File size: 9,940 Bytes
2694f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46e285
e711cb9
c46e285
2694f0b
 
 
c46e285
 
2694f0b
 
 
 
 
 
 
c46e285
 
 
 
 
 
 
 
 
 
2694f0b
 
 
 
 
 
04a4b45
2b76a5e
37c54bb
8daa8d8
2d5fb27
d8c0b8e
5fa6646
1298ca4
8bf3cfd
bff3f46
4886c76
47eeb2f
e438ff8
c7990ba
9ac5d0b
58485d9
9dae573
db101fa
5cb9739
ceea488
89b5b7d
718ca3e
3a14d80
e711cb9
 
953d12c
ed6cd9b
249adc0
e1cd6ff
5fce53c
2c5b97d
c8b6552
4a614d9
08dc525
7590f24
2f7551f
6178f4e
116cb61
bf5d2ea
e4303d9
de27b76
a0adde7
8bbd62e
9121e80
ae9abf4
64586d6
d525a29
9acc1e4
5764bc9
ec24729
636e226
e9ad6f1
3f11eb8
ebd5c6c
44e6be9
32f6a0e
e630e6e
3f28054
2245184
ccd0331
19cab2e
4e20af9
849a3a2
76b4ee7
721081c
e1e0196
a93dd8f
 
3dd904d
f556b54
7322059
ba1d23d
c3a1e60
66feeba
62aebdb
ea0c971
be07e0e
faee754
c289df3
1e180a8
ea22be0
7cd5c1a
a8fc40d
717a439
15f450a
65bc3e9
1cbfe66
f078e84
b249f4c
d5ae76d
1695a19
6f191de
7b6b773
fb234b5
3a379ac
c96dfce
f47515a
7b3c64b
b2c79fa
74fac74
a6d5d3c
fc4e979
43689b9
657b658
5864043
7f10b47
768c3f2
0b610e2
c46e285
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 Reddit Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>


## Dataset Description

- **Repository:** tensorshield/reddit_dataset_171
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5HKgmVccSRzRxEvq3tca8cuAgfZZe9DvhhvbsWhJvb72yRsZ

### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:

- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single Reddit post or comment with the following fields:


### Data Fields

- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{tensorshield2025datauniversereddit_dataset_171,
        title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
        author={tensorshield},
        year={2025},
        url={https://huggingface.co/datasets/tensorshield/reddit_dataset_171},
        }
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 742919
- **Date Range:** 2025-03-23T00:00:00Z to 2025-03-24T00:00:00Z
- **Last Updated:** 2025-03-31T01:46:30Z

### Data Distribution

- Posts: 12.60%
- Comments: 87.40%

### Top 10 Subreddits

For full statistics, please refer to the `stats.json` file in the repository.

| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/AskReddit | 16105 | 2.17% |
| 2 | r/CollegeBasketball | 15833 | 2.13% |
| 3 | r/AITAH | 9815 | 1.32% |
| 4 | r/soccer | 7620 | 1.03% |
| 5 | r/NASCAR | 5487 | 0.74% |
| 6 | r/mildlyinfuriating | 4958 | 0.67% |
| 7 | r/moviecritic | 3758 | 0.51% |
| 8 | r/politics | 3492 | 0.47% |
| 9 | r/RoastMe | 3475 | 0.47% |
| 10 | r/Advice | 3375 | 0.45% |


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-03-30T18:20:29Z | 1850 | 1850 |
| 2025-03-30T18:21:21Z | 1663 | 3513 |
| 2025-03-30T18:22:23Z | 1850 | 5363 |
| 2025-03-30T18:23:20Z | 1869 | 7232 |
| 2025-03-30T18:24:28Z | 1802 | 9034 |
| 2025-03-30T18:25:22Z | 1519 | 10553 |
| 2025-03-30T18:26:23Z | 1720 | 12273 |
| 2025-03-30T18:27:22Z | 1727 | 14000 |
| 2025-03-30T18:28:29Z | 1627 | 15627 |
| 2025-03-30T18:29:21Z | 1761 | 17388 |
| 2025-03-30T18:30:21Z | 1674 | 19062 |
| 2025-03-30T18:31:46Z | 1728 | 20790 |
| 2025-03-30T18:32:35Z | 1688 | 22478 |
| 2025-03-30T18:33:24Z | 1761 | 24239 |
| 2025-03-30T18:34:21Z | 1706 | 25945 |
| 2025-03-30T18:35:23Z | 1679 | 27624 |
| 2025-03-30T18:36:22Z | 1737 | 29361 |
| 2025-03-30T18:37:27Z | 1970 | 31331 |
| 2025-03-30T18:38:27Z | 1576 | 32907 |
| 2025-03-30T18:39:19Z | 1617 | 34524 |
| 2025-03-30T18:40:21Z | 1606 | 36130 |
| 2025-03-30T18:41:26Z | 1699 | 37829 |
| 2025-03-30T18:42:20Z | 1616 | 39445 |
| 2025-03-30T18:43:22Z | 1747 | 41192 |
| 2025-03-31T00:03:38Z | 537147 | 578339 |
| 2025-03-31T00:04:02Z | 5949 | 584288 |
| 2025-03-31T00:04:27Z | 678 | 584966 |
| 2025-03-31T00:05:13Z | 1180 | 586146 |
| 2025-03-31T00:06:16Z | 1680 | 587826 |
| 2025-03-31T00:07:14Z | 1558 | 589384 |
| 2025-03-31T00:08:16Z | 1564 | 590948 |
| 2025-03-31T00:09:16Z | 1582 | 592530 |
| 2025-03-31T00:10:17Z | 1621 | 594151 |
| 2025-03-31T00:11:14Z | 1470 | 595621 |
| 2025-03-31T00:12:23Z | 1523 | 597144 |
| 2025-03-31T00:13:18Z | 1595 | 598739 |
| 2025-03-31T00:14:28Z | 1785 | 600524 |
| 2025-03-31T00:15:15Z | 1307 | 601831 |
| 2025-03-31T00:16:14Z | 1501 | 603332 |
| 2025-03-31T00:17:16Z | 1536 | 604868 |
| 2025-03-31T00:18:20Z | 1605 | 606473 |
| 2025-03-31T00:19:15Z | 1376 | 607849 |
| 2025-03-31T00:20:21Z | 1522 | 609371 |
| 2025-03-31T00:21:20Z | 1601 | 610972 |
| 2025-03-31T00:22:20Z | 1462 | 612434 |
| 2025-03-31T00:23:22Z | 1555 | 613989 |
| 2025-03-31T00:24:24Z | 1452 | 615441 |
| 2025-03-31T00:25:21Z | 1548 | 616989 |
| 2025-03-31T00:26:25Z | 1564 | 618553 |
| 2025-03-31T00:27:17Z | 1412 | 619965 |
| 2025-03-31T00:28:31Z | 1537 | 621502 |
| 2025-03-31T00:29:21Z | 1601 | 623103 |
| 2025-03-31T00:30:28Z | 1287 | 624390 |
| 2025-03-31T00:31:20Z | 1631 | 626021 |
| 2025-03-31T00:32:30Z | 1461 | 627482 |
| 2025-03-31T00:33:37Z | 1859 | 629341 |
| 2025-03-31T00:34:36Z | 1210 | 630551 |
| 2025-03-31T00:35:23Z | 1341 | 631892 |
| 2025-03-31T00:36:16Z | 1542 | 633434 |
| 2025-03-31T00:37:16Z | 1497 | 634931 |
| 2025-03-31T00:38:13Z | 1435 | 636366 |
| 2025-03-31T00:39:13Z | 1486 | 637852 |
| 2025-03-31T00:40:17Z | 1588 | 639440 |
| 2025-03-31T00:41:15Z | 1472 | 640912 |
| 2025-03-31T00:42:15Z | 1544 | 642456 |
| 2025-03-31T00:43:16Z | 1598 | 644054 |
| 2025-03-31T00:44:15Z | 1480 | 645534 |
| 2025-03-31T01:04:18Z | 32378 | 677912 |
| 2025-03-31T01:05:13Z | 1462 | 679374 |
| 2025-03-31T01:06:15Z | 1619 | 680993 |
| 2025-03-31T01:07:16Z | 1588 | 682581 |
| 2025-03-31T01:08:16Z | 1489 | 684070 |
| 2025-03-31T01:09:13Z | 1450 | 685520 |
| 2025-03-31T01:10:13Z | 1578 | 687098 |
| 2025-03-31T01:11:15Z | 1612 | 688710 |
| 2025-03-31T01:12:31Z | 1870 | 690580 |
| 2025-03-31T01:13:22Z | 1522 | 692102 |
| 2025-03-31T01:14:16Z | 1432 | 693534 |
| 2025-03-31T01:16:53Z | 4356 | 697890 |
| 2025-03-31T01:17:41Z | 1395 | 699285 |
| 2025-03-31T01:18:25Z | 1051 | 700336 |
| 2025-03-31T01:19:16Z | 1666 | 702002 |
| 2025-03-31T01:20:18Z | 1786 | 703788 |
| 2025-03-31T01:21:14Z | 1415 | 705203 |
| 2025-03-31T01:22:13Z | 1471 | 706674 |
| 2025-03-31T01:23:15Z | 1572 | 708246 |
| 2025-03-31T01:24:19Z | 1555 | 709801 |
| 2025-03-31T01:25:22Z | 1588 | 711389 |
| 2025-03-31T01:26:15Z | 1286 | 712675 |
| 2025-03-31T01:27:15Z | 1543 | 714218 |
| 2025-03-31T01:28:12Z | 1356 | 715574 |
| 2025-03-31T01:29:12Z | 1496 | 717070 |
| 2025-03-31T01:30:13Z | 1516 | 718586 |
| 2025-03-31T01:31:12Z | 1530 | 720116 |
| 2025-03-31T01:32:12Z | 1497 | 721613 |
| 2025-03-31T01:33:12Z | 1487 | 723100 |
| 2025-03-31T01:34:11Z | 1409 | 724509 |
| 2025-03-31T01:35:43Z | 1528 | 726037 |
| 2025-03-31T01:36:16Z | 1603 | 727640 |
| 2025-03-31T01:37:18Z | 1535 | 729175 |
| 2025-03-31T01:38:17Z | 1463 | 730638 |
| 2025-03-31T01:39:15Z | 1459 | 732097 |
| 2025-03-31T01:40:16Z | 1526 | 733623 |
| 2025-03-31T01:41:14Z | 1503 | 735126 |
| 2025-03-31T01:42:13Z | 1481 | 736607 |
| 2025-03-31T01:44:02Z | 2695 | 739302 |
| 2025-03-31T01:44:36Z | 859 | 740161 |
| 2025-03-31T01:45:15Z | 1027 | 741188 |
| 2025-03-31T01:46:30Z | 1731 | 742919 |