File size: 8,626 Bytes
8453f96
03bcb43
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d59b4
8453f96
 
 
d262e6f
 
 
 
 
 
 
8453f96
aca0f6d
 
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
5377ed8
8453f96
 
 
 
 
be8b808
8453f96
 
 
 
 
be8b808
 
d262e6f
be8b808
d262e6f
be8b808
 
 
 
5377ed8
8453f96
 
 
0a3368a
 
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d59b4
e572ba6
87d59b4
8453f96
 
0a3368a
 
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d262e6f
8453f96
e970a6f
d262e6f
 
 
 
8453f96
 
d262e6f
8453f96
 
d262e6f
8453f96
 
d262e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8453f96
c0124b2
8453f96
e970a6f
c0124b2
8453f96
6bdd70f
 
 
 
8453f96
 
 
 
 
 
c0124b2
 
8453f96
 
 
 
 
 
 
 
 
 
aca0f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d262e6f
aca0f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8453f96
d262e6f
c0124b2
d262e6f
aca0f6d
8453f96
aca0f6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright 2020 The HuggingFace Datasets Authors.
# Copyright 2023 Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import csv
import json
import os
import itertools

import datasets
import numpy as np
from copy import copy

# check python version
import sys
major, minor = sys.version_info[:2]
version = major + 0.1*minor
OLD_PY_VERSION = 1 if version < 3.8 else 0

# Local imports
# from symmetric import SymmetricSampler

_CITATION = """\
"""

_DESCRIPTION = """\
Online dataset mockup.
"""

_HOMEPAGE = ""

_LICENSE = ""

_URLS = {}

class SyntheticAutomataDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("0.0.0")
    BUILDER_CONFIGS = []
    
    def __init__(self, config={}, **kwargs):
        super().__init__(**kwargs)
        
        """
        Set default configs
        """
        if 'name' not in config:
            config['name'] = 'parity'
        if 'length' not in config: # sequence length
            config['length'] = 20
        if 'size' not in config: # number of sequences
            config['size'] = -1

        self.data_config = config
        self.sampler = dataset_map[config['name']](config)

    def _info(self):
        features = datasets.Features(
            {
                "input_ids": datasets.Sequence(datasets.Value("int32"), length=-1),
                "label_ids": datasets.Sequence(datasets.Value("int32"), length=-1)
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, split):
        for i in itertools.count(start=0):
            if i == self.data_config['size']:
                break
            x, y = self.sampler.sample()
            yield i, {
                "input_ids": x,
                "label_ids": y
            }


class AutomatonSampler:
    def __init__(self, data_config):
        # self.name = name
        self.data_config = data_config

        if 'seed' in self.data_config:
            self.np_rng = np.random.default_rng(self.data_config['seed'])
        else:
            self.np_rng = np.random.default_rng()

        self.T = self.data_config['length']

    def f(self, x):
        """
        Get output sequence given an input seq
        """
        raise NotImplementedError()

    def sample(self):
        raise NotImplementedError()


class BinaryInputSampler(AutomatonSampler):
    def __init__(self, data_config):
        super().__init__(data_config)

        if 'prob1' not in data_config:
          data_config['prob1'] = 0.5
        self.prob1 = data_config['prob1']

    def f(self, x):
        raise NotImplementedError()

    def sample(self):
        x = self.np_rng.binomial(1, self.prob1, size=self.T)
        return x, self.f(x)

class ParitySampler(BinaryInputSampler):
  def __init__(self, data_config):
    super().__init__(data_config)
    self.name = 'parity'

  def f(self, x):
    return np.cumsum(x) % 2

class GridworldSampler(BinaryInputSampler):
  """
  Note: gridworld currently doesn't include a no-op.
  """
  def __init__(self, data_config):
    super().__init__(data_config)
    self.name = 'gridworld'

    if 'n' not in data_config:
      data_config['n'] = 9
    """
    NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state.
          i.e. the states are 0,1,2,...,S, where S=n-1.
    """
    self.n = data_config['n'] 
    self.S = self.n - 1

  def f(self, x):
    x = copy(x)
    x[x == 0] = -1
    if OLD_PY_VERSION:
      # NOTE: for Python 3.7 or below, accumulate doesn't have the 'initial' argument.
      x = np.concatenate([np.array([0]), x]).astype(np.int64)
      states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0)))
      states = states[1:]
    else:
      states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0))
      states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
    return np.array(states).astype(np.int64)



class FlipFlopSampler(AutomatonSampler):
    def __init__(self, data_config):
        super().__init__(data_config)
        self.name = 'flipflop'

        if 'n' not in data_config:
            data_config['n'] = 2
        
        self.n_states = data_config['n'] 
        self.n_actions = self.n_states + 1
        self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T

    def f(self, x):
        state, states = 0, []
        for action in x:
            state = self.transition[state, action]
            states += state,
        return np.array(states)

    def sample(self):
        rand = np.random.uniform(size=self.T)
        nonzero_pos = (rand < 0.5).astype(np.int64)
        writes = np.random.choice(range(1, self.n_states+1), size=self.T)
        x = writes * nonzero_pos
        return x, self.f(x)


class SymmetricSampler(AutomatonSampler):
  """
  TODO: add options for labels as functions of states
  - parity (whether a state is even): this may need packages (e.g. Permutation from sympy)
  - position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups.
  """
  def __init__(self, data_config):
    super().__init__(data_config)
    self.name = 'symmetric'

    if 'n' not in data_config:
      data_config['n'] = 5 # Default to S5
    if 'n_actions' not in data_config:
      data_config['n_actions'] = 3
    if 'label_type' not in data_config:
      # Options: 'state', 'first_chair'
      data_config['label_type'] = 'state'
    
    self.n = data_config['n'] # the symmetric group Sn
    self.label_type = data_config['label_type']

    """
    Get states
    """
    self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
    self.state_label_map = {}
    for si, state in enumerate(itertools.permutations(range(self.n))):
      enc = self.state_encode(state)
      self.state_label_map[enc] = si

    """
    Get actions (3 defaults: id, shift-by-1, swap-first-two)
    """
    self.n_actions = data_config['n_actions']
    self.actions = {0: np.eye(self.n)}
    # shift all elements to the right by 1
    shift_idx = list(range(1, self.n)) + [0]
    self.actions[1] = np.eye(self.n)[shift_idx]
    # swap the first 2 elements
    shift_idx = [1, 0] + list(range(2, self.n))
    self.actions[2] = np.eye(self.n)[shift_idx]

    if self.n_actions > 3:
      # add permutations in the order given by itertools.permutations
      self.all_permutations = list(itertools.permutations(range(self.n)))[1:]
      cnt = 2
      for each in self.all_permutations:
        action = np.eye(self.n)[list(each)]
        if np.linalg.norm(action - self.actions[0]) == 0:
          continue
        elif np.linalg.norm(action - self.actions[1]) == 0:
          continue
        self.actions[cnt] = action
        cnt += 1
        if cnt == self.n_actions: break

  def get_state_label(self, state):
    enc = self.state_encode(state)
    return self.state_label_map[enc]

  def f(self, x):
    curr_state = np.arange(self.n)
    labels = []
    for action in x:
      curr_state = self.actions[action].dot(curr_state)

      if self.label_type == 'state':
        labels += self.get_state_label(curr_state),
      elif self.label_type == 'first_chair':
        labels += curr_state[0],

    return np.array(labels)

  def sample(self):
    x = np.random.choice(range(self.n_actions), replace=True, size=self.T)

    return x, self.f(x)


dataset_map = {
  'gridworld': GridworldSampler,
  'flipflop': FlipFlopSampler,
  'parity': ParitySampler,
  'symmetric': SymmetricSampler,
  # TODO: more datasets
  }