Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
158
4.93k
label
class label
2 classes
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
0No Watermark
End of preview. Expand in Data Studio

Watermark-or-Not-20K Dataset

Overview

The Watermark-or-Not-20K dataset consists of 20,000 images annotated with binary labels indicating the presence or absence of a watermark. It is designed to support training and evaluation of models focused on watermark detection, which is useful for content filtering, copyright protection, and image moderation tasks.

Dataset Structure

  • Split: train
  • Number of samples: 20,000
  • Label Type: Categorical (2 classes)
  • Image Resolution: Ranges from 158 pixels to 4.93k pixels in width
  • Storage Format: Auto-converted to Parquet for efficient access

Label Classes

The dataset contains the following classes:

  • 0 - No Watermark
  • 1 - Watermark

Usage

The dataset can be accessed using the Hugging Face datasets library:

from datasets import load_dataset

dataset = load_dataset("prithivMLmods/Watermark-or-Not-20K")

Applications

This dataset is suitable for:

  • Training computer vision models to detect watermarks
  • Fine-tuning transformer-based vision models on binary classification tasks
  • Building AI-based content moderation pipelines
Downloads last month
83