import json import argparse def create_entailment_data(train_data): entailment_data = [d for d in train_data if len(d['evidence']) > 0] # entailment data for d in entailment_data: entailment_answer = d['answer'].lower() if d['answer'].lower() not in ['yes', 'no']: entailment_answer = 'maybe' if len(d['history']) > 0: # this means that not all the information needed to get to the answer were provided in the scenario # (they were provided in the history). Therefore the entailment label should be 'maybe' entailment_answer = 'maybe' d['entailment_answer'] = entailment_answer entailment_path = 'train_entailment_sharc.json' with open(entailment_path, 'w') as f: f.write(json.dumps(entailment_data, indent=True)) print('Wrote ShARC entailment data to ' + entailment_path) return entailment_data def filter_train_data(sharc_train_path, sharc_dev_path): sharc_train_data = json.load(open(sharc_train_path)) sharc_dev_data = json.load(open(sharc_dev_path)) sharc_data = sharc_train_data + sharc_dev_data train_utterance_ids = open('train_utterance_ids.txt').read().splitlines() train_data = [d for d in sharc_data if d['utterance_id'] in train_utterance_ids] return train_data def create_qa_data(entailment_data): qa_data = [] for d in entailment_data: for e in d['evidence']: q_key = 'follow_up_question' a_key = 'follow_up_answer' if 'follow_up_question' in e: qa_data.append({ 'utterance_id': d['utterance_id'], 'context': d['scenario'], 'question': e[q_key], 'answer': e[a_key].lower() }) for h in d['history']: qa_data.append({ 'utterance_id': d['utterance_id'], 'context': d['scenario'], 'question': h['follow_up_question'], 'answer': 'maybe' }) if d['answer'].lower() not in ['yes', 'no']: qa_data.append({ 'utterance_id': d['utterance_id'], 'context': d['scenario'], 'question': d['answer'], 'answer': 'maybe' }) qa_path = 'train_qa_sharc.json' with open(qa_path, 'w') as f: f.write(json.dumps(entailment_data, indent=True)) print('Wrote ShARC QA data to ' + qa_path) return qa_data if __name__ == '__main__': parser = argparse.ArgumentParser('Script for generating entailment and QA data from ShARC for training') parser.add_argument('-sharc_train_path', type=str, default='sharc_train.json', help='path to ShARC train file') parser.add_argument('-sharc_dev_path', type=str, default='sharc_dev.json', help='path to ShARC dev file') args = parser.parse_args() sharc_train_path = args.sharc_train_path sharc_dev_path = args.sharc_dev_path train_data = filter_train_data(sharc_train_path, sharc_dev_path) entailment_data = create_entailment_data(train_data) qa_data = create_qa_data(entailment_data)