file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/LinearAlgebra/LinearIndependent.lean
LinearIndependent.group_smul
[ { "state_after": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\n⊢ ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • (w • v) i = 0 → ∀ (i : ι), g i = 0", "state_before": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : LinearIndependent R v\nw : ι → G\n⊢ LinearIndependent R (w • v)", "tactic": "rw [linearIndependent_iff''] at hv⊢" }, { "state_after": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni : ι\n⊢ g i = 0", "state_before": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\n⊢ ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • (w • v) i = 0 → ∀ (i : ι), g i = 0", "tactic": "intro s g hgs hsum i" }, { "state_after": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni : ι\n⊢ w i • g i = 0", "state_before": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni : ι\n⊢ g i = 0", "tactic": "refine' (smul_eq_zero_iff_eq (w i)).1 _" }, { "state_after": "case refine'_1\nι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni✝ i : ι\nhi : ¬i ∈ s\n⊢ (fun i => w i • g i) i = 0\n\ncase refine'_2\nι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni : ι\n⊢ ∑ i in s, (fun i => w i • g i) i • v i = 0", "state_before": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni : ι\n⊢ w i • g i = 0", "tactic": "refine' hv s (fun i => w i • g i) (fun i hi => _) _ i" }, { "state_after": "case refine'_1\nι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni✝ i : ι\nhi : ¬i ∈ s\n⊢ w i • g i = 0", "state_before": "case refine'_1\nι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni✝ i : ι\nhi : ¬i ∈ s\n⊢ (fun i => w i • g i) i = 0", "tactic": "dsimp only" }, { "state_after": "no goals", "state_before": "case refine'_1\nι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni✝ i : ι\nhi : ¬i ∈ s\n⊢ w i • g i = 0", "tactic": "exact (hgs i hi).symm ▸ smul_zero _" }, { "state_after": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni : ι\n⊢ ∀ (x : ι), x ∈ s → (fun i => w i • g i) x • v x = g x • (w • v) x", "state_before": "case refine'_2\nι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni : ι\n⊢ ∑ i in s, (fun i => w i • g i) i • v i = 0", "tactic": "rw [← hsum, Finset.sum_congr rfl _]" }, { "state_after": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni x✝ : ι\na✝ : x✝ ∈ s\n⊢ (fun i => w i • g i) x✝ • v x✝ = g x✝ • (w • v) x✝", "state_before": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni : ι\n⊢ ∀ (x : ι), x ∈ s → (fun i => w i • g i) x • v x = g x • (w • v) x", "tactic": "intros" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.270528\nR : Type u_2\nK : Type ?u.270534\nM : Type u_3\nM' : Type ?u.270540\nM'' : Type ?u.270543\nV : Type u\nV' : Type ?u.270548\nv✝ : ι → M\ninst✝¹⁰ : Ring R\ninst✝⁹ : AddCommGroup M\ninst✝⁸ : AddCommGroup M'\ninst✝⁷ : AddCommGroup M''\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R M''\na b : R\nx y : M\nG : Type u_1\nhG : Group G\ninst✝³ : DistribMulAction G R\ninst✝² : DistribMulAction G M\ninst✝¹ : IsScalarTower G R M\ninst✝ : SMulCommClass G R M\nv : ι → M\nhv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0\nw : ι → G\ns : Finset ι\ng : ι → R\nhgs : ∀ (i : ι), ¬i ∈ s → g i = 0\nhsum : ∑ i in s, g i • (w • v) i = 0\ni x✝ : ι\na✝ : x✝ ∈ s\n⊢ (fun i => w i • g i) x✝ • v x✝ = g x✝ • (w • v) x✝", "tactic": "erw [Pi.smul_apply, smul_assoc, smul_comm]" } ]
[ 532, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 521, 1 ]
Mathlib/Algebra/CharP/Two.lean
CharTwo.neg_eq'
[]
[ 72, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Topology/FiberBundle/Basic.lean
FiberBundle.totalSpaceMk_closedEmbedding
[ { "state_after": "ι : Type ?u.6444\nB : Type u_1\nF : Type ?u.6450\nX : Type ?u.6453\ninst✝⁶ : TopologicalSpace X\ninst✝⁵ : TopologicalSpace B\ninst✝⁴ : TopologicalSpace F\nE : B → Type u_2\ninst✝³ : TopologicalSpace (TotalSpace E)\ninst✝² : (b : B) → TopologicalSpace (E b)\ninst✝¹ : FiberBundle F E\ninst✝ : T1Space B\nx : B\n⊢ IsClosed (Sigma.fst ⁻¹' {x})", "state_before": "ι : Type ?u.6444\nB : Type u_1\nF : Type ?u.6450\nX : Type ?u.6453\ninst✝⁶ : TopologicalSpace X\ninst✝⁵ : TopologicalSpace B\ninst✝⁴ : TopologicalSpace F\nE : B → Type u_2\ninst✝³ : TopologicalSpace (TotalSpace E)\ninst✝² : (b : B) → TopologicalSpace (E b)\ninst✝¹ : FiberBundle F E\ninst✝ : T1Space B\nx : B\n⊢ IsClosed (range (totalSpaceMk x))", "tactic": "rw [range_sigmaMk]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.6444\nB : Type u_1\nF : Type ?u.6450\nX : Type ?u.6453\ninst✝⁶ : TopologicalSpace X\ninst✝⁵ : TopologicalSpace B\ninst✝⁴ : TopologicalSpace F\nE : B → Type u_2\ninst✝³ : TopologicalSpace (TotalSpace E)\ninst✝² : (b : B) → TopologicalSpace (E b)\ninst✝¹ : FiberBundle F E\ninst✝ : T1Space B\nx : B\n⊢ IsClosed (Sigma.fst ⁻¹' {x})", "tactic": "exact isClosed_singleton.preimage <| continuous_proj F E" } ]
[ 283, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/Topology/Homotopy/HomotopyGroup.lean
Cube.zero_mem_boundary
[]
[ 75, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Data/Nat/GCD/Basic.lean
Nat.eq_one_of_dvd_coprimes
[ { "state_after": "a b k : ℕ\nh_ab_coprime : gcd a b = 1\nhka : k ∣ a\nhkb : k ∣ b\n⊢ k = 1", "state_before": "a b k : ℕ\nh_ab_coprime : coprime a b\nhka : k ∣ a\nhkb : k ∣ b\n⊢ k = 1", "tactic": "rw [coprime_iff_gcd_eq_one] at h_ab_coprime" }, { "state_after": "a b k : ℕ\nh_ab_coprime : gcd a b = 1\nhka : k ∣ a\nhkb : k ∣ b\nh1 : k ∣ gcd a b\n⊢ k = 1", "state_before": "a b k : ℕ\nh_ab_coprime : gcd a b = 1\nhka : k ∣ a\nhkb : k ∣ b\n⊢ k = 1", "tactic": "have h1 := dvd_gcd hka hkb" }, { "state_after": "a b k : ℕ\nh_ab_coprime : gcd a b = 1\nhka : k ∣ a\nhkb : k ∣ b\nh1 : k ∣ 1\n⊢ k = 1", "state_before": "a b k : ℕ\nh_ab_coprime : gcd a b = 1\nhka : k ∣ a\nhkb : k ∣ b\nh1 : k ∣ gcd a b\n⊢ k = 1", "tactic": "rw [h_ab_coprime] at h1" }, { "state_after": "no goals", "state_before": "a b k : ℕ\nh_ab_coprime : gcd a b = 1\nhka : k ∣ a\nhkb : k ∣ b\nh1 : k ∣ 1\n⊢ k = 1", "tactic": "exact Nat.dvd_one.mp h1" } ]
[ 277, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 272, 1 ]
Mathlib/Algebra/Group/Ext.lean
LeftCancelMonoid.ext
[]
[ 72, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.map_compose
[]
[ 1867, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1866, 1 ]
Mathlib/Algebra/Homology/ShortExact/Preadditive.lean
CategoryTheory.exact_inr_fst
[]
[ 167, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 165, 1 ]
Mathlib/RingTheory/Ideal/QuotientOperations.lean
RingHom.quotientKerEquivOfRightInverse.apply
[]
[ 73, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.mem_iUnion_of_mem
[]
[ 160, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 1 ]
Mathlib/Topology/Sets/Opens.lean
TopologicalSpace.Opens.nonempty_coeSort
[]
[ 103, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 11 ]
Mathlib/Analysis/MeanInequalities.lean
NNReal.geom_mean_le_arith_mean_weighted
[ { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\nw z : ι → ℝ≥0\nhw' : ∑ i in s, w i = 1\n⊢ ∏ i in s, z i ^ ↑(w i) ≤ ∑ i in s, w i * z i", "tactic": "exact_mod_cast\n Real.geom_mean_le_arith_mean_weighted _ _ _ (fun i _ => (w i).coe_nonneg)\n (by assumption_mod_cast) fun i _ => (z i).coe_nonneg" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\nw z : ι → ℝ≥0\nhw' : ∑ i in s, w i = 1\n⊢ ∑ i in s, ↑(w i) = 1", "tactic": "assumption_mod_cast" } ]
[ 187, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Mathlib/Data/Vector3.lean
vectorAllP_nil
[]
[ 267, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 266, 1 ]
Mathlib/FieldTheory/Fixed.lean
FixedPoints.isIntegral
[ { "state_after": "case intro\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Finite G\nx : F\nval✝ : Fintype G\n⊢ IsIntegral { x // x ∈ subfield G F } x", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Finite G\nx : F\n⊢ IsIntegral { x // x ∈ subfield G F } x", "tactic": "cases nonempty_fintype G" }, { "state_after": "no goals", "state_before": "case intro\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Finite G\nx : F\nval✝ : Fintype G\n⊢ IsIntegral { x // x ∈ subfield G F } x", "tactic": "exact ⟨minpoly G F x, minpoly.monic G F x, minpoly.eval₂ G F x⟩" } ]
[ 261, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/Data/Semiquot.lean
Semiquot.liftOn_ofMem
[ { "state_after": "α : Type u_1\nβ : Type u_2\nq : Semiquot α\nf : α → β\na : α\naq : a ∈ q\n⊢ ∀ (h : ∀ (a : α), a ∈ q → ∀ (b : α), b ∈ q → f a = f b), liftOn q f h = f a", "state_before": "α : Type u_1\nβ : Type u_2\nq : Semiquot α\nf : α → β\nh : ∀ (a : α), a ∈ q → ∀ (b : α), b ∈ q → f a = f b\na : α\naq : a ∈ q\n⊢ liftOn q f h = f a", "tactic": "revert h" }, { "state_after": "α : Type u_1\nβ : Type u_2\nq : Semiquot α\nf : α → β\na : α\naq : a ∈ q\n⊢ ∀ (h : ∀ (a_1 : α), a_1 ∈ mk aq → ∀ (b : α), b ∈ mk aq → f a_1 = f b), liftOn (mk aq) f h = f a", "state_before": "α : Type u_1\nβ : Type u_2\nq : Semiquot α\nf : α → β\na : α\naq : a ∈ q\n⊢ ∀ (h : ∀ (a : α), a ∈ q → ∀ (b : α), b ∈ q → f a = f b), liftOn q f h = f a", "tactic": "rw [eq_mk_of_mem aq]" }, { "state_after": "α : Type u_1\nβ : Type u_2\nq : Semiquot α\nf : α → β\na : α\naq : a ∈ q\nh✝ : ∀ (a_1 : α), a_1 ∈ mk aq → ∀ (b : α), b ∈ mk aq → f a_1 = f b\n⊢ liftOn (mk aq) f h✝ = f a", "state_before": "α : Type u_1\nβ : Type u_2\nq : Semiquot α\nf : α → β\na : α\naq : a ∈ q\n⊢ ∀ (h : ∀ (a_1 : α), a_1 ∈ mk aq → ∀ (b : α), b ∈ mk aq → f a_1 = f b), liftOn (mk aq) f h = f a", "tactic": "intro" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nq : Semiquot α\nf : α → β\na : α\naq : a ∈ q\nh✝ : ∀ (a_1 : α), a_1 ∈ mk aq → ∀ (b : α), b ∈ mk aq → f a_1 = f b\n⊢ liftOn (mk aq) f h✝ = f a", "tactic": "rfl" } ]
[ 124, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/Data/Set/Basic.lean
Set.disjoint_compl_left_iff_subset
[]
[ 1747, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1746, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Type.lean
Equiv.Perm.two_le_of_mem_cycleType
[ { "state_after": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nn : ℕ\nh : ∃ a, (IsCycle a ∧ ∀ (a_1 : α), a_1 ∈ support a → ↑a a_1 = ↑σ a_1) ∧ Finset.card (support a) = n\n⊢ 2 ≤ n", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nn : ℕ\nh : n ∈ cycleType σ\n⊢ 2 ≤ n", "tactic": "simp only [cycleType_def, ← Finset.mem_def, Function.comp_apply, Multiset.mem_map,\n mem_cycleFactorsFinset_iff] at h" }, { "state_after": "case intro.intro.intro\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ w✝ : Perm α\nhc : IsCycle w✝\n⊢ 2 ≤ Finset.card (support w✝)", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nn : ℕ\nh : ∃ a, (IsCycle a ∧ ∀ (a_1 : α), a_1 ∈ support a → ↑a a_1 = ↑σ a_1) ∧ Finset.card (support a) = n\n⊢ 2 ≤ n", "tactic": "obtain ⟨_, ⟨hc, -⟩, rfl⟩ := h" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ w✝ : Perm α\nhc : IsCycle w✝\n⊢ 2 ≤ Finset.card (support w✝)", "tactic": "exact hc.two_le_card_support" } ]
[ 100, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Algebra/Algebra/Operations.lean
Submodule.pow_induction_on_left
[]
[ 487, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 481, 11 ]
Mathlib/MeasureTheory/PiSystem.lean
MeasurableSpace.DynkinSystem.generate_le
[]
[ 695, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 694, 1 ]
Mathlib/Algebra/Quandle.lean
ShelfHom.map_act
[]
[ 375, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 374, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
LinearIndependent.fin_cons'
[ { "state_after": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\n⊢ ∀ (g : Fin (m + 1) → R), ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0 → ∀ (i : Fin (m + 1)), g i = 0", "state_before": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli : LinearIndependent R v\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\n⊢ LinearIndependent R (Fin.cons x v)", "tactic": "rw [Fintype.linearIndependent_iff] at hli⊢" }, { "state_after": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\ntotal_eq : ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0\nj : Fin (m + 1)\n⊢ g j = 0", "state_before": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\n⊢ ∀ (g : Fin (m + 1) → R), ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0 → ∀ (i : Fin (m + 1)), g i = 0", "tactic": "rintro g total_eq j" }, { "state_after": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0\n⊢ g j = 0", "state_before": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\ntotal_eq : ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0\nj : Fin (m + 1)\n⊢ g j = 0", "tactic": "simp_rw [Fin.sum_univ_succ, Fin.cons_zero, Fin.cons_succ] at total_eq" }, { "state_after": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0\nthis : g 0 = 0\n⊢ g j = 0", "state_before": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0\n⊢ g j = 0", "tactic": "have : g 0 = 0 := by\n refine' x_ortho (g 0) ⟨∑ i : Fin m, g i.succ • v i, _⟩ total_eq\n exact sum_mem fun i _ => smul_mem _ _ (subset_span ⟨i, rfl⟩)" }, { "state_after": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : ∑ x : Fin m, g (Fin.succ x) • v x = 0\nthis : g 0 = 0\n⊢ g j = 0", "state_before": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0\nthis : g 0 = 0\n⊢ g j = 0", "tactic": "rw [this, zero_smul, zero_add] at total_eq" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : ∑ x : Fin m, g (Fin.succ x) • v x = 0\nthis : g 0 = 0\n⊢ g j = 0", "tactic": "exact Fin.cases this (hli _ total_eq) j" }, { "state_after": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0\n⊢ ∑ i : Fin m, g (Fin.succ i) • v i ∈ span R (range v)", "state_before": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0\n⊢ g 0 = 0", "tactic": "refine' x_ortho (g 0) ⟨∑ i : Fin m, g i.succ • v i, _⟩ total_eq" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.115828\nR : Type u_1\nK : Type ?u.115834\nM : Type u_2\nM' : Type ?u.115840\nM'' : Type ?u.115843\nV : Type u\nV' : Type ?u.115848\nv✝ : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx✝ y : M\nm : ℕ\nx : M\nv : Fin m → M\nhli✝ : LinearIndependent R v\nhli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0\nx_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0\ng : Fin (m + 1) → R\nj : Fin (m + 1)\ntotal_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0\n⊢ ∑ i : Fin m, g (Fin.succ i) • v i ∈ span R (range v)", "tactic": "exact sum_mem fun i _ => smul_mem _ _ (subset_span ⟨i, rfl⟩)" } ]
[ 295, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/Data/Finite/Card.lean
Nat.card_eq
[ { "state_after": "case inl\nα✝ : Type ?u.215\nβ : Type ?u.218\nγ : Type ?u.221\nα : Type u_1\nh✝ : Finite α\n⊢ Nat.card α = if h : Finite α then Fintype.card α else 0\n\ncase inr\nα✝ : Type ?u.215\nβ : Type ?u.218\nγ : Type ?u.221\nα : Type u_1\nh✝ : Infinite α\n⊢ Nat.card α = if h : Finite α then Fintype.card α else 0", "state_before": "α✝ : Type ?u.215\nβ : Type ?u.218\nγ : Type ?u.221\nα : Type u_1\n⊢ Nat.card α = if h : Finite α then Fintype.card α else 0", "tactic": "cases finite_or_infinite α" }, { "state_after": "case inl\nα✝ : Type ?u.215\nβ : Type ?u.218\nγ : Type ?u.221\nα : Type u_1\nh✝ : Finite α\nthis : Fintype α := Fintype.ofFinite α\n⊢ Nat.card α = if h : Finite α then Fintype.card α else 0", "state_before": "case inl\nα✝ : Type ?u.215\nβ : Type ?u.218\nγ : Type ?u.221\nα : Type u_1\nh✝ : Finite α\n⊢ Nat.card α = if h : Finite α then Fintype.card α else 0", "tactic": "letI := Fintype.ofFinite α" }, { "state_after": "no goals", "state_before": "case inl\nα✝ : Type ?u.215\nβ : Type ?u.218\nγ : Type ?u.221\nα : Type u_1\nh✝ : Finite α\nthis : Fintype α := Fintype.ofFinite α\n⊢ Nat.card α = if h : Finite α then Fintype.card α else 0", "tactic": "simp only [*, Nat.card_eq_fintype_card, dif_pos]" }, { "state_after": "no goals", "state_before": "case inr\nα✝ : Type ?u.215\nβ : Type ?u.218\nγ : Type ?u.221\nα : Type u_1\nh✝ : Infinite α\n⊢ Nat.card α = if h : Finite α then Fintype.card α else 0", "tactic": "simp only [*, card_eq_zero_of_infinite, not_finite_iff_infinite.mpr, dite_false]" } ]
[ 57, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Algebra/CharZero/Defs.lean
Nat.cast_ne_one
[]
[ 97, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Analysis/Calculus/Inverse.lean
approximatesLinearOn_empty
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.5815\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.5918\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nε : ℝ\nf : E → F\nf' : E →L[𝕜] F\nc : ℝ≥0\n⊢ ApproximatesLinearOn f f' ∅ c", "tactic": "simp [ApproximatesLinearOn]" } ]
[ 125, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 124, 1 ]
Mathlib/Algebra/Polynomial/GroupRingAction.lean
Polynomial.smul_eval_smul
[ { "state_after": "no goals", "state_before": "M : Type u_2\ninst✝⁴ : Monoid M\nR : Type ?u.35641\ninst✝³ : Semiring R\ninst✝² : MulSemiringAction M R\nS : Type u_1\ninst✝¹ : CommSemiring S\ninst✝ : MulSemiringAction M S\nm : M\nf : S[X]\nx r : S\n⊢ eval (m • x) (m • ↑C r) = m • eval x (↑C r)", "tactic": "rw [smul_C, eval_C, eval_C]" }, { "state_after": "no goals", "state_before": "M : Type u_2\ninst✝⁴ : Monoid M\nR : Type ?u.35641\ninst✝³ : Semiring R\ninst✝² : MulSemiringAction M R\nS : Type u_1\ninst✝¹ : CommSemiring S\ninst✝ : MulSemiringAction M S\nm : M\nf✝ : S[X]\nx : S\nf g : S[X]\nihf : eval (m • x) (m • f) = m • eval x f\nihg : eval (m • x) (m • g) = m • eval x g\n⊢ eval (m • x) (m • (f + g)) = m • eval x (f + g)", "tactic": "rw [smul_add, eval_add, ihf, ihg, eval_add, smul_add]" }, { "state_after": "no goals", "state_before": "M : Type u_2\ninst✝⁴ : Monoid M\nR : Type ?u.35641\ninst✝³ : Semiring R\ninst✝² : MulSemiringAction M R\nS : Type u_1\ninst✝¹ : CommSemiring S\ninst✝ : MulSemiringAction M S\nm : M\nf : S[X]\nx : S\nn : ℕ\nr : S\nx✝ : eval (m • x) (m • (↑C r * X ^ n)) = m • eval x (↑C r * X ^ n)\n⊢ eval (m • x) (m • (↑C r * X ^ (n + 1))) = m • eval x (↑C r * X ^ (n + 1))", "tactic": "rw [smul_mul', smul_pow', smul_C, smul_X, eval_mul, eval_C, eval_pow, eval_X, eval_mul, eval_C,\n eval_pow, eval_X, smul_mul', smul_pow']" } ]
[ 72, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Complex.lean
Complex.sin_eq_zero_iff
[ { "state_after": "θ : ℂ\n⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) ↔ ∃ k, θ = ↑k * ↑π", "state_before": "θ : ℂ\n⊢ sin θ = 0 ↔ ∃ k, θ = ↑k * ↑π", "tactic": "rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff]" }, { "state_after": "case mp\nθ : ℂ\n⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) → ∃ k, θ = ↑k * ↑π\n\ncase mpr\nθ : ℂ\n⊢ (∃ k, θ = ↑k * ↑π) → ∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2", "state_before": "θ : ℂ\n⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) ↔ ∃ k, θ = ↑k * ↑π", "tactic": "constructor" }, { "state_after": "case mp.intro\nθ : ℂ\nk : ℤ\nhk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2\n⊢ ∃ k, θ = ↑k * ↑π", "state_before": "case mp\nθ : ℂ\n⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) → ∃ k, θ = ↑k * ↑π", "tactic": "rintro ⟨k, hk⟩" }, { "state_after": "case mp.intro\nθ : ℂ\nk : ℤ\nhk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2\n⊢ θ = ↑(k + 1) * ↑π", "state_before": "case mp.intro\nθ : ℂ\nk : ℤ\nhk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2\n⊢ ∃ k, θ = ↑k * ↑π", "tactic": "use k + 1" }, { "state_after": "case mp.intro\nθ : ℂ\nk : ℤ\nhk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2\n⊢ (2 * ↑k + 1) * ↑π + ↑π = (↑k + 1) * ↑π * 2", "state_before": "case mp.intro\nθ : ℂ\nk : ℤ\nhk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2\n⊢ θ = ↑(k + 1) * ↑π", "tactic": "field_simp [eq_add_of_sub_eq hk]" }, { "state_after": "no goals", "state_before": "case mp.intro\nθ : ℂ\nk : ℤ\nhk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2\n⊢ (2 * ↑k + 1) * ↑π + ↑π = (↑k + 1) * ↑π * 2", "tactic": "ring" }, { "state_after": "case mpr.intro\nk : ℤ\n⊢ ∃ k_1, ↑k * ↑π - ↑π / 2 = (2 * ↑k_1 + 1) * ↑π / 2", "state_before": "case mpr\nθ : ℂ\n⊢ (∃ k, θ = ↑k * ↑π) → ∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2", "tactic": "rintro ⟨k, rfl⟩" }, { "state_after": "case mpr.intro\nk : ℤ\n⊢ ↑k * ↑π - ↑π / 2 = (2 * ↑(k - 1) + 1) * ↑π / 2", "state_before": "case mpr.intro\nk : ℤ\n⊢ ∃ k_1, ↑k * ↑π - ↑π / 2 = (2 * ↑k_1 + 1) * ↑π / 2", "tactic": "use k - 1" }, { "state_after": "case mpr.intro\nk : ℤ\n⊢ ↑k * ↑π * 2 - ↑π = (2 * (↑k - 1) + 1) * ↑π", "state_before": "case mpr.intro\nk : ℤ\n⊢ ↑k * ↑π - ↑π / 2 = (2 * ↑(k - 1) + 1) * ↑π / 2", "tactic": "field_simp" }, { "state_after": "no goals", "state_before": "case mpr.intro\nk : ℤ\n⊢ ↑k * ↑π * 2 - ↑π = (2 * (↑k - 1) + 1) * ↑π", "tactic": "ring" } ]
[ 59, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 49, 1 ]
Mathlib/Data/Set/Image.lean
Function.Injective.compl_image_eq
[ { "state_after": "case h\nι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\ny : β\n⊢ y ∈ (f '' s)ᶜ ↔ y ∈ f '' sᶜ ∪ range fᶜ", "state_before": "ι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\n⊢ (f '' s)ᶜ = f '' sᶜ ∪ range fᶜ", "tactic": "ext y" }, { "state_after": "case h.inl.intro\nι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\nx : α\n⊢ f x ∈ (f '' s)ᶜ ↔ f x ∈ f '' sᶜ ∪ range fᶜ\n\ncase h.inr\nι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\ny : β\nhx : ¬y ∈ range f\n⊢ y ∈ (f '' s)ᶜ ↔ y ∈ f '' sᶜ ∪ range fᶜ", "state_before": "case h\nι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\ny : β\n⊢ y ∈ (f '' s)ᶜ ↔ y ∈ f '' sᶜ ∪ range fᶜ", "tactic": "rcases em (y ∈ range f) with (⟨x, rfl⟩ | hx)" }, { "state_after": "no goals", "state_before": "case h.inl.intro\nι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\nx : α\n⊢ f x ∈ (f '' s)ᶜ ↔ f x ∈ f '' sᶜ ∪ range fᶜ", "tactic": "simp [hf.eq_iff]" }, { "state_after": "case h.inr\nι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\ny : β\nhx : ∀ (x : α), ¬f x = y\n⊢ y ∈ (f '' s)ᶜ ↔ y ∈ f '' sᶜ ∪ range fᶜ", "state_before": "case h.inr\nι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\ny : β\nhx : ¬y ∈ range f\n⊢ y ∈ (f '' s)ᶜ ↔ y ∈ f '' sᶜ ∪ range fᶜ", "tactic": "rw [mem_range, not_exists] at hx" }, { "state_after": "no goals", "state_before": "case h.inr\nι : Sort ?u.105472\nα : Type u_1\nβ : Type u_2\nf : α → β\nhf : Injective f\ns : Set α\ny : β\nhx : ∀ (x : α), ¬f x = y\n⊢ y ∈ (f '' s)ᶜ ↔ y ∈ f '' sᶜ ∪ range fᶜ", "tactic": "simp [hx]" } ]
[ 1348, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1342, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.eval_zero'
[]
[ 1530, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1529, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.equiv_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nt₁ t₂ : Ordnode α\nh₁ : Sized t₁\nh₂ : Sized t₂\nh : toList t₁ = toList t₂\n⊢ size t₁ = size t₂", "tactic": "rw [← length_toList h₁, h, length_toList h₂]" } ]
[ 567, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 565, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Mul.lean
hasFDerivAt_ring_inverse
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_2\ninst✝¹¹ : NontriviallyNormedField 𝕜\nE : Type ?u.1084130\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace 𝕜 E\nF : Type ?u.1084230\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace 𝕜 F\nG : Type ?u.1084325\ninst✝⁶ : NormedAddCommGroup G\ninst✝⁵ : NormedSpace 𝕜 G\nG' : Type ?u.1084420\ninst✝⁴ : NormedAddCommGroup G'\ninst✝³ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx✝ : E\ns t : Set E\nL L₁ L₂ : Filter E\nR : Type u_1\ninst✝² : NormedRing R\ninst✝¹ : NormedAlgebra 𝕜 R\ninst✝ : CompleteSpace R\nx : Rˣ\nthis : (fun t => Ring.inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =o[𝓝 0] _root_.id\n⊢ HasFDerivAt Ring.inverse (-↑(↑(mulLeftRight 𝕜 R) ↑x⁻¹) ↑x⁻¹) ↑x", "tactic": "simpa [hasFDerivAt_iff_isLittleO_nhds_zero] using this" } ]
[ 525, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 521, 1 ]
Mathlib/Algebra/Opposites.lean
MulOpposite.unop_inv
[]
[ 303, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 302, 1 ]
Mathlib/Order/Monotone/Monovary.lean
antivaryOn_toDual_right
[]
[ 284, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 283, 1 ]
Mathlib/Data/Multiset/Nodup.lean
Multiset.coe_nodup
[]
[ 35, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 34, 1 ]
Mathlib/RingTheory/Ideal/Prod.lean
Ideal.ideal_prod_prime_aux
[ { "state_after": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\n⊢ I ≠ ⊤ ∧ J ≠ ⊤ → ¬IsPrime (prod I J)", "state_before": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\n⊢ IsPrime (prod I J) → I = ⊤ ∨ J = ⊤", "tactic": "contrapose!" }, { "state_after": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\n⊢ ¬1 ∈ I ∧ ¬1 ∈ J → ¬1 ∈ prod I J → ∃ x x_1 h, ¬x ∈ prod I J ∧ ¬x_1 ∈ prod I J", "state_before": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\n⊢ I ≠ ⊤ ∧ J ≠ ⊤ → ¬IsPrime (prod I J)", "tactic": "simp only [ne_top_iff_one, isPrime_iff, not_and, not_forall, not_or]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\n⊢ ¬1 ∈ I ∧ ¬1 ∈ J → ¬1 ∈ prod I J → ∃ x x_1 h, ¬x ∈ prod I J ∧ ¬x_1 ∈ prod I J", "tactic": "exact fun ⟨hI, hJ⟩ _ => ⟨⟨0, 1⟩, ⟨1, 0⟩, by simp, by simp [hJ], by simp [hI]⟩" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx✝¹ : ¬1 ∈ I ∧ ¬1 ∈ J\nx✝ : ¬1 ∈ prod I J\nhI : ¬1 ∈ I\nhJ : ¬1 ∈ J\n⊢ (0, 1) * (1, 0) ∈ prod I J", "tactic": "simp" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx✝¹ : ¬1 ∈ I ∧ ¬1 ∈ J\nx✝ : ¬1 ∈ prod I J\nhI : ¬1 ∈ I\nhJ : ¬1 ∈ J\n⊢ ¬(0, 1) ∈ prod I J", "tactic": "simp [hJ]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx✝¹ : ¬1 ∈ I ∧ ¬1 ∈ J\nx✝ : ¬1 ∈ prod I J\nhI : ¬1 ∈ I\nhJ : ¬1 ∈ J\n⊢ ¬(1, 0) ∈ prod I J", "tactic": "simp [hI]" } ]
[ 154, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/CategoryTheory/Sites/Plus.lean
CategoryTheory.GrothendieckTopology.plusMap_comp
[ { "state_after": "case w.h\nC : Type u\ninst✝³ : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\nP Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nx✝ : Cᵒᵖ\n⊢ (plusMap J (η ≫ γ)).app x✝ = (plusMap J η ≫ plusMap J γ).app x✝", "state_before": "C : Type u\ninst✝³ : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\nP Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\n⊢ plusMap J (η ≫ γ) = plusMap J η ≫ plusMap J γ", "tactic": "ext : 2" }, { "state_after": "case w.h\nC : Type u\ninst✝³ : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\nP Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nx✝ : Cᵒᵖ\nS : (Cover J x✝.unop)ᵒᵖ\n⊢ colimit.ι (diagram J P x✝.unop) S ≫ (plusMap J (η ≫ γ)).app x✝ =\n colimit.ι (diagram J P x✝.unop) S ≫ (plusMap J η ≫ plusMap J γ).app x✝", "state_before": "case w.h\nC : Type u\ninst✝³ : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\nP Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nx✝ : Cᵒᵖ\n⊢ (plusMap J (η ≫ γ)).app x✝ = (plusMap J η ≫ plusMap J γ).app x✝", "tactic": "refine' colimit.hom_ext (fun S => _)" }, { "state_after": "no goals", "state_before": "case w.h\nC : Type u\ninst✝³ : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝² : Category D\ninst✝¹ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ : Cᵒᵖ ⥤ D\ninst✝ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\nP Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nx✝ : Cᵒᵖ\nS : (Cover J x✝.unop)ᵒᵖ\n⊢ colimit.ι (diagram J P x✝.unop) S ≫ (plusMap J (η ≫ γ)).app x✝ =\n colimit.ι (diagram J P x✝.unop) S ≫ (plusMap J η ≫ plusMap J γ).app x✝", "tactic": "simp [plusMap, J.diagramNatTrans_comp]" } ]
[ 192, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/Logic/Equiv/Basic.lean
Equiv.Perm.subtypeCongr.right_apply
[ { "state_after": "no goals", "state_before": "ε : Type u_1\np : ε → Prop\ninst✝ : DecidablePred p\nep ep' : Perm { a // p a }\nen en' : Perm { a // ¬p a }\na : ε\nh : ¬p a\n⊢ ↑(subtypeCongr ep en) a = ↑(↑en { val := a, property := h })", "tactic": "simp [Perm.subtypeCongr.apply, h]" } ]
[ 576, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 575, 1 ]
Mathlib/MeasureTheory/Function/ConvergenceInMeasure.lean
MeasureTheory.tendstoInMeasure_of_tendsto_snorm_of_stronglyMeasurable
[ { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nhfg : Tendsto (fun n => snorm (f n - g) p μ) l (𝓝 0)\nε : ℝ\nhε : 0 < ε\n⊢ Tendsto (fun i => ↑↑μ {x | ε ≤ dist (f i x) (g x)}) l (𝓝 0)", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nhfg : Tendsto (fun n => snorm (f n - g) p μ) l (𝓝 0)\n⊢ TendstoInMeasure μ f l g", "tactic": "intro ε hε" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n Tendsto (fun b => ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f b - g) p μ ^ ENNReal.toReal p) l\n (𝓝 (ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * 0 ^ ENNReal.toReal p))\n⊢ Tendsto (fun i => ↑↑μ {x | ε ≤ dist (f i x) (g x)}) l (𝓝 0)", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nhfg : Tendsto (fun n => snorm (f n - g) p μ) l (𝓝 0)\nε : ℝ\nhε : 0 < ε\n⊢ Tendsto (fun i => ↑↑μ {x | ε ≤ dist (f i x) (g x)}) l (𝓝 0)", "tactic": "replace hfg := ENNReal.Tendsto.const_mul\n (Tendsto.ennrpow_const p.toReal hfg) (Or.inr <| @ENNReal.ofReal_ne_top (1 / ε ^ p.toReal))" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg : Tendsto (fun b => ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f b - g) p μ ^ ENNReal.toReal p) l (𝓝 0)\n⊢ Tendsto (fun i => ↑↑μ {x | ε ≤ dist (f i x) (g x)}) l (𝓝 0)", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n Tendsto (fun b => ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f b - g) p μ ^ ENNReal.toReal p) l\n (𝓝 (ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * 0 ^ ENNReal.toReal p))\n⊢ Tendsto (fun i => ↑↑μ {x | ε ≤ dist (f i x) (g x)}) l (𝓝 0)", "tactic": "simp only [MulZeroClass.mul_zero,\n ENNReal.zero_rpow_of_pos (ENNReal.toReal_pos hp_ne_zero hp_ne_top)] at hfg" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\n⊢ ∀ (ε_1 : ℝ≥0∞), ε_1 > 0 → ∀ᶠ (x : ι) in l, ↑↑μ {x_1 | ε ≤ dist (f x x_1) (g x_1)} ≤ ε_1", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg : Tendsto (fun b => ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f b - g) p μ ^ ENNReal.toReal p) l (𝓝 0)\n⊢ Tendsto (fun i => ↑↑μ {x | ε ≤ dist (f i x) (g x)}) l (𝓝 0)", "tactic": "rw [ENNReal.tendsto_nhds_zero] at hfg⊢" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\n⊢ ∀ᶠ (x : ι) in l, ↑↑μ {x_1 | ε ≤ dist (f x x_1) (g x_1)} ≤ δ", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\n⊢ ∀ (ε_1 : ℝ≥0∞), ε_1 > 0 → ∀ᶠ (x : ι) in l, ↑↑μ {x_1 | ε ≤ dist (f x x_1) (g x_1)} ≤ ε_1", "tactic": "intro δ hδ" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ↑↑μ {x | ε ≤ dist (f n x) (g x)} ≤ δ", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\n⊢ ∀ᶠ (x : ι) in l, ↑↑μ {x_1 | ε ≤ dist (f x x_1) (g x_1)} ≤ δ", "tactic": "refine' (hfg δ hδ).mono fun n hn => _" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ↑↑μ {x | ε ≤ dist (f n x) (g x)} ≤ ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ↑↑μ {x | ε ≤ dist (f n x) (g x)} ≤ δ", "tactic": "refine' le_trans _ hn" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ENNReal.ofReal (ε ^ ENNReal.toReal p) * ↑↑μ {x | ε ≤ dist (f n x) (g x)} ≤ snorm (f n - g) p μ ^ ENNReal.toReal p\n\nα : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ENNReal.ofReal (ε ^ ENNReal.toReal p) ≠ 0 ∨ snorm (f n - g) p μ ^ ENNReal.toReal p ≠ 0", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ↑↑μ {x | ε ≤ dist (f n x) (g x)} ≤ ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p", "tactic": "rw [ENNReal.ofReal_div_of_pos (Real.rpow_pos_of_pos hε _), ENNReal.ofReal_one, mul_comm,\n mul_one_div, ENNReal.le_div_iff_mul_le _ (Or.inl ENNReal.ofReal_ne_top), mul_comm]" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ENNReal.ofReal ε ^ ENNReal.toReal p * ↑↑μ {x | ε ≤ dist (f n x) (g x)} ≤ snorm (f n - g) p μ ^ ENNReal.toReal p", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ENNReal.ofReal (ε ^ ENNReal.toReal p) * ↑↑μ {x | ε ≤ dist (f n x) (g x)} ≤ snorm (f n - g) p μ ^ ENNReal.toReal p", "tactic": "rw [← ENNReal.ofReal_rpow_of_pos hε]" }, { "state_after": "case h.e'_3.h.e'_6.h.e'_3.h.e'_2.h.a\nα : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\nx✝ : α\n⊢ ε ≤ dist (f n x✝) (g x✝) ↔ ENNReal.ofReal ε ≤ ↑‖(f n - g) x✝‖₊", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ENNReal.ofReal ε ^ ENNReal.toReal p * ↑↑μ {x | ε ≤ dist (f n x) (g x)} ≤ snorm (f n - g) p μ ^ ENNReal.toReal p", "tactic": "convert mul_meas_ge_le_pow_snorm' μ hp_ne_zero hp_ne_top ((hf n).sub hg).aestronglyMeasurable\n (ENNReal.ofReal ε)" }, { "state_after": "case h.e'_3.h.e'_6.h.e'_3.h.e'_2.h.a\nα : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\nx✝ : α\n⊢ ENNReal.ofReal ε ≤ ↑‖f n x✝ - g x✝‖₊ ↔ ENNReal.ofReal ε ≤ ↑‖(f n - g) x✝‖₊", "state_before": "case h.e'_3.h.e'_6.h.e'_3.h.e'_2.h.a\nα : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\nx✝ : α\n⊢ ε ≤ dist (f n x✝) (g x✝) ↔ ENNReal.ofReal ε ≤ ↑‖(f n - g) x✝‖₊", "tactic": "rw [dist_eq_norm, ← ENNReal.ofReal_le_ofReal_iff (norm_nonneg _), ofReal_norm_eq_coe_nnnorm]" }, { "state_after": "no goals", "state_before": "case h.e'_3.h.e'_6.h.e'_3.h.e'_2.h.a\nα : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\nx✝ : α\n⊢ ENNReal.ofReal ε ≤ ↑‖f n x✝ - g x✝‖₊ ↔ ENNReal.ofReal ε ≤ ↑‖(f n - g) x✝‖₊", "tactic": "exact Iff.rfl" }, { "state_after": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ 0 < ε ^ ENNReal.toReal p ∨ snorm (f n - g) p μ ^ ENNReal.toReal p ≠ 0", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ ENNReal.ofReal (ε ^ ENNReal.toReal p) ≠ 0 ∨ snorm (f n - g) p μ ^ ENNReal.toReal p ≠ 0", "tactic": "rw [Ne, ENNReal.ofReal_eq_zero, not_le]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nι : Type u_3\nE : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup E\np : ℝ≥0∞\nf : ι → α → E\ng : α → E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhf : ∀ (n : ι), StronglyMeasurable (f n)\nhg : StronglyMeasurable g\nl : Filter ι\nε : ℝ\nhε : 0 < ε\nhfg :\n ∀ (ε_1 : ℝ≥0∞),\n ε_1 > 0 → ∀ᶠ (x : ι) in l, ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f x - g) p μ ^ ENNReal.toReal p ≤ ε_1\nδ : ℝ≥0∞\nhδ : δ > 0\nn : ι\nhn : ENNReal.ofReal (1 / ε ^ ENNReal.toReal p) * snorm (f n - g) p μ ^ ENNReal.toReal p ≤ δ\n⊢ 0 < ε ^ ENNReal.toReal p ∨ snorm (f n - g) p μ ^ ENNReal.toReal p ≠ 0", "tactic": "exact Or.inl (Real.rpow_pos_of_pos hε _)" } ]
[ 307, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 1 ]
Mathlib/Algebra/Star/Basic.lean
star_eq_iff_star_eq
[]
[ 113, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Data/Vector/Basic.lean
Vector.toList_empty
[]
[ 202, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.comapDomain_zero
[ { "state_after": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.304416\nι : Type ?u.304419\nM : Type u_3\nM' : Type ?u.304425\nN : Type ?u.304428\nP : Type ?u.304431\nG : Type ?u.304434\nH : Type ?u.304437\nR : Type ?u.304440\nS : Type ?u.304443\ninst✝ : Zero M\nf : α → β\nhif : optParam (Set.InjOn f (f ⁻¹' ↑0.support)) (_ : Set.InjOn f (f ⁻¹' ↑∅))\na✝ : α\n⊢ ↑(comapDomain f 0 hif) a✝ = ↑0 a✝", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.304416\nι : Type ?u.304419\nM : Type u_3\nM' : Type ?u.304425\nN : Type ?u.304428\nP : Type ?u.304431\nG : Type ?u.304434\nH : Type ?u.304437\nR : Type ?u.304440\nS : Type ?u.304443\ninst✝ : Zero M\nf : α → β\nhif : optParam (Set.InjOn f (f ⁻¹' ↑0.support)) (_ : Set.InjOn f (f ⁻¹' ↑∅))\n⊢ comapDomain f 0 hif = 0", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.304416\nι : Type ?u.304419\nM : Type u_3\nM' : Type ?u.304425\nN : Type ?u.304428\nP : Type ?u.304431\nG : Type ?u.304434\nH : Type ?u.304437\nR : Type ?u.304440\nS : Type ?u.304443\ninst✝ : Zero M\nf : α → β\nhif : optParam (Set.InjOn f (f ⁻¹' ↑0.support)) (_ : Set.InjOn f (f ⁻¹' ↑∅))\na✝ : α\n⊢ ↑(comapDomain f 0 hif) a✝ = ↑0 a✝", "tactic": "rfl" } ]
[ 738, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 734, 1 ]
Mathlib/Order/Bounded.lean
Set.bounded_lt_Ioc
[]
[ 222, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/Order/Circular.lean
sbtw_iff_not_btw
[ { "state_after": "α : Type u_1\ninst✝ : CircularOrder α\na b c : α\n⊢ btw a b c ∧ ¬btw c b a ↔ ¬btw c b a", "state_before": "α : Type u_1\ninst✝ : CircularOrder α\na b c : α\n⊢ sbtw a b c ↔ ¬btw c b a", "tactic": "rw [sbtw_iff_btw_not_btw]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : CircularOrder α\na b c : α\n⊢ btw a b c ∧ ¬btw c b a ↔ ¬btw c b a", "tactic": "exact and_iff_right_of_imp (btw_total _ _ _).resolve_left" } ]
[ 320, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 318, 1 ]
Mathlib/Analysis/Calculus/Deriv/Inverse.lean
HasStrictDerivAt.of_local_left_inverse
[]
[ 73, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Std/Data/List/Lemmas.lean
List.get_range
[ { "state_after": "no goals", "state_before": "n i : Nat\nH : i < length (range n)\n⊢ some (get (range n) { val := i, isLt := H }) = some i", "tactic": "rw [← get?_eq_get _, get?_range (by simpa using H)]" }, { "state_after": "no goals", "state_before": "n i : Nat\nH : i < length (range n)\n⊢ i < n", "tactic": "simpa using H" } ]
[ 1949, 76 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1948, 9 ]
Mathlib/MeasureTheory/Measure/VectorMeasure.lean
MeasureTheory.VectorMeasure.map_add
[ { "state_after": "case pos\nα : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\nhf : Measurable f\n⊢ map (v + w) f = map v f + map w f\n\ncase neg\nα : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\nhf : ¬Measurable f\n⊢ map (v + w) f = map v f + map w f", "state_before": "α : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\n⊢ map (v + w) f = map v f + map w f", "tactic": "by_cases hf : Measurable f" }, { "state_after": "case pos.h\nα : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\nhf : Measurable f\ni : Set β\n⊢ MeasurableSet i → ↑(map (v + w) f) i = ↑(map v f + map w f) i", "state_before": "case pos\nα : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\nhf : Measurable f\n⊢ map (v + w) f = map v f + map w f", "tactic": "ext i" }, { "state_after": "case pos.h\nα : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\nhf : Measurable f\ni : Set β\nhi : MeasurableSet i\n⊢ ↑(map (v + w) f) i = ↑(map v f + map w f) i", "state_before": "case pos.h\nα : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\nhf : Measurable f\ni : Set β\n⊢ MeasurableSet i → ↑(map (v + w) f) i = ↑(map v f + map w f) i", "tactic": "intro hi" }, { "state_after": "no goals", "state_before": "case pos.h\nα : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\nhf : Measurable f\ni : Set β\nhi : MeasurableSet i\n⊢ ↑(map (v + w) f) i = ↑(map v f + map w f) i", "tactic": "simp [map_apply _ hf hi]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type u_3\nm inst✝⁴ : MeasurableSpace α\ninst✝³ : MeasurableSpace β\nM : Type u_2\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\nv✝ : VectorMeasure α M\ninst✝ : ContinuousAdd M\nv w : VectorMeasure α M\nf : α → β\nhf : ¬Measurable f\n⊢ map (v + w) f = map v f + map w f", "tactic": "simp [map, dif_neg hf]" } ]
[ 740, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 735, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
Summable.compl_add
[]
[ 382, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 380, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.pred_castSucc_succ
[ { "state_after": "no goals", "state_before": "n m : ℕ\ni : Fin n\n⊢ pred (↑castSucc (succ i)) (_ : ↑castSucc (succ i) ≠ 0) = ↑castSucc i", "tactic": "simp [eq_iff_veq]" } ]
[ 1592, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1590, 1 ]
Mathlib/Order/Filter/Extr.lean
IsMaxOn.min
[]
[ 605, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 603, 1 ]
Mathlib/Data/Nat/Totient.lean
Nat.totient_div_of_dvd
[ { "state_after": "case inl\nn : ℕ\nhnd : 0 ∣ n\n⊢ φ (n / 0) = Finset.card (filter (fun k => gcd n k = 0) (range n))\n\ncase inr\nn d : ℕ\nhnd : d ∣ n\nhd0 : d > 0\n⊢ φ (n / d) = Finset.card (filter (fun k => gcd n k = d) (range n))", "state_before": "n d : ℕ\nhnd : d ∣ n\n⊢ φ (n / d) = Finset.card (filter (fun k => gcd n k = d) (range n))", "tactic": "rcases d.eq_zero_or_pos with (rfl | hd0)" }, { "state_after": "case inr.intro\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ φ (d * x / d) = Finset.card (filter (fun k => gcd (d * x) k = d) (range (d * x)))", "state_before": "case inr\nn d : ℕ\nhnd : d ∣ n\nhd0 : d > 0\n⊢ φ (n / d) = Finset.card (filter (fun k => gcd n k = d) (range n))", "tactic": "rcases hnd with ⟨x, rfl⟩" }, { "state_after": "case inr.intro\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ φ x = Finset.card (filter (fun k => gcd (d * x) k = d) (range (d * x)))", "state_before": "case inr.intro\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ φ (d * x / d) = Finset.card (filter (fun k => gcd (d * x) k = d) (range (d * x)))", "tactic": "rw [Nat.mul_div_cancel_left x hd0]" }, { "state_after": "case inr.intro.h₁\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (a : ℕ), a ∈ filter (coprime x) (range x) → d * a ∈ filter (fun k => gcd (d * x) k = d) (range (d * x))\n\ncase inr.intro.h₂\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (a b : ℕ), a ∈ filter (coprime x) (range x) → b ∈ filter (coprime x) (range x) → d * a = d * b → a = b\n\ncase inr.intro.h₃\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (b : ℕ), b ∈ filter (fun k => gcd (d * x) k = d) (range (d * x)) → ∃ a ha, d * a = b", "state_before": "case inr.intro\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ φ x = Finset.card (filter (fun k => gcd (d * x) k = d) (range (d * x)))", "tactic": "apply Finset.card_congr fun k _ => d * k" }, { "state_after": "no goals", "state_before": "case inl\nn : ℕ\nhnd : 0 ∣ n\n⊢ φ (n / 0) = Finset.card (filter (fun k => gcd n k = 0) (range n))", "tactic": "simp [eq_zero_of_zero_dvd hnd]" }, { "state_after": "case inr.intro.h₁\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (a : ℕ), a < x → gcd x a = 1 → d * a < d * x ∧ gcd (d * x) (d * a) = d", "state_before": "case inr.intro.h₁\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (a : ℕ), a ∈ filter (coprime x) (range x) → d * a ∈ filter (fun k => gcd (d * x) k = d) (range (d * x))", "tactic": "simp only [mem_filter, mem_range, and_imp, coprime]" }, { "state_after": "case inr.intro.h₁\nd : ℕ\nhd0 : d > 0\nx a : ℕ\nha1 : a < x\nha2 : gcd x a = 1\n⊢ gcd (d * x) (d * a) = d", "state_before": "case inr.intro.h₁\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (a : ℕ), a < x → gcd x a = 1 → d * a < d * x ∧ gcd (d * x) (d * a) = d", "tactic": "refine' fun a ha1 ha2 => ⟨(mul_lt_mul_left hd0).2 ha1, _⟩" }, { "state_after": "no goals", "state_before": "case inr.intro.h₁\nd : ℕ\nhd0 : d > 0\nx a : ℕ\nha1 : a < x\nha2 : gcd x a = 1\n⊢ gcd (d * x) (d * a) = d", "tactic": "rw [gcd_mul_left, ha2, mul_one]" }, { "state_after": "no goals", "state_before": "case inr.intro.h₂\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (a b : ℕ), a ∈ filter (coprime x) (range x) → b ∈ filter (coprime x) (range x) → d * a = d * b → a = b", "tactic": "simp [hd0.ne']" }, { "state_after": "case inr.intro.h₃\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (b : ℕ), b < d * x → gcd (d * x) b = d → ∃ a, (a < x ∧ coprime x a) ∧ d * a = b", "state_before": "case inr.intro.h₃\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (b : ℕ), b ∈ filter (fun k => gcd (d * x) k = d) (range (d * x)) → ∃ a ha, d * a = b", "tactic": "simp only [mem_filter, mem_range, exists_prop, and_imp]" }, { "state_after": "case inr.intro.h₃\nd : ℕ\nhd0 : d > 0\nx b : ℕ\nhb1 : b < d * x\nhb2 : gcd (d * x) b = d\n⊢ ∃ a, (a < x ∧ coprime x a) ∧ d * a = b", "state_before": "case inr.intro.h₃\nd : ℕ\nhd0 : d > 0\nx : ℕ\n⊢ ∀ (b : ℕ), b < d * x → gcd (d * x) b = d → ∃ a, (a < x ∧ coprime x a) ∧ d * a = b", "tactic": "refine' fun b hb1 hb2 => _" }, { "state_after": "case inr.intro.h₃\nd : ℕ\nhd0 : d > 0\nx b : ℕ\nhb1 : b < d * x\nhb2 : gcd (d * x) b = d\nthis : d ∣ b\n⊢ ∃ a, (a < x ∧ coprime x a) ∧ d * a = b", "state_before": "case inr.intro.h₃\nd : ℕ\nhd0 : d > 0\nx b : ℕ\nhb1 : b < d * x\nhb2 : gcd (d * x) b = d\n⊢ ∃ a, (a < x ∧ coprime x a) ∧ d * a = b", "tactic": "have : d ∣ b := by\n rw [← hb2]\n apply gcd_dvd_right" }, { "state_after": "case inr.intro.h₃.intro\nd : ℕ\nhd0 : d > 0\nx q : ℕ\nhb1 : d * q < d * x\nhb2 : gcd (d * x) (d * q) = d\n⊢ ∃ a, (a < x ∧ coprime x a) ∧ d * a = d * q", "state_before": "case inr.intro.h₃\nd : ℕ\nhd0 : d > 0\nx b : ℕ\nhb1 : b < d * x\nhb2 : gcd (d * x) b = d\nthis : d ∣ b\n⊢ ∃ a, (a < x ∧ coprime x a) ∧ d * a = b", "tactic": "rcases this with ⟨q, rfl⟩" }, { "state_after": "case inr.intro.h₃.intro\nd : ℕ\nhd0 : d > 0\nx q : ℕ\nhb1 : d * q < d * x\nhb2 : gcd (d * x) (d * q) = d\n⊢ coprime x q", "state_before": "case inr.intro.h₃.intro\nd : ℕ\nhd0 : d > 0\nx q : ℕ\nhb1 : d * q < d * x\nhb2 : gcd (d * x) (d * q) = d\n⊢ ∃ a, (a < x ∧ coprime x a) ∧ d * a = d * q", "tactic": "refine' ⟨q, ⟨⟨(mul_lt_mul_left hd0).1 hb1, _⟩, rfl⟩⟩" }, { "state_after": "no goals", "state_before": "case inr.intro.h₃.intro\nd : ℕ\nhd0 : d > 0\nx q : ℕ\nhb1 : d * q < d * x\nhb2 : gcd (d * x) (d * q) = d\n⊢ coprime x q", "tactic": "rwa [gcd_mul_left, mul_right_eq_self_iff hd0] at hb2" }, { "state_after": "d : ℕ\nhd0 : d > 0\nx b : ℕ\nhb1 : b < d * x\nhb2 : gcd (d * x) b = d\n⊢ gcd (d * x) b ∣ b", "state_before": "d : ℕ\nhd0 : d > 0\nx b : ℕ\nhb1 : b < d * x\nhb2 : gcd (d * x) b = d\n⊢ d ∣ b", "tactic": "rw [← hb2]" }, { "state_after": "no goals", "state_before": "d : ℕ\nhd0 : d > 0\nx b : ℕ\nhb1 : b < d * x\nhb2 : gcd (d * x) b = d\n⊢ gcd (d * x) b ∣ b", "tactic": "apply gcd_dvd_right" } ]
[ 170, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/Order/Disjoint.lean
codisjoint_bot
[]
[ 294, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/Data/List/Basic.lean
List.last_eq_of_concat_eq
[ { "state_after": "ι : Type ?u.24637\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na b : α\nl : List α\nh : concat l a = concat l b\n⊢ a = b", "state_before": "ι : Type ?u.24637\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na b : α\nl : List α\n⊢ concat l a = concat l b → a = b", "tactic": "intro h" }, { "state_after": "ι : Type ?u.24637\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na b : α\nl : List α\nh : l ++ [a] = l ++ [b]\n⊢ a = b", "state_before": "ι : Type ?u.24637\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na b : α\nl : List α\nh : concat l a = concat l b\n⊢ a = b", "tactic": "rw [concat_eq_append, concat_eq_append] at h" }, { "state_after": "no goals", "state_before": "ι : Type ?u.24637\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na b : α\nl : List α\nh : l ++ [a] = l ++ [b]\n⊢ a = b", "tactic": "exact head_eq_of_cons_eq (append_left_cancel h)" } ]
[ 565, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 562, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.StableUnderBaseChange.unop
[]
[ 290, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.preimage_add_const_Ioo
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ (fun x => x + a) ⁻¹' Ioo b c = Ioo (b - a) (c - a)", "tactic": "simp [← Ioi_inter_Iio]" } ]
[ 124, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Algebra/AddTorsor.lean
vsub_ne_zero
[]
[ 144, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.EventuallyLE.diff
[]
[ 1733, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1731, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
MonoidHom.eq_of_eqOn_dense
[]
[ 2918, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2917, 1 ]
Mathlib/Analysis/Convex/Side.lean
AffineSubspace.SOppSide.right_not_mem
[]
[ 187, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Topology/Order/Basic.lean
not_tendsto_nhds_of_tendsto_atBot
[]
[ 1564, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1562, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.cospanCompIso_app_one
[]
[ 299, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 299, 1 ]
Mathlib/Data/Polynomial/AlgebraMap.lean
Polynomial.aeval_monomial
[]
[ 212, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Algebra/Lie/Quotient.lean
LieSubmodule.Quotient.mk'_ker
[ { "state_after": "case h\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nm✝ : M\n⊢ m✝ ∈ LieModuleHom.ker (mk' N) ↔ m✝ ∈ N", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\n⊢ LieModuleHom.ker (mk' N) = N", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nm✝ : M\n⊢ m✝ ∈ LieModuleHom.ker (mk' N) ↔ m✝ ∈ N", "tactic": "simp" } ]
[ 202, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.le_div_iff_mul_le
[ { "state_after": "no goals", "state_before": "k x y : Nat\nk0 : 0 < k\n⊢ x ≤ y / k ↔ x * k ≤ y", "tactic": "induction y, k using mod.inductionOn generalizing x with\n (rw [div_eq]; simp [h]; cases x with simp [zero_le] | succ x => ?_)\n| base y k h =>\n simp [not_succ_le_zero x, succ_mul, Nat.add_comm]\n refine Nat.lt_of_lt_of_le ?_ (Nat.le_add_right ..)\n exact Nat.not_le.1 fun h' => h ⟨k0, h'⟩\n| ind y k h IH =>\n rw [← add_one, Nat.add_le_add_iff_le_right, IH k0, succ_mul,\n ← Nat.add_sub_cancel (x*k) k, Nat.sub_le_sub_right_iff h.2, Nat.add_sub_cancel]" }, { "state_after": "case ind\ny k : Nat\nh : 0 < k ∧ k ≤ y\nIH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k)\nx : Nat\nk0 : 0 < k\n⊢ (x ≤ if 0 < k ∧ k ≤ y then (y - k) / k + 1 else 0) ↔ x * k ≤ y", "state_before": "case ind\ny k : Nat\nh : 0 < k ∧ k ≤ y\nIH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k)\nx : Nat\nk0 : 0 < k\n⊢ x ≤ y / k ↔ x * k ≤ y", "tactic": "rw [div_eq]" }, { "state_after": "case ind\ny k : Nat\nh : 0 < k ∧ k ≤ y\nIH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k)\nx : Nat\nk0 : 0 < k\n⊢ x ≤ (y - k) / k + 1 ↔ x * k ≤ y", "state_before": "case ind\ny k : Nat\nh : 0 < k ∧ k ≤ y\nIH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k)\nx : Nat\nk0 : 0 < k\n⊢ (x ≤ if 0 < k ∧ k ≤ y then (y - k) / k + 1 else 0) ↔ x * k ≤ y", "tactic": "simp [h]" }, { "state_after": "case ind.succ\ny k : Nat\nh : 0 < k ∧ k ≤ y\nIH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k)\nk0 : 0 < k\nx : Nat\n⊢ succ x ≤ (y - k) / k + 1 ↔ succ x * k ≤ y", "state_before": "case ind\ny k : Nat\nh : 0 < k ∧ k ≤ y\nIH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k)\nx : Nat\nk0 : 0 < k\n⊢ x ≤ (y - k) / k + 1 ↔ x * k ≤ y", "tactic": "cases x with simp [zero_le] | succ x => ?_" }, { "state_after": "case base.succ\ny k : Nat\nh : ¬(0 < k ∧ k ≤ y)\nk0 : 0 < k\nx : Nat\n⊢ y < k + x * k", "state_before": "case base.succ\ny k : Nat\nh : ¬(0 < k ∧ k ≤ y)\nk0 : 0 < k\nx : Nat\n⊢ y < succ x * k", "tactic": "simp [not_succ_le_zero x, succ_mul, Nat.add_comm]" }, { "state_after": "case base.succ\ny k : Nat\nh : ¬(0 < k ∧ k ≤ y)\nk0 : 0 < k\nx : Nat\n⊢ y < k", "state_before": "case base.succ\ny k : Nat\nh : ¬(0 < k ∧ k ≤ y)\nk0 : 0 < k\nx : Nat\n⊢ y < k + x * k", "tactic": "refine Nat.lt_of_lt_of_le ?_ (Nat.le_add_right ..)" }, { "state_after": "no goals", "state_before": "case base.succ\ny k : Nat\nh : ¬(0 < k ∧ k ≤ y)\nk0 : 0 < k\nx : Nat\n⊢ y < k", "tactic": "exact Nat.not_le.1 fun h' => h ⟨k0, h'⟩" }, { "state_after": "no goals", "state_before": "case ind.succ\ny k : Nat\nh : 0 < k ∧ k ≤ y\nIH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k)\nk0 : 0 < k\nx : Nat\n⊢ succ x ≤ (y - k) / k + 1 ↔ succ x * k ≤ y", "tactic": "rw [← add_one, Nat.add_le_add_iff_le_right, IH k0, succ_mul,\n ← Nat.add_sub_cancel (x*k) k, Nat.sub_le_sub_right_iff h.2, Nat.add_sub_cancel]" } ]
[ 276, 88 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 267, 1 ]
Mathlib/Topology/SubsetProperties.lean
IsCompact.insert
[]
[ 457, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 456, 1 ]
Mathlib/MeasureTheory/Function/AEEqFun.lean
MeasureTheory.AEEqFun.liftRel_mk_mk
[]
[ 430, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 428, 1 ]
Mathlib/Data/QPF/Univariate/Basic.lean
Qpf.Wequiv.refl
[ { "state_after": "case mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\na : (P F).A\nf : PFunctor.B (P F) a → WType (P F).B\n⊢ Wequiv (WType.mk a f) (WType.mk a f)", "state_before": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nx : PFunctor.W (P F)\n⊢ Wequiv x x", "tactic": "cases' x with a f" }, { "state_after": "no goals", "state_before": "case mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\na : (P F).A\nf : PFunctor.B (P F) a → WType (P F).B\n⊢ Wequiv (WType.mk a f) (WType.mk a f)", "tactic": "exact Wequiv.abs a f a f rfl" } ]
[ 215, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Data/Fin/Interval.lean
Fin.card_Ioi
[ { "state_after": "case b\nn : ℕ\na b : Fin n\n⊢ Fin n", "state_before": "n : ℕ\na b : Fin n\n⊢ card (Ioi a) = n - 1 - ↑a", "tactic": "rw [← card_map, map_valEmbedding_Ioi, Nat.card_Ioc]" }, { "state_after": "no goals", "state_before": "case b\nn : ℕ\na b : Fin n\n⊢ Fin n", "tactic": "assumption" } ]
[ 186, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 1 ]
Mathlib/RingTheory/Ideal/QuotientOperations.lean
Ideal.map_quotient_self
[]
[ 99, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/Analysis/InnerProductSpace/l2Space.lean
OrthogonalFamily.summable_of_lp
[ { "state_after": "ι : Type u_1\n𝕜 : Type u_4\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nhV : OrthogonalFamily 𝕜 G V\nf : { x // x ∈ lp G 2 }\n⊢ Summable fun i => ‖↑f i‖ ^ 2", "state_before": "ι : Type u_1\n𝕜 : Type u_4\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nhV : OrthogonalFamily 𝕜 G V\nf : { x // x ∈ lp G 2 }\n⊢ Summable fun i => ↑(V i) (↑f i)", "tactic": "rw [hV.summable_iff_norm_sq_summable]" }, { "state_after": "case h.e'_5.h\nι : Type u_1\n𝕜 : Type u_4\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nhV : OrthogonalFamily 𝕜 G V\nf : { x // x ∈ lp G 2 }\nx✝ : ι\n⊢ ‖↑f x✝‖ ^ 2 = ‖↑f x✝‖ ^ ENNReal.toReal 2\n\nι : Type u_1\n𝕜 : Type u_4\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nhV : OrthogonalFamily 𝕜 G V\nf : { x // x ∈ lp G 2 }\n⊢ 0 < ENNReal.toReal 2", "state_before": "ι : Type u_1\n𝕜 : Type u_4\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nhV : OrthogonalFamily 𝕜 G V\nf : { x // x ∈ lp G 2 }\n⊢ Summable fun i => ‖↑f i‖ ^ 2", "tactic": "convert (lp.memℓp f).summable _" }, { "state_after": "no goals", "state_before": "case h.e'_5.h\nι : Type u_1\n𝕜 : Type u_4\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nhV : OrthogonalFamily 𝕜 G V\nf : { x // x ∈ lp G 2 }\nx✝ : ι\n⊢ ‖↑f x✝‖ ^ 2 = ‖↑f x✝‖ ^ ENNReal.toReal 2", "tactic": "norm_cast" }, { "state_after": "no goals", "state_before": "ι : Type u_1\n𝕜 : Type u_4\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nhV : OrthogonalFamily 𝕜 G V\nf : { x // x ∈ lp G 2 }\n⊢ 0 < ENNReal.toReal 2", "tactic": "norm_num" } ]
[ 201, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 11 ]
Mathlib/Analysis/InnerProductSpace/l2Space.lean
IsHilbertSum.linearIsometryEquiv_apply_dfinsupp_sum_single
[ { "state_after": "ι : Type u_1\n𝕜 : Type u_2\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_4\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nF : ι → Submodule 𝕜 E\nhV : IsHilbertSum 𝕜 G V\nW₀ : Π₀ (i : ι), G i\n⊢ ↑(↑(linearIsometryEquiv hV) (↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) (Dfinsupp.sum W₀ (lp.single 2)))) =\n ↑W₀", "state_before": "ι : Type u_1\n𝕜 : Type u_2\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_4\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nF : ι → Submodule 𝕜 E\nhV : IsHilbertSum 𝕜 G V\nW₀ : Π₀ (i : ι), G i\n⊢ ↑(↑(linearIsometryEquiv hV) (Dfinsupp.sum W₀ fun i => ↑(V i))) = ↑W₀", "tactic": "rw [← hV.linearIsometryEquiv_symm_apply_dfinsupp_sum_single]" }, { "state_after": "ι : Type u_1\n𝕜 : Type u_2\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_4\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nF : ι → Submodule 𝕜 E\nhV : IsHilbertSum 𝕜 G V\nW₀ : Π₀ (i : ι), G i\n⊢ ↑(Dfinsupp.sum W₀ (lp.single 2)) = ↑W₀", "state_before": "ι : Type u_1\n𝕜 : Type u_2\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_4\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nF : ι → Submodule 𝕜 E\nhV : IsHilbertSum 𝕜 G V\nW₀ : Π₀ (i : ι), G i\n⊢ ↑(↑(linearIsometryEquiv hV) (↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) (Dfinsupp.sum W₀ (lp.single 2)))) =\n ↑W₀", "tactic": "rw [LinearIsometryEquiv.apply_symm_apply]" }, { "state_after": "case h\nι : Type u_1\n𝕜 : Type u_2\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_4\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nF : ι → Submodule 𝕜 E\nhV : IsHilbertSum 𝕜 G V\nW₀ : Π₀ (i : ι), G i\ni : ι\n⊢ ↑(Dfinsupp.sum W₀ (lp.single 2)) i = ↑W₀ i", "state_before": "ι : Type u_1\n𝕜 : Type u_2\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_4\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nF : ι → Submodule 𝕜 E\nhV : IsHilbertSum 𝕜 G V\nW₀ : Π₀ (i : ι), G i\n⊢ ↑(Dfinsupp.sum W₀ (lp.single 2)) = ↑W₀", "tactic": "ext i" }, { "state_after": "no goals", "state_before": "case h\nι : Type u_1\n𝕜 : Type u_2\ninst✝⁴ : IsROrC 𝕜\nE : Type u_3\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_4\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nF : ι → Submodule 𝕜 E\nhV : IsHilbertSum 𝕜 G V\nW₀ : Π₀ (i : ι), G i\ni : ι\n⊢ ↑(Dfinsupp.sum W₀ (lp.single 2)) i = ↑W₀ i", "tactic": "simp (config := { contextual := true }) [Dfinsupp.sum, lp.single_apply]" } ]
[ 377, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 371, 11 ]
Mathlib/Data/Real/Irrational.lean
Irrational.add_int
[]
[ 243, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 242, 1 ]
Mathlib/Topology/ContinuousFunction/Weierstrass.lean
continuousMap_mem_polynomialFunctions_closure
[ { "state_after": "a b : ℝ\nf : C(↑(Set.Icc a b), ℝ)\n⊢ f ∈ ⊤", "state_before": "a b : ℝ\nf : C(↑(Set.Icc a b), ℝ)\n⊢ f ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc a b))", "tactic": "rw [polynomialFunctions_closure_eq_top _ _]" }, { "state_after": "no goals", "state_before": "a b : ℝ\nf : C(↑(Set.Icc a b), ℝ)\n⊢ f ∈ ⊤", "tactic": "simp" } ]
[ 96, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/Order/Hom/Basic.lean
OrderHomClass.mono
[]
[ 160, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 11 ]
Mathlib/Analysis/SpecialFunctions/ExpDeriv.lean
Complex.hasStrictDerivAt_exp
[]
[ 76, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Order/GaloisConnection.lean
GaloisInsertion.l_inf_u
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\nκ : ι → Sort ?u.39919\na✝ a₁ a₂ : α\nb✝ b₁ b₂ : β\nl : α → β\nu : β → α\ninst✝¹ : SemilatticeInf α\ninst✝ : SemilatticeInf β\ngi : GaloisInsertion l u\na b : β\n⊢ l (u (a ⊓ b)) = a ⊓ b", "tactic": "simp only [gi.l_u_eq]" } ]
[ 560, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 556, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
AffineIndependent.comp_embedding
[ { "state_after": "no goals", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\n⊢ AffineIndependent k (p ∘ ↑f)", "tactic": "classical\n intro fs w hw hs i0 hi0\n let fs' := fs.map f\n let w' i := if h : ∃ i2, f i2 = i then w h.choose else 0\n have hw' : ∀ i2 : ι2, w' (f i2) = w i2 := by\n intro i2\n have h : ∃ i : ι2, f i = f i2 := ⟨i2, rfl⟩\n have hs : h.choose = i2 := f.injective h.choose_spec\n simp_rw [dif_pos h, hs]\n have hw's : (∑ i in fs', w' i) = 0 := by\n rw [← hw, Finset.sum_map]\n simp [hw']\n have hs' : fs'.weightedVSub p w' = (0 : V) := by\n rw [← hs, Finset.weightedVSub_map]\n congr with i\n simp_all only [comp_apply, EmbeddingLike.apply_eq_iff_eq, exists_eq, dite_true]\n rw [← ha fs' w' hw's hs' (f i0) ((Finset.mem_map' _).2 hi0), hw']" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\n⊢ w i0 = 0", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\n⊢ AffineIndependent k (p ∘ ↑f)", "tactic": "intro fs w hw hs i0 hi0" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\n⊢ w i0 = 0", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\n⊢ w i0 = 0", "tactic": "let fs' := fs.map f" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\n⊢ w i0 = 0", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\n⊢ w i0 = 0", "tactic": "let w' i := if h : ∃ i2, f i2 = i then w h.choose else 0" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\n⊢ w i0 = 0", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\n⊢ w i0 = 0", "tactic": "have hw' : ∀ i2 : ι2, w' (f i2) = w i2 := by\n intro i2\n have h : ∃ i : ι2, f i = f i2 := ⟨i2, rfl⟩\n have hs : h.choose = i2 := f.injective h.choose_spec\n simp_rw [dif_pos h, hs]" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\n⊢ w i0 = 0", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\n⊢ w i0 = 0", "tactic": "have hw's : (∑ i in fs', w' i) = 0 := by\n rw [← hw, Finset.sum_map]\n simp [hw']" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\nhs' : ↑(Finset.weightedVSub fs' p) w' = 0\n⊢ w i0 = 0", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\n⊢ w i0 = 0", "tactic": "have hs' : fs'.weightedVSub p w' = (0 : V) := by\n rw [← hs, Finset.weightedVSub_map]\n congr with i\n simp_all only [comp_apply, EmbeddingLike.apply_eq_iff_eq, exists_eq, dite_true]" }, { "state_after": "no goals", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\nhs' : ↑(Finset.weightedVSub fs' p) w' = 0\n⊢ w i0 = 0", "tactic": "rw [← ha fs' w' hw's hs' (f i0) ((Finset.mem_map' _).2 hi0), hw']" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\ni2 : ι2\n⊢ w' (↑f i2) = w i2", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\n⊢ ∀ (i2 : ι2), w' (↑f i2) = w i2", "tactic": "intro i2" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\ni2 : ι2\nh : ∃ i, ↑f i = ↑f i2\n⊢ w' (↑f i2) = w i2", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\ni2 : ι2\n⊢ w' (↑f i2) = w i2", "tactic": "have h : ∃ i : ι2, f i = f i2 := ⟨i2, rfl⟩" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs✝ : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\ni2 : ι2\nh : ∃ i, ↑f i = ↑f i2\nhs : Exists.choose h = i2\n⊢ w' (↑f i2) = w i2", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\ni2 : ι2\nh : ∃ i, ↑f i = ↑f i2\n⊢ w' (↑f i2) = w i2", "tactic": "have hs : h.choose = i2 := f.injective h.choose_spec" }, { "state_after": "no goals", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs✝ : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\ni2 : ι2\nh : ∃ i, ↑f i = ↑f i2\nhs : Exists.choose h = i2\n⊢ w' (↑f i2) = w i2", "tactic": "simp_rw [dif_pos h, hs]" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\n⊢ ∑ x in fs, w' (↑f x) = ∑ i in fs, w i", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\n⊢ ∑ i in fs', w' i = 0", "tactic": "rw [← hw, Finset.sum_map]" }, { "state_after": "no goals", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\n⊢ ∑ x in fs, w' (↑f x) = ∑ i in fs, w i", "tactic": "simp [hw']" }, { "state_after": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\n⊢ ↑(Finset.weightedVSub fs (p ∘ ↑f)) (w' ∘ ↑f) = ↑(Finset.weightedVSub fs (p ∘ ↑f)) w", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\n⊢ ↑(Finset.weightedVSub fs' p) w' = 0", "tactic": "rw [← hs, Finset.weightedVSub_map]" }, { "state_after": "case h.e_6.h.h\nk : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\ni : ι2\n⊢ (w' ∘ ↑f) i = w i", "state_before": "k : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\n⊢ ↑(Finset.weightedVSub fs (p ∘ ↑f)) (w' ∘ ↑f) = ↑(Finset.weightedVSub fs (p ∘ ↑f)) w", "tactic": "congr with i" }, { "state_after": "no goals", "state_before": "case h.e_6.h.h\nk : Type u_3\nV : Type u_4\nP : Type u_5\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_2\nι2 : Type u_1\nf : ι2 ↪ ι\np : ι → P\nha : AffineIndependent k p\nfs : Finset ι2\nw : ι2 → k\nhw : ∑ i in fs, w i = 0\nhs : ↑(Finset.weightedVSub fs (p ∘ ↑f)) w = 0\ni0 : ι2\nhi0 : i0 ∈ fs\nfs' : Finset ι := Finset.map f fs\nw' : ι → k := fun i => if h : ∃ i2, ↑f i2 = i then w (Exists.choose h) else 0\nhw' : ∀ (i2 : ι2), w' (↑f i2) = w i2\nhw's : ∑ i in fs', w' i = 0\ni : ι2\n⊢ (w' ∘ ↑f) i = w i", "tactic": "simp_all only [comp_apply, EmbeddingLike.apply_eq_iff_eq, exists_eq, dite_true]" } ]
[ 309, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/Data/Rat/Defs.lean
Rat.eq_iff_mul_eq_mul
[ { "state_after": "a b c p q : ℚ\n⊢ p.num /. ↑p.den = q.num /. ↑q.den ↔ p.num * ↑q.den = q.num * ↑p.den", "state_before": "a b c p q : ℚ\n⊢ p = q ↔ p.num * ↑q.den = q.num * ↑p.den", "tactic": "conv =>\n lhs\n rw [← @num_den p, ← @num_den q]" }, { "state_after": "case z₂\na b c p q : ℚ\n⊢ ¬q.den = 0", "state_before": "case z₂\na b c p q : ℚ\n⊢ ↑q.den ≠ 0", "tactic": "rw [← Nat.cast_zero, Ne, Int.ofNat_inj]" }, { "state_after": "no goals", "state_before": "case z₂\na b c p q : ℚ\n⊢ ¬q.den = 0", "tactic": "apply den_nz" } ]
[ 393, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 387, 1 ]
Mathlib/Topology/Constructions.lean
nhds_toMul
[]
[ 136, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.mulIndicator_inv
[]
[ 529, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 527, 1 ]
Mathlib/CategoryTheory/Preadditive/Mat.lean
CategoryTheory.Mat_.add_apply
[]
[ 175, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 174, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.copy_nil
[ { "state_after": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu' : V\n⊢ Walk.copy nil (_ : u' = u') (_ : u' = u') = nil", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu u' : V\nhu : u = u'\n⊢ Walk.copy nil hu hu = nil", "tactic": "subst_vars" }, { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu' : V\n⊢ Walk.copy nil (_ : u' = u') (_ : u' = u') = nil", "tactic": "rfl" } ]
[ 152, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/Init/Data/Nat/Bitwise.lean
Nat.bitwise'_bit
[ { "state_after": "f : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit a m)\n (bit b n) =\n bit (f a b)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m n)", "state_before": "f : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\n⊢ bitwise' f (bit a m) (bit b n) = bit (f a b) (bitwise' f m n)", "tactic": "unfold bitwise'" }, { "state_after": "case h\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif f true false then bit a m else 0\n\ncase h\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\n⊢ (binaryRec (bif f true false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) =\n fun n => bif f false true then n else 0", "state_before": "f : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit a m)\n (bit b n) =\n bit (f a b)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m n)", "tactic": "rw [binaryRec_eq, binaryRec_eq]" }, { "state_after": "case h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif false then bit a m else 0\n\ncase h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0", "state_before": "case h\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif f true false then bit a m else 0", "tactic": "induction' ftf : f true false" }, { "state_after": "case h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ bit false\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif false then bit a m else 0\n\ncase h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0", "state_before": "case h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif false then bit a m else 0\n\ncase h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0", "tactic": "rw [show f a false = false by cases a <;> assumption]" }, { "state_after": "case h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =\n 0\n\ncase h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0", "state_before": "case h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ bit false\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif false then bit a m else 0\n\ncase h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0", "tactic": "apply @congr_arg _ _ _ 0 (bit false)" }, { "state_after": "case h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0\n\ncase h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =\n 0", "state_before": "case h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =\n 0\n\ncase h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0", "tactic": "swap" }, { "state_after": "case h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit a\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0\n\ncase h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =\n 0", "state_before": "case h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit (f a false)\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0\n\ncase h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =\n 0", "tactic": "rw [show f a false = a by cases a <;> assumption]" }, { "state_after": "case h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =\n m\n\ncase h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =\n 0", "state_before": "case h.true\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ bit a\n (binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =\n bif true then bit a m else 0\n\ncase h.false\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ binaryRec (fun n => bif f false true then n else 0)\n (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =\n 0", "tactic": "apply congr_arg (bit a)" }, { "state_after": "no goals", "state_before": "f : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\n⊢ f a false = false", "tactic": "cases a <;> assumption" }, { "state_after": "no goals", "state_before": "f : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = true\n⊢ f a false = a", "tactic": "cases a <;> assumption" }, { "state_after": "no goals", "state_before": "case h.false\nf : Bool → Bool → Bool\nh : f false false = false\na✝ : Bool\nm✝ : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\na : Bool\nm : ℕ\n⊢ (bif false then bit a m else 0) = 0", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case h.false.h\nf : Bool → Bool → Bool\nh : f false false = false\na✝ : Bool\nm✝ : ℕ\nb : Bool\nn : ℕ\nx✝ : Bool\nftf✝ : f true false = x✝\nftf : f true false = false\na : Bool\nm : ℕ\n⊢ (binaryRec (bif false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) =\n fun n => bif f false true then n else 0", "tactic": "rw [← bitwise'_bit_aux h, ftf]" }, { "state_after": "no goals", "state_before": "case h\nf : Bool → Bool → Bool\nh : f false false = false\na : Bool\nm : ℕ\nb : Bool\nn : ℕ\n⊢ (binaryRec (bif f true false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) =\n fun n => bif f false true then n else 0", "tactic": "exact bitwise'_bit_aux h" } ]
[ 443, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 427, 1 ]
Mathlib/Data/List/FinRange.lean
List.finRange_succ_eq_map
[ { "state_after": "case a\nα : Type u\nn : ℕ\n⊢ map Fin.val (finRange (Nat.succ n)) = map Fin.val (0 :: map Fin.succ (finRange n))", "state_before": "α : Type u\nn : ℕ\n⊢ finRange (Nat.succ n) = 0 :: map Fin.succ (finRange n)", "tactic": "apply map_injective_iff.mpr Fin.val_injective" }, { "state_after": "case a\nα : Type u\nn : ℕ\n⊢ 0 :: map (Nat.succ ∘ Fin.val) (finRange n) = 0 :: map (Fin.val ∘ Fin.succ) (finRange n)", "state_before": "case a\nα : Type u\nn : ℕ\n⊢ map Fin.val (finRange (Nat.succ n)) = map Fin.val (0 :: map Fin.succ (finRange n))", "tactic": "rw [map_cons, map_coe_finRange, range_succ_eq_map, Fin.val_zero, ← map_coe_finRange, map_map,\n map_map]" }, { "state_after": "no goals", "state_before": "case a\nα : Type u\nn : ℕ\n⊢ 0 :: map (Nat.succ ∘ Fin.val) (finRange n) = 0 :: map (Fin.val ∘ Fin.succ) (finRange n)", "tactic": "simp only [Function.comp, Fin.val_succ]" } ]
[ 37, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 33, 1 ]
Mathlib/LinearAlgebra/Matrix/Transvection.lean
Matrix.TransvectionStruct.inv_mul
[ { "state_after": "case mk\nn : Type u_1\np : Type ?u.32998\nR : Type u₂\n𝕜 : Type ?u.33003\ninst✝⁴ : Field 𝕜\ninst✝³ : DecidableEq n\ninst✝² : DecidableEq p\ninst✝¹ : CommRing R\ni j : n\ninst✝ : Fintype n\ni✝ j✝ : n\nt_hij : i✝ ≠ j✝\nc✝ : R\n⊢ toMatrix (TransvectionStruct.inv { i := i✝, j := j✝, hij := t_hij, c := c✝ }) ⬝\n toMatrix { i := i✝, j := j✝, hij := t_hij, c := c✝ } =\n 1", "state_before": "n : Type u_1\np : Type ?u.32998\nR : Type u₂\n𝕜 : Type ?u.33003\ninst✝⁴ : Field 𝕜\ninst✝³ : DecidableEq n\ninst✝² : DecidableEq p\ninst✝¹ : CommRing R\ni j : n\ninst✝ : Fintype n\nt : TransvectionStruct n R\n⊢ toMatrix (TransvectionStruct.inv t) ⬝ toMatrix t = 1", "tactic": "rcases t with ⟨_, _, t_hij⟩" }, { "state_after": "no goals", "state_before": "case mk\nn : Type u_1\np : Type ?u.32998\nR : Type u₂\n𝕜 : Type ?u.33003\ninst✝⁴ : Field 𝕜\ninst✝³ : DecidableEq n\ninst✝² : DecidableEq p\ninst✝¹ : CommRing R\ni j : n\ninst✝ : Fintype n\ni✝ j✝ : n\nt_hij : i✝ ≠ j✝\nc✝ : R\n⊢ toMatrix (TransvectionStruct.inv { i := i✝, j := j✝, hij := t_hij, c := c✝ }) ⬝\n toMatrix { i := i✝, j := j✝, hij := t_hij, c := c✝ } =\n 1", "tactic": "simp [toMatrix, transvection_mul_transvection_same, t_hij]" } ]
[ 211, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.div_subset_div
[]
[ 638, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 637, 1 ]
Mathlib/Init/Function.lean
Function.curry_uncurry
[]
[ 144, 4 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 9 ]
Mathlib/Computability/Primrec.lean
Primrec.nat_lt
[ { "state_after": "no goals", "state_before": "α : Type ?u.137547\nβ : Type ?u.137550\nγ : Type ?u.137553\nδ : Type ?u.137556\nσ : Type ?u.137559\ninst✝⁴ : Primcodable α\ninst✝³ : Primcodable β\ninst✝² : Primcodable γ\ninst✝¹ : Primcodable δ\ninst✝ : Primcodable σ\np : ℕ × ℕ\n⊢ ¬p.snd ≤ p.fst ↔ (fun x x_1 => x < x_1) p.fst p.snd", "tactic": "simp" } ]
[ 756, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 755, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Equiv.lean
LinearIsometryEquiv.differentiableWithinAt
[]
[ 282, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 281, 11 ]
Mathlib/Algebra/BigOperators/Ring.lean
Finset.prod_sub_ordered
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nb : β\nf✝ g✝ : α → β\ninst✝² : CommSemiring β\nι : Type u_1\nR : Type u_2\ninst✝¹ : CommRing R\ninst✝ : LinearOrder ι\ns : Finset ι\nf g : ι → R\n⊢ ∏ x in s, (f x + -g x) =\n ∏ i in s, f i +\n -∑ x in s, (g x * ∏ x in filter (fun x_1 => x_1 < x) s, (f x + -g x)) * ∏ i in filter (fun j => x < j) s, f i", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nb : β\nf✝ g✝ : α → β\ninst✝² : CommSemiring β\nι : Type u_1\nR : Type u_2\ninst✝¹ : CommRing R\ninst✝ : LinearOrder ι\ns : Finset ι\nf g : ι → R\n⊢ ∏ i in s, (f i - g i) =\n ∏ i in s, f i -\n ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j - g j)) * ∏ j in filter (fun j => i < j) s, f j", "tactic": "simp only [sub_eq_add_neg]" }, { "state_after": "case h.e'_3.h.e'_6\nα : Type u\nβ : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nb : β\nf✝ g✝ : α → β\ninst✝² : CommSemiring β\nι : Type u_1\nR : Type u_2\ninst✝¹ : CommRing R\ninst✝ : LinearOrder ι\ns : Finset ι\nf g : ι → R\n⊢ -∑ x in s, (g x * ∏ x in filter (fun x_1 => x_1 < x) s, (f x + -g x)) * ∏ i in filter (fun j => x < j) s, f i =\n ∑ i in s, (-g i * ∏ j in filter (fun x => x < i) s, (f j + -g j)) * ∏ j in filter (fun j => i < j) s, f j", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nb : β\nf✝ g✝ : α → β\ninst✝² : CommSemiring β\nι : Type u_1\nR : Type u_2\ninst✝¹ : CommRing R\ninst✝ : LinearOrder ι\ns : Finset ι\nf g : ι → R\n⊢ ∏ x in s, (f x + -g x) =\n ∏ i in s, f i +\n -∑ x in s, (g x * ∏ x in filter (fun x_1 => x_1 < x) s, (f x + -g x)) * ∏ i in filter (fun j => x < j) s, f i", "tactic": "convert prod_add_ordered s f fun i => -g i" }, { "state_after": "no goals", "state_before": "case h.e'_3.h.e'_6\nα : Type u\nβ : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nb : β\nf✝ g✝ : α → β\ninst✝² : CommSemiring β\nι : Type u_1\nR : Type u_2\ninst✝¹ : CommRing R\ninst✝ : LinearOrder ι\ns : Finset ι\nf g : ι → R\n⊢ -∑ x in s, (g x * ∏ x in filter (fun x_1 => x_1 < x) s, (f x + -g x)) * ∏ i in filter (fun j => x < j) s, f i =\n ∑ i in s, (-g i * ∏ j in filter (fun x => x < i) s, (f j + -g j)) * ∏ j in filter (fun j => i < j) s, f j", "tactic": "simp" } ]
[ 194, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/Algebra/CovariantAndContravariant.lean
Group.covariant_iff_contravariant
[ { "state_after": "case refine_1\nM : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\nh : Covariant N N (fun x x_1 => x * x_1) r\na b c : N\nbc : r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)\n⊢ r b c\n\ncase refine_2\nM : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\nh : Contravariant N N (fun x x_1 => x * x_1) r\na b c : N\nbc : r b c\n⊢ r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)", "state_before": "M : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\n⊢ Covariant N N (fun x x_1 => x * x_1) r ↔ Contravariant N N (fun x x_1 => x * x_1) r", "tactic": "refine ⟨fun h a b c bc ↦ ?_, fun h a b c bc ↦ ?_⟩" }, { "state_after": "case refine_1\nM : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\nh : Covariant N N (fun x x_1 => x * x_1) r\na b c : N\nbc : r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)\n⊢ r (a⁻¹ * (a * b)) (a⁻¹ * (a * c))", "state_before": "case refine_1\nM : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\nh : Covariant N N (fun x x_1 => x * x_1) r\na b c : N\nbc : r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)\n⊢ r b c", "tactic": "rw [← inv_mul_cancel_left a b, ← inv_mul_cancel_left a c]" }, { "state_after": "no goals", "state_before": "case refine_1\nM : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\nh : Covariant N N (fun x x_1 => x * x_1) r\na b c : N\nbc : r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)\n⊢ r (a⁻¹ * (a * b)) (a⁻¹ * (a * c))", "tactic": "exact h a⁻¹ bc" }, { "state_after": "case refine_2\nM : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\nh : Contravariant N N (fun x x_1 => x * x_1) r\na b c : N\nbc : r (a⁻¹ * (a * b)) (a⁻¹ * (a * c))\n⊢ r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)", "state_before": "case refine_2\nM : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\nh : Contravariant N N (fun x x_1 => x * x_1) r\na b c : N\nbc : r b c\n⊢ r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)", "tactic": "rw [← inv_mul_cancel_left a b, ← inv_mul_cancel_left a c] at bc" }, { "state_after": "no goals", "state_before": "case refine_2\nM : Type ?u.747\nN : Type u_1\nμ : M → N → N\nr : N → N → Prop\ninst✝¹ : CovariantClass M N μ r\ninst✝ : Group N\nh : Contravariant N N (fun x x_1 => x * x_1) r\na b c : N\nbc : r (a⁻¹ * (a * b)) (a⁻¹ * (a * c))\n⊢ r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c)", "tactic": "exact h a⁻¹ bc" } ]
[ 164, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/CategoryTheory/Limits/IsLimit.lean
CategoryTheory.Limits.IsColimit.uniq_cocone_morphism
[ { "state_after": "J : Type u₁\ninst✝² : Category J\nK : Type u₂\ninst✝¹ : Category K\nC : Type u₃\ninst✝ : Category C\nF : J ⥤ C\ns t : Cocone F\nh : IsColimit t\nf f' g : t ⟶ s\n⊢ g = descCoconeMorphism h s", "state_before": "J : Type u₁\ninst✝² : Category J\nK : Type u₂\ninst✝¹ : Category K\nC : Type u₃\ninst✝ : Category C\nF : J ⥤ C\ns t : Cocone F\nh : IsColimit t\nf f' : t ⟶ s\n⊢ ∀ {g : t ⟶ s}, g = descCoconeMorphism h s", "tactic": "intro g" }, { "state_after": "case w\nJ : Type u₁\ninst : Category J\nK : Type u₂\ninst_1 : Category K\nC : Type u₃\ninst_2 : Category C\nF : J ⥤ C\ns t : Cocone F\nh : IsColimit t\nf f' g : t ⟶ s\n⊢ g.Hom = desc h s", "state_before": "J : Type u₁\ninst✝² : Category J\nK : Type u₂\ninst✝¹ : Category K\nC : Type u₃\ninst✝ : Category C\nF : J ⥤ C\ns t : Cocone F\nh : IsColimit t\nf f' g : t ⟶ s\n⊢ g = descCoconeMorphism h s", "tactic": "aesop_cat_nonterminal" }, { "state_after": "no goals", "state_before": "case w\nJ : Type u₁\ninst : Category J\nK : Type u₂\ninst_1 : Category K\nC : Type u₃\ninst_2 : Category C\nF : J ⥤ C\ns t : Cocone F\nh : IsColimit t\nf f' g : t ⟶ s\n⊢ g.Hom = desc h s", "tactic": "exact h.uniq _ _ g.w" } ]
[ 612, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 609, 1 ]
Mathlib/Data/Polynomial/Expand.lean
Polynomial.expand_mul
[]
[ 77, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 76, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.coe_add
[]
[ 88, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Data/Set/Function.lean
Set.MapsTo.val_restrict_apply
[]
[ 353, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 352, 1 ]
Mathlib/SetTheory/Ordinal/FixedPoint.lean
Ordinal.nfpFamily_fp
[ { "state_after": "ι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\n⊢ f i (sup (List.foldr f a)) = sup (List.foldr f a)", "state_before": "ι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\n⊢ f i (nfpFamily f a) = nfpFamily f a", "tactic": "unfold nfpFamily" }, { "state_after": "ι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\n⊢ sup (f i ∘ List.foldr f a) = sup (List.foldr f a)", "state_before": "ι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\n⊢ f i (sup (List.foldr f a)) = sup (List.foldr f a)", "tactic": "rw [@IsNormal.sup.{u, v, v} _ H _ _ ⟨[]⟩]" }, { "state_after": "case a\nι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\nl : List ι\n⊢ (f i ∘ List.foldr f a) l ≤ sup (List.foldr f a)\n\ncase a\nι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\nl : List ι\n⊢ List.foldr f a l ≤ sup (f i ∘ List.foldr f a)", "state_before": "ι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\n⊢ sup (f i ∘ List.foldr f a) = sup (List.foldr f a)", "tactic": "apply le_antisymm <;> refine' Ordinal.sup_le fun l => _" }, { "state_after": "no goals", "state_before": "case a\nι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\nl : List ι\n⊢ (f i ∘ List.foldr f a) l ≤ sup (List.foldr f a)", "tactic": "exact le_sup _ (i::l)" }, { "state_after": "no goals", "state_before": "case a\nι : Type u\nf : ι → Ordinal → Ordinal\ni : ι\nH : IsNormal (f i)\na : Ordinal\nl : List ι\n⊢ List.foldr f a l ≤ sup (f i ∘ List.foldr f a)", "tactic": "exact (H.self_le _).trans (le_sup _ _)" } ]
[ 128, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/Data/Vector3.lean
Vector3.append_nil
[]
[ 164, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/Data/PFunctor/Univariate/M.lean
PFunctor.M.ext'
[ { "state_after": "case mk\nF : PFunctor\ny : M F\napprox✝ : (n : ℕ) → CofixA F n\nconsistent✝ : AllAgree approx✝\nH : ∀ (i : ℕ), MIntl.approx { approx := approx✝, consistent := consistent✝ } i = MIntl.approx y i\n⊢ { approx := approx✝, consistent := consistent✝ } = y", "state_before": "F : PFunctor\nx y : M F\nH : ∀ (i : ℕ), MIntl.approx x i = MIntl.approx y i\n⊢ x = y", "tactic": "cases x" }, { "state_after": "case mk.mk\nF : PFunctor\napprox✝¹ : (n : ℕ) → CofixA F n\nconsistent✝¹ : AllAgree approx✝¹\napprox✝ : (n : ℕ) → CofixA F n\nconsistent✝ : AllAgree approx✝\nH :\n ∀ (i : ℕ),\n MIntl.approx { approx := approx✝¹, consistent := consistent✝¹ } i =\n MIntl.approx { approx := approx✝, consistent := consistent✝ } i\n⊢ { approx := approx✝¹, consistent := consistent✝¹ } = { approx := approx✝, consistent := consistent✝ }", "state_before": "case mk\nF : PFunctor\ny : M F\napprox✝ : (n : ℕ) → CofixA F n\nconsistent✝ : AllAgree approx✝\nH : ∀ (i : ℕ), MIntl.approx { approx := approx✝, consistent := consistent✝ } i = MIntl.approx y i\n⊢ { approx := approx✝, consistent := consistent✝ } = y", "tactic": "cases y" }, { "state_after": "case mk.mk.e_approx.h\nF : PFunctor\napprox✝¹ : (n : ℕ) → CofixA F n\nconsistent✝¹ : AllAgree approx✝¹\napprox✝ : (n : ℕ) → CofixA F n\nconsistent✝ : AllAgree approx✝\nH :\n ∀ (i : ℕ),\n MIntl.approx { approx := approx✝¹, consistent := consistent✝¹ } i =\n MIntl.approx { approx := approx✝, consistent := consistent✝ } i\nn : ℕ\n⊢ approx✝¹ n = approx✝ n", "state_before": "case mk.mk\nF : PFunctor\napprox✝¹ : (n : ℕ) → CofixA F n\nconsistent✝¹ : AllAgree approx✝¹\napprox✝ : (n : ℕ) → CofixA F n\nconsistent✝ : AllAgree approx✝\nH :\n ∀ (i : ℕ),\n MIntl.approx { approx := approx✝¹, consistent := consistent✝¹ } i =\n MIntl.approx { approx := approx✝, consistent := consistent✝ } i\n⊢ { approx := approx✝¹, consistent := consistent✝¹ } = { approx := approx✝, consistent := consistent✝ }", "tactic": "congr with n" }, { "state_after": "no goals", "state_before": "case mk.mk.e_approx.h\nF : PFunctor\napprox✝¹ : (n : ℕ) → CofixA F n\nconsistent✝¹ : AllAgree approx✝¹\napprox✝ : (n : ℕ) → CofixA F n\nconsistent✝ : AllAgree approx✝\nH :\n ∀ (i : ℕ),\n MIntl.approx { approx := approx✝¹, consistent := consistent✝¹ } i =\n MIntl.approx { approx := approx✝, consistent := consistent✝ } i\nn : ℕ\n⊢ approx✝¹ n = approx✝ n", "tactic": "apply H" } ]
[ 225, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.lf_of_le_of_lf
[ { "state_after": "x y z : PGame\nh₁ : x ≤ y\nh₂ : ¬z ≤ y\n⊢ ¬z ≤ x", "state_before": "x y z : PGame\nh₁ : x ≤ y\nh₂ : y ⧏ z\n⊢ x ⧏ z", "tactic": "rw [← PGame.not_le] at h₂⊢" }, { "state_after": "no goals", "state_before": "x y z : PGame\nh₁ : x ≤ y\nh₂ : ¬z ≤ y\n⊢ ¬z ≤ x", "tactic": "exact fun h₃ => h₂ (h₃.trans h₁)" } ]
[ 560, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 558, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.blsub_id
[]
[ 1917, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1916, 1 ]
Mathlib/Data/Polynomial/Div.lean
Polynomial.rootMultiplicity_eq_zero_iff
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np✝ q p : R[X]\nx : R\n⊢ rootMultiplicity x p = 0 ↔ IsRoot p x → p = 0", "tactic": "simp only [rootMultiplicity_eq_multiplicity, dite_eq_left_iff, PartENat.get_eq_iff_eq_coe,\n Nat.cast_zero, multiplicity.multiplicity_eq_zero, dvd_iff_isRoot, not_imp_not]" } ]
[ 565, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 562, 1 ]
Mathlib/Algebra/Group/Commute.lean
Commute.inv_left_iff
[]
[ 374, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 373, 1 ]