rsi commited on
Commit
e886fcc
1 Parent(s): 9492094

update readme

Browse files
Files changed (1) hide show
  1. README.md +12 -2
README.md CHANGED
@@ -54,8 +54,9 @@ language:
54
  # - split: test
55
  # path: "data/224/annotations/annotations_NZ_test.json"
56
  ---
 
57
  <div align="center">
58
- <h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
59
  <h3><align="center">Raphael Sulzer<sup>1,2</sup> &nbsp;&nbsp;&nbsp; Liuyun Duan<sup>1</sup>
60
  &nbsp;&nbsp;&nbsp; Nicolas Girard<sup>1</sup>&nbsp;&nbsp;&nbsp; Florent Lafarge<sup>2</sup></a></h3>
61
  <align="center"><sup>1</sup>LuxCarta Technology <br> <sup>2</sup>Centre Inria d'Universit茅 C么te d'Azur
@@ -84,6 +85,7 @@ We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for bui
84
  - A global, multimodal dataset of aerial images, aerial LiDAR point clouds and building outline polygons, available at [huggingface.co/datasets/rsi/PixelsPointsPolygons](https://huggingface.co/datasets/rsi/PixelsPointsPolygons)
85
  - A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at [github.com/raphaelsulzer/PixelsPointsPolygons](https://github.com/raphaelsulzer/PixelsPointsPolygons)
86
  - Pretrained model weights, available at [huggingface.co/rsi/PixelsPointsPolygons](https://huggingface.co/rsi/PixelsPointsPolygons)
 
87
 
88
  ## Dataset
89
 
@@ -631,7 +633,15 @@ python scripts/train.py experiment=p2p_fusion checkpoint=latest
631
 
632
  If you use our work please cite
633
  ```bibtex
634
- TODO
 
 
 
 
 
 
 
 
635
  ```
636
 
637
  ## Acknowledgements
 
54
  # - split: test
55
  # path: "data/224/annotations/annotations_NZ_test.json"
56
  ---
57
+
58
  <div align="center">
59
+ <h1 align="center">The P<sup>3</sup> Dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
60
  <h3><align="center">Raphael Sulzer<sup>1,2</sup> &nbsp;&nbsp;&nbsp; Liuyun Duan<sup>1</sup>
61
  &nbsp;&nbsp;&nbsp; Nicolas Girard<sup>1</sup>&nbsp;&nbsp;&nbsp; Florent Lafarge<sup>2</sup></a></h3>
62
  <align="center"><sup>1</sup>LuxCarta Technology <br> <sup>2</sup>Centre Inria d'Universit茅 C么te d'Azur
 
85
  - A global, multimodal dataset of aerial images, aerial LiDAR point clouds and building outline polygons, available at [huggingface.co/datasets/rsi/PixelsPointsPolygons](https://huggingface.co/datasets/rsi/PixelsPointsPolygons)
86
  - A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at [github.com/raphaelsulzer/PixelsPointsPolygons](https://github.com/raphaelsulzer/PixelsPointsPolygons)
87
  - Pretrained model weights, available at [huggingface.co/rsi/PixelsPointsPolygons](https://huggingface.co/rsi/PixelsPointsPolygons)
88
+ - A paper with an extensive experimental validation, available at [arxiv.org/abs/2505.15379](https://arxiv.org/abs/2505.15379)
89
 
90
  ## Dataset
91
 
 
633
 
634
  If you use our work please cite
635
  ```bibtex
636
+ @misc{sulzer2025p3datasetpixelspoints,
637
+ title={The P$^3$ dataset: Pixels, Points and Polygons for Multimodal Building Vectorization},
638
+ author={Raphael Sulzer and Liuyun Duan and Nicolas Girard and Florent Lafarge},
639
+ year={2025},
640
+ eprint={2505.15379},
641
+ archivePrefix={arXiv},
642
+ primaryClass={cs.CV},
643
+ url={https://arxiv.org/abs/2505.15379},
644
+ }
645
  ```
646
 
647
  ## Acknowledgements