File size: 8,626 Bytes
8453f96 03bcb43 8453f96 87d59b4 8453f96 d262e6f 8453f96 aca0f6d 8453f96 5377ed8 8453f96 be8b808 8453f96 be8b808 d262e6f be8b808 d262e6f be8b808 5377ed8 8453f96 0a3368a 8453f96 87d59b4 e572ba6 87d59b4 8453f96 0a3368a 8453f96 d262e6f 8453f96 e970a6f d262e6f 8453f96 d262e6f 8453f96 d262e6f 8453f96 d262e6f 8453f96 c0124b2 8453f96 e970a6f c0124b2 8453f96 6bdd70f 8453f96 c0124b2 8453f96 aca0f6d d262e6f aca0f6d 8453f96 d262e6f c0124b2 d262e6f aca0f6d 8453f96 aca0f6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# Copyright 2020 The HuggingFace Datasets Authors.
# Copyright 2023 Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import itertools
import datasets
import numpy as np
from copy import copy
# check python version
import sys
major, minor = sys.version_info[:2]
version = major + 0.1*minor
OLD_PY_VERSION = 1 if version < 3.8 else 0
# Local imports
# from symmetric import SymmetricSampler
_CITATION = """\
"""
_DESCRIPTION = """\
Online dataset mockup.
"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {}
class SyntheticAutomataDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIGS = []
def __init__(self, config={}, **kwargs):
super().__init__(**kwargs)
"""
Set default configs
"""
if 'name' not in config:
config['name'] = 'parity'
if 'length' not in config: # sequence length
config['length'] = 20
if 'size' not in config: # number of sequences
config['size'] = -1
self.data_config = config
self.sampler = dataset_map[config['name']](config)
def _info(self):
features = datasets.Features(
{
"input_ids": datasets.Sequence(datasets.Value("int32"), length=-1),
"label_ids": datasets.Sequence(datasets.Value("int32"), length=-1)
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
},
)
]
def _generate_examples(self, split):
for i in itertools.count(start=0):
if i == self.data_config['size']:
break
x, y = self.sampler.sample()
yield i, {
"input_ids": x,
"label_ids": y
}
class AutomatonSampler:
def __init__(self, data_config):
# self.name = name
self.data_config = data_config
if 'seed' in self.data_config:
self.np_rng = np.random.default_rng(self.data_config['seed'])
else:
self.np_rng = np.random.default_rng()
self.T = self.data_config['length']
def f(self, x):
"""
Get output sequence given an input seq
"""
raise NotImplementedError()
def sample(self):
raise NotImplementedError()
class BinaryInputSampler(AutomatonSampler):
def __init__(self, data_config):
super().__init__(data_config)
if 'prob1' not in data_config:
data_config['prob1'] = 0.5
self.prob1 = data_config['prob1']
def f(self, x):
raise NotImplementedError()
def sample(self):
x = self.np_rng.binomial(1, self.prob1, size=self.T)
return x, self.f(x)
class ParitySampler(BinaryInputSampler):
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'parity'
def f(self, x):
return np.cumsum(x) % 2
class GridworldSampler(BinaryInputSampler):
"""
Note: gridworld currently doesn't include a no-op.
"""
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'gridworld'
if 'n' not in data_config:
data_config['n'] = 9
"""
NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state.
i.e. the states are 0,1,2,...,S, where S=n-1.
"""
self.n = data_config['n']
self.S = self.n - 1
def f(self, x):
x = copy(x)
x[x == 0] = -1
if OLD_PY_VERSION:
# NOTE: for Python 3.7 or below, accumulate doesn't have the 'initial' argument.
x = np.concatenate([np.array([0]), x]).astype(np.int64)
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0)))
states = states[1:]
else:
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0))
states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
return np.array(states).astype(np.int64)
class FlipFlopSampler(AutomatonSampler):
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'flipflop'
if 'n' not in data_config:
data_config['n'] = 2
self.n_states = data_config['n']
self.n_actions = self.n_states + 1
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T
def f(self, x):
state, states = 0, []
for action in x:
state = self.transition[state, action]
states += state,
return np.array(states)
def sample(self):
rand = np.random.uniform(size=self.T)
nonzero_pos = (rand < 0.5).astype(np.int64)
writes = np.random.choice(range(1, self.n_states+1), size=self.T)
x = writes * nonzero_pos
return x, self.f(x)
class SymmetricSampler(AutomatonSampler):
"""
TODO: add options for labels as functions of states
- parity (whether a state is even): this may need packages (e.g. Permutation from sympy)
- position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups.
"""
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'symmetric'
if 'n' not in data_config:
data_config['n'] = 5 # Default to S5
if 'n_actions' not in data_config:
data_config['n_actions'] = 3
if 'label_type' not in data_config:
# Options: 'state', 'first_chair'
data_config['label_type'] = 'state'
self.n = data_config['n'] # the symmetric group Sn
self.label_type = data_config['label_type']
"""
Get states
"""
self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
self.state_label_map = {}
for si, state in enumerate(itertools.permutations(range(self.n))):
enc = self.state_encode(state)
self.state_label_map[enc] = si
"""
Get actions (3 defaults: id, shift-by-1, swap-first-two)
"""
self.n_actions = data_config['n_actions']
self.actions = {0: np.eye(self.n)}
# shift all elements to the right by 1
shift_idx = list(range(1, self.n)) + [0]
self.actions[1] = np.eye(self.n)[shift_idx]
# swap the first 2 elements
shift_idx = [1, 0] + list(range(2, self.n))
self.actions[2] = np.eye(self.n)[shift_idx]
if self.n_actions > 3:
# add permutations in the order given by itertools.permutations
self.all_permutations = list(itertools.permutations(range(self.n)))[1:]
cnt = 2
for each in self.all_permutations:
action = np.eye(self.n)[list(each)]
if np.linalg.norm(action - self.actions[0]) == 0:
continue
elif np.linalg.norm(action - self.actions[1]) == 0:
continue
self.actions[cnt] = action
cnt += 1
if cnt == self.n_actions: break
def get_state_label(self, state):
enc = self.state_encode(state)
return self.state_label_map[enc]
def f(self, x):
curr_state = np.arange(self.n)
labels = []
for action in x:
curr_state = self.actions[action].dot(curr_state)
if self.label_type == 'state':
labels += self.get_state_label(curr_state),
elif self.label_type == 'first_chair':
labels += curr_state[0],
return np.array(labels)
def sample(self):
x = np.random.choice(range(self.n_actions), replace=True, size=self.T)
return x, self.f(x)
dataset_map = {
'gridworld': GridworldSampler,
'flipflop': FlipFlopSampler,
'parity': ParitySampler,
'symmetric': SymmetricSampler,
# TODO: more datasets
}
|