# Adopted from lmms-eval from https://github.com/EvolvingLMMs-Lab/lmms-eval. Below is the original copyright: # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file was originally obtained from: # https://github.com/EvolvingLMMs-Lab/lmms-eval/blob/main/lmms_eval/tasks/jmmmu/utils.py # # Minor modification by Akira Kinoshita on 2025-07-24: from PIL import Image import io import re from collections import defaultdict def jgraphqa_doc_to_visual(doc): img_data = doc["image"]["bytes"] img = Image.open(io.BytesIO(img_data)) return [img.convert("RGB")] def jgraphqa_doc_to_text(doc, lmms_eval_specific_kwargs): question = doc["question"] pre_prompt = lmms_eval_specific_kwargs["pre_prompt"] post_prompt = lmms_eval_specific_kwargs["post_prompt"] return f"{pre_prompt}{question}{post_prompt}" def jgraphqa_process_results(doc, results): pred = results[0] parsed_pred = parse_open_response(pred) id = doc["id"] jgraphqa_acc = {"id": id, "subdomain": doc["type"], "answer": doc["answer"], "parsed_pred": parsed_pred} return { "jgraphqa_acc": jgraphqa_acc, "submission": { id: pred, }, } def jgraphqa_aggregate_results(results): evaluation_result = {} subset_to_eval_samples = defaultdict(list) for result in results: subset_to_eval_samples[result["subdomain"]].append(result) for subset, sub_eval_samples in subset_to_eval_samples.items(): judge_dict, metric_dict = evaluate_jgraphqa(sub_eval_samples) metric_dict.update({"num_example": len(sub_eval_samples)}) evaluation_result[subset] = metric_dict printable_results = {} for domain, in_domain_cats in DOMAIN_CAT2SUB_CAT.items(): in_domain_cat_results = {} for cat_name in in_domain_cats: if cat_name in evaluation_result.keys(): in_domain_cat_results[cat_name] = evaluation_result[cat_name] else: pass in_domain_ins_acc = calculate_ins_level_acc(in_domain_cat_results) in_domain_data_num = sum([cat_results["num_example"] for cat_results in in_domain_cat_results.values()]) printable_results["Overall-" + domain] = { "num": int(in_domain_data_num), "acc": round(in_domain_ins_acc, 5), } # add sub category for cat_name, cat_results in in_domain_cat_results.items(): printable_results[cat_name] = { "num": int(cat_results["num_example"]), "acc": round(cat_results["acc"], 5), } all_ins_acc = calculate_ins_level_acc(evaluation_result) printable_results["Overall"] = { "num": sum([cat_results["num_example"] for cat_results in evaluation_result.values()]), "acc": round(all_ins_acc, 5), } return printable_results["Overall"]["acc"] ################## # Helper functions written by official MMMU repo. ################## def calculate_ins_level_acc(results): """Calculate the instruction level accuracy for given Subject results https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L246 """ acc = 0 ins_num = 0 for cat_results in results.values(): acc += cat_results["acc"] * cat_results["num_example"] ins_num += cat_results["num_example"] if ins_num == 0: return 0 return acc / ins_num DOMAIN_CAT2SUB_CAT = { "GENERAL": [ "line", "table", "bar", "circle", ], } def eval_open(gold_i, pred_i): """ Evaluate an open question instance https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L191 """ correct = False if isinstance(gold_i, list): # use float to avoid trivial matches norm_answers = [] for answer in gold_i: norm_answers.extend(normalize_str(answer)) else: norm_answers = normalize_str(gold_i) for pred in pred_i: # pred is already normalized in parse response phase if isinstance(pred, str): # if it's a string, then find if ans in the pred_i for norm_ans in norm_answers: # only see if the string answer in the string pred if isinstance(norm_ans, str) and norm_ans in pred: if not correct: correct = True break else: # it's a float number if pred in norm_answers: if not correct: correct = True break return correct def evaluate_jgraphqa(samples): """ Batch evaluation for multiple choice and open questions. https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L219 """ pred_correct = 0 judge_dict = dict() for sample in samples: gold_i = sample["answer"] pred_i = sample["parsed_pred"] correct = eval_open(gold_i, pred_i) if correct: judge_dict[sample["id"]] = "Correct" pred_correct += 1 else: judge_dict[sample["id"]] = "Wrong" if len(samples) == 0: return {"acc": 0} return judge_dict, {"acc": pred_correct / len(samples)} def extract_numbers(string): """ Exact all forms of numbers from a string with regex. """ # Pattern for numbers with commas pattern_commas = r"-?\b\d{1,3}(?:,\d{3})+\b" # Pattern for scientific notation pattern_scientific = r"-?\d+(?:\.\d+)?[eE][+-]?\d+" # pattern_simple = r'-?\d+(?:\.\d+)?(?![eE][+-]?\d+)' pattern_simple = r"-?(?:\d+\.\d+|\.\d+|\d+)(?![eE][+-]?\d+)(?![,\d])" # Pattern for Japanese numbers pattern_japanese = r"(\d+)(?:つ|個|度|円|人|年|匹|台|%)" # Extract numbers with commas numbers_with_commas = re.findall(pattern_commas, string) # Extract numbers in scientific notation numbers_scientific = re.findall(pattern_scientific, string) # Extract simple numbers without commas numbers_simple = re.findall(pattern_simple, string) # Extract Japanese numbers numbers_japanese = re.findall(pattern_japanese, string) # Combine all extracted numbers all_numbers = numbers_with_commas + numbers_scientific + numbers_simple + numbers_japanese return all_numbers def normalize_str(string): """ Normalize the str to lower case and make them float numbers if possible. https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L76 """ string = string.strip() string = string.replace(",", "") string = string.replace(" ", "") string = string.replace(" ", "") string = string.lower() if len(string) == 1: return [" " + string, string + " "] # avoid trivial matches return [string] def parse_open_response(response): """ Parse the prediction from the generated response. Return a list of predicted strings or numbers. https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L122 """ # content = content.strip("\n").strip(".").strip(" ") def get_key_subresponses(response): key_responses = [] response = response.strip().strip("。") sub_responses = re.split(r"[。!?.]\s*|\n", response) indicators_of_keys = ["よって", "よって、", "答えは", "答えは、", "最終的に", "最終的に、", "解答は", "解答は、" "回答は", "回答は、"] key_responses = [] for index, resp in enumerate(sub_responses): # if last one, accept it's an equation (the entire response can be just one sentence with equation) if index == len(sub_responses) - 1: indicators_of_keys.extend(["=", "="]) shortest_key_response = None # the shortest response that may contain the answer (tail part of the response) for indicator in indicators_of_keys: if indicator in resp: if not shortest_key_response: shortest_key_response = resp.split(indicator)[-1].strip() else: if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response): shortest_key_response = resp.split(indicator)[-1].strip() # key_responses.append(resp.split(indicator)[1].strip()) if shortest_key_response: # and it's not trivial if shortest_key_response.strip() not in [",", ".", "!", "?", ";", ":", "'", "、", "。", "!", "?", ";", ":"]: key_responses.append(shortest_key_response) if len(key_responses) == 0: # did not found any return [response] return key_responses # pdb.set_trace() key_responses = get_key_subresponses(response) pred_list = key_responses.copy() # keep the original string response for resp in key_responses: pred_list.extend(extract_numbers(resp)) tmp_pred_list = [] for i in range(len(pred_list)): tmp_pred_list.extend(normalize_str(pred_list[i])) pred_list = tmp_pred_list # remove duplicates pred_list = list(set(pred_list)) return pred_list