Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Languages:
English
Size:
10K - 100K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,110 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
Here’s a `README.md` you can use for the **Multilabel-GeoSceneNet-16K** dataset based on your screenshot and label information:
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
```markdown
|
9 |
+
# Multilabel-GeoSceneNet-16K
|
10 |
+
|
11 |
+
**Multilabel-GeoSceneNet-16K** is a geospatial image dataset for **multi-label scene classification**. Each image may belong to one or more geographic scene categories, making it suitable for multi-label learning tasks in remote sensing and geospatial analytics.
|
12 |
+
|
13 |
+
## Dataset Summary
|
14 |
+
|
15 |
+
- **Task**: Multi-label Image Classification
|
16 |
+
- **Modalities**: Image
|
17 |
+
- **Total Images**: 16,033
|
18 |
+
- **Split**: Train (100%)
|
19 |
+
- **Labels**: 7 categories (multi-label)
|
20 |
+
- **License**: Apache-2.0
|
21 |
+
- **Size**: ~227 MB
|
22 |
+
|
23 |
+
## Labels
|
24 |
+
|
25 |
+
Each image may be annotated with one or more of the following scene categories:
|
26 |
+
|
27 |
+
| Label ID | Class Name |
|
28 |
+
|----------|--------------------------|
|
29 |
+
| 0 | Buildings and Structures |
|
30 |
+
| 1 | Desert |
|
31 |
+
| 2 | Forest Area |
|
32 |
+
| 3 | Hill or Mountain |
|
33 |
+
| 4 | Ice Glacier |
|
34 |
+
| 5 | Sea or Ocean |
|
35 |
+
| 6 | Street View |
|
36 |
+
|
37 |
+
```py
|
38 |
+
from datasets import load_dataset
|
39 |
+
|
40 |
+
# Load the dataset
|
41 |
+
dataset = load_dataset("prithivMLmods/Multilabel-GeoSceneNet-16K")
|
42 |
+
|
43 |
+
# Extract unique labels
|
44 |
+
labels = dataset["train"].features["label"].names
|
45 |
+
|
46 |
+
# Create id2label mapping
|
47 |
+
id2label = {str(i): label for i, label in enumerate(labels)}
|
48 |
+
|
49 |
+
# Print the mapping
|
50 |
+
print(id2label)
|
51 |
+
```
|
52 |
+
|
53 |
+
```
|
54 |
+
{'0': 'Buildings and Structures', '1': 'Desert', '2': 'Forest Area', '3': 'Hill or Mountain', '4': 'Ice Glacier', '5': 'Sea or Ocean', '6': 'Street View'}
|
55 |
+
```
|
56 |
+
|
57 |
+
## Features
|
58 |
+
|
59 |
+
| Column | Type | Description |
|
60 |
+
|--------|--------|---------------------------------------------|
|
61 |
+
| image | Image | Image input in JPEG format |
|
62 |
+
| label | List | List of class labels for the given image |
|
63 |
+
|
64 |
+
## Example
|
65 |
+
|
66 |
+
| Image | Label(s) |
|
67 |
+
|------------------------------|---------------------------|
|
68 |
+
|  | Buildings and Structures |
|
69 |
+
|  | Forest Area, Hill or Mountain |
|
70 |
+
|
71 |
+
> Note: For best experience, browse the dataset directly on [Hugging Face](https://huggingface.co/datasets/prithivMLmods/Multilabel-GeoSceneNet-16K).
|
72 |
+
|
73 |
+
## Usage
|
74 |
+
|
75 |
+
You can load the dataset using the `datasets` library:
|
76 |
+
|
77 |
+
```python
|
78 |
+
from datasets import load_dataset
|
79 |
+
|
80 |
+
dataset = load_dataset("prithivMLmods/Multilabel-GeoSceneNet-16K")
|
81 |
+
```
|
82 |
+
|
83 |
+
To visualize an example:
|
84 |
+
|
85 |
+
```python
|
86 |
+
import matplotlib.pyplot as plt
|
87 |
+
|
88 |
+
example = dataset['train'][0]
|
89 |
+
plt.imshow(example['image'])
|
90 |
+
plt.title(", ".join(example['label']))
|
91 |
+
plt.axis('off')
|
92 |
+
plt.show()
|
93 |
+
```
|
94 |
+
|
95 |
+
## Applications
|
96 |
+
|
97 |
+
- Geospatial scene understanding
|
98 |
+
- Remote sensing analytics
|
99 |
+
- Environmental monitoring
|
100 |
+
- Land cover classification
|
101 |
+
- AI-assisted mapping
|
102 |
+
|
103 |
+
## License
|
104 |
+
|
105 |
+
This dataset is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
|
106 |
+
|
107 |
+
---
|
108 |
+
|
109 |
+
*Maintained by [@prithivMLmods](https://huggingface.co/prithivMLmods).*
|
110 |
+
```
|