--- license: mit task_categories: - question-answering size_categories: - n<1K --- # SATQuest Dataset [![License MIT](https://img.shields.io/badge/License-MIT-green)](https://opensource.org/licenses/MIT) [![GitHub Repo](https://img.shields.io/badge/GitHub-sdpkjc/SATQuest-181717?logo=github)](https://github.com/sdpkjc/SATQuest) [![PyPI](https://img.shields.io/pypi/v/satquest?logo=pypi)](https://pypi.org/project/satquest/) **TL;DR.** Synthetic CNF benchmark for LLM reasoning: **140** matched SAT/UNSAT pairs with `n in [3, 16]` and fixed ratio `m=4n`. The dataset stores only CNF formulas and solver stats; use the [`SATQuest`](https://github.com/sdpkjc/SATQuest) Python library to render prompts/answers for SATDP, SATSP, MaxSAT, MCS, and MUS in four formats (math, DIMACS, story, dual story). ## Data fields - `id`: unique identifier for each row. - `num_literal`: total number of literals in the unsatisfiable formula. - `sat_dimacs`: DIMACS representation of the satisfiable CNF. - `unsat_dimacs`: DIMACS representation of the unsatisfiable CNF. - `num_variable`: number of variables n, between 3 and 16. - `num_clause`: number of clauses `m` in the CNF, with `m=4n`. - `solver_metadatas`: dictionary of PySAT solver statistics (conflicts, decisions, propagations, restarts) for SATSP, MaxSAT, MCS, MUS, SATDP_SAT and SATDP_UNSAT tasks. ## Quick usage Install the package and load a CNF instance: ```python from datasets import load_dataset from satquest import CNF, create_problem, create_question item = load_dataset('sdpkjc/SATQuest', split='test')[0] cnf = CNF(dimacs=item['sat_dimacs']) problem = create_problem('SATSP', cnf) # or 'SATDP', 'MaxSAT', 'MCS', 'MUS' question = create_question('math') # or 'dimacs', 'story', 'dualstory' prompt = problem.accept(question) answer = problem.solution # reference answer reward = int(problem.check(answer)) # 1 if answer is correct, 0 otherwise ``` ## Reproducing the dataset To build an identical dataset from scratch, clone the repository and run the provided generation script: ```bash pip install datasets numpy tyro git clone https://github.com/sdpkjc/SATQuest.git cd SATQuest # produce the evaluation set (140 CNF pairs) python gen_cnf_dataset.py --hf-entity {YOUR_HF_ENTITY} --seed 9527 ``` ## Citation Please cite the SATQuest paper if you use this dataset: ```bibtex @misc{satquest2025, author = {Yanxiao Zhao, Yaqian Li, Zihao Bo, Rinyoichi Takezoe, Haojia Hui, Mo Guang, Lei Ren, Xiaolin Qin, Kaiwen Long}, title = {SATQuest: A Verifier for Logical Reasoning Evaluation and Reinforcement Fine-Tuning of LLMs}, year = {2025}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/sdpkjc/SATQuest}}, } ```