File size: 6,999 Bytes
8f587e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import csv
import json
from tqdm import tqdm
import numpy as np
from prettytable import PrettyTable
import os
import time
from utils import *
import openai
### to evaluate your method, implement and run generate_answer function!
root_dir = "."
input_file_name = "HallusionBench_result.json"
save_json_path_vd = "./hallusion_output_vd_model.json"
save_json_path_vs = "./hallusion_output_vs_model.json"
# load_json = False
load_json = True
model_output_entry = "model_prediction"
model_correctness_entry = "gpt4v_output_gpt_check"
def generate_answer(data, model_output_entry):
## TODO
## implement this section with yout model!
## your_function(img_filename, question) -> "0" (No), "1" (Yes), "2" (Uncertain)
# for r in data:
# r[model_output_entry] = your_function(r["filename"], r["question"])
return data
if __name__ == "__main__":
data_vd = []
data_vs = []
with open(input_file_name) as json_file:
datas = json.load(json_file)
for data in tqdm(datas):
if data['category'] == 'VD':
data_vd.append(data)
if data['category'] == 'VS':
data_vs.append(data)
data_vd = evaluate_by_chatgpt(data_vd, model_output_entry, model_correctness_entry, load_json=load_json, save_json_path=save_json_path_vd)
data_vd = check_same_by_chatgpt(data_vd, model_output_entry, load_json=load_json, save_json_path=save_json_path_vd)
#time.sleep(60) #
try:
data_vs = evaluate_by_chatgpt(data_vs, model_output_entry, model_correctness_entry, load_json=load_json, save_json_path=save_json_path_vs)
data_vs = check_same_by_chatgpt(data_vs, model_output_entry, load_json=load_json, save_json_path=save_json_path_vs)
except:
time.sleep(60)
data_vs = evaluate_by_chatgpt(data_vs, model_output_entry, model_correctness_entry, load_json=load_json, save_json_path=save_json_path_vs)
data_vs = check_same_by_chatgpt(data_vs, model_output_entry, load_json=load_json, save_json_path=save_json_path_vs)
print("##### GPT Evaluate #####")
data_vd = assign_correctness(data_vd, correctness_entry=model_correctness_entry)
data_vs = assign_correctness(data_vs, correctness_entry=model_correctness_entry)
data = data_vd + data_vs
all_data = get_eval_all(data, model_correctness_entry)
all_vd = get_eval_all(data_vd, model_correctness_entry)
all_vs = get_eval_all(data_vs, model_correctness_entry)
table1 = [["per question", "Total"],
["VD", round(100 * all_vd["correct"]/all_vd["total"], 4)],
["VS", round(100 * all_vs["correct"]/all_vs["total"], 4)],
["Overall", round(100 * all_data["correct"]/all_data["total"], 4)]]
tab1 = PrettyTable(table1[0])
tab1.add_rows(table1[1:])
q_acc_gpt = round(100 * all_data["correct"]/all_data["total"], 4)
all_data = get_eval_pair_all(data, model_correctness_entry)
easy = get_eval_pair_easy(data)
hard = get_eval_pair_hard(data)
all_vd = get_eval_pair_all(data_vd, model_correctness_entry)
easy_vd = get_eval_pair_easy(data_vd)
hard_vd = get_eval_pair_hard(data_vd)
all_vs = get_eval_pair_all(data_vs, model_correctness_entry)
easy_vs = get_eval_pair_easy(data_vs)
hard_vs = get_eval_pair_hard(data_vs)
# question pair level
table3 = [["per question pair", "Easy", "Hard", "Total"],
["VD", round(100 * easy_vd["correct"]/easy_vd["total"], 4), round(100 * hard_vd["correct"]/hard_vd["total"], 4), round(100 * all_vd["correct"]/all_vd["total"], 4)],
["VS", round(100 * easy_vs["correct"]/easy_vs["total"], 4), round(100 * hard_vs["correct"]/hard_vs["total"], 4), round(100 * all_vs["correct"]/all_vs["total"], 4)],
["Overall", round(100 * easy["correct"]/easy["total"], 4), round(100 * hard["correct"]/hard["total"], 4), round(100 * all_data["correct"]/all_data["total"], 4)]]
tab3 = PrettyTable(table3[0])
tab3.add_rows(table3[1:])
#print(tab3)
fig_all = get_eval_fig(data)
fig_vd = get_eval_fig(data_vd)
fig_vs = get_eval_fig(data_vs)
# image level
table2 = [["per figure", "Correct", "Wrong", "Score"],
["VD", round(100 * fig_vd["correct"]/fig_vd["total"], 4), round(100 * fig_vd["inconsistent"]/fig_vd["total"], 4) + round(100 * fig_vd["wrong"]/fig_vd["total"], 4), round(fig_vd["score"], 4)],
["VS", round(100 * fig_vs["correct"]/fig_vs["total"], 4), round(100 * fig_vs["inconsistent"]/fig_vs["total"], 4) + round(100 * fig_vs["wrong"]/fig_vs["total"], 4), round(fig_vs["score"], 4)],
["Overall", round(100 * fig_all["correct"]/fig_all["total"], 4), round(100 * fig_all["inconsistent"]/fig_all["total"], 4) + round(100 * fig_all["wrong"]/fig_all["total"], 4), round(fig_all["score"], 4)]]
tab2 = PrettyTable(table2[0])
tab2.add_rows(table2[1:])
pair_acc_gpt = round(100 * all_data["correct"]/all_data["total"], 4)
figure_acc_gpt = round(100 * fig_all["correct"]/fig_all["total"], 4)
easy_acc_gpt = round(100 * easy["correct"]/easy["total"], 4)
hard_acc_gpt = round(100 * hard["correct"]/hard["total"], 4)
print("##### Question Stats #####")
print("Easy Questions: " + str(easy_vd["total_q"]) + "(Visual Dependent) + " + str(easy_vs["total_q"]) + "(Visual Supplement)")
print("Hard Questions: " + str(hard_vd["total_q"]) + "(Visual Dependent) + " + str(hard_vs["total_q"]) + "(Visual Supplement)")
print("Total Questions: " + str(all_data["total_q"]))
print("##### Figure Stats #####")
print("Visual Dependent Figures: " + str(fig_vd["total"]))
print("Visual Supplement Figures: " + str(fig_vs["total"]))
print("Total Figures: " + str(fig_all["total"]))
print("##### Leaderboard Stats #####")
table = [["", "Acc per question pair (qAcc)", "Acc per figure (fAcc)", "Acc per easy question (easy aAcc)", "Acc per hard question (hard aAcc)", "Acc per question (aAcc)"],
["GPT Eval", pair_acc_gpt, figure_acc_gpt, easy_acc_gpt, hard_acc_gpt, q_acc_gpt]]
leaderboard = PrettyTable(table[0])
leaderboard.add_rows(table[1:])
print(leaderboard)
stats = yes_ratio_stats(data)
table = [["", "Yes/No Bias (Pct Diff)", "Yes/No Bias (FP Ratio)", "Consistency Test (correct)", "Consistency Test (inconsistent)", "Consistency Test (wrong)", "LH", "VI", "Mixed"],
["GPT Eval", stats["diff"], stats["fp"], round(100 * fig_all["correct"]/fig_all["total"], 4), round(100 * fig_all["inconsistent"]/fig_all["total"], 4), round(100 * fig_all["wrong"]/fig_all["total"], 4), round(100 * all_data["LH_cg"]/(all_data["LH_cg"] + all_data["VI_cg"] + all_data["Mix_cg"]), 4), round(100 * all_data["VI_cg"]/(all_data["LH_cg"] + all_data["VI_cg"] + all_data["Mix_cg"]), 4), round(100 * all_data["Mix_cg"]/(all_data["LH_cg"] + all_data["VI_cg"] + all_data["Mix_cg"]), 4)]]
test = PrettyTable(table[0])
test.add_rows(table[1:])
print(test) |