qa4pc commited on
Commit
dfc2480
·
1 Parent(s): aa79004

Upload create_train_from_sharc.py

Browse files
Files changed (1) hide show
  1. create_train_from_sharc.py +83 -0
create_train_from_sharc.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import argparse
3
+
4
+
5
+ def create_entailment_data(train_data):
6
+ entailment_data = [d for d in train_data if len(d['evidence']) > 0]
7
+ # entailment data
8
+ for d in entailment_data:
9
+ entailment_answer = d['answer'].lower()
10
+ if d['answer'].lower() not in ['yes', 'no']:
11
+ entailment_answer = 'maybe'
12
+ if len(d['history']) > 0:
13
+ # this means that not all the information needed to get to the answer were provided in the scenario
14
+ # (they were provided in the history). Therefore the entailment label should be 'maybe'
15
+ entailment_answer = 'maybe'
16
+
17
+ d['entailment_answer'] = entailment_answer
18
+
19
+ entailment_path = 'train_entailment_sharc.json'
20
+ with open(entailment_path, 'w') as f:
21
+ f.write(json.dumps(entailment_data, indent=True))
22
+ print('Wrote ShARC entailment data to ' + entailment_path)
23
+
24
+ return entailment_data
25
+
26
+
27
+ def filter_train_data(sharc_train_path, sharc_dev_path):
28
+ sharc_train_data = json.load(open(sharc_train_path))
29
+ sharc_dev_data = json.load(open(sharc_dev_path))
30
+ sharc_data = sharc_train_data + sharc_dev_data
31
+
32
+ train_utterance_ids = open('train_utterance_ids.txt').read().splitlines()
33
+ train_data = [d for d in sharc_data if d['utterance_id'] in train_utterance_ids]
34
+ return train_data
35
+
36
+
37
+ def create_qa_data(entailment_data):
38
+ qa_data = []
39
+ for d in entailment_data:
40
+ for e in d['evidence']:
41
+ q_key = 'follow_up_question'
42
+ a_key = 'follow_up_answer'
43
+ if 'follow_up_question' in e:
44
+ qa_data.append({
45
+ 'utterance_id': d['utterance_id'],
46
+ 'context': d['scenario'],
47
+ 'question': e[q_key],
48
+ 'answer': e[a_key].lower()
49
+ })
50
+
51
+ for h in d['history']:
52
+ qa_data.append({
53
+ 'utterance_id': d['utterance_id'],
54
+ 'context': d['scenario'],
55
+ 'question': h['follow_up_question'],
56
+ 'answer': 'maybe'
57
+ })
58
+ if d['answer'].lower() not in ['yes', 'no']:
59
+ qa_data.append({
60
+ 'utterance_id': d['utterance_id'],
61
+ 'context': d['scenario'],
62
+ 'question': d['answer'],
63
+ 'answer': 'maybe'
64
+ })
65
+ qa_path = 'train_qa_sharc.json'
66
+ with open(qa_path, 'w') as f:
67
+ f.write(json.dumps(entailment_data, indent=True))
68
+ print('Wrote ShARC QA data to ' + qa_path)
69
+ return qa_data
70
+
71
+
72
+ if __name__ == '__main__':
73
+ parser = argparse.ArgumentParser('Script for generating entailment and QA data from ShARC for training')
74
+ parser.add_argument('-sharc_train_path', type=str, default='sharc_train.json', help='path to ShARC train file')
75
+ parser.add_argument('-sharc_dev_path', type=str, default='sharc_dev.json', help='path to ShARC dev file')
76
+
77
+ args = parser.parse_args()
78
+ sharc_train_path = args.sharc_train_path
79
+ sharc_dev_path = args.sharc_dev_path
80
+
81
+ train_data = filter_train_data(sharc_train_path, sharc_dev_path)
82
+ entailment_data = create_entailment_data(train_data)
83
+ qa_data = create_qa_data(entailment_data)