zero ha : _ = 3)]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
splits_iff_card_roots
null
splits_iff_roots_eq_three (ha : P.a ≠ 0) : Splits φ P.toPoly ↔ ∃ x y z : K, (map φ P).roots = {x, y, z} := by rw [splits_iff_card_roots ha, card_eq_three]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
splits_iff_roots_eq_three
null
eq_prod_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : (map φ P).toPoly = C (φ P.a) * (X - C x) * (X - C y) * (X - C z) := by rw [map_toPoly, eq_prod_roots_of_splits <| (splits_iff_roots_eq_three ha).mpr <| Exists.intro x <| Exists.intro y <| Exists.intro z h3, leadingCoeff_of_a_ne_zero ha, ← map_roots, h3] change C (φ P.a) * ((X - C x) ::ₘ (X - C y) ::ₘ {X - C z}).prod = _ rw [prod_cons, prod_cons, prod_singleton, mul_assoc, mul_assoc]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
eq_prod_three_roots
null
eq_sum_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : map φ P = ⟨φ P.a, φ P.a * -(x + y + z), φ P.a * (x * y + x * z + y * z), φ P.a * -(x * y * z)⟩ := by apply_fun @toPoly _ _ · rw [eq_prod_three_roots ha h3, C_mul_prod_X_sub_C_eq] · exact fun P Q ↦ (toPoly_injective P Q).mp
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
eq_sum_three_roots
null
b_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.b = φ P.a * -(x + y + z) := by injection eq_sum_three_roots ha h3
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
b_eq_three_roots
null
c_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.c = φ P.a * (x * y + x * z + y * z) := by injection eq_sum_three_roots ha h3
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
c_eq_three_roots
null
d_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.d = φ P.a * -(x * y * z) := by injection eq_sum_three_roots ha h3
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
d_eq_three_roots
null