Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
extractive-qa
Languages:
code
Size:
100K - 1M
License:
Update readme
Browse files
README.md
CHANGED
|
@@ -55,14 +55,14 @@ task_ids:
|
|
| 55 |
## Dataset Description
|
| 56 |
|
| 57 |
- **Homepage:**
|
| 58 |
-
- **Repository:**
|
| 59 |
- **Paper:**
|
| 60 |
-
- **Leaderboard:**
|
| 61 |
-
- **Point of Contact:**
|
| 62 |
|
| 63 |
### Dataset Summary
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
| 66 |
|
| 67 |
### Supported Tasks and Leaderboards
|
| 68 |
|
|
@@ -70,21 +70,37 @@ task_ids:
|
|
| 70 |
|
| 71 |
### Languages
|
| 72 |
|
| 73 |
-
|
| 74 |
|
| 75 |
## Dataset Structure
|
| 76 |
|
| 77 |
### Data Instances
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
|
| 81 |
### Data Fields
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
### Data Splits
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
## Dataset Creation
|
| 90 |
|
|
|
|
| 55 |
## Dataset Description
|
| 56 |
|
| 57 |
- **Homepage:**
|
| 58 |
+
- **Repository:** [Code repo](https://github.com/adityakanade/natural-cubert/)
|
| 59 |
- **Paper:**
|
|
|
|
|
|
|
| 60 |
|
| 61 |
### Dataset Summary
|
| 62 |
|
| 63 |
+
CodeQueries allows to explore extractive question-answering methodology over code
|
| 64 |
+
by providing semantic queries as question and answer pairs over code context involving
|
| 65 |
+
complex concepts and long chains of reasoning.
|
| 66 |
|
| 67 |
### Supported Tasks and Leaderboards
|
| 68 |
|
|
|
|
| 70 |
|
| 71 |
### Languages
|
| 72 |
|
| 73 |
+
The code section have taken from `python` files.
|
| 74 |
|
| 75 |
## Dataset Structure
|
| 76 |
|
| 77 |
### Data Instances
|
| 78 |
|
| 79 |
+
All splits of all settings have same format. An example looks as follows -
|
| 80 |
+
```
|
| 81 |
+
```
|
| 82 |
|
| 83 |
### Data Fields
|
| 84 |
|
| 85 |
+
- examples
|
| 86 |
+
- query_name (query name to uniquely identify the query)
|
| 87 |
+
- context_blocks (code blocks supplied as input to the model for prediction)
|
| 88 |
+
- answer_spans (code in answer spans)
|
| 89 |
+
- supporting_fact_spans (code in supporting-fact spans)
|
| 90 |
+
- code_file_path (relative source file path w.r.t. ETH Py150 corpus)
|
| 91 |
+
- example_type (positive(1) or negative(0) example type)
|
| 92 |
+
- subtokenized_input_sequence (example subtokens)
|
| 93 |
+
- label_sequence (example subtoken labels)
|
| 94 |
|
| 95 |
### Data Splits
|
| 96 |
|
| 97 |
+
| |train |validation |test |
|
| 98 |
+
|--------------|:----:|:---------:|:---:|
|
| 99 |
+
|ideal | 9427 | 3270| 3245|
|
| 100 |
+
|prefix | - | - | 3245|
|
| 101 |
+
|sliding_window| - | - | 3245|
|
| 102 |
+
|file_ideal | - | - | 3245|
|
| 103 |
+
|twostep | - | - | 3245|
|
| 104 |
|
| 105 |
## Dataset Creation
|
| 106 |
|