prithivMLmods commited on
Commit
07d0098
·
verified ·
1 Parent(s): 5af50d1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -3
README.md CHANGED
@@ -1,3 +1,110 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ Here’s a `README.md` you can use for the **Multilabel-GeoSceneNet-16K** dataset based on your screenshot and label information:
5
+
6
+ ---
7
+
8
+ ```markdown
9
+ # Multilabel-GeoSceneNet-16K
10
+
11
+ **Multilabel-GeoSceneNet-16K** is a geospatial image dataset for **multi-label scene classification**. Each image may belong to one or more geographic scene categories, making it suitable for multi-label learning tasks in remote sensing and geospatial analytics.
12
+
13
+ ## Dataset Summary
14
+
15
+ - **Task**: Multi-label Image Classification
16
+ - **Modalities**: Image
17
+ - **Total Images**: 16,033
18
+ - **Split**: Train (100%)
19
+ - **Labels**: 7 categories (multi-label)
20
+ - **License**: Apache-2.0
21
+ - **Size**: ~227 MB
22
+
23
+ ## Labels
24
+
25
+ Each image may be annotated with one or more of the following scene categories:
26
+
27
+ | Label ID | Class Name |
28
+ |----------|--------------------------|
29
+ | 0 | Buildings and Structures |
30
+ | 1 | Desert |
31
+ | 2 | Forest Area |
32
+ | 3 | Hill or Mountain |
33
+ | 4 | Ice Glacier |
34
+ | 5 | Sea or Ocean |
35
+ | 6 | Street View |
36
+
37
+ ```py
38
+ from datasets import load_dataset
39
+
40
+ # Load the dataset
41
+ dataset = load_dataset("prithivMLmods/Multilabel-GeoSceneNet-16K")
42
+
43
+ # Extract unique labels
44
+ labels = dataset["train"].features["label"].names
45
+
46
+ # Create id2label mapping
47
+ id2label = {str(i): label for i, label in enumerate(labels)}
48
+
49
+ # Print the mapping
50
+ print(id2label)
51
+ ```
52
+
53
+ ```
54
+ {'0': 'Buildings and Structures', '1': 'Desert', '2': 'Forest Area', '3': 'Hill or Mountain', '4': 'Ice Glacier', '5': 'Sea or Ocean', '6': 'Street View'}
55
+ ```
56
+
57
+ ## Features
58
+
59
+ | Column | Type | Description |
60
+ |--------|--------|---------------------------------------------|
61
+ | image | Image | Image input in JPEG format |
62
+ | label | List | List of class labels for the given image |
63
+
64
+ ## Example
65
+
66
+ | Image | Label(s) |
67
+ |------------------------------|---------------------------|
68
+ | ![](sample1.png) | Buildings and Structures |
69
+ | ![](sample2.png) | Forest Area, Hill or Mountain |
70
+
71
+ > Note: For best experience, browse the dataset directly on [Hugging Face](https://huggingface.co/datasets/prithivMLmods/Multilabel-GeoSceneNet-16K).
72
+
73
+ ## Usage
74
+
75
+ You can load the dataset using the `datasets` library:
76
+
77
+ ```python
78
+ from datasets import load_dataset
79
+
80
+ dataset = load_dataset("prithivMLmods/Multilabel-GeoSceneNet-16K")
81
+ ```
82
+
83
+ To visualize an example:
84
+
85
+ ```python
86
+ import matplotlib.pyplot as plt
87
+
88
+ example = dataset['train'][0]
89
+ plt.imshow(example['image'])
90
+ plt.title(", ".join(example['label']))
91
+ plt.axis('off')
92
+ plt.show()
93
+ ```
94
+
95
+ ## Applications
96
+
97
+ - Geospatial scene understanding
98
+ - Remote sensing analytics
99
+ - Environmental monitoring
100
+ - Land cover classification
101
+ - AI-assisted mapping
102
+
103
+ ## License
104
+
105
+ This dataset is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
106
+
107
+ ---
108
+
109
+ *Maintained by [@prithivMLmods](https://huggingface.co/prithivMLmods).*
110
+ ```