rsi commited on
Commit
1456309
verified
1 Parent(s): 52549d5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +22 -4
README.md CHANGED
@@ -1,9 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <div align="center">
2
- <h2 align="center">Pixels, Points, Polygons: A Global Dataset and Baseline for Multimodal Building Vectorization</h2>
3
  <!-- <h3 align="center">Arxiv</h3> -->
4
  <!-- <h3 align="center"><a href="https://raphaelsulzer.de/">Raphael Sulzer<sup>1,2</sup></a><br></h3> -->
5
- <h3><align="center">Raphael Sulzer<sup>1,2</sup></a></h3>
6
- <align="center"><sup>1</sup>LuxCarta <sup>2</sup>Inria
 
7
  <img src="./media/teaser.jpg" width=100% height=100%>
8
  <b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
9
  </div>
@@ -13,7 +31,7 @@
13
 
14
  ## Abstract:
15
 
16
- asd
17
 
18
  ## Highlights
19
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ pretty_name: Pixels Point Polygons
4
+ size_categories:
5
+ - 10B<n<100B
6
+ task_categories:
7
+ - image-segmentation
8
+ tags:
9
+ - IGN
10
+ - Aerial
11
+ - Satellite
12
+ - Environement
13
+ - Multimodal
14
+ - Earth Observation
15
+ ---
16
+
17
+
18
  <div align="center">
19
+ <h2 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h2>
20
  <!-- <h3 align="center">Arxiv</h3> -->
21
  <!-- <h3 align="center"><a href="https://raphaelsulzer.de/">Raphael Sulzer<sup>1,2</sup></a><br></h3> -->
22
+ <h3><align="center">Raphael Sulzer<sup>1,2</sup> &nbsp;&nbsp;&nbsp; Liuyun Duan<sup>1</sup>
23
+ &nbsp;&nbsp;&nbsp; Nicolas Girard<sup>1</sup>&nbsp;&nbsp;&nbsp; Florent Lafarge<sup>2</sup></a></h3>
24
+ <align="center"><sup>1</sup>LuxCarta Technology <br> <sup>2</sup>Centre Inria d'Universit茅 C么te d'Azur
25
  <img src="./media/teaser.jpg" width=100% height=100%>
26
  <b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
27
  </div>
 
31
 
32
  ## Abstract:
33
 
34
+ We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 cm. While many existing datasets primarily focus on the image modality, P$^3$ offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P<sup>3</sup> dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons.
35
 
36
  ## Highlights
37