import os from typing import List, Optional, Callable from functools import partial import numpy as np import torch from scipy.interpolate import UnivariateSpline def smooth_3d_array(points, num=None, **kwargs): x, y, z = points[:, 0], points[:, 1], points[:, 2] points = np.zeros((num, 3)) if num is None: num = len(x) w = np.arange(0, len(x), 1) sx = UnivariateSpline(w, x, **kwargs) sy = UnivariateSpline(w, y, **kwargs) sz = UnivariateSpline(w, z, **kwargs) wnew = np.linspace(0, len(x), num) points[:, 0] = sx(wnew) points[:, 1] = sy(wnew) points[:, 2] = sz(wnew) return points def calculate_tnb_frame(curve, epsilon=1e-8): curve = np.asarray(curve) # Calculate T (tangent) T = np.gradient(curve, axis=0) T_norms = np.linalg.norm(T, axis=1) T = T / T_norms[:, np.newaxis] # Identify straight segments is_straight = T_norms < epsilon # Calculate N (normal) for non-straight parts dT = np.gradient(T, axis=0) N = dT - np.sum(dT * T, axis=1)[:, np.newaxis] * T N_norms = np.linalg.norm(N, axis=1) # Handle points where the normal is undefined or in straight segments undefined_N = (N_norms < epsilon) | is_straight if np.all(undefined_N): # print("the entire curve is straight") # If the entire curve is straight, choose an arbitrary normal N = np.zeros_like(T) N[:, 0] = T[:, 1] N[:, 1] = -T[:, 0] N = N / np.linalg.norm(N, axis=1)[:, np.newaxis] elif np.any(undefined_N): # print("handling straight parts") # Only proceed with interpolation if there are any straight parts # Find segments of curved and straight parts segment_changes = np.where(np.diff(undefined_N))[0] + 1 segments = np.split(np.arange(len(curve)), segment_changes) for segment in segments: if undefined_N[segment[0]]: # This is a straight segment left_curved = np.where(~undefined_N[: segment[0]])[0] right_curved = ( np.where(~undefined_N[segment[-1] + 1 :])[0] + segment[-1] + 1 ) if len(left_curved) > 0 and len(right_curved) > 0: # Interpolate between left and right curved parts left_N = N[left_curved[-1]] right_N = N[right_curved[0]] t = np.linspace(0, 1, len(segment)) N[segment] = (1 - t[:, np.newaxis]) * left_N + t[ :, np.newaxis ] * right_N elif len(left_curved) > 0: # Use normal from left curved part N[segment] = N[left_curved[-1]] elif len(right_curved) > 0: # Use normal from right curved part N[segment] = N[right_curved[0]] else: # No curved parts found, use arbitrary normal N[segment] = np.array([T[segment[0]][1], -T[segment[0]][0], 0]) # Ensure N is perpendicular to T N[segment] = ( N[segment] - np.sum(N[segment] * T[segment], axis=1)[:, np.newaxis] * T[segment] ) N[segment] = ( N[segment] / np.linalg.norm(N[segment], axis=1)[:, np.newaxis] ) else: # print("no straight parts") pass # If there are no straight parts, N is already calculated correctly for all points # Calculate B (binormal) ensuring orthogonality B = np.cross(T, N) # Ensure perfect orthogonality through Gram-Schmidt N = N - np.sum(N * T, axis=1)[:, np.newaxis] * T N = N / np.linalg.norm(N, axis=1)[:, np.newaxis] B = B - np.sum(B * T, axis=1)[:, np.newaxis] * T B = B - np.sum(B * N, axis=1)[:, np.newaxis] * N B = B / np.linalg.norm(B, axis=1)[:, np.newaxis] return T, N, B def get_closest(pc_a, pc_b): """ For each point in pc_a, find the closest point in pc_b Returns the distance and index of the closest point in pc_b for each point in pc_a Parameters ---------- pc_a : [Mx3] pc_b : [Nx3] """ tree = KDTree(pc_b) dist, idx = tree.query(pc_a, workers=-1) if np.max(idx) >= pc_b.shape[0]: raise ValueError("idx is out of range") return dist, idx def straighten_using_frenet(helix, points): """ Straighten the structure based on the helix (skeleton) using the Frenet frame. Args: - helix (numpy array): Points forming the helix (skeleton). - points (numpy array): Points surrounding the helix. Returns: - straightened_helix (numpy array): Straightened version of the helix. - straightened_points (numpy array): Transformed surrounding points. """ # Compute the Frenet frame for the helix T, N, B = calculate_tnb_frame(helix) # Parameterize the helix based on cumulative distance (arclength) deltas = np.diff(helix, axis=0) distances = np.linalg.norm(deltas, axis=1) cumulative_distances = np.insert(np.cumsum(distances), 0, 0) # Map helix to a straight line along Z-axis straightened_helix = np.column_stack( ( np.zeros_like(cumulative_distances), np.zeros_like(cumulative_distances), cumulative_distances, ) ) distances_to_helix, closest_idxs = get_closest(points, helix) vectors = points - helix[closest_idxs] r = distances_to_helix T_closest = T[closest_idxs] N_closest = N[closest_idxs] B_closest = B[closest_idxs] theta = np.arctan2( np.einsum("ij,ij->i", vectors, N_closest), np.einsum("ij,ij->i", vectors, B_closest), ) phi = np.arccos(np.einsum("ij,ij->i", vectors, T_closest) / r) x = r * np.sin(phi) * np.cos(theta) y = r * np.sin(phi) * np.sin(theta) z = cumulative_distances[closest_idxs] + r * np.cos(phi) straightened_points = np.column_stack((x, y, z)) return straightened_helix, np.array(straightened_points) def frenet_transformation(pc, skel, lb): skel_smooth = smooth_3d_array(skel, num=skel.shape[0] * 100, s=200000) skel_trans, pc_trans = straighten_using_frenet(skel_smooth, pc) return pc_trans, skel_trans, lb def transformation(trunk_id, pc, trunk_pc, label, frenet: bool): """ Normalize the point cloud to unit sphere do frenet transformation Parameters ---------- trunk_id : int pc trunk_pc label frenet : whether not to do FreNet transformation """ unmodified_pc = pc.copy() if frenet: pc, trunk_pc, label = frenet_transformation(pc, trunk_pc, label) # NOTE: trunk_pc has variable length and cannot be collated using default_collate # normalize [N, 3] to unit sphere pc = pc - np.mean(pc, axis=0) m = np.max(np.sqrt(np.sum(pc**2, axis=1))) pc = pc / m # cast to int label = label.astype(int) return trunk_id, pc, label, unmodified_pc class CachedDataset: def __init__( self, output_path: str, num_points: int, folds: List[List[int]], fold: int, is_train: bool, transform: Optional[Callable] = None, ): self.num_points = num_points self.transform = transform self.spanning_paths = np.load( os.path.join(output_path, "spanning_paths.npz"), allow_pickle=True )["spanning_paths"].item() if fold == -1: print("Loading all folds, ignoring is_train") trunk_ids = self.spanning_paths.keys() else: if is_train: trunk_ids = [ item for idx, sublist in enumerate(folds) if idx != fold for item in sublist ] else: trunk_ids = folds[fold] self.trunk_ids = sorted(trunk_ids) files = [] i = 0 for id in sorted(self.spanning_paths.keys()): for path in self.spanning_paths[id]: if id in self.trunk_ids: files.append(os.path.join(output_path, f"{i}.npz")) assert os.path.exists(files[-1]) i += 1 self.files = files def __len__(self): return len(self.files) def __getitem__(self, idx): data = np.load(self.files[idx]) trunk_id, pc, trunk_pc, label = ( data["trunk_id"], data["pc"], data["trunk_pc"], data["label"], ) assert trunk_id in self.trunk_ids # PC is [N, 3], downsample to [num_points, 3] random_permutation = np.random.permutation(pc.shape[0]) pc = pc[random_permutation[: self.num_points]] label = label[random_permutation[: self.num_points]] if self.transform is None: return trunk_id, pc, trunk_pc, label else: return self.transform(trunk_id, pc, trunk_pc, label) def get_dataloader( species: str, num_points: int, fold: int, is_train: bool, batch_size: int, num_workers: int, frenet: bool, distributed: bool = False, collate_fn: Optional[Callable] = None, path_length=10000, ): """ Returns FreSeg dataloader for the given species and fold Parameters ---------- species: one of ["seg_den", "mouse", "human"] num_points: number of points to sample from the point cloud fold: -1 to fetch all folds, 0-4 for seg_den is_train: bool batch_size num_workers frenet: whether to do FreNet transformation distributed: bool collate_fn path_length : fixed length of skeleton path (not configurable) """ assert species in ["seg_den", "mouse", "human"] seg_den_folds = [ [3, 5, 11, 12, 23, 28, 29, 32, 39, 42], [8, 15, 19, 27, 30, 34, 35, 36, 46, 49], [9, 14, 16, 17, 21, 26, 31, 33, 43, 44], [2, 6, 7, 13, 18, 24, 25, 38, 41, 50], [1, 4, 10, 20, 22, 37, 40, 45, 47, 48], ] if species != "seg_den": assert ( fold == -1 ), "Fold must be -1 for mouse and human datasets, since no splits" dataset = CachedDataset( f"{species}_1000000_{path_length}", num_points=num_points, folds=seg_den_folds if species == "seg_den" else [], fold=fold, is_train=is_train, transform=partial(transformation, frenet=frenet), ) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=is_train and not distributed, num_workers=num_workers, pin_memory=True, drop_last=is_train, sampler=torch.utils.data.DistributedSampler(dataset) if distributed else None, collate_fn=collate_fn, ) return dataloader, dataset.files if __name__ == "__main__": human_loader, _ = get_dataloader( species="human", num_points=1024, fold=-1, is_train=True, batch_size=32, num_workers=8, frenet=False, ) for i, data in enumerate(human_loader): trunk_id, pc, label, original_pc = data """ trunk_id: array of trunk ids of length batch_size pc: point cloud in isotropic coordinates, modified using transformation(), shape [batch, num_points, 3] label: corresponding value of seg volume at that point, shape [batch, num_points] will be 0 if part of trunk, unique spine segment id otherwise original_pc: point cloud in isotropic coordinates, unmodified, shape [batch, num_points, 3] """ pass