Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Languages:
English
Size:
10K - 100K
License:
| license: apache-2.0 | |
| language: | |
| - en | |
| task_categories: | |
| - image-classification | |
| size_categories: | |
| - 10K<n<100K | |
| tags: | |
| - Human | |
| - Non-Human | |
| - biology | |
| # Human-vs-NonHuman Dataset | |
| ## Dataset Description | |
| The **Human-vs-NonHuman** dataset is a collection of images designed for **image classification** tasks. The dataset consists of labeled images categorized into two classes: | |
| 1. **Human (Label: 0)** | |
| 2. **Non-Human (Label: 1)** | |
| The dataset is useful for training and evaluating models in tasks such as **human detection**, **biological classification**, and **AI-assisted filtering systems**. | |
| ## Dataset Details | |
| - **Total Samples**: 15,635 images | |
| - **Image Size**: 224x224 pixels | |
| - **Classes**: | |
| - **Human (0)** | |
| - **Non-Human (1)** | |
| - **File Format**: PNG/JPG (Auto-converted to Parquet) | |
| - **Dataset Size**: 116MB | |
| ## Usage | |
| You can use this dataset with Hugging Face's `datasets` library as follows: | |
| ```python | |
| from datasets import load_dataset | |
| dataset = load_dataset("prithivMLmods/Human-vs-NonHuman") | |
| ``` |