index
int64
repo_name
string
branch_name
string
path
string
content
string
import_graph
string
36
Yuliashka/Snake-Game
refs/heads/main
/food.py
from turtle import Turtle import random # we want this Food class to inherit from the Turtle class, so it will have all the capapibilities from # the turtle class, but also some specific things that we want class Food(Turtle): # creating initializer for this class def __init__(self): # we inherit things from the super class: super().__init__() # below we are using methods from Turtle class: self.shape("circle") self.penup() # normal sise is 20x20, we want to stretch the length and the width for 0.5 so we have 10x10 self.shapesize(stretch_len=0.5, stretch_wid=0.5) self.color("blue") self.speed("fastest") # call the method refresh so the food goes in random location self.refresh() def refresh(self): # our screen is 600x600 # we want to place our food from -280 to 280 in coordinates: random_x = random.randint(-280, 280) random_y = random.randint(-280, 280) # telling our food to go to random_y and random_x: self.goto(random_x, random_y) # All this methods will happen as soon as we create a new object # This food object we initialize in main.py
{"/main.py": ["/snake.py", "/food.py", "/scoreboard.py"]}
37
Yuliashka/Snake-Game
refs/heads/main
/snake.py
from turtle import Turtle STARTING_POSITIONS = [(0, 0), (-20, 0), (-40, 0)] MOVE_DISTANCE = 20 UP = 90 DOWN = 270 RIGHT = 0 LEFT = 180 class Snake: # The code here is going to determine what should happen when we initialize a new snake object def __init__(self): # below we create a new attribute for our class self.segments = [] # We create a snake: self.create_snake() self.head = self.segments[0] # CREATING SNAKE (2 functions) def create_snake(self): for position in STARTING_POSITIONS: # we are calling the function and passing there the position that we are looping through self.add_segment(position) def add_segment(self, position): new_segment = Turtle("square") new_segment.color("white") new_segment.penup() new_segment.goto(position) self.segments.append(new_segment) # Creating a snake extend function def extend(self): # we are using the list of segments and counting from the end of list to get the last one segment of the snake # after we are going to hold segment's position using a method of Turtle class # then we add the new_segment to the same position as the last segment self.add_segment(self.segments[-1].position()) # Creating another method for snake class def move(self): for seg_num in range(len(self.segments)-1, 0, -1): new_x = self.segments[seg_num - 1].xcor() new_y = self.segments[seg_num - 1].ycor() self.segments[seg_num].goto(new_x, new_y) self.head.forward(MOVE_DISTANCE) def up(self): # if the current heading is pointed down it can't move up # because the snake can't go backword if self.head.heading() != DOWN: self.head.setheading(UP) def down(self): if self.head.heading() != UP: self.head.setheading(DOWN) def left(self): if self.head.heading() != RIGHT: self.head.setheading(LEFT) def right(self): if self.head.heading() != LEFT: self.head.setheading(RIGHT)
{"/main.py": ["/snake.py", "/food.py", "/scoreboard.py"]}
38
Yuliashka/Snake-Game
refs/heads/main
/main.py
from turtle import Screen import time from snake import Snake from food import Food from scoreboard import Score # SETTING UP THE SCREEN: screen = Screen() screen.setup(width=600, height=600) screen.bgcolor("black") screen.title("My Snake Game") # to turn off the screen tracer screen.tracer(0) # CREATING A SNAKE OBJECT: snake = Snake() # CREATING A FOOD OBJECT: food = Food() # CREATING A SCORE OBJECT: score = Score() # CREATING A KEY CONTROL: screen.listen() # these methods snake.up ,,, we have in a snake class (up = 90, down = 270, left = 180, right = 0) screen.onkey(key="Up", fun=snake.up) screen.onkey(key="Down", fun=snake.down) screen.onkey(key="Left", fun=snake.left) screen.onkey(key="Right", fun=snake.right) game_is_on = True while game_is_on: # while the game is on the screen is going to be updated every 0.1 second # It is saying delay for 0.1 sec and then update: screen.update() time.sleep(0.1) # every time the screen refreshes we get the snake to move forwards by one step snake.move() # DETECT COLLISION WITH THE FOOD # if the snake head is within 15 px of the food or closer they have collided if snake.head.distance(food) < 15: food.refresh() snake.extend() print("nom nom nom") # when the snake collide with the food we increase the score: score.increase_score() # # DETECT COLLISION WITH THE TAIL METHOD 1: # # we can loop through our list of segments in the snake # for segment in snake.segments: # # if head has distance from any segment in segments list less than 10 px - that a collision # # if the head collides with any segment in the tail: trigger GAME OVER # # the first segment is the head so we should exclude it from the list of segments # if segment == snake.head: # pass # elif snake.head.distance(segment) < 10: # game_is_on = False # score.game_over() # DETECT COLLISION WITH THE TAIL METHOD 2 SLICING: # we can loop through our list of segments in the snake using slicing method of python # we are taking all positions inside the list without the first head segment for segment in snake.segments[1:]: # if head has distance from any segment in segments list less than 10 px - that a collision # if the head collides with any segment in the tail: trigger GAME OVER if snake.head.distance(segment) < 10: game_is_on = False score.game_over() # DETECT COLLISION WITH THE WALL if snake.head.xcor() >280 or snake.head.xcor() < -280 or snake.head.ycor() > 280 or snake.head.ycor() < -280: score.game_over() game_is_on = False screen.exitonclick()
{"/main.py": ["/snake.py", "/food.py", "/scoreboard.py"]}
39
Yuliashka/Snake-Game
refs/heads/main
/scoreboard.py
from turtle import Turtle ALIGMENT = "center" FONT = ("Arial", 18, "normal") class Score(Turtle): def __init__(self): super().__init__() self.score = 0 self.color("white") self.penup() self.goto(0, 270) self.write(f"Current score: {self.score}", align="center", font=("Arial", 18, "normal")) self.hideturtle() self.update_score() def update_score(self): self.write(f"Current score: {self.score}", align="center", font=("Arial", 18, "normal")) def game_over(self): self.goto(0, 0) self.write("GAME OVER", align=ALIGMENT, font=FONT) def increase_score(self): self.score += 1 # to clear the previous score before we update: self.clear() self.update_score()
{"/main.py": ["/snake.py", "/food.py", "/scoreboard.py"]}
46
marcin-mulawa/Water-Sort-Puzzle-Bot
refs/heads/main
/loading_phone.py
import numpy as np import cv2 import imutils picture = 'puzzle.jpg' def load_transform_img(picture): image = cv2.imread(picture) image = imutils.resize(image, height=800) org = image.copy() #cv2.imshow('orginal', image) mask = np.zeros(image.shape[:2], dtype = "uint8") cv2.rectangle(mask, (15, 150), (440, 700), 255, -1) #cv2.imshow("Mask", mask) image = cv2.bitwise_and(image, image, mask = mask) #cv2.imshow("Applying the Mask", image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #cv2.imshow('image', image) blurred = cv2.GaussianBlur(image, (5, 5), 0) edged = cv2.Canny(blurred, 140, 230) #cv2.imshow("Canny", edged) (cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) print(len(cnts)) cv2.fillPoly(edged, pts =cnts, color=(255,255,255)) #cv2.imshow('filled', edged) fedged = cv2.Canny(edged, 140, 230) #cv2.imshow("fedged", fedged) (cnts, _) = cv2.findContours(fedged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) boxes = fedged.copy() #cv2.drawContours(boxes, cnts, 10, (100 , 200, 100), 2) #cv2.imshow("Boxes", boxes) image = cv2.bitwise_and(org, org, mask = edged) #cv2.imshow("Applying the Mask2", image) puzzlelist = [] for (i, c) in enumerate(cnts): (x, y, w, h) = cv2.boundingRect(c) print("Box #{}".format(i + 1)) box = org[y:y + h, x:x + w] cv2.imwrite(f'temp/box{i+1}.jpg',box) #cv2.imshow("Box", box) gray = cv2.cvtColor(box, cv2.COLOR_BGR2GRAY) #cv2.imshow("gray", gray) mask = np.zeros(gray.shape[:2], dtype = "uint8") y1,y2 = 35, 50 for i in range(4): cv2.rectangle(mask, (15, y1), (37, y2), 255, -1) y1,y2 = y1+40, y2+40 #cv2.imshow("Mask2 ", mask) masked = cv2.bitwise_and(gray, gray, mask = mask) y1,y2 = 35, 50 temp = [] for i in range(4): value = masked[y1:y2,15:37] #cv2.imshow(f'val{i}',value) max_val = max(value.flatten()) if max_val >= 45: temp.append(max_val) y1,y2 = y1+40, y2+40 puzzlelist.append(temp[::-1]) #cv2.waitKey(0) return puzzlelist[::-1] , len(cnts)
{"/auto_puzzle.py": ["/solver.py"], "/solver.py": ["/loading_pc.py"]}
47
marcin-mulawa/Water-Sort-Puzzle-Bot
refs/heads/main
/loading_pc.py
import numpy as np import cv2 import imutils picture = 'puzzle.jpg' def load_transform_img(picture): image = cv2.imread(picture) #image = imutils.resize(image, height=800) org = image.copy() #cv2.imshow('orginal', image) mask = np.zeros(image.shape[:2], dtype = "uint8") cv2.rectangle(mask, (680, 260), (1160, 910), 255, -1) #cv2.imshow("Mask", mask) image = cv2.bitwise_and(image, image, mask = mask) #cv2.imshow("Applying the Mask", image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #cv2.imshow('image', image) blurred = cv2.GaussianBlur(image, (5, 5), 0) edged = cv2.Canny(blurred, 140, 230) #cv2.imshow("Canny", edged) (cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #print(len(cnts)) cv2.fillPoly(edged, pts =cnts, color=(255,255,255)) #cv2.imshow('filled', edged) fedged = cv2.Canny(edged, 140, 230) #cv2.imshow("fedged", fedged) (cnts, _) = cv2.findContours(fedged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # boxes = fedged.copy() # cv2.drawContours(boxes, cnts, 10, (100 , 200, 100), 2) # cv2.imshow("Boxes", boxes) image = cv2.bitwise_and(org, org, mask = edged) #cv2.imshow("Applying the Mask2", image) puzzlelist = [] boxes_positon = [] for (i, c) in enumerate(cnts): (x, y, w, h) = cv2.boundingRect(c) #print("Box #{}".format(i + 1)) box = org[y:y + h, x:x + w] boxes_positon.append( ( (x+x+w)/2, (y+y+h)/2 ) ) cv2.imwrite(f'temp/box{i+1}.jpg',box) #cv2.imshow("Box", box) gray = cv2.cvtColor(box, cv2.COLOR_BGR2GRAY) #cv2.imshow("gray", gray) mask = np.zeros(gray.shape[:2], dtype = "uint8") y1,y2 = 45, 60 for i in range(4): cv2.rectangle(mask, (15, y1), (37, y2), 255, -1) y1,y2 = y1+45, y2+45 #cv2.imshow("Mask2 ", mask) masked = cv2.bitwise_and(gray, gray, mask = mask) #cv2.imshow('Masked', masked) y1,y2 = 45, 60 temp = [] for i in range(4): value = masked[y1:y2,15:37] #cv2.imshow(f'val{i}',value) max_val = max(value.flatten()) if max_val >= 45: temp.append(max_val) y1,y2 = y1+45, y2+45 puzzlelist.append(temp[::-1]) #cv2.waitKey(0) print(f'Pozycja początkowa: {puzzlelist[::-1]}\n') print(f'Pozycje boksow: {boxes_positon[::-1]}\n') return puzzlelist[::-1], boxes_positon[::-1], len(cnts) if __name__ == '__main__': answer, boxes_positon[::-1], boxes = load_transform_img('level/screen.jpg') print(answer)
{"/auto_puzzle.py": ["/solver.py"], "/solver.py": ["/loading_pc.py"]}
48
marcin-mulawa/Water-Sort-Puzzle-Bot
refs/heads/main
/auto_puzzle.py
import pyautogui as pya import solver import time import glob import os import numpy as np import cv2 import shutil path = os.getcwd() path1 = path + r'/temp' path2 = path +r'/level' try: shutil.rmtree(path1) except: pass try: os.mkdir('temp') except: pass try: os.mkdir('level') except: pass bluestacks = pya.locateCenterOnScreen('static/bluestacks.jpg', confidence=.9) print(bluestacks) pya.click(bluestacks) time.sleep(3) full = pya.locateCenterOnScreen('static/full.jpg', confidence=.8) pya.click(full) time.sleep(15) mojeGry = pya.locateCenterOnScreen('static/mojegry.jpg', confidence=.8) print(mojeGry) if mojeGry: pya.click(mojeGry) time.sleep(2) game = pya.locateCenterOnScreen('static/watersort.jpg', confidence=.5) print(game) if game: pya.click(game) time.sleep(6) record = pya.locateCenterOnScreen('static/record.jpg', confidence=.8) for m in range(4): pya.click(record) time.sleep(4.5) for k in range(10): screenshoot = pya.screenshot() screenshoot = cv2.cvtColor(np.array(screenshoot), cv2.COLOR_RGB2BGR) cv2.imwrite("level/screen.jpg", screenshoot) moves, boxes_position = solver.game_loop("level/screen.jpg") print(f'Steps to solve level: {len(moves)}') print(moves) for i,j in moves: pya.click(boxes_position[i]) time.sleep(0.3) pya.click(boxes_position[j]) pya.sleep(2.5) next_level = pya.locateCenterOnScreen('static/next.jpg', confidence=.7) pya.click(next_level) time.sleep(3) x_location = pya.locateCenterOnScreen('static/x.jpg', confidence=.7) if x_location: pya.click(x_location) time.sleep(2) x_location = pya.locateCenterOnScreen('static/x.jpg', confidence=.7) if x_location: pya.click(x_location) time.sleep(2) pya.click(record) time.sleep(2)
{"/auto_puzzle.py": ["/solver.py"], "/solver.py": ["/loading_pc.py"]}
49
marcin-mulawa/Water-Sort-Puzzle-Bot
refs/heads/main
/solver.py
from collections import deque import random import copy import sys import loading_pc import os def move(new_list, from_, to): temp = new_list[from_].pop() for _i in range(0,4): if len(new_list[from_])>0 and abs(int(temp) - int(new_list[from_][-1]))<3 and len(new_list[to])<3: temp = new_list[from_].pop() new_list[to].append(temp) new_list[to].append(temp) return new_list def possible_moves(table, boxes): pos=[] for i in range(0, boxes): for j in range(0, boxes): pos.append((i,j)) possible = [] for from_, to in pos: if (len(table[from_])>=1 and len(table[to])<4 and to != from_ and (len(table[to]) == 0 or (abs(int(table[from_][-1]) - int(table[to][-1]))<3)) and not (len(table[from_])==4 and len(set(table[from_]))==1) and not (len(set(table[from_]))==1 and len(table[to]) ==0)): possible.append((from_,to)) return possible def check_win(table): temp = [] not_full =[] for i in table: temp.append(len(set(i))) if len(i)<4: not_full.append(i) if len(not_full)>2: return False for i in temp: if i>1: return False print(table) return True def game_loop(agent, picture): table, boxes_position, boxes = loading_pc.load_transform_img(picture) print(len(boxes_position)) answer = agent(table, boxes) return answer, boxes_position def random_agent(table, boxes): k=5 l=0 while True: print(l) table_copy = copy.deepcopy(table) if l%1000 == 0: k+=1 correct_moves = [] for i in range(boxes*k): pmove = possible_moves(table_copy, boxes) if len(pmove) == 0: win = check_win(table_copy) if win: return correct_moves else: break x, y = random.choice(pmove) table_copy = move(table_copy, x, y) correct_moves.append((x,y)) l+=1 if __name__ == '__main__': answer, boxes_position = game_loop(random_agent, 'level/screen.jpg') print('answer', answer)
{"/auto_puzzle.py": ["/solver.py"], "/solver.py": ["/loading_pc.py"]}
54
TheDinner22/lightning-sim
refs/heads/main
/lib/board.py
# represent the "board" in code # dependencies import random class Board: def __init__(self, width=10): self.width = width self.height = width * 2 self.WALL_CHANCE = .25 self.FLOOR_CHANCE = .15 # create the grid self.create_random_grid() def create_random_grid(self): # reset old grid self.grid = [] # generate cells for new grid for i in range(self.width * self.height): # is the cell at the left, right, top, or bottom? is_left = True if i % self.width == 0 else False is_right = True if i % self.width == self.width-1 else False is_top = True if i < self.width else False is_bottom = True if i > (self.width * self.height - self.width) else False # create the cell cell = { "left" : is_left, "right" : is_right, "roof" : is_top, "floor" : is_bottom, "ID" : i } # append to grid self.grid.append(cell) # randomly generate walls total = self.width * self.height horizontal_amount = int(total * self.FLOOR_CHANCE) verticle_amount = int(total * self.WALL_CHANCE) # generate the walls for _i in range(verticle_amount): random_index = random.randrange(0, total) adding_num = -1 if random_index == total - 1 else 1 first = "right" if adding_num == 1 else "left" second = "right" if first == "left" else "left" self.grid[random_index][first] = True self.grid[random_index + adding_num][second] = True # generate the floors for _i in range(horizontal_amount): random_index = random.randrange(0, total) adding_num = self.width * -1 if random_index > (total - self.width) else self.width first = "floor" if adding_num == self.width else "roof" second = "floor" if first == "roof" else "roof" self.grid[random_index][first] = True self.grid[random_index + adding_num - 1][second] = True def can_move_from(self, cell_index): # TODO this works but its a lot of repeated code. Can it be made better? # can you move left can_move_left = False is_left = True if cell_index % self.width == 0 else False if not is_left and self.grid[cell_index]["left"] == False: left_cell = self.grid[cell_index - 1] is_wall_left = True if left_cell["right"] == True else False can_move_left = True if not is_wall_left else False # can you move right can_move_right = False is_right = True if cell_index % self.width == self.width-1 else False if not is_right and self.grid[cell_index]["right"] == False: right_cell = self.grid[cell_index + 1] is_wall_right = True if right_cell["left"] == True else False can_move_right = True if not is_wall_right else False # can you move up can_move_up = False is_top = True if cell_index < self.width else False if not is_top and self.grid[cell_index]["roof"] == False: top_cell = self.grid[cell_index - self.width] is_wall_top = True if top_cell["floor"] == True else False can_move_up = True if not is_wall_top else False # can you move down can_move_down = False is_bottom = True if cell_index > (self.width * self.height - self.width) else False if not is_bottom and self.grid[cell_index]["floor"] == False: bottom_cell = self.grid[cell_index + self.width] is_wall_bottom = True if bottom_cell["roof"] == True else False can_move_down = True if not is_wall_bottom else False # return the results return can_move_left, can_move_right, can_move_up, can_move_down def BFS(self): """breadth first search to find the quickest way to the bottom""" start_i = random.randrange(0,self.width) paths = [ [start_i] ] solved = False dead_ends = [] while not solved: for path in paths: # find all possibles moves from path if len(dead_ends) >= len(paths) or len(paths) > 10000: # TODO this solution sucks return False, False # NOTE order is left right up down if path[-1] >= (self.width * self.height - self.width): solved = True return paths, paths.index(path) possible_moves = self.can_move_from(path[-1]) if True in possible_moves: move_order = [-1, 1, (self.width) * -1, self.width] first_append_flag = False origonal_path = path.copy() for i in range(4): possible_move = possible_moves[i] if possible_move: move = move_order[i] next_index = origonal_path[-1] + move if not next_index in origonal_path: if not first_append_flag: path.append(next_index) first_append_flag = True else: new_path = origonal_path.copy() new_path.append(next_index) paths.append(new_path) if not first_append_flag: dead_ends.append(paths.index(path)) else: dead_ends.append(paths.index(path)) def pretty_print_BFS(self, path): for i in range(self.width * self.height): cell = self.grid[i] in_path = True if cell["ID"] in path else False number_str = str(i) if len(number_str) == 1: number_str += " " elif len(number_str) == 2: number_str += " " end_str = "\n" if i % self.width == self.width-1 else " " if in_path: print('\033[92m' + number_str + '\033[0m', end=end_str) else: print(number_str, end=end_str) print(path) if __name__ == "__main__": b = Board(10) paths, index = b.BFS() if paths and index: b.pretty_print_BFS(paths[index]) else: print('ljfdsakfdl') # can_move_left, can_move_right, can_move_up, can_move_down = b.can_move_from(0) # print("can_move_left ", can_move_left) # print("can_move_right ", can_move_right) # print("can_move_up ", can_move_up) # print("can_move_down ", can_move_down)
{"/main.py": ["/lib/board.py", "/lib/window.py"]}
55
TheDinner22/lightning-sim
refs/heads/main
/lib/window.py
# use pygame to show the board on a window # dependencies import pygame, random class Window: def __init__(self, board): # init py game pygame.init() # width height self.WIDTH = 600 self.HEIGHT = 600 # diffenet display modes self.display_one = False self.display_all = False # place holder self.solution = [] self.display_all_c = 0 # the board to display on the window self.board = board # define the dimensions of the cells of the board self.cell_width = self.WIDTH // self.board.width # define the left padding for the grid total_width = self.cell_width * self.board.width self.left_padding = (self.WIDTH - total_width) // 2 # colors self.COLORS = { "BLACK" : (255, 255, 255), "GREY" : (230, 230, 230), "BLUE" : (0, 0, 255), "RED" : (255, 0, 0), "YELLOW" : (212, 175, 55) } def create_random_color(self): return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) def create_window(self): # define window self.WIN = pygame.display.set_mode( (self.WIDTH, self.HEIGHT) ) # name window pygame.display.set_caption("LIGHT NING") # logo/icon for window logo = pygame.image.load("images/logo.png") pygame.display.set_icon(logo) def get_BFS(self): solved = False while not solved: self.board.create_random_grid() paths, index = self.board.BFS() if paths != False and index != False: self.solution = paths[index] solved = True self.paths = paths self.solution_i = index def draw_grid_solution(self): fflag = True for i in range(self.board.width * self.board.height): if not i in self.solution: continue # might not work col_num = i % self.board.width row_num = i // self.board.width x_pos = self.left_padding + (col_num * self.cell_width) y_pos = row_num * self.cell_width # define rect r = pygame.Rect(x_pos, y_pos, self.cell_width, self.cell_width) # draw the rectangle pygame.draw.rect(self.WIN, self.COLORS["YELLOW"], r) def draw_BFS(self): if self.display_all_c >= len(self.paths): self.display_all_c = 0 # generate a color for each path path_colors = [] for path in self.paths: path_colors.append(self.create_random_color()) path_colors[-1] = (0, 0 ,0) temp = self.paths.pop(self.display_all_c) self.paths.append(temp) for path in self.paths: for i in path: # might not work col_num = i % self.board.width row_num = i // self.board.width x_pos = self.left_padding + (col_num * self.cell_width) y_pos = row_num * self.cell_width # define rect r = pygame.Rect(x_pos, y_pos, self.cell_width, self.cell_width) # draw the rectangle pygame.draw.rect(self.WIN, path_colors[self.paths.index(path)], r) self.display_all_c += 1 def draw_window(self): self.WIN.fill(self.COLORS["GREY"]) if self.display_one: self.draw_grid_solution() elif self.display_all: self.draw_BFS() pygame.display.update() def main(self): # create window self.create_window() self.running = True while self.running: for event in pygame.event.get(): if event.type == pygame.QUIT: self.running = False elif event.type == pygame.KEYDOWN: if event.key == pygame.K_0: self.get_BFS() elif event.key == pygame.K_1: # toggle display one self.display_one = not self.display_one if self.display_one: self.display_all = False elif event.key == pygame.K_2: # toggle display all self.display_all = not self.display_all if self.display_all: self.display_all_c = 0 self.display_one = False self.draw_window() if __name__ == "__main__": win = Window() win.main()
{"/main.py": ["/lib/board.py", "/lib/window.py"]}
56
TheDinner22/lightning-sim
refs/heads/main
/main.py
# this could and will be better i just needed to make it here as a # proof of concept but it will be online and better later import os, sys BASE_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # adds project dir to places it looks for the modules sys.path.append(BASE_PATH) from lib.board import Board from lib.window import Window b = Board() win = Window(b) win.main()
{"/main.py": ["/lib/board.py", "/lib/window.py"]}
79
igoryuha/wct
refs/heads/master
/eval.py
import torch from models import NormalisedVGG, Decoder from utils import load_image, preprocess, deprocess, extract_image_names from ops import style_decorator, wct import argparse import os parser = argparse.ArgumentParser(description='WCT') parser.add_argument('--content-path', type=str, help='path to the content image') parser.add_argument('--style-path', type=str, help='path to the style image') parser.add_argument('--content-dir', type=str, help='path to the content image folder') parser.add_argument('--style-dir', type=str, help='path to the style image folder') parser.add_argument('--style-decorator', type=int, default=1) parser.add_argument('--kernel-size', type=int, default=12) parser.add_argument('--stride', type=int, default=1) parser.add_argument('--alpha', type=float, default=0.8) parser.add_argument('--ss-alpha', type=float, default=0.6) parser.add_argument('--synthesis', type=int, default=0, help='0-transfer, 1-synthesis') parser.add_argument('--encoder-path', type=str, default='encoder/vgg_normalised_conv5_1.pth') parser.add_argument('--decoders-dir', type=str, default='decoders') parser.add_argument('--save-dir', type=str, default='./results') parser.add_argument('--save-name', type=str, default='result', help='save name for single output image') parser.add_argument('--save-ext', type=str, default='jpg', help='The extension name of the output image') parser.add_argument('--content-size', type=int, default=768, help='New (minimum) size for the content image') parser.add_argument('--style-size', type=int, default=768, help='New (minimum) size for the style image') parser.add_argument('--gpu', type=int, default=0, help='ID of the GPU to use; for CPU mode set --gpu = -1') args = parser.parse_args() assert args.content_path is not None or args.content_dir is not None, \ 'Either --content-path or --content-dir should be given.' assert args.style_path is not None or args.style_dir is not None, \ 'Either --style-path or --style-dir should be given.' device = torch.device('cuda:%s' % args.gpu if torch.cuda.is_available() and args.gpu != -1 else 'cpu') encoder = NormalisedVGG(pretrained_path=args.encoder_path).to(device) d5 = Decoder('relu5_1', pretrained_path=os.path.join(args.decoders_dir, 'd5.pth')).to(device) d4 = Decoder('relu4_1', pretrained_path=os.path.join(args.decoders_dir, 'd4.pth')).to(device) d3 = Decoder('relu3_1', pretrained_path=os.path.join(args.decoders_dir, 'd3.pth')).to(device) d2 = Decoder('relu2_1', pretrained_path=os.path.join(args.decoders_dir, 'd2.pth')).to(device) d1 = Decoder('relu1_1', pretrained_path=os.path.join(args.decoders_dir, 'd1.pth')).to(device) def style_transfer(content, style): if args.style_decorator: relu5_1_cf = encoder(content, 'relu5_1') relu5_1_sf = encoder(style, 'relu5_1') relu5_1_scf = style_decorator(relu5_1_cf, relu5_1_sf, args.kernel_size, args.stride, args.ss_alpha) relu5_1_recons = d5(relu5_1_scf) else: relu5_1_cf = encoder(content, 'relu5_1') relu5_1_sf = encoder(style, 'relu5_1') relu5_1_scf = wct(relu5_1_cf, relu5_1_sf, args.alpha) relu5_1_recons = d5(relu5_1_scf) relu4_1_cf = encoder(relu5_1_recons, 'relu4_1') relu4_1_sf = encoder(style, 'relu4_1') relu4_1_scf = wct(relu4_1_cf, relu4_1_sf, args.alpha) relu4_1_recons = d4(relu4_1_scf) relu3_1_cf = encoder(relu4_1_recons, 'relu3_1') relu3_1_sf = encoder(style, 'relu3_1') relu3_1_scf = wct(relu3_1_cf, relu3_1_sf, args.alpha) relu3_1_recons = d3(relu3_1_scf) relu2_1_cf = encoder(relu3_1_recons, 'relu2_1') relu2_1_sf = encoder(style, 'relu2_1') relu2_1_scf = wct(relu2_1_cf, relu2_1_sf, args.alpha) relu2_1_recons = d2(relu2_1_scf) relu1_1_cf = encoder(relu2_1_recons, 'relu1_1') relu1_1_sf = encoder(style, 'relu1_1') relu1_1_scf = wct(relu1_1_cf, relu1_1_sf, args.alpha) relu1_1_recons = d1(relu1_1_scf) return relu1_1_recons if not os.path.exists(args.save_dir): print('Creating save folder at', args.save_dir) os.mkdir(args.save_dir) content_paths = [] style_paths = [] if args.content_dir: # use a batch of content images content_paths = extract_image_names(args.content_dir) else: # use a single content image content_paths.append(args.content_path) if args.style_dir: # use a batch of style images style_paths = extract_image_names(args.style_dir) else: # use a single style image style_paths.append(args.style_path) print('Number content images:', len(content_paths)) print('Number style images:', len(style_paths)) with torch.no_grad(): for i in range(len(content_paths)): content = load_image(content_paths[i]) content = preprocess(content, args.content_size) content = content.to(device) for j in range(len(style_paths)): style = load_image(style_paths[j]) style = preprocess(style, args.style_size) style = style.to(device) if args.synthesis == 0: output = style_transfer(content, style) output = deprocess(output) if len(content_paths) == 1 and len(style_paths) == 1: # used a single content and style image save_path = '%s/%s.%s' % (args.save_dir, args.save_name, args.save_ext) else: # used a batch of content and style images save_path = '%s/%s_%s.%s' % (args.save_dir, i, j, args.save_ext) print('Output image saved at:', save_path) output.save(save_path) else: content = torch.rand(*content.shape).uniform_(0, 1).to(device) for iteration in range(3): output = style_transfer(content, style) content = output output = deprocess(output) if len(content_paths) == 1 and len(style_paths) == 1: # used a single content and style image save_path = '%s/%s_%s.%s' % (args.save_dir, args.save_name, iteration, args.save_ext) else: # used a batch of content and style images save_path = '%s/%s_%s_%s.%s' % (args.save_dir, i, j, iteration, args.save_ext) print('Output image saved at:', save_path) output.save(save_path)
{"/eval.py": ["/models.py", "/utils.py", "/ops.py"], "/utils.py": ["/ops.py"]}
80
igoryuha/wct
refs/heads/master
/models.py
import torch import torch.nn as nn import copy normalised_vgg_relu5_1 = nn.Sequential( nn.Conv2d(3, 3, 1), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(3, 64, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 64, 3), nn.ReLU(), nn.MaxPool2d(2, ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 128, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 128, 3), nn.ReLU(), nn.MaxPool2d(2, ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.MaxPool2d(2, ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.MaxPool2d(2, ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU() ) class NormalisedVGG(nn.Module): def __init__(self, pretrained_path=None): super().__init__() self.net = normalised_vgg_relu5_1 if pretrained_path is not None: self.net.load_state_dict(torch.load(pretrained_path, map_location=lambda storage, loc: storage)) def forward(self, x, target): if target == 'relu1_1': return self.net[:4](x) elif target == 'relu2_1': return self.net[:11](x) elif target == 'relu3_1': return self.net[:18](x) elif target == 'relu4_1': return self.net[:31](x) elif target == 'relu5_1': return self.net(x) vgg_decoder_relu5_1 = nn.Sequential( nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.Upsample(scale_factor=2), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 256, 3), nn.ReLU(), nn.Upsample(scale_factor=2), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 128, 3), nn.ReLU(), nn.Upsample(scale_factor=2), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 128, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 64, 3), nn.ReLU(), nn.Upsample(scale_factor=2), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 64, 3), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 3, 3) ) class Decoder(nn.Module): def __init__(self, target, pretrained_path=None): super().__init__() if target == 'relu1_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-5:])) # current -2 elif target == 'relu2_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-9:])) elif target == 'relu3_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-16:])) elif target == 'relu4_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-29:])) elif target == 'relu5_1': self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children()))) if pretrained_path is not None: self.net.load_state_dict(torch.load(pretrained_path, map_location=lambda storage, loc: storage)) def forward(self, x): return self.net(x)
{"/eval.py": ["/models.py", "/utils.py", "/ops.py"], "/utils.py": ["/ops.py"]}
81
igoryuha/wct
refs/heads/master
/ops.py
import torch import torch.nn.functional as F def extract_image_patches_(image, kernel_size, strides): kh, kw = kernel_size sh, sw = strides patches = image.unfold(2, kh, sh).unfold(3, kw, sw) patches = patches.permute(0, 2, 3, 1, 4, 5) patches = patches.reshape(-1, *patches.shape[-3:]) # (patch_numbers, C, kh, kw) return patches def style_swap(c_features, s_features, kernel_size, stride=1): s_patches = extract_image_patches_(s_features, [kernel_size, kernel_size], [stride, stride]) s_patches_matrix = s_patches.reshape(s_patches.shape[0], -1) s_patch_wise_norm = torch.norm(s_patches_matrix, dim=1) s_patch_wise_norm = s_patch_wise_norm.reshape(-1, 1, 1, 1) s_patches_normalized = s_patches / (s_patch_wise_norm + 1e-8) # Computes the normalized cross-correlations. # At each spatial location, "K" is a vector of cross-correlations # between a content activation patch and all style activation patches. K = F.conv2d(c_features, s_patches_normalized, stride=stride) # Replace each vector "K" by a one-hot vector corresponding # to the best matching style activation patch. best_matching_idx = K.argmax(1, keepdim=True) one_hot = torch.zeros_like(K) one_hot.scatter_(1, best_matching_idx, 1) # At each spatial location, only the best matching style # activation patch is in the output, as the other patches # are multiplied by zero. F_ss = F.conv_transpose2d(one_hot, s_patches, stride=stride) overlap = F.conv_transpose2d(one_hot, torch.ones_like(s_patches), stride=stride) F_ss = F_ss / overlap return F_ss def relu_x_1_transform(c, s, encoder, decoder, relu_target, alpha=1): c_latent = encoder(c, relu_target) s_latent = encoder(s, relu_target) t_features = wct(c_latent, s_latent, alpha) return decoder(t_features) def relu_x_1_style_decorator_transform(c, s, encoder, decoder, relu_target, kernel_size, stride=1, alpha=1): c_latent = encoder(c, relu_target) s_latent = encoder(s, relu_target) t_features = style_decorator(c_latent, s_latent, kernel_size, stride, alpha) return decoder(t_features) def style_decorator(cf, sf, kernel_size, stride=1, alpha=1): cf_shape = cf.shape sf_shape = sf.shape b, c, h, w = cf_shape cf_vectorized = cf.reshape(c, h * w) b, c, h, w = sf.shape sf_vectorized = sf.reshape(c, h * w) # map features to normalized domain cf_whiten = whitening(cf_vectorized) sf_whiten = whitening(sf_vectorized) # in this normalized domain, we want to align # any element in cf with the nearest element in sf reassembling_f = style_swap( cf_whiten.reshape(cf_shape), sf_whiten.reshape(sf_shape), kernel_size, stride ) b, c, h, w = reassembling_f.shape reassembling_vectorized = reassembling_f.reshape(c, h*w) # reconstruct reassembling features into the # domain of the style features result = coloring(reassembling_vectorized, sf_vectorized) result = result.reshape(cf_shape) bland = alpha * result + (1 - alpha) * cf return bland def wct(cf, sf, alpha=1): cf_shape = cf.shape b, c, h, w = cf_shape cf_vectorized = cf.reshape(c, h*w) b, c, h, w = sf.shape sf_vectorized = sf.reshape(c, h*w) cf_transformed = whitening(cf_vectorized) cf_transformed = coloring(cf_transformed, sf_vectorized) cf_transformed = cf_transformed.reshape(cf_shape) bland = alpha * cf_transformed + (1 - alpha) * cf return bland def feature_decomposition(x): x_mean = x.mean(1, keepdims=True) x_center = x - x_mean x_cov = x_center.mm(x_center.t()) / (x_center.size(1) - 1) e, d, _ = torch.svd(x_cov) d = d[d > 0] e = e[:, :d.size(0)] return e, d, x_center, x_mean def whitening(x): e, d, x_center, _ = feature_decomposition(x) transform_matrix = e.mm(torch.diag(d ** -0.5)).mm(e.t()) return transform_matrix.mm(x_center) def coloring(x, y): e, d, _, y_mean = feature_decomposition(y) transform_matrix = e.mm(torch.diag(d ** 0.5)).mm(e.t()) return transform_matrix.mm(x) + y_mean
{"/eval.py": ["/models.py", "/utils.py", "/ops.py"], "/utils.py": ["/ops.py"]}
82
igoryuha/wct
refs/heads/master
/utils.py
import torch from torchvision import transforms from ops import relu_x_1_style_decorator_transform, relu_x_1_transform from PIL import Image import os def eval_transform(size): return transforms.Compose([ transforms.Resize(size), transforms.ToTensor() ]) def load_image(path): return Image.open(path).convert('RGB') def preprocess(img, size): transform = eval_transform(size) return transform(img).unsqueeze(0) def deprocess(tensor): tensor = tensor.cpu() tensor = tensor.squeeze(0) tensor = torch.clamp(tensor, 0, 1) return transforms.ToPILImage()(tensor) def extract_image_names(path): r_ = [] valid_ext = ['.jpg', '.png'] items = os.listdir(path) for item in items: item_path = os.path.join(path, item) _, ext = os.path.splitext(item_path) if ext not in valid_ext: continue r_.append(item_path) return r_
{"/eval.py": ["/models.py", "/utils.py", "/ops.py"], "/utils.py": ["/ops.py"]}
89
tattle-made/archive-telegram-bot
refs/heads/master
/tattle_helper.py
import os import json import boto3 import requests from logger import log, logError from dotenv import load_dotenv load_dotenv() s3 = boto3.client("s3",aws_access_key_id=os.environ.get('S3_ACCESS_KEY'),aws_secret_access_key=os.environ.get('S3_SECRET_ACCESS_KEY')) API_BASE_URL = "https://archive-server.tattle.co.in" # API_BASE_URL = "https://postman-echo.com/post" ARCHIVE_TOKEN = os.environ.get('ARCHIVE_TOKEN') def register_post(data): """ registers a post on archive server """ url_to_post_to = API_BASE_URL+"/api/posts" payload = json.dumps(data) headers = { 'token': ARCHIVE_TOKEN, 'Content-Type': "application/json", 'cache-control': "no-cache", } try: r = requests.post(url_to_post_to, data=payload, headers=headers) if r.status_code==200: log('STATUS CODE 200 \n'+json.dumps(r.json(), indent=2)) else: log('STATUS CODE '+str(r.status_code)+'\n '+r.text) except: log('error with API call') def upload_file(file_name, s3=s3 ,acl="public-read"): bucket_name = os.environ.get('TGM_BUCKET_NAME') #opens file, reads it, and uploads it to the S3 bucket. try: with open(file_name, 'rb') as data: s3.upload_fileobj(data,bucket_name,file_name,ExtraArgs={"ACL": acl,"ContentType": file_name.split(".")[-1]}) except: logError('ERROR_S3_UPLOAD of '+file_name) file_url = "https://s3.ap-south-1.amazonaws.com/"+bucket_name+"/"+file_name return file_url def upload_file(file_name, s3=s3 ,acl="public-read"): bucket_name = os.environ.get('TGM_BUCKET_NAME') #opens file, reads it, and uploads it to the S3 bucket. try: with open(file_name, 'rb') as data: s3.upload_fileobj(data,bucket_name,file_name,ExtraArgs={"ACL": acl,"ContentType": file_name.split(".")[-1]}) except: logError('ERROR_S3_UPLOAD of '+file_name) file_url = "https://s3.ap-south-1.amazonaws.com/"+bucket_name+"/"+file_name return file_url
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
90
tattle-made/archive-telegram-bot
refs/heads/master
/post_request.py
token = "78a6fc20-fa83-11e9-a4ad-d1866a9a3c7b" # add your token here url = "<base-api-url>/api/posts" try: payload = d payload = json.dumps(payload) headers = { 'token': token, 'Content-Type': "application/json", 'cache-control': "no-cache", } r = requests.post(url, data=payload, headers=headers) if r.ok: print ('success') else: print ('something went wrong') except: logging.exception('error in POST request') raise { "type" : "image", # can be image, text, video "data" : "", "filename": "4bf4b1cc-516b-469d-aa38-be6762d417a5", #filename you put on s3 "userId" : 169 # for telegram_bot this should be 169 }
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
91
tattle-made/archive-telegram-bot
refs/heads/master
/test.py
from tattle_helper import register_post, upload_file data = { "type" : "image", "data" : "", "filename": "asdf", "userId" : 169 } response = upload_file(file_name='denny.txt') print(response) # register_post(data)
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
92
tattle-made/archive-telegram-bot
refs/heads/master
/prototype.py
import os import sys import json import requests import telegram import logging import re from threading import Thread from telegram.ext import CommandHandler, MessageHandler, Updater, Filters, InlineQueryHandler from telegram import InlineQueryResultArticle, InputTextMessageContent from telegram.ext.dispatcher import run_async from dotenv import load_dotenv from pymongo import MongoClient from logger import log, logError from tattle_helper import upload_file # loads all environment variables load_dotenv() log('STARTING APP v1') TOKEN = os.environ.get('ACCESS_TOKEN') PORT = int(os.environ.get('PORT', '8443')) print(TOKEN) # logging.basicConfig(filename='telegram_bot_log.log',filemode='a',format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) # Calls for Database modification and reads start def insert_document(document, required_collection): return db[required_collection].insert_one(document) def find_document(query, required_collection): return db[required_collection].find_one(query) def update_document(find_query, update_query, required_collection, upsert=False): return db[required_collection].update_one(find_query, update_query, upsert) def delete_document(find_query, required_collection): return db[required_collection].delete_one(find_query) # Calls for Database modification and reads end @run_async def start(update, context): # start message context.bot.send_message(chat_id=update.effective_chat.id, text="Hey! \n\nI'm the Tattle Bot. Here are some instructions to use me:\n\n1. You can send whatever content to me that you'd like. All mediums : Text, Video, and Photos are allowed.\n2. You can tag your content using hashtags. When uploading photos or videos you can mention the tags in the caption, with text you can just tag it at the end or in the beginning(anywhere else in the text will also work).\n3. You can edit your messages after you've sent them, we'll update them in our database accordingly.\n 4. In case you miss tagging a message, you can reply to that message and insert the tags required. Only tags will be extracted, so please don't write text while replying to messages.") def determine_type(message_json): # checks what type of content is being passed, and returns the type type_of_content = '' if(message_json.text): type_of_content = 'text' elif(message_json.photo): type_of_content = 'photo' elif(message_json.video): type_of_content = 'video' elif(message_json.document): type_of_content = 'document' return type_of_content def entity_extraction(all_entities, message_content): # entity extraction, which basically extracts all the hashtags out of the message list_of_tags = [] if(bool(all_entities)): # checks if there are any entities, and if so loops over them for each_entity in all_entities: if(each_entity['type'] == 'hashtag'): # string slicing based on offset and length values tag = message_content[each_entity['offset']:( each_entity['offset']+each_entity['length'])] list_of_tags.append(tag) if(bool(list_of_tags)): # converts to set to remove duplicates return list(set(list_of_tags)) else: return None def new_tags(message_json, current_document, all_tags): # adds or replaces tags in messages that had no tags or in case of edits new_tags = all_tags update_document({'message_id': message_json.reply_to_message.message_id}, { "$set": {"reply_tags": new_tags}}, 'messages') def error_message(message_json): # standard error message context.bot.send_message(chat_id=message_json.chat.id, text="Something went wrong with registering these tags, apologies for the same.") def reply_to_messages(message_json, edit_flag): all_tags = entity_extraction(message_json.entities, message_json.text) if(all_tags is not None): # first finds the document that the reply is being done to current_document = find_document( {'message_id': message_json.reply_to_message.message_id}, 'messages') try: # add reply tags with a new key called reply_tags new_tags(message_json, current_document, all_tags) except: # or, throw an error message and log error_message() raise def edit_message(message_json, final_dict, content_type, context): tags = [] # check content type before processing the data if(content_type == 'text'): # In case of edits, we need to replace file on S3. Replacing happens automatically as long as file name is same. file_name = str(message_json.message_id) + '.txt' with open(file_name, 'w') as open_file: open_file.write(message_json['text']) upload_file(file_name) os.remove(file_name) final_dict = process_text( message_json, final_dict, message_json['text'], False) else: final_dict = process_media( message_json, final_dict, content_type, context, False) # in case message is being edited, we first find the document being edited current_document = find_document( {'message_id': message_json.message_id}, 'messages') # we check if the document had any existing tags, if so we store them before deleting the document # FLAW IN CODE : If existing tags are being edited, it doesn't reflect this way. NEED TO FIX. try: tags = current_document['tags'] except KeyError: tags = None try: reply_tags = current_document['reply_tags'] except KeyError: reply_tags = None if(reply_tags is not None): final_dict['reply_tags'] = reply_tags # add tags to final dict for new, edited document if(tags is not None): final_dict['tags'] = tags # delete the document delete_document({'message_id': message_json.message_id}, 'messages') # insert edited document insert_document(final_dict, 'messages') def process_text(message_json, final_dict, message_content, caption_flag): # check if we're processing a caption or a text message if(caption_flag): all_tags = entity_extraction( message_json['caption_entities'], message_content) else: all_tags = entity_extraction(message_json['entities'], message_content) # check if any tags are present if(all_tags is not None): final_dict['tags'] = all_tags if(bool(message_content)): # cleans out the hashtags modified_message = re.sub(r'#\w+', '', message_content) # removes all excessive spacing cleaned_message = re.sub(' +', ' ', modified_message) # changes key based on whether it is a caption or not if(caption_flag): # removing leading and trailing spaces final_dict['caption'] = cleaned_message.strip() else: final_dict['text'] = cleaned_message.strip() return final_dict # just for testing # BASE_URL = "http://archive-telegram-bot.tattle.co.in.s3.amazonaws.com/" # print("{}{}".format(BASE_URL, file_name)) def make_post_request(dict_to_post): log('***') log(dict_to_post) API_BASE_URL = "https://archive-server.tattle.co.in" access_token = os.environ.get('ARCHIVE_TOKEN') url_to_post_to = API_BASE_URL+"/api/posts" payload = json.dumps(dict_to_post) headers = { 'token': access_token, 'Content-Type': "application/json", 'cache-control': "no-cache", } r = requests.post(url_to_post_to, data=payload, headers=headers) print('API response') print(r) # print(r.json()) def construct_dict(file_name, file_type): return {"type": file_type, "data": "", "filename": file_name, "userId": 169} def process_media(message_json, final_dict, content_type, context, creation_flag): # check if content type is photo, and constructs dict and file_name appropriately if(content_type == 'photo'): final_dict['photo'] = [{'file_id': each_photo.file_id, 'width': each_photo.width, 'height': each_photo.height, 'file_size': each_photo.file_size} for each_photo in message_json.photo] file_id = message_json.photo[-1].file_id file_name = str(message_json.message_id)+'.jpeg' post_request_type = 'image' # same with video as above elif(content_type == 'video'): final_dict['video'] = {'file_id': message_json.video.file_id, 'width': message_json.video.width, 'height': message_json.video.height, 'duration': message_json.video.duration, 'thumb': {'file_id': message_json.video.thumb.file_id, 'width': message_json.video.thumb.width, 'height': message_json.video.thumb.height, 'file_size': message_json.video.thumb.file_size}, 'mime_type': message_json.video.mime_type, 'file_size': message_json.video.file_size} file_id = message_json.video.file_id file_type = str(message_json.video.mime_type).split("/")[-1] file_name = str(message_json.message_id)+"."+file_type post_request_type = 'video' # process_media is only called from two places, one of which is when message is edited. Since we don't want duplicates, we set a flag to differentiate. if(creation_flag): try: new_file = context.bot.get_file(file_id) new_file.download(file_name) # downloads the file final_dict['file_name'] = file_name file_url = upload_file(file_name) # uploads to S3 final_dict['s3_url'] = file_url os.remove(file_name) # removes it from local runtime request_dict = construct_dict(file_name, post_request_type) make_post_request(request_dict) except: logging.exception( "The file_name when the error happened is: {}".format(file_name)) # process any caption or text found final_dict = process_text(message_json, final_dict, message_json.caption, True) return final_dict @run_async def storing_data(update, context): log(update) final_dict = {} # print(update) # selects just the effective_message part relevant_section = update.effective_message # some general data appended to each dict final_dict['message_id'] = relevant_section['message_id'] final_dict['date'] = relevant_section['date'] # final_dict['from'] = {'id':relevant_section.from_user.id,'type':relevant_section.chat.type,'first_name':relevant_section.from_user.first_name,'last_name':relevant_section.from_user.last_name,'username':relevant_section.from_user.username,'is_bot':relevant_section.from_user.is_bot} content_type = determine_type(relevant_section) final_dict['content_type'] = content_type # checks if the request is that of an edition if(relevant_section.edit_date): # if yes, checks if the edited message was replying to another message if(relevant_section.reply_to_message): # if yes, then deals with it by setting edit flag to True reply_to_messages(relevant_section, True) return else: # else, just edits the message normally edit_message(relevant_section, final_dict, content_type, context) return # if the message is a reply, then respond appropriately if(relevant_section.reply_to_message): # edit flag is set to false because we're just handling simple reply reply_to_messages(relevant_section, False) return if(content_type == 'text'): # creates file with message ID, then writes the text into the file and uploads it to S3 try: file_name = str(relevant_section.message_id) + '.txt' with open(file_name, 'w') as open_file: open_file.write(relevant_section['text']) file_url = upload_file(file_name) final_dict['s3_url'] = file_url os.remove(file_name) request_dict = construct_dict(file_name, content_type) r = make_post_request(request_dict) except Exception as e: logging.exception( "The file_name when the error happened is: {}".format(file_name)) logging.exception(e) # if new text message, process it and then insert it in the database final_dict = process_text( relevant_section, final_dict, relevant_section['text'], False) insert_document(final_dict, 'messages') else: final_dict = process_media( relevant_section, final_dict, content_type, context, True) insert_document(final_dict, 'messages') context.bot.send_message( chat_id=update.effective_chat.id, text='message archived') # context.bot.send_message(chat_id=update.effective_chat.id, text=update.message.text) def stop_and_restart(): """Gracefully stop the Updater and replace the current process with a new one""" updater.stop() os.execl(sys.executable, sys.executable, *sys.argv) def restart(update, context): update.message.reply_text('Bot is restarting...') Thread(target=stop_and_restart).start() try: client = MongoClient("mongodb+srv://"+os.environ.get("TGM_DB_USERNAME")+":"+os.environ.get("TGM_DB_PASSWORD") + "@tattle-data-fkpmg.mongodb.net/test?retryWrites=true&w=majority&ssl=true&ssl_cert_reqs=CERT_NONE") db = client[os.environ.get("TGM_DB_NAME")] except error_message: print('error connecting to db') print(error_message) updater = Updater(token=TOKEN, use_context=True, workers=32) dispatcher = updater.dispatcher start_handler = CommandHandler('start', start) storing_data_handler = MessageHandler(Filters.all, storing_data) restart_handler = CommandHandler( 'r', restart, filters=Filters.user(username='@thenerdyouknow')) dispatcher.add_handler(restart_handler) dispatcher.add_handler(start_handler) dispatcher.add_handler(storing_data_handler) # updater.start_webhook(listen="0.0.0.0", # port=PORT, # url_path=TOKEN) # updater.bot.set_webhook("https://services-server.tattle.co.in/" + TOKEN) updater.start_polling() updater.idle() log('STARTING SERVER v1.0')
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
93
tattle-made/archive-telegram-bot
refs/heads/master
/logger.py
from datetime import datetime def log(data): print('----', datetime.now(), '----') print(data) def logError(error): print('****', datetime.now(), '****') print(error)
{"/tattle_helper.py": ["/logger.py"], "/test.py": ["/tattle_helper.py"], "/prototype.py": ["/logger.py", "/tattle_helper.py"]}
143
shuishen112/pairwise-rnn
refs/heads/master
/main.py
import data_helper import time import datetime import os import tensorflow as tf import numpy as np import evaluation now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) timeDay = time.strftime("%Y%m%d", timeArray) print (timeStamp) def main(args): args._parse_flags() print("\nParameters:") for attr, value in sorted(args.__flags.items()): print(("{}={}".format(attr.upper(), value))) log_dir = 'log/'+ timeDay if not os.path.exists(log_dir): os.makedirs(log_dir) data_file = log_dir + '/test_' + args.data + timeStamp precision = data_file + 'precise' print('load data ...........') train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev]) print('the number of words',len(alphabet)) print('get embedding') if args.data=="quora": embedding = data_helper.get_embedding(alphabet,language="cn") else: embedding = data_helper.get_embedding(alphabet) with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model = QA_CNN_extend(max_input_left = q_max_sent_length, max_input_right = a_max_sent_length, batch_size = args.batch_size, vocab_size = len(alphabet), embedding_size = args.embedding_dim, filter_sizes = list(map(int, args.filter_sizes.split(","))), num_filters = args.num_filters, hidden_size = args.hidden_size, dropout_keep_prob = args.dropout_keep_prob, embeddings = embedding, l2_reg_lambda = args.l2_reg_lambda, trainable = args.trainable, pooling = args.pooling, conv = args.conv) model.build_graph() sess.run(tf.global_variables_initializer()) def train_step(model,sess,batch): for data in batch: feed_dict = { model.question:data[0], model.answer:data[1], model.answer_negative:data[2], model.q_mask:data[3], model.a_mask:data[4], model.a_neg_mask:data[5] } _, summary, step, loss, accuracy,score12, score13, see = sess.run( [model.train_op, model.merged,model.global_step,model.loss, model.accuracy,model.score12,model.score13, model.see], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) def predict(model,sess,batch,test): scores = [] for data in batch: feed_dict = { model.question:data[0], model.answer:data[1], model.q_mask:data[2], model.a_mask:data[3] } score = sess.run( model.score12, feed_dict) scores.extend(score) return np.array(scores[:len(test)]) for i in range(args.num_epoches): datas = data_helper.get_mini_batch(train,alphabet,args.batch_size) train_step(model,sess,datas) test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) predicted_test = predict(model,sess,test_datas,test) print(len(predicted_test)) print(len(test)) map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) print('map_mrr test',map_mrr_test)
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
144
shuishen112/pairwise-rnn
refs/heads/master
/config.py
class Singleton(object): __instance=None def __init__(self): pass def getInstance(self): if Singleton.__instance is None: # Singleton.__instance=object.__new__(cls,*args,**kwd) Singleton.__instance=self.get_test_flag() print("build FLAGS over") return Singleton.__instance def get_test_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 5e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "cnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_rnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "rnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") # flags.DEFINE_string('data','8008','data set') flags.DEFINE_string('data','trec','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',False,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_cnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 5e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "cnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_qcnn_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",300, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 0.001, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "qcnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','wiki','data set') flags.DEFINE_string('pooling','mean','max pooling or attentive pooling') flags.DEFINE_boolean('clean',True,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS def get_8008_flag(self): import tensorflow as tf flags = tf.app.flags if len(flags.FLAGS.__dict__.keys())<=2: flags.DEFINE_integer("embedding_size",200, "Dimensionality of character embedding (default: 128)") flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')") flags.DEFINE_integer("num_filters", 64, "Number of filters per filter size (default: 128)") flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)") flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)") flags.DEFINE_float("learning_rate", 1e-3, "learn rate( default: 0.0)") flags.DEFINE_integer("max_len_left", 40, "max document length of left input") flags.DEFINE_integer("max_len_right", 40, "max document length of right input") flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)") flags.DEFINE_integer("hidden_size",100,"the default hidden size") flags.DEFINE_string("model_name", "rnn", "cnn or rnn") # Training parameters flags.DEFINE_integer("batch_size", 250, "Batch Size (default: 64)") flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)") flags.DEFINE_integer("num_epoches", 1000, "Number of training epochs (default: 200)") flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)") flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)") flags.DEFINE_string('data','8008','data set') flags.DEFINE_string('pooling','max','max pooling or attentive pooling') flags.DEFINE_boolean('clean',False,'whether we clean the data') flags.DEFINE_string('conv','wide','wide conv or narrow') flags.DEFINE_integer('gpu',0,'gpu number') # Misc Parameters flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") return flags.FLAGS if __name__=="__main__": args=Singleton().get_test_flag() for attr, value in sorted(args.__flags.items()): print(("{}={}".format(attr.upper(), value)))
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
145
shuishen112/pairwise-rnn
refs/heads/master
/run.py
from tensorflow import flags import tensorflow as tf from config import Singleton import data_helper import datetime,os import models import numpy as np import evaluation import sys import logging import time now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) log_filename = "log/" +time.strftime("%Y%m%d", timeArray) program = os.path.basename('program') logger = logging.getLogger(program) if not os.path.exists(log_filename): os.makedirs(log_filename) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',datefmt='%a, %d %b %Y %H:%M:%S',filename=log_filename+'/qa.log',filemode='w') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) from data_helper import log_time_delta,getLogger logger=getLogger() args = Singleton().get_qcnn_flag() args._parse_flags() opts=dict() logger.info("\nParameters:") for attr, value in sorted(args.__flags.items()): logger.info(("{}={}".format(attr.upper(), value))) opts[attr]=value train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev],dataset=args.data ) logger.info('the number of words :%d '%len(alphabet)) if args.data=="quora" or args.data=="8008" : print("cn embedding") embedding = data_helper.get_embedding(alphabet,dim=200,language="cn",dataset=args.data ) train_data_loader = data_helper.getBatch48008 else: embedding = data_helper.get_embedding(alphabet,dim=300,dataset=args.data ) train_data_loader = data_helper.get_mini_batch opts["embeddings"] =embedding opts["vocab_size"]=len(alphabet) opts["max_input_right"]=a_max_sent_length opts["max_input_left"]=q_max_sent_length opts["filter_sizes"]=list(map(int, args.filter_sizes.split(","))) print("innitilize over") #with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): with tf.Graph().as_default(): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model=models.setup(opts) model.build_graph() saver = tf.train.Saver() # ckpt = tf.train.get_checkpoint_state("checkpoint") # if ckpt and ckpt.model_checkpoint_path: # # Restores from checkpoint # saver.restore(sess, ckpt.model_checkpoint_path) # if os.path.exists("model") : # import shutil # shutil.rmtree("model") # builder = tf.saved_model.builder.SavedModelBuilder("./model") # builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) # builder.save(True) # variable_averages = tf.train.ExponentialMovingAverage( model) # variables_to_restore = variable_averages.variables_to_restore() # saver = tf.train.Saver(variables_to_restore) # for name in variables_to_restore: # print(name) sess.run(tf.global_variables_initializer()) @log_time_delta def predict(model,sess,batch,test): scores = [] for data in batch: score = model.predict(sess,data) scores.extend(score) return np.array(scores[:len(test)]) best_p1=0 for i in range(args.num_epoches): for data in train_data_loader(train,alphabet,args.batch_size,model=model,sess=sess): # for data in data_helper.getBatch48008(train,alphabet,args.batch_size): _, summary, step, loss, accuracy,score12, score13, see = model.train(sess,data) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) logger.info("{}: step {}, loss {:g}, acc {:g} ,positive {:g},negative {:g}".format(time_str, step, loss, accuracy,np.mean(score12),np.mean(score13))) #<<<<<<< HEAD # # # if i>0 and i % 5 ==0: # test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) # # predicted_test = predict(model,sess,test_datas,test) # map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) # # logger.info('map_mrr test' +str(map_mrr_test)) # print('map_mrr test' +str(map_mrr_test)) # # test_datas = data_helper.get_mini_batch_test(dev,alphabet,args.batch_size) # predicted_test = predict(model,sess,test_datas,dev) # map_mrr_test = evaluation.evaluationBypandas(dev,predicted_test) # # logger.info('map_mrr dev' +str(map_mrr_test)) # print('map_mrr dev' +str(map_mrr_test)) # map,mrr,p1 = map_mrr_test # if p1>best_p1: # best_p1=p1 # filename= "checkpoint/"+args.data+"_"+str(p1)+".model" # save_path = saver.save(sess, filename) # # load_path = saver.restore(sess, model_path) # # import shutil # shutil.rmtree("model") # builder = tf.saved_model.builder.SavedModelBuilder("./model") # builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) # builder.save(True) # # #======= test_datas = data_helper.get_mini_batch_test(test,alphabet,args.batch_size) predicted_test = predict(model,sess,test_datas,test) map_mrr_test = evaluation.evaluationBypandas(test,predicted_test) logger.info('map_mrr test' +str(map_mrr_test)) print('epoch '+ str(i) + 'map_mrr test' +str(map_mrr_test))
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
146
shuishen112/pairwise-rnn
refs/heads/master
/models/QA_CNN_pairwise.py
#coding:utf-8 import tensorflow as tf import numpy as np from tensorflow.contrib import rnn import models.blocks as blocks # model_type :apn or qacnn class QA_CNN_extend(object): # def __init__(self,max_input_left,max_input_right,batch_size,vocab_size,embedding_size,filter_sizes,num_filters,hidden_size, # dropout_keep_prob = 1,learning_rate = 0.001,embeddings = None,l2_reg_lambda = 0.0,trainable = True,pooling = 'attentive',conv = 'narrow'): # # """ # QA_RNN model for question answering # # Args: # self.dropout_keep_prob: dropout rate # self.num_filters : number of filters # self.para : parameter list # self.extend_feature_dim : my extend feature dimension # self.max_input_left : the length of question # self.max_input_right : the length of answer # self.pooling : pooling strategy :max pooling or attentive pooling # # """ # self.dropout_keep_prob = tf.placeholder(tf.float32,name = 'dropout_keep_prob') # self.num_filters = num_filters # self.embeddings = embeddings # self.embedding_size = embedding_size # self.batch_size = batch_size # self.filter_sizes = filter_sizes # self.l2_reg_lambda = l2_reg_lambda # self.para = [] # # self.max_input_left = max_input_left # self.max_input_right = max_input_right # self.trainable = trainable # self.vocab_size = vocab_size # self.pooling = pooling # self.total_num_filter = len(self.filter_sizes) * self.num_filters # # self.conv = conv # self.pooling = 'traditional' # self.learning_rate = learning_rate # # self.hidden_size = hidden_size # # self.attention_size = 100 def __init__(self,opt): for key,value in opt.items(): self.__setattr__(key,value) self.attention_size = 100 self.pooling = 'mean' self.total_num_filter = len(self.filter_sizes) * self.num_filters self.para = [] self.dropout_keep_prob_holder = tf.placeholder(tf.float32,name = 'dropout_keep_prob') def create_placeholder(self): print(('Create placeholders')) # he length of the sentence is varied according to the batch,so the None,None self.question = tf.placeholder(tf.int32,[None,None],name = 'input_question') self.max_input_left = tf.shape(self.question)[1] self.batch_size = tf.shape(self.question)[0] self.answer = tf.placeholder(tf.int32,[None,None],name = 'input_answer') self.max_input_right = tf.shape(self.answer)[1] self.answer_negative = tf.placeholder(tf.int32,[None,None],name = 'input_right') # self.q_mask = tf.placeholder(tf.int32,[None,None],name = 'q_mask') # self.a_mask = tf.placeholder(tf.int32,[None,None],name = 'a_mask') # self.a_neg_mask = tf.placeholder(tf.int32,[None,None],name = 'a_neg_mask') def add_embeddings(self): print( 'add embeddings') if self.embeddings is not None: print( "load embedding") W = tf.Variable(np.array(self.embeddings),name = "W" ,dtype="float32",trainable = self.trainable) else: print( "random embedding") W = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0),name="W",trainable = self.trainable) self.embedding_W = W # self.overlap_W = tf.Variable(a,name="W",trainable = True) self.para.append(self.embedding_W) self.q_embedding = tf.nn.embedding_lookup(self.embedding_W,self.question) self.a_embedding = tf.nn.embedding_lookup(self.embedding_W,self.answer) self.a_neg_embedding = tf.nn.embedding_lookup(self.embedding_W,self.answer_negative) #real length self.q_len,self.q_mask = blocks.length(self.question) self.a_len,self.a_mask = blocks.length(self.answer) self.a_neg_len,self.a_neg_mask = blocks.length(self.answer_negative) def convolution(self): print( 'convolution:wide_convolution') self.kernels = [] for i,filter_size in enumerate(self.filter_sizes): with tf.name_scope('conv-max-pool-%s' % filter_size): filter_shape = [filter_size,self.embedding_size,1,self.num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev = 0.1), name="W") b = tf.Variable(tf.constant(0.0, shape=[self.num_filters]), name="b") self.kernels.append((W,b)) self.para.append(W) self.para.append(b) embeddings = [self.q_embedding,self.a_embedding,self.a_neg_embedding] self.q_cnn,self.a_cnn,self.a_neg_cnn = [self.wide_convolution(tf.expand_dims(embedding,-1)) for embedding in embeddings] #convolution def pooling_graph(self): if self.pooling == 'mean': self.q_pos_cnn = self.mean_pooling(self.q_cnn,self.q_mask) self.q_neg_cnn = self.mean_pooling(self.q_cnn,self.q_mask) self.a_pos_cnn = self.mean_pooling(self.a_cnn,self.a_mask) self.a_neg_cnn = self.mean_pooling(self.a_neg_cnn,self.a_neg_mask) elif self.pooling == 'attentive': self.q_pos_cnn,self.a_pos_cnn = self.attentive_pooling(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.attentive_pooling(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) elif self.pooling == 'position': self.q_pos_cnn,self.a_pos_cnn = self.position_attention(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.position_attention(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) elif self.pooling == 'traditional': print( self.pooling) print(self.q_cnn) self.q_pos_cnn,self.a_pos_cnn = self.traditional_attention(self.q_cnn,self.a_cnn,self.q_mask,self.a_mask) self.q_neg_cnn,self.a_neg_cnn = self.traditional_attention(self.q_cnn,self.a_neg_cnn,self.q_mask,self.a_neg_mask) def para_initial(self): # print(("---------")) # self.W_qp = tf.Variable(tf.truncated_normal(shape = [self.hidden_size * 2,1],stddev = 0.01,name = 'W_qp')) self.U = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'U')) self.W_hm = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'W_hm')) self.W_qm = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.total_num_filter],stddev = 0.01,name = 'W_qm')) self.W_ms = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,1],stddev = 0.01,name = 'W_ms')) self.M_qi = tf.Variable(tf.truncated_normal(shape = [self.total_num_filter,self.embedding_size],stddev = 0.01,name = 'M_qi')) def mean_pooling(self,conv,mask): conv = tf.squeeze(conv,2) print( tf.expand_dims(tf.cast(mask,tf.float32),-1)) # conv_mask = tf.multiply(conv,tf.expand_dims(tf.cast(mask,tf.float32),-1)) # self.see = conv_mask # print( conv_mask) return tf.reduce_mean(conv,axis = 1); def attentive_pooling(self,input_left,input_right,q_mask,a_mask): Q = tf.squeeze(input_left,axis = 2) A = tf.squeeze(input_right,axis = 2) print( Q) print( A) # Q = tf.reshape(input_left,[-1,self.max_input_left,len(self.filter_sizes) * self.num_filters],name = 'Q') # A = tf.reshape(input_right,[-1,self.max_input_right,len(self.filter_sizes) * self.num_filters],name = 'A') # G = tf.tanh(tf.matmul(tf.matmul(Q,self.U),\ # A,transpose_b = True),name = 'G') first = tf.matmul(tf.reshape(Q,[-1,len(self.filter_sizes) * self.num_filters]),self.U) second_step = tf.reshape(first,[-1,self.max_input_left,len(self.filter_sizes) * self.num_filters]) result = tf.matmul(second_step,tf.transpose(A,perm = [0,2,1])) print( second_step) print( tf.transpose(A,perm = [0,2,1])) # print( 'result',result) G = tf.tanh(result) # G = result # column-wise pooling ,row-wise pooling row_pooling = tf.reduce_max(G,1,True,name = 'row_pooling') col_pooling = tf.reduce_max(G,2,True,name = 'col_pooling') self.attention_q = tf.nn.softmax(col_pooling,1,name = 'attention_q') self.attention_q_mask = tf.multiply(self.attention_q,tf.expand_dims(tf.cast(q_mask,tf.float32),-1)) self.attention_a = tf.nn.softmax(row_pooling,name = 'attention_a') self.attention_a_mask = tf.multiply(self.attention_a,tf.expand_dims(tf.cast(a_mask,tf.float32),1)) self.see = G R_q = tf.reshape(tf.matmul(Q,self.attention_q_mask,transpose_a = 1),[-1,self.num_filters * len(self.filter_sizes)],name = 'R_q') R_a = tf.reshape(tf.matmul(self.attention_a_mask,A),[-1,self.num_filters * len(self.filter_sizes)],name = 'R_a') return R_q,R_a def traditional_attention(self,input_left,input_right,q_mask,a_mask): input_left = tf.squeeze(input_left,axis = 2) input_right = tf.squeeze(input_right,axis = 2) input_left_mask = tf.multiply(input_left, tf.expand_dims(tf.cast(q_mask,tf.float32),2)) Q = tf.reduce_mean(input_left_mask,1) a_shape = tf.shape(input_right) A = tf.reshape(input_right,[-1,self.total_num_filter]) m_t = tf.nn.tanh(tf.reshape(tf.matmul(A,self.W_hm),[-1,a_shape[1],self.total_num_filter]) + tf.expand_dims(tf.matmul(Q,self.W_qm),1)) f_attention = tf.exp(tf.reshape(tf.matmul(tf.reshape(m_t,[-1,self.total_num_filter]),self.W_ms),[-1,a_shape[1],1])) self.f_attention_mask = tf.multiply(f_attention,tf.expand_dims(tf.cast(a_mask,tf.float32),2)) self.f_attention_norm = tf.divide(self.f_attention_mask,tf.reduce_sum(self.f_attention_mask,1,keep_dims = True)) self.see = self.f_attention_norm a_attention = tf.reduce_sum(tf.multiply(input_right,self.f_attention_norm),1) return Q,a_attention def position_attention(self,input_left,input_right,q_mask,a_mask): input_left = tf.squeeze(input_left,axis = 2) input_right = tf.squeeze(input_right,axis = 2) # Q = tf.reshape(input_left,[-1,self.max_input_left,self.hidden_size*2],name = 'Q') # A = tf.reshape(input_right,[-1,self.max_input_right,self.hidden_size*2],name = 'A') Q = tf.reduce_mean(tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)),1) QU = tf.matmul(Q,self.U) QUA = tf.multiply(tf.expand_dims(QU,1),input_right) self.attention_a = tf.cast(tf.argmax(QUA,2) ,tf.float32) # q_shape = tf.shape(input_left) # Q_1 = tf.reshape(input_left,[-1,self.total_num_filter]) # QU = tf.matmul(Q_1,self.U) # QU_1 = tf.reshape(QU,[-1,q_shape[1],self.total_num_filter]) # A_1 = tf.transpose(input_right,[0,2,1]) # QUA = tf.matmul(QU_1,A_1) # QUA = tf.nn.l2_normalize(QUA,1) # G = tf.tanh(QUA) # Q = tf.reduce_mean(tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)),1) # # self.Q_mask = tf.multiply(input_left,tf.expand_dims(tf.cast(self.q_mask,tf.float32),2)) # row_pooling = tf.reduce_max(G,1,name="row_pooling") # col_pooling = tf.reduce_max(G,2,name="col_pooling") # self.attention_a = tf.nn.softmax(row_pooling,1,name = "attention_a") self.attention_a_mask = tf.multiply(self.attention_a,tf.cast(a_mask,tf.float32)) self.see = self.attention_a self.attention_a_norm = tf.divide(self.attention_a_mask,tf.reduce_sum(self.attention_a_mask,1,keep_dims =True)) self.r_a = tf.reshape(tf.matmul(tf.transpose(input_right,[0,2,1]) ,tf.expand_dims(self.attention_a_norm,2)),[-1,self.total_num_filter]) return Q ,self.r_a def create_loss(self): with tf.name_scope('score'): self.score12 = self.getCosine(self.q_pos_cnn,self.a_pos_cnn) self.score13 = self.getCosine(self.q_neg_cnn,self.a_neg_cnn) l2_loss = tf.constant(0.0) for p in self.para: l2_loss += tf.nn.l2_loss(p) with tf.name_scope("loss"): self.losses = tf.maximum(0.0, tf.subtract(0.05, tf.subtract(self.score12, self.score13))) self.loss = tf.reduce_sum(self.losses) + self.l2_reg_lambda * l2_loss tf.summary.scalar('loss', self.loss) # Accuracy with tf.name_scope("accuracy"): self.correct = tf.equal(0.0, self.losses) self.accuracy = tf.reduce_mean(tf.cast(self.correct, "float"), name="accuracy") tf.summary.scalar('accuracy', self.accuracy) def create_op(self): self.global_step = tf.Variable(0, name = "global_step", trainable = False) self.optimizer = tf.train.AdamOptimizer(self.learning_rate) self.grads_and_vars = self.optimizer.compute_gradients(self.loss) self.train_op = self.optimizer.apply_gradients(self.grads_and_vars, global_step = self.global_step) def max_pooling(self,conv,input_length): pooled = tf.nn.max_pool( conv, ksize = [1, input_length, 1, 1], strides = [1, 1, 1, 1], padding = 'VALID', name="pool") return pooled def getCosine(self,q,a): pooled_flat_1 = tf.nn.dropout(q, self.dropout_keep_prob_holder) pooled_flat_2 = tf.nn.dropout(a, self.dropout_keep_prob_holder) pooled_len_1 = tf.sqrt(tf.reduce_sum(tf.multiply(pooled_flat_1, pooled_flat_1), 1)) pooled_len_2 = tf.sqrt(tf.reduce_sum(tf.multiply(pooled_flat_2, pooled_flat_2), 1)) pooled_mul_12 = tf.reduce_sum(tf.multiply(pooled_flat_1, pooled_flat_2), 1) score = tf.div(pooled_mul_12, tf.multiply(pooled_len_1, pooled_len_2), name="scores") return score def wide_convolution(self,embedding): cnn_outputs = [] for i,filter_size in enumerate(self.filter_sizes): conv = tf.nn.conv2d( embedding, self.kernels[i][0], strides=[1, 1, self.embedding_size, 1], padding='SAME', name="conv-1" ) h = tf.nn.relu(tf.nn.bias_add(conv, self.kernels[i][1]), name="relu-1") cnn_outputs.append(h) cnn_reshaped = tf.concat(cnn_outputs,3) return cnn_reshaped def variable_summaries(self,var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def build_graph(self): self.create_placeholder() self.add_embeddings() self.para_initial() self.convolution() self.pooling_graph() self.create_loss() self.create_op() self.merged = tf.summary.merge_all() def train(self,sess,data): feed_dict = { self.question:data[0], self.answer:data[1], self.answer_negative:data[2], # self.q_mask:data[3], # self.a_mask:data[4], # self.a_neg_mask:data[5], self.dropout_keep_prob_holder:self.dropout_keep_prob } _, summary, step, loss, accuracy,score12, score13, see = sess.run( [self.train_op, self.merged,self.global_step,self.loss, self.accuracy,self.score12,self.score13, self.see], feed_dict) return _, summary, step, loss, accuracy,score12, score13, see def predict(self,sess,data): feed_dict = { self.question:data[0], self.answer:data[1], # self.q_mask:data[2], # self.a_mask:data[3], self.dropout_keep_prob_holder:1.0 } score = sess.run( self.score12, feed_dict) return score if __name__ == '__main__': cnn = QA_CNN_extend( max_input_left = 33, max_input_right = 40, batch_size = 3, vocab_size = 5000, embedding_size = 100, filter_sizes = [3,4,5], num_filters = 64, hidden_size = 100, dropout_keep_prob = 1.0, embeddings = None, l2_reg_lambda = 0.0, trainable = True, pooling = 'max', conv = 'wide') cnn.build_graph() input_x_1 = np.reshape(np.arange(3 * 33),[3,33]) input_x_2 = np.reshape(np.arange(3 * 40),[3,40]) input_x_3 = np.reshape(np.arange(3 * 40),[3,40]) q_mask = np.ones((3,33)) a_mask = np.ones((3,40)) a_neg_mask = np.ones((3,40)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) feed_dict = { cnn.question:input_x_1, cnn.answer:input_x_2, # cnn.answer_negative:input_x_3, cnn.q_mask:q_mask, cnn.a_mask:a_mask, cnn.dropout_keep_prob_holder:cnn.dropout_keep # cnn.a_neg_mask:a_neg_mask # cnn.q_pos_overlap:q_pos_embedding, # cnn.q_neg_overlap:q_neg_embedding, # cnn.a_pos_overlap:a_pos_embedding, # cnn.a_neg_overlap:a_neg_embedding, # cnn.q_position:q_position, # cnn.a_pos_position:a_pos_position, # cnn.a_neg_position:a_neg_position } question,answer,score = sess.run([cnn.question,cnn.answer,cnn.score12],feed_dict) print( question.shape,answer.shape) print( score)
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
147
shuishen112/pairwise-rnn
refs/heads/master
/models/my/nn.py
from my.general import flatten, reconstruct, add_wd, exp_mask import numpy as np import tensorflow as tf _BIAS_VARIABLE_NAME = "bias" _WEIGHTS_VARIABLE_NAME = "kernel" def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0, is_train=None):#, name_w='', name_b='' # if args is None or (nest.is_sequence(args) and not args): # raise ValueError("`args` must be specified") # if not nest.is_sequence(args): # args = [args] flat_args = [flatten(arg, 1) for arg in args]#[210,20] # if input_keep_prob < 1.0: # assert is_train is not None flat_args = [tf.nn.dropout(arg, input_keep_prob) for arg in flat_args] total_arg_size = 0#[60] shapes = [a.get_shape() for a in flat_args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) if shape[1].value is None: raise ValueError("linear expects shape[1] to be provided for shape %s, " "but saw %s" % (shape, shape[1])) else: total_arg_size += shape[1].value # print(total_arg_size) # exit() dtype = [a.dtype for a in flat_args][0] # scope = tf.get_variable_scope() with tf.variable_scope(scope) as outer_scope: weights = tf.get_variable(_WEIGHTS_VARIABLE_NAME, [total_arg_size, output_size], dtype=dtype) if len(flat_args) == 1: res = tf.matmul(flat_args[0], weights) else: res = tf.matmul(tf.concat(flat_args, 1), weights) if not bias: flat_out = res else: with tf.variable_scope(outer_scope) as inner_scope: inner_scope.set_partitioner(None) biases = tf.get_variable( _BIAS_VARIABLE_NAME, [output_size], dtype=dtype, initializer=tf.constant_initializer(bias_start, dtype=dtype)) flat_out = tf.nn.bias_add(res, biases) out = reconstruct(flat_out, args[0], 1) if squeeze: out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1]) if wd: add_wd(wd) return out def softmax(logits, mask=None, scope=None): with tf.name_scope(scope or "Softmax"): if mask is not None: logits = exp_mask(logits, mask) flat_logits = flatten(logits, 1) flat_out = tf.nn.softmax(flat_logits) out = reconstruct(flat_out, logits, 1) return out def softsel(target, logits, mask=None, scope=None): """ :param target: [ ..., J, d] dtype=float :param logits: [ ..., J], dtype=float :param mask: [ ..., J], dtype=bool :param scope: :return: [..., d], dtype=float """ with tf.name_scope(scope or "Softsel"): a = softmax(logits, mask = mask) target_rank = len(target.get_shape().as_list()) out = tf.reduce_sum(tf.expand_dims(a, -1) * target, target_rank - 2) return out def highway_layer(arg, bias, bias_start=0.0, scope=None, wd=0.0, input_keep_prob=1.0): with tf.variable_scope(scope or "highway_layer"): d = arg.get_shape()[-1] trans = linear([arg], d, bias, bias_start=bias_start, scope='trans', wd=wd, input_keep_prob=input_keep_prob) trans = tf.nn.relu(trans) gate = linear([arg], d, bias, bias_start=bias_start, scope='gate', wd=wd, input_keep_prob=input_keep_prob) gate = tf.nn.sigmoid(gate) out = gate * trans + (1 - gate) * arg return out def highway_network(arg, num_layers, bias, bias_start=0.0, scope=None, wd=0.0, input_keep_prob=1.0): with tf.variable_scope(scope or "highway_network"): prev = arg cur = None for layer_idx in range(num_layers): cur = highway_layer(prev, bias, bias_start=bias_start, scope="layer_{}".format(layer_idx), wd=wd, input_keep_prob=input_keep_prob) prev = cur return cur def conv1d(in_, filter_size, height, padding, keep_prob=1.0, scope=None): with tf.variable_scope(scope or "conv1d"): num_channels = in_.get_shape()[-1] filter_ = tf.get_variable("filter", shape=[1, height, num_channels, filter_size], dtype='float') bias = tf.get_variable("bias", shape=[filter_size], dtype='float') strides = [1, 1, 1, 1] in_ = tf.nn.dropout(in_, keep_prob) xxc = tf.nn.conv2d(in_, filter_, strides, padding) + bias # [N*M, JX, W/filter_stride, d] out = tf.reduce_max(tf.nn.relu(xxc), 2) # [-1, JX, d] return out def multi_conv1d(in_, filter_sizes, heights, padding, keep_prob=1.0, scope=None): with tf.variable_scope(scope or "multi_conv1d"): assert len(filter_sizes) == len(heights) outs = [] for filter_size, height in zip(filter_sizes, heights): if filter_size == 0: continue out = conv1d(in_, filter_size, height, padding, keep_prob=keep_prob, scope="conv1d_{}".format(height)) outs.append(out) concat_out = tf.concat(outs, axis=2) return concat_out if __name__ == '__main__': a = tf.Variable(np.random.random(size=(2,2,4))) b = tf.Variable(np.random.random(size=(2,3,4))) c = tf.tile(tf.expand_dims(a, 2), [1, 1, 3, 1]) test = flatten(c,1) out = reconstruct(test, c, 1) d = tf.tile(tf.expand_dims(b, 1), [1, 2, 1, 1]) e = linear([c,d,c*d],1,bias = False,scope = "test",) # f = softsel(d, e) with tf.Session() as sess: tf.global_variables_initializer().run() print(sess.run(test)) print(sess.run(tf.shape(out))) exit() print(sess.run(tf.shape(a))) print(sess.run(a)) print(sess.run(tf.shape(b))) print(sess.run(b)) print(sess.run(tf.shape(c))) print(sess.run(c)) print(sess.run(tf.shape(d))) print(sess.run(d)) print(sess.run(tf.shape(e))) print(sess.run(e))
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
148
shuishen112/pairwise-rnn
refs/heads/master
/models/__init__.py
from .QA_CNN_pairwise import QA_CNN_extend as CNN from .QA_RNN_pairwise import QA_RNN_extend as RNN from .QA_CNN_quantum_pairwise import QA_CNN_extend as QCNN def setup(opt): if opt["model_name"]=="cnn": model=CNN(opt) elif opt["model_name"]=="rnn": model=RNN(opt) elif opt['model_name']=='qcnn': model=QCNN(opt) else: print("no model") exit(0) return model
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
149
shuishen112/pairwise-rnn
refs/heads/master
/test.py
# -*- coding: utf-8 -*- from tensorflow import flags import tensorflow as tf from config import Singleton import data_helper import datetime import os import models import numpy as np import evaluation from data_helper import log_time_delta,getLogger logger=getLogger() args = Singleton().get_rnn_flag() #args = Singleton().get_8008_flag() args._parse_flags() opts=dict() logger.info("\nParameters:") for attr, value in sorted(args.__flags.items()): logger.info(("{}={}".format(attr.upper(), value))) opts[attr]=value train,test,dev = data_helper.load(args.data,filter = args.clean) q_max_sent_length = max(map(lambda x:len(x),train['question'].str.split())) a_max_sent_length = max(map(lambda x:len(x),train['answer'].str.split())) alphabet = data_helper.get_alphabet([train,test,dev],dataset=args.data ) logger.info('the number of words :%d '%len(alphabet)) if args.data=="quora" or args.data=="8008" : print("cn embedding") embedding = data_helper.get_embedding(alphabet,dim=200,language="cn",dataset=args.data ) train_data_loader = data_helper.getBatch48008 else: embedding = data_helper.get_embedding(alphabet,dim=300,dataset=args.data ) train_data_loader = data_helper.get_mini_batch opts["embeddings"] =embedding opts["vocab_size"]=len(alphabet) opts["max_input_right"]=a_max_sent_length opts["max_input_left"]=q_max_sent_length opts["filter_sizes"]=list(map(int, args.filter_sizes.split(","))) print("innitilize over") #with tf.Graph().as_default(), tf.device("/gpu:" + str(args.gpu)): with tf.Graph().as_default(): # with tf.device("/cpu:0"): session_conf = tf.ConfigProto() session_conf.allow_soft_placement = args.allow_soft_placement session_conf.log_device_placement = args.log_device_placement session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) model=models.setup(opts) model.build_graph() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) # fun first than print or save ckpt = tf.train.get_checkpoint_state("checkpoint") if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) print(sess.run(model.position_embedding)[0]) if os.path.exists("model") : import shutil shutil.rmtree("model") builder = tf.saved_model.builder.SavedModelBuilder("./model") builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING]) builder.save(True) variable_averages = tf.train.ExponentialMovingAverage( model) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) for name in variables_to_restore: print(name) @log_time_delta def predict(model,sess,batch,test): scores = [] for data in batch: score = model.predict(sess,data) scores.extend(score) return np.array(scores[:len(test)]) text = "怎么 提取 公积金 ?" splited_text=data_helper.encode_to_split(text,alphabet) mb_q,mb_q_mask = data_helper.prepare_data([splited_text]) mb_a,mb_a_mask = data_helper.prepare_data([splited_text]) data = (mb_q,mb_a,mb_q_mask,mb_a_mask) score = model.predict(sess,data) print(score) feed_dict = { model.question:data[0], model.answer:data[1], model.q_mask:data[2], model.a_mask:data[3], model.dropout_keep_prob_holder:1.0 } sess.run(model.position_embedding,feed_dict=feed_dict)[0]
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
150
shuishen112/pairwise-rnn
refs/heads/master
/data_helper.py
#-*- coding:utf-8 -*- import os import numpy as np import tensorflow as tf import string from collections import Counter import pandas as pd from tqdm import tqdm import random from functools import wraps import time import pickle def log_time_delta(func): @wraps(func) def _deco(*args, **kwargs): start = time.time() ret = func(*args, **kwargs) end = time.time() delta = end - start print( "%s runed %.2f seconds"% (func.__name__,delta)) return ret return _deco import tqdm from nltk.corpus import stopwords OVERLAP = 237 class Alphabet(dict): def __init__(self, start_feature_id = 1): self.fid = start_feature_id def add(self, item): idx = self.get(item, None) if idx is None: idx = self.fid self[item] = idx # self[idx] = item self.fid += 1 return idx def dump(self, fname): with open(fname, "w") as out: for k in sorted(self.keys()): out.write("{}\t{}\n".format(k, self[k])) def cut(sentence): tokens = sentence.lower().split() # tokens = [w for w in tokens if w not in stopwords.words('english')] return tokens @log_time_delta def load(dataset, filter = False): data_dir = "data/" + dataset datas = [] for data_name in ['train.txt','test.txt','dev.txt']: data_file = os.path.join(data_dir,data_name) data = pd.read_csv(data_file,header = None,sep="\t",names=["question","answer","flag"]).fillna('0') # data = pd.read_csv(data_file,header = None,sep="\t",names=["question","answer","flag"],quoting =3).fillna('0') if filter == True: datas.append(removeUnanswerdQuestion(data)) else: datas.append(data) # sub_file = os.path.join(data_dir,'submit.txt') # submit = pd.read_csv(sub_file,header = None,sep = "\t",names = ['question','answer'],quoting = 3) # datas.append(submit) return tuple(datas) @log_time_delta def removeUnanswerdQuestion(df): counter= df.groupby("question").apply(lambda group: sum(group["flag"])) questions_have_correct=counter[counter>0].index counter= df.groupby("question").apply(lambda group: sum(group["flag"]==0)) questions_have_uncorrect=counter[counter>0].index counter=df.groupby("question").apply(lambda group: len(group["flag"])) questions_multi=counter[counter>1].index return df[df["question"].isin(questions_have_correct) & df["question"].isin(questions_have_correct) & df["question"].isin(questions_have_uncorrect)].reset_index() @log_time_delta def get_alphabet(corpuses=None,dataset=""): pkl_name="temp/"+dataset+".alphabet.pkl" if os.path.exists(pkl_name): return pickle.load(open(pkl_name,"rb")) alphabet = Alphabet(start_feature_id = 0) alphabet.add('[UNK]') alphabet.add('END') count = 0 for corpus in corpuses: for texts in [corpus["question"].unique(),corpus["answer"]]: for sentence in texts: tokens = cut(sentence) for token in set(tokens): alphabet.add(token) print("alphabet size %d" % len(alphabet.keys()) ) if not os.path.exists("temp"): os.mkdir("temp") pickle.dump( alphabet,open(pkl_name,"wb")) return alphabet @log_time_delta def getSubVectorsFromDict(vectors,vocab,dim = 300): embedding = np.zeros((len(vocab),dim)) count = 1 for word in vocab: if word in vectors: count += 1 embedding[vocab[word]]= vectors[word] else: embedding[vocab[word]]= np.random.uniform(-0.5,+0.5,dim)#vectors['[UNKNOW]'] #.tolist() print( 'word in embedding',count) return embedding def encode_to_split(sentence,alphabet): indices = [] tokens = cut(sentence) seq = [alphabet[w] if w in alphabet else alphabet['[UNK]'] for w in tokens] return seq @log_time_delta def load_text_vec(alphabet,filename="",embedding_size = 100): vectors = {} with open(filename,encoding='utf-8') as f: i = 0 for line in f: i += 1 if i % 100000 == 0: print( 'epch %d' % i) items = line.strip().split(' ') if len(items) == 2: vocab_size, embedding_size= items[0],items[1] print( ( vocab_size, embedding_size)) else: word = items[0] if word in alphabet: vectors[word] = items[1:] print( 'embedding_size',embedding_size) print( 'done') print( 'words found in wor2vec embedding ',len(vectors.keys())) return vectors @log_time_delta def get_embedding(alphabet,dim = 300,language ="en",dataset=""): pkl_name="temp/"+dataset+".subembedding.pkl" if os.path.exists(pkl_name): return pickle.load(open(pkl_name,"rb")) if language=="en": fname = 'embedding/glove.6B/glove.6B.300d.txt' else: fname= "embedding/embedding.200.header_txt" embeddings = load_text_vec(alphabet,fname,embedding_size = dim) sub_embeddings = getSubVectorsFromDict(embeddings,alphabet,dim) pickle.dump( sub_embeddings,open(pkl_name,"wb")) return sub_embeddings @log_time_delta def get_mini_batch_test(df,alphabet,batch_size): q = [] a = [] pos_overlap = [] for index,row in df.iterrows(): question = encode_to_split(row["question"],alphabet) answer = encode_to_split(row["answer"],alphabet) overlap_pos = overlap_index(row['question'],row['answer']) q.append(question) a.append(answer) pos_overlap.append(overlap_pos) m = 0 n = len(q) idx_list = np.arange(m,n,batch_size) mini_batches = [] for idx in idx_list: mini_batches.append(np.arange(idx,min(idx + batch_size,n))) for mini_batch in mini_batches: mb_q = [ q[t] for t in mini_batch] mb_a = [ a[t] for t in mini_batch] mb_pos_overlap = [pos_overlap[t] for t in mini_batch] mb_q,mb_q_mask = prepare_data(mb_q) mb_a,mb_pos_overlaps = prepare_data(mb_a,mb_pos_overlap) yield(mb_q,mb_a) # calculate the overlap_index def overlap_index(question,answer,stopwords = []): ans_token = cut(answer) qset = set(cut(question)) aset = set(ans_token) a_len = len(ans_token) # q_index = np.arange(1,q_len) a_index = np.arange(1,a_len + 1) overlap = qset.intersection(aset) # for i,q in enumerate(cut(question)[:q_len]): # value = 1 # if q in overlap: # value = 2 # q_index[i] = value for i,a in enumerate(ans_token): if a in overlap: a_index[i] = OVERLAP return a_index def getBatch48008(df,alphabet,batch_size,sort_by_len = True,shuffle = False): q,a,neg_a=[],[],[] answers=df["answer"][:250] ground_truth=df.groupby("question").apply(lambda group: group[group.flag==1].index[0]%250 ).to_dict() for question in tqdm(df['question'].unique()): index= ground_truth[question] canindates = [i for i in range(250)] canindates.remove(index) a_neg_index = random.choice(canindates) seq_q = encode_to_split(question,alphabet) seq_a = encode_to_split(answers[index],alphabet) seq_neg_a = encode_to_split(answers[a_neg_index],alphabet) q.append(seq_q) a.append( seq_a) neg_a.append(seq_neg_a ) return iteration_batch(q,a,neg_a,batch_size,sort_by_len,shuffle) def iteration_batch(q,a,neg_a,batch_size,sort_by_len = True,shuffle = False): if sort_by_len: sorted_index = sorted(range(len(q)), key=lambda x: len(q[x]), reverse=True) q = [ q[i] for i in sorted_index] a = [a[i] for i in sorted_index] neg_a = [ neg_a[i] for i in sorted_index] pos_overlap = [pos_overlap[i] for i in sorted_index] neg_overlap = [neg_overlap[i] for i in sorted_index] #get batch m = 0 n = len(q) idx_list = np.arange(m,n,batch_size) if shuffle: np.random.shuffle(idx_list) mini_batches = [] for idx in idx_list: mini_batches.append(np.arange(idx,min(idx + batch_size,n))) for mini_batch in tqdm(mini_batches): mb_q = [ q[t] for t in mini_batch] mb_a = [ a[t] for t in mini_batch] mb_neg_a = [ neg_a[t] for t in mini_batch] mb_pos_overlap = [pos_overlap[t] for t in mini_batch] mb_neg_overlap = [neg_overlap[t] for t in mini_batch] mb_q,mb_q_mask = prepare_data(mb_q) mb_a,mb_pos_overlaps = prepare_data(mb_a,mb_pos_overlap) mb_neg_a,mb_neg_overlaps = prepare_data(mb_neg_a,mb_neg_overlap) # mb_a,mb_a_mask = prepare_data(mb_a,mb_pos_overlap) # mb_neg_a , mb_a_neg_mask = prepare_data(mb_neg_a) yield(mb_q,mb_a,mb_neg_a,mb_q_mask,mb_a_mask,mb_a_neg_mask) def get_mini_batch(df,alphabet,batch_size,sort_by_len = True,shuffle = False,model=None,sess=None): q = [] a = [] neg_a = [] for question in df['question'].unique(): # group = df[df["question"]==question] # pos_answers = group[df["flag"] == 1]["answer"] # neg_answers = group[df["flag"] == 0]["answer"].reset_index() group = df[df["question"]==question] pos_answers = group[group["flag"] == 1]["answer"] neg_answers = group[group["flag"] == 0]["answer"]#.reset_index() for pos in pos_answers: if model is not None and sess is not None: pos_sent= encode_to_split(pos,alphabet) q_sent,q_mask= prepare_data([pos_sent]) neg_sents = [encode_to_split(sent,alphabet) for sent in neg_answers] a_sent,a_mask= prepare_data(neg_sents) scores = model.predict(sess,(np.tile(q_sent,(len(neg_answers),1)),a_sent,np.tile(q_mask,(len(neg_answers),1)),a_mask)) neg_index = scores.argmax() else: if len(neg_answers.index) > 0: neg_index = np.random.choice(neg_answers.index) neg = neg_answers.reset_index().loc[neg_index,]["answer"] seq_q = encode_to_split(question,alphabet) seq_a = encode_to_split(pos,alphabet) seq_neg_a = encode_to_split(neg,alphabet) q.append(seq_q) a.append(seq_a) neg_a.append(seq_neg_a) return iteration_batch(q,a,neg_a,batch_size,sort_by_len,shuffle) def prepare_data(seqs,overlap = None): lengths = [len(seq) for seq in seqs] n_samples = len(seqs) max_len = np.max(lengths) x = np.zeros((n_samples,max_len)).astype('int32') if overlap is not None: overlap_position = np.zeros((n_samples,max_len)).astype('float') for idx ,seq in enumerate(seqs): x[idx,:lengths[idx]] = seq overlap_position[idx,:lengths[idx]] = overlap[idx] return x,overlap_position else: x_mask = np.zeros((n_samples, max_len)).astype('float') for idx, seq in enumerate(seqs): x[idx, :lengths[idx]] = seq x_mask[idx, :lengths[idx]] = 1.0 # print( x, x_mask) return x, x_mask # def prepare_data(seqs): # lengths = [len(seq) for seq in seqs] # n_samples = len(seqs) # max_len = np.max(lengths) # x = np.zeros((n_samples, max_len)).astype('int32') # x_mask = np.zeros((n_samples, max_len)).astype('float') # for idx, seq in enumerate(seqs): # x[idx, :lengths[idx]] = seq # x_mask[idx, :lengths[idx]] = 1.0 # # print( x, x_mask) # return x, x_mask def getLogger(): import sys import logging import os import time now = int(time.time()) timeArray = time.localtime(now) timeStamp = time.strftime("%Y%m%d%H%M%S", timeArray) log_filename = "log/" +time.strftime("%Y%m%d", timeArray) program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) if not os.path.exists(log_filename): os.mkdir(log_filename) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',datefmt='%a, %d %b %Y %H:%M:%S',filename=log_filename+'/qa'+timeStamp+'.log',filemode='w') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) return logger
{"/main.py": ["/data_helper.py"], "/run.py": ["/config.py", "/data_helper.py", "/models/__init__.py"], "/models/__init__.py": ["/models/QA_CNN_pairwise.py"], "/test.py": ["/config.py", "/data_helper.py", "/models/__init__.py"]}
158
pedromeldola/Desafio
refs/heads/master
/core/models.py
from django.db import models #criação da classe com os atributos class Jogo(models.Model): idJogo = models.AutoField(primary_key=True) placar = models.IntegerField() placarMin = models.IntegerField() placarMax = models.IntegerField() quebraRecMin = models.IntegerField() quebraRecMax = models.IntegerField() def __str__(self): return str(self.idJogo)
{"/core/views.py": ["/core/models.py"]}
159
pedromeldola/Desafio
refs/heads/master
/core/views.py
from django.shortcuts import render,redirect from .models import Jogo from django.views.decorators.csrf import csrf_protect #método para chamar todos os objetos que estão na classe Jogo quando entrar na home page def home_page(request): jogo = Jogo.objects.all() return render (request,'home.html',{'jogo':jogo}) #método para inserir os dados na tabela quando o botão ser clicado def inserir(request): placar = request.POST.get('nPlacar') #método para buscar os valores do objeto anterior try: placarMin = int(Jogo.objects.earliest('placarMin').placarMin) placarMax = int(Jogo.objects.latest('placarMax').placarMax) quebraRecMin = int(Jogo.objects.latest('quebraRecMin').quebraRecMin) quebraRecMax = int(Jogo.objects.latest('quebraRecMax').quebraRecMax) except: placarMin = False placarMax = False quebraRecMin = False quebraRecMax = False placar = int(placar) #condição para adicionar o placar nos demais atributos alem dele mesmo if placarMin is False: placarMin = placar placarMax = placar elif placar < placarMin: placarMin = placar quebraRecMin += 1 elif placar > placarMax or placarMax is False: placarMax = placar quebraRecMax += 1 else: quebraRecMin = quebraRecMin+ 0 quebraRecMmax = quebraRecMax+ 0 #método para criar o objeto já com os atributos populados jogo = Jogo.objects.create(placarMin=placarMin,placar=placar,placarMax=placarMax,quebraRecMin=quebraRecMin,quebraRecMax=quebraRecMax) return redirect('/') #função para ficar home page após inserir o dado e clica no botão inserir
{"/core/views.py": ["/core/models.py"]}
160
pedromeldola/Desafio
refs/heads/master
/core/migrations/0002_auto_20200930_2254.py
# Generated by Django 3.1 on 2020-10-01 01:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='jogo', name='id', ), migrations.AlterField( model_name='jogo', name='idJogo', field=models.AutoField(primary_key=True, serialize=False), ), migrations.AlterField( model_name='jogo', name='placar', field=models.IntegerField(), ), ]
{"/core/views.py": ["/core/models.py"]}
161
pedromeldola/Desafio
refs/heads/master
/core/migrations/0001_initial.py
# Generated by Django 3.1.1 on 2020-09-28 18:50 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Jogo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('idJogo', models.IntegerField()), ('placar', models.IntegerField(max_length=3)), ('placarMin', models.IntegerField()), ('placarMax', models.IntegerField()), ('quebraRecMin', models.IntegerField()), ('quebraRecMax', models.IntegerField()), ], ), ]
{"/core/views.py": ["/core/models.py"]}
185
andrewjschuang/Turing
refs/heads/master
/turing.py
import time from datetime import datetime from flask import (Flask, abort, flash, redirect, render_template, request, session, url_for) from sqlalchemy.exc import IntegrityError from wtforms import (Form, RadioField, StringField, SubmitField, TextAreaField, TextField, validators) from models.model import User, Project, Task, Questionnaire, Question, Response from models.shared import db class SignUp(Form): name = TextField('Name:', validators=[validators.required()]) email = TextField('Email:', validators=[ validators.required(), validators.Length(min=6, max=35)]) password = TextField('Password:', validators=[ validators.required(), validators.Length(min=3, max=35)]) class Login(Form): email = TextField('Email:', validators=[ validators.required(), validators.Length(min=6, max=35)]) password = TextField('Password:', validators=[ validators.required(), validators.Length(min=3, max=35)]) def create_app(config=None): app = Flask(__name__) if config: app.config.from_mapping(config) else: app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///prod.db' app.config['SECRET_KEY'] = '7d441f27d441f27567d441f2b6176a' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True db.init_app(app) @app.errorhandler(404) def page_not_found(e): return render_template('404.html'), 404 @app.route('/signup', methods=['GET', 'POST']) def signup(): form = SignUp(request.form) if request.method == 'POST': if form.validate(): name = request.form['name'] password = request.form['password'] email = request.form['email'] u = User(email=email, name=name, password=password) db.session.add(u) db.session.commit() session['auth'] = {'name': name, 'email': email, 'timestamp': time.time()} return redirect(url_for('index')) else: flash('All the form fields are required.', category='error') return render_template('signup.html', form=form) @app.route('/login', methods=['GET', 'POST']) def login(): form = Login(request.form) if request.method == 'POST': if form.validate(): password = request.form['password'] email = request.form['email'] user = User.query.filter_by(email=email).first() print(user) if user: print(user) if user.password == password: session['auth'] = {'name': user.name, 'email': user.email, 'timestamp': time.time() } return redirect(url_for('index')) else: flash('Authentication failed', category='error') else: flash('Authentication failed', category='error') else: flash('All the form fields are required', category='error') return render_template('login.html', form=form) @app.route('/', methods=['GET']) def index(): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') info = user.get_index_data() print(info) return render_template('index.html', **info) return redirect('/login') @app.route('/responses') def responses(): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') quests = Questionnaire.query.all() return render_template('responses.html', quests=quests) @app.route('/respond/<int:ref>', methods=['GET', 'POST']) def respond(ref): quest = Questionnaire.query.get(ref) if not quest: print('no questionnaire found with id %s' % ref) return abort(404) if request.method == 'GET': return render_template('feedback.html', name=quest.name, questions=quest.questions) elif request.method == 'POST': for question_id in request.form: question = Question.query.get(question_id) resp = Response(question=question.id, rating=request.form.get(question_id)) db.session.add(resp) db.session.commit() return render_template('feedback_received.html') @app.route('/projects', methods=['GET', 'POST']) def projects(): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') if request.method == 'POST': name = request.form['projectName'] description = request.form['projectDescription'] pro = Project(name=name,description=description) db.session.add(pro) user.project.append(pro) db.session.commit() grid = user.get_project_grid(3) return render_template('projects.html', projectgrid=grid) return redirect('/login') @app.route('/tasks/user') @app.route('/tasks/user/<int:ref>', methods=['GET', 'POST']) def user_tasks(ref=None): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') if ref: user: User = User.query.filter_by(id=ref).first() if not user: return abort(404) if request.method == 'POST': name = request.form.get('taskName') description = request.form.get('taskDescription') t_time = request.form.get('taskTime') if not all((name, description, t_time)): abort(404) t_time = datetime.strptime(t_time,'%Y-%m-%dT%H:%M:%S.%fZ') n_task: Task = Task(name=name, description=description, end_time=t_time) user.tasks.append(n_task) db.session.commit() return abort(200) else: return render_template('tasks.html', data=user) @app.route('/tasks/project/<int:ref>', methods=['GET', 'POST']) def proj_tasks(ref): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') project:Project = Project.query.filter_by(id=ref).first() if not project: return abort(404) if request.method == 'POST': name = request.form.get('taskName') description = request.form.get('taskDescription') t_time = request.form.get('taskDate') if not all((name, description, t_time)): abort(404) t_time = datetime.strptime(t_time,'%Y-%m-%dT%H:%M:%S.%fZ') n_task: Task = Task(name=name, description=description, end_time=t_time) project.tasks.append(n_task) user.tasks.append(n_task) db.session.commit() return ('' ,200) else: return render_template('tasks.html', data=project) @app.route('/tasks/task/<int:ref>', methods=['GET', 'POST']) def task_tasks(ref): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') task:Task = Task.query.filter_by(id=ref).first() if not task: return abort(404) if request.method == 'POST': name = request.form.get('taskName') description = request.form.get('taskDescription') t_time = request.form.get('taskDate') if not all((name, description, t_time)): abort(404) t_time = datetime.strptime(t_time,'%Y-%m-%dT%H:%M:%S.%fZ') n_task: Task = Task(name=name, description=description, end_time=t_time) db.session.add(n_task) task.tasks.append(n_task) db.session.commit() user.tasks.append(n_task) db.session.commit() print(task, task.tasks) print(n_task, n_task.tasks) return ('' ,200) else: print(task, task.tasks) return render_template('tasks.html', data=task) @app.route('/test', methods=['GET']) def test(): return render_template('newQuestionnaire.html') @app.route('/questionnaire/<int:ref>', methods=['GET', 'POST']) def questionnaire(ref): auth = session.get('auth') if auth: user: User = User.query.filter_by(email=auth.get('email')).first() if not user: session['auth'] = {} return redirect('/login') task:Task = Task.query.filter_by(id=ref).first() if not task: return abort(404) if request.method == 'POST': name = request.form.get('name') if not name: return abort(404) quest = Questionnaire(name=name,task=task) task.questionnaires.append(quest) for key, value in request.form.items(): if not value or key == 'name': continue else: quest.questions.append(Question(text=value,questionnaire=quest)) db.session.commit() return render_template('newQuestionnaire.html') @app.route('/logout', methods=['GET']) def logout(): session.pop('auth') return redirect(url_for('index')) return app if __name__ == '__main__': app = create_app() db.create_all(app=app) app.run(host='localhost', port=3000, debug=True)
{"/test.py": ["/turing.py"]}
186
andrewjschuang/Turing
refs/heads/master
/test.py
from flask_testing import TestCase from models.shared import db from models.model import User, Task, Project, Question, Response, Questionnaire from turing import create_app import unittest class MyTest(TestCase): def create_app(self): config = { 'SQLALCHEMY_DATABASE_URI': 'sqlite:///test.db', 'TESTING': True, 'SECRET_KEY': 'secret', 'SQLALCHEMY_TRACK_MODIFICATIONS': True } return create_app(config) def setUp(self): db.create_all() def tearDown(self): db.session.remove() db.drop_all() def test_nothing(self): assert True def test_user(self): user = User(email='em', name='us', password='pass') db.session.add(user) db.session.commit() assert user in db.session def test_project(self): project = Project(name='n',description='desc') db.session.add(project) db.session.commit() assert project in db.session def test_task(self): task = Task(name='n', description='desc') db.session.add(task) db.session.commit() assert task in db.session def test_usr_add_tsk2_prj(self): user = User(email='em', name='us', password='pass') db.session.add(user) db.session.commit() project = Project(name='n',description='desc') db.session.add(project) user.project.append(project) db.session.commit() project: Project= User.query.filter_by(email='em').first().project[0] task = Task(name='n', description='desc') db.session.add(task) project.tasks.append(task) db.session.commit() assert user.project[0].tasks[0] == task def test_sub_tasks(self): task = Task(name='n', description='desc') db.session.add(task) assert task in db.session s_task = Task(name='n', description='desc') db.session.add(s_task) assert task in db.session db.session.commit() task.tasks.append(s_task) db.session.commit() assert task.tasks[0] == s_task def test_questionnaire(self): questionnaire = Questionnaire(name='Questions') db.session.add(questionnaire) question0 = Question(text="ola ?", questionnaire=questionnaire) question1 = Question(text="tudo bem ?", questionnaire=questionnaire) questionnaire.questions.append(question0) questionnaire.questions.append(question1) for i in range(10): question0.responses.append(Response(rating=5,question=question0)) for i in range(10): question1.responses.append(Response(rating=5,question=question1)) rs = [x.rating for x in questionnaire.questions[0].responses] assert sum(rs)/len(rs) == 5 rs = [x.rating for x in questionnaire.questions[1].responses] assert sum(rs)/len(rs) == 5 if __name__ == '__main__': unittest.main()
{"/test.py": ["/turing.py"]}
187
andrewjschuang/Turing
refs/heads/master
/functionalities.py
functionalities = { 'Login': 'Login page', 'Feedback': 'This feedback form', 'Todo': 'To do module', 'Projects': 'Anything related to projects', 'Code': 'Code editor', 'Forum': 'The forum', 'Profile': 'Your profile page', }
{"/test.py": ["/turing.py"]}
188
yywang0514/dsnre
refs/heads/master
/train.py
import sys import os import time import numpy as np import torch import torch.nn.functional as F import argparse import logging from lib import * from model import * def train(options): if not os.path.exists(options.folder): os.mkdir(options.folder) logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s: %(name)s: %(levelname)s: %(message)s") hdlr = logging.FileHandler(os.path.join(options.folder, options.file_log), mode = "w") hdlr.setFormatter(formatter) logger.addHandler(hdlr) logger.info("python %s" %(" ".join(sys.argv))) ################################################################################# start_time = time.time() msg = "Loading dicts from %s..." %(options.file_dic) display(msg) vocab = dicfold(options.file_dic) word2idx, pre_train_emb, part_point = build_word2idx(vocab, options.file_emb) msg = "Loading data from %s..." %(options.file_train) display(msg) train = datafold(options.file_train) msg = "Loading data from %s..." %(options.file_test) display(msg) test = datafold(options.file_test) end_time = time.time() msg = "Loading data time: %f seconds" %(end_time - start_time) display(msg) options.size_vocab = len(word2idx) if options.devFreq == -1: options.devFreq = (len(train) + options.batch_size - 1) // options.batch_size msg = "#inst in train: %d" %(len(train)) display(msg) msg = "#inst in test %d" %(len(test)) display(msg) msg = "#word vocab: %d" %(options.size_vocab) display(msg) msg = "=" * 30 + "Hyperparameter:" + "=" * 30 display(msg) for attr, value in sorted(vars(options).items(), key = lambda x: x[0]): msg = "{}={}".format(attr.upper(), value) display(msg) ################################################################################# msg = "=" * 30 + "model:" + "=" * 30 display(msg) os.environ["CUDA_VISIBLE_DEVICES"] = options.gpus if options.seed is not None: torch.manual_seed(options.seed) np.random.seed(options.seed) model = Model(options.fine_tune, pre_train_emb, part_point, options.size_vocab, options.dim_emb, options.dim_proj, options.head_count, options.dim_FNN, options.act_str, options.num_layer, options.num_class, options.dropout_rate).cuda() if os.path.exists("{}.pt".format(options.reload_model)): model.load_state_dict(torch.load("{}.pt".format(options.reload_model))) parameters = filter(lambda param: param.requires_grad, model.parameters()) optimizer = optimizer_wrapper(options.optimizer, options.lr, parameters) msg = "\n{}".format(model) display(msg) ################################################################################# checkpoint_dir = os.path.join(options.folder, "checkpoints") if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) best_path = os.path.join(checkpoint_dir, options.saveto) ################################################################################# msg = "=" * 30 + "Optimizing:" + "=" * 30 display(msg) [train_rels, train_nums, train_sents, train_poss, train_eposs] = bags_decompose(train) [test_rels, test_nums, test_sents, test_poss, test_eposs] = bags_decompose(test) # batch_index = [0, 1, 2] # batch_rels = [train_rels[m][0] for m in batch_index] # batch_nums = [train_nums[m] for m in batch_index] # batch_sents = [train_sents[m] for m in batch_index] # batch_poss = [train_poss[m] for m in batch_index] # batch_eposs = [train_eposs[m] for m in batch_index] # batch_data = select_instance(batch_rels, # batch_nums, # batch_sents, # batch_poss, # batch_eposs, # model) # for sent in batch_data[0]: # print(sent) # print(batch_data[1]) # print(batch_data[2]) # print(batch_data[3]) train_idx_list = np.arange(len(train)) steps_per_epoch = (len(train) + options.batch_size - 1) // options.batch_size n_updates = 0 for e in range(options.nepochs): np.random.shuffle(train_idx_list) for step in range(steps_per_epoch): batch_index = train_idx_list[step * options.batch_size: (step + 1) * options.batch_size] batch_rels = [train_rels[m][0] for m in batch_index] batch_nums = [train_nums[m] for m in batch_index] batch_sents = [train_sents[m] for m in batch_index] batch_poss = [train_poss[m] for m in batch_index] batch_eposs = [train_eposs[m] for m in batch_index] batch_data = select_instance(batch_rels, batch_nums, batch_sents, batch_poss, batch_eposs, model) disp_start = time.time() model.train() n_updates += 1 optimizer.zero_grad() logit = model(batch_data[0], batch_data[1], batch_data[2]) loss = F.cross_entropy(logit, batch_data[3]) loss.backward() if options.clip_c != 0: total_norm = torch.nn.utils.clip_grad_norm_(parameters, options.clip_c) optimizer.step() disp_end = time.time() if np.mod(n_updates, options.dispFreq) == 0: msg = "Epoch: %d, Step: %d, Loss: %f, Time: %.2f sec" %(e, n_updates, loss.cpu().item(), disp_end - disp_start) display(msg) if np.mod(n_updates, options.devFreq) == 0: msg = "=" * 30 + "Evaluating" + "=" * 30 display(msg) model.eval() test_predict = predict(test_rels, test_nums, test_sents, test_poss, test_eposs, model) test_pr = positive_evaluation(test_predict) msg = 'test set PR = [' + str(test_pr[0][-1]) + ' ' + str(test_pr[1][-1]) + ']' display(msg) msg = "Saving model..." display(msg) torch.save(model.state_dict(), "{}_step_{}.pt".format(best_path, n_updates)) msg = "Model checkpoint has been saved to {}_step_{}.pt".format(best_path, n_updates) display(msg) end_time = time.time() msg = "Optimizing time: %f seconds" %(end_time - start_time) display(msg) def predict(rels, nums, sents, poss, eposs, model): numBags = len(rels) predict_y = np.zeros((numBags), dtype=np.int32) predict_y_prob = np.zeros((numBags), dtype=np.float32) y = np.asarray(rels, dtype='int32') for bagIndex, insRel in enumerate(rels): insNum = nums[bagIndex] maxP = -1 pred_rel_type = 0 max_pos_p = -1 positive_flag = False for m in range(insNum): insX = sents[bagIndex][m] epos = eposs[bagIndex][m] sel_x, sel_len, sel_epos = prepare_data([insX], [epos]) results = model(sel_x, sel_len, sel_epos) rel_type = results.argmax() if positive_flag and rel_type == 0: continue else: # at least one instance is positive tmpMax = results.max() if rel_type > 0: positive_flag = True if tmpMax > max_pos_p: max_pos_p = tmpMax pred_rel_type = rel_type else: if tmpMax > maxP: maxP = tmpMax if positive_flag: predict_y_prob[bagIndex] = max_pos_p else: predict_y_prob[bagIndex] = maxP predict_y[bagIndex] = pred_rel_type return [predict_y, predict_y_prob, y] def main(argv): parser = argparse.ArgumentParser() parser.add_argument("--folder", help = "the dir of model", default = "workshop") parser.add_argument("--file_dic", help = "the file of vocabulary", default = "./data/50/dict.txt") parser.add_argument("--file_train", help = "the file of training data", default = "./data/gap_40_len_80/train_filtered.data") parser.add_argument("--file_test", help = "the file of testing data", default = "./data/gap_40_len_80/test_filtered.data") # parser.add_argument("--file_emb", help = "the file of embedding", default = "./data/50/dict_emb.txt") parser.add_argument("--file_emb", help = "the file of embedding", default = "") parser.add_argument("--file_log", help = "the log file", default = "train.log") parser.add_argument("--reload_model", help = "the pretrained model", default = "") parser.add_argument("--saveto", help = "the file to save the parameter", default = "model") parser.add_argument("--seed", help = "the random seed", default = 1234, type = int) parser.add_argument("--size_vocab", help = "the size of vocabulary", default = 10000, type = int) parser.add_argument("--dim_emb", help = "the dimension of the word embedding", default = 256, type = int) parser.add_argument("--dim_proj", help = "the dimension of the hidden state", default = 256, type = int) parser.add_argument("--head_count", help = "the num of head in multi head attention", default = 8, type = int) parser.add_argument("--dim_FNN", help = "the dimension of the positionwise FNN", default = 256, type = int) parser.add_argument("--act_str", help = "the activation function of the positionwise FNN", default = "relu") parser.add_argument("--num_layer", help = "the num of layers", default = 6, type = int) parser.add_argument("--num_class", help = "the number of labels", default = 27, type = int) parser.add_argument("--position_emb", help = "if true, the position embedding will be used", default = False, action = "store_true") parser.add_argument("--fine_tune", help = "if true, the pretrained embedding will be fine tuned", default = False, action = "store_true") parser.add_argument("--optimizer", help = "optimization algorithm", default = "adam") parser.add_argument("--lr", help = "learning rate", default = 0.0004, type = float) parser.add_argument("--dropout_rate", help = "dropout rate", default = 0.5, type = float) parser.add_argument("--clip_c", help = "grad clip", default = 10.0, type = float) parser.add_argument("--nepochs", help = "the max epoch", default = 30, type = int) parser.add_argument("--batch_size", help = "batch size", default = 32, type = int) parser.add_argument("--dispFreq", help = "the frequence of display", default = 100, type = int) parser.add_argument("--devFreq", help = "the frequence of evaluation", default = -1, type = int) parser.add_argument("--wait_N", help = "use to early stop", default = 1, type = int) parser.add_argument("--patience", help = "use to early stop", default = 7, type = int) parser.add_argument("--maxlen", help = "max length of sentence", default = 100, type = int) parser.add_argument("--gpus", help = "specify the GPU IDs", default = "0") options = parser.parse_args(argv) train(options) if "__main__" == __name__: main(sys.argv[1:])
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
189
yywang0514/dsnre
refs/heads/master
/lib/module.py
import torch import torch.nn as nn import math class LayerNorm(nn.Module): """Layer Normalization class""" def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class MLP(nn.Module): def __init__(self, dim_in, dim_out): super(MLP, self).__init__() self.dim_in = dim_in self.dim_out = dim_out self._init_params() def _init_params(self): self.mlp = nn.Linear(in_features = self.dim_in, out_features = self.dim_out) def forward(self, inp): proj_inp = self.mlp(inp) return proj_inp class BiLstm(nn.Module): def __init__(self, dim_in, dim_out): super(BiLstm, self).__init__() self.dim_in = dim_in self.dim_out = dim_out self._init_params() def _init_params(self): self.bilstm = nn.LSTM(input_size = self.dim_in, hidden_size = self.dim_out, bidirectional = True) def forward(self, inp, inp_len): sorted_inp_len, sorted_idx = torch.sort(inp_len, dim = 0, descending=True) sorted_inp = torch.index_select(inp, dim = 1, index = sorted_idx) pack_inp = torch.nn.utils.rnn.pack_padded_sequence(sorted_inp, sorted_inp_len) proj_inp, _ = self.bilstm(pack_inp) proj_inp = torch.nn.utils.rnn.pad_packed_sequence(proj_inp) unsorted_idx = torch.zeros(sorted_idx.size()).long().cuda().scatter_(0, sorted_idx, torch.arange(inp.size()[1]).long().cuda()) unsorted_proj_inp = torch.index_select(proj_inp[0], dim = 1, index = unsorted_idx) return unsorted_proj_inp class Word_Emb(nn.Module): def __init__(self, fine_tune, pre_train_emb, part_point, size_vocab, dim_emb): super(Word_Emb, self).__init__() self.fine_tune = fine_tune self.pre_train_emb = pre_train_emb self.part_point = part_point self.size_vocab = size_vocab self.dim_emb = dim_emb self._init_params() def _init_params(self): self.embedding = torch.nn.ModuleList() if (not self.fine_tune) and self.pre_train_emb: self.embedding.append(nn.Embedding(self.part_point, self.dim_emb)) self.embedding.append(nn.Embedding.from_pretrained(torch.Tensor(self.pre_train_emb), freeze = True)) elif self.fine_tune and self.pre_train_emb: init_embedding = 0.01 * np.random.randn(self.size_vocab, self.dim_emb).astype(np.float32) init_embedding[self.part_point: ] = self.pre_train_emb self.embedding.append(nn.Embedding.from_pretrained(torch.Tensor(init_embedding), freeze = False)) else: self.embedding.append(nn.Embedding(self.size_vocab, self.dim_emb)) def forward(self, inp): if (not self.fine_tune) and self.pre_train_emb: def get_emb(inp): mask = self.inp2mask(inp) inp_1 = inp * mask emb_1 = self.embedding[0](inp_1) * mask[:, :, None].float() inp_2 = (inp - self.part_point) * (1 - mask) emb_2 = self.embedding[1](inp_2) * (1 - mask)[:, :, None].float() emb = emb_1 + emb_2 return emb emb_inp = get_emb(inp) else: emb_inp = self.embedding[0](inp) return emb_inp def inp2mask(self, inp): mask = (inp < self.part_point).long() return mask class Position_Emb(nn.Module): def __init__(self, dim_emb): super(Position_Emb, self).__init__() self.dim_emb = dim_emb self._init_params() def _init_params(self): pass def forward(self, inp): pass class Wemb(nn.Module): """docstring for Wemb""" def __init__(self, fine_tune, pre_train_emb, part_point, size_vocab, dim_emb, position_emb, dropout_rate): super(Wemb, self).__init__() self.fine_tune = fine_tune self.pre_train_emb = pre_train_emb self.part_point = part_point self.size_vocab = size_vocab self.dim_emb = dim_emb self.position_emb = position_emb self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.wembs = torch.nn.ModuleList() self.wembs.append(Word_Emb(self.fine_tune, self.pre_train_emb, self.part_point, self.size_vocab, self.dim_emb)) if self.position_emb: self.wembs.append(Position_Emb(self.dim_emb)) self.layer_norm = LayerNorm(self.dim_emb) self.dropout = nn.Dropout(self.dropout_rate) def forward(self, inp): def add_n(inps): rval = inps[0] * 0 for inp in inps: rval += inp return rval emb_inps = [] for wemb in self.wembs: emb_inps.append(wemb(inp)) emb_inp = add_n(emb_inps) emb_inp = self.layer_norm(emb_inp) emb_inp = self.dropout(emb_inp) return emb_inp class Multi_Head_Attention(nn.Module): def __init__(self, dim_proj, head_count, dropout_rate): super(Multi_Head_Attention, self).__init__() self.dim_proj = dim_proj self.head_count = head_count self.dim_per_head = self.dim_proj // self.head_count self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.linear_key = nn.Linear(self.dim_proj, self.head_count * self.dim_per_head) self.linear_value = nn.Linear(self.dim_proj, self.head_count * self.dim_per_head) self.linear_query = nn.Linear(self.dim_proj, self.head_count * self.dim_per_head) self.dropout = nn.Dropout(self.dropout_rate) self.softmax = nn.Softmax(dim=-1) def forward(self, key, value, query, mask = None): # key: batch X key_len X hidden # value: batch X value_len X hidden # query: batch X query_len X hidden # mask: batch X query_len X key_len batch_size = key.size()[0] key_ = self.linear_key(key) value_ = self.linear_value(value) query_ = self.linear_query(query) key_ = key_.reshape(batch_size, -1, self.head_count, self.dim_per_head).transpose(1, 2) value_ = value_.reshape(batch_size, -1, self.head_count, self.dim_per_head).transpose(1, 2) query_ = query_.reshape(batch_size, -1, self.head_count, self.dim_per_head).transpose(1, 2) attention_scores = torch.matmul(query_, key_.transpose(2, 3)) attention_scores = attention_scores / math.sqrt(float(self.dim_per_head)) if mask is not None: mask = mask.unsqueeze(1).expand_as(attention_scores) attention_scores = attention_scores.masked_fill(1 - mask, -1e18) attention_probs = self.softmax(attention_scores) attention_probs = self.dropout(attention_probs) context = torch.matmul(attention_probs, value_) context = context.transpose(1, 2).reshape(batch_size, -1, self.head_count * self.dim_per_head) return context class TransformerEncoderBlock(nn.Module): def __init__(self, dim_proj, head_count, dim_FNN, act_fn, dropout_rate): super(TransformerEncoderBlock, self).__init__() self.dim_proj = dim_proj self.head_count = head_count self.dim_FNN = dim_FNN self.act_fn = act_fn self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.multi_head_attention = Multi_Head_Attention(self.dim_proj, self.head_count, self.dropout_rate) self.linear_proj_context = MLP(self.dim_proj, self.dim_proj) self.layer_norm_context = LayerNorm(self.dim_proj) self.position_wise_fnn = MLP(self.dim_proj, self.dim_FNN) self.linear_proj_intermediate = MLP(self.dim_FNN, self.dim_proj) self.layer_norm_intermediate = LayerNorm(self.dim_proj) self.dropout = nn.Dropout(self.dropout_rate) def forward(self, inp, mask): context = self.multi_head_attention(inp, inp, inp, mask = mask) context = self.linear_proj_context(context) context = self.dropout(context) res_inp = self.layer_norm_context(inp + context) rval = self.act_fn(self.position_wise_fnn(res_inp)) rval = self.linear_proj_intermediate(rval) rval = self.dropout(rval) res_rval = self.layer_norm_intermediate(rval + res_inp) return res_rval def get_activation(act_str): if act_str == "relu": return torch.nn.ReLU() elif act_str == "tanh": return torch.nn.Tanh() elif act_str == "sigmoid": return torch.nn.Sigmoid() class TransformerEncoder(nn.Module): def __init__(self, dim_proj, head_count, dim_FNN, act_str, num_layers, dropout_rate): super(TransformerEncoder, self).__init__() self.dim_proj = dim_proj self.head_count = head_count self.dim_FNN = dim_FNN self.act_fn = get_activation(act_str) self.num_layers = num_layers self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.transformer = torch.nn.ModuleList([TransformerEncoderBlock(self.dim_proj, self.head_count, self.dim_FNN, self.act_fn, self.dropout_rate) for _ in range(self.num_layers)]) def forward(self, inp, mask = None): rval = [] pre_output = inp for i in range(self.num_layers): cur_output = self.transformer[i](pre_output, mask) rval.append(cur_output) pre_output = cur_output return pre_output, rval def optimizer_wrapper(optimizer, lr, parameters): if optimizer == "adam": opt = torch.optim.Adam(params = parameters, lr = lr) return opt
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
190
yywang0514/dsnre
refs/heads/master
/model.py
import torch import torch.nn as nn from lib import * class Model(nn.Module): def __init__(self, fine_tune, pre_train_emb, part_point, size_vocab, dim_emb, dim_proj, head_count, dim_FNN, act_str, num_layer, num_class, dropout_rate): super(Model, self).__init__() self.fine_tune = fine_tune self.pre_train_emb = pre_train_emb self.part_point = part_point self.size_vocab = size_vocab self.dim_emb = dim_emb self.dim_proj = dim_proj self.head_count = head_count self.dim_FNN = dim_FNN self.act_str = act_str self.num_layer = num_layer self.num_class = num_class self.dropout_rate = dropout_rate self._init_params() def _init_params(self): self.wemb = Word_Emb(self.fine_tune, self.pre_train_emb, self.part_point, self.size_vocab, self.dim_emb) self.encoder = TransformerEncoder(self.dim_proj, self.head_count, self.dim_FNN, self.act_str, self.num_layer, self.dropout_rate) self.dense = MLP(self.dim_proj * 3, self.dim_proj) self.relu = torch.nn.ReLU() self.classifier = MLP(self.dim_proj, self.num_class) self.dropout = nn.Dropout(self.dropout_rate) def forward(self, inp, lengths, epos): mask, mask_l, mask_m, mask_r = self.pos2mask(epos, lengths) emb_inp = self.wemb(inp) emb_inp = self.dropout(emb_inp) proj_inp, _ = self.encoder(emb_inp, self.create_attention_mask(mask, mask)) proj_inp = proj_inp * mask[:, :, None] pool_inp_l = torch.sum(proj_inp * mask_l[:, :, None], dim = 1) / torch.sum(mask_l, dim = 1)[:, None] pool_inp_m = torch.sum(proj_inp * mask_m[:, :, None], dim = 1) / torch.sum(mask_m, dim = 1)[:, None] pool_inp_r = torch.sum(proj_inp * mask_r[:, :, None], dim = 1) / torch.sum(mask_r, dim = 1)[:, None] pool_inp = torch.cat([pool_inp_l, pool_inp_m, pool_inp_r], dim = 1) pool_inp = self.dropout(pool_inp) logit = self.relu(self.dense(pool_inp)) logit = self.dropout(logit) logit = self.classifier(logit) return logit def pos2mask(self, epos, lengths): mask = self.len2mask(lengths) nsample = lengths.size()[0] max_len = torch.max(lengths) idxes = torch.arange(0, max_len).cuda() mask_l = (idxes < epos[:, 0].unsqueeze(1)).float() mask_r = mask - (idxes < epos[:, 1].unsqueeze(1)).float() mask_m = torch.ones([nsample, max_len]).float().cuda() - mask_l - mask_r return mask, mask_l, mask_m, mask_r def len2mask(self, lengths): max_len = torch.max(lengths) idxes = torch.arange(0, max_len).cuda() mask = (idxes < lengths.unsqueeze(1)).float() return mask def create_attention_mask(self, query_mask, key_mask): return torch.matmul(query_mask[:, :, None], key_mask[:, None, :]).byte()
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
191
yywang0514/dsnre
refs/heads/master
/lib/__init__.py
from module import * from util import * from data_iterator import *
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
192
yywang0514/dsnre
refs/heads/master
/format.py
import sys import codecs class InstanceBag(object): def __init__(self, entities, rel, num, sentences, positions, entitiesPos): self.entities = entities self.rel = rel self.num = num self.sentences = sentences self.positions = positions self.entitiesPos = entitiesPos def bags_decompose(data_bags): bag_sent = [data_bag.sentences for data_bag in data_bags] bag_pos = [data_bag.positions for data_bag in data_bags] bag_num = [data_bag.num for data_bag in data_bags] bag_rel = [data_bag.rel for data_bag in data_bags] bag_epos = [data_bag.entitiesPos for data_bag in data_bags] return [bag_rel, bag_num, bag_sent, bag_pos, bag_epos] def datafold(filename): f = open(filename, 'r') data = [] while 1: line = f.readline() if not line: break entities = map(int, line.split(' ')) line = f.readline() bagLabel = line.split(' ') rel = map(int, bagLabel[0:-1]) num = int(bagLabel[-1]) positions = [] sentences = [] entitiesPos = [] for i in range(0, num): sent = f.readline().split(' ') positions.append(map(int, sent[0:2])) epos = map(int, sent[0:2]) epos.sort() entitiesPos.append(epos) sentences.append(map(int, sent[2:-1])) ins = InstanceBag(entities, rel, num, sentences, positions, entitiesPos) data += [ins] f.close() return data def change_word_idx(data): new_data = [] for inst in data: entities = inst.entities rel = inst.rel num = inst.num sentences = inst.sentences positions = inst.positions entitiesPos = inst.entitiesPos new_sentences = [] for sent in sentences: new_sent = [] for word in sent: if word == 160696: new_sent.append(1) elif word == 0: new_sent.append(0) else: new_sent.append(word + 1) new_sentences.append(new_sent) new_inst = InstanceBag(entities, rel, num, new_sentences, positions, entitiesPos) new_data.append(new_inst) return new_data def save_data(data, textfile): with codecs.open(textfile, "w", encoding = "utf8") as f: for inst in data: f.write("%s\n" %(" ".join(map(str, inst.entities)))) f.write("%s %s\n" %(" ".join(map(str, inst.rel)), str(inst.num))) for pos, sent in zip(inst.positions, inst.sentences): f.write("%s %s\n" %(" ".join(map(str, pos)), " ".join(map(str, sent)))) def main(argv): data = datafold(argv[0]) new_data = change_word_idx(data) save_data(new_data, argv[1]) if "__main__" == __name__: main(sys.argv[1:])
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
193
yywang0514/dsnre
refs/heads/master
/lib/util.py
import sys import re import numpy as np import cPickle as pkl import codecs import logging from data_iterator import * logger = logging.getLogger() extra_token = ["<PAD>", "<UNK>"] def display(msg): print(msg) logger.info(msg) def datafold(filename): f = open(filename, 'r') data = [] while 1: line = f.readline() if not line: break entities = map(int, line.split(' ')) line = f.readline() bagLabel = line.split(' ') rel = map(int, bagLabel[0:-1]) num = int(bagLabel[-1]) positions = [] sentences = [] entitiesPos = [] for i in range(0, num): sent = f.readline().split(' ') positions.append(map(int, sent[0:2])) epos = map(int, sent[0:2]) epos.sort() entitiesPos.append(epos) sentences.append(map(int, sent[2:-1])) ins = InstanceBag(entities, rel, num, sentences, positions, entitiesPos) data += [ins] f.close() return data def dicfold(textfile): vocab = [] with codecs.open(textfile, "r", encoding = "utf8") as f: for line in f: line = line.strip() if line: vocab.append(line) return vocab def build_word2idx(vocab, textFile): msg = "Building word2idx..." display(msg) pre_train_emb = [] part_point = len(vocab) if textFile: word2emb = load_emb(vocab, textFile) pre_train_vocab = [] un_pre_train_vocab = [] for word in vocab: if word in word2emb: pre_train_vocab.append(word) pre_train_emb.append(word2emb[word]) else: un_pre_train_vocab.append(word) part_point = len(un_pre_train_vocab) un_pre_train_vocab.extend(pre_train_vocab) vocab = un_pre_train_vocab word2idx = {} for v, k in enumerate(extra_token): word2idx[k] = v for v, k in enumerate(vocab): word2idx[k] = v + 2 part_point += 2 return word2idx, pre_train_emb, part_point def load_emb(vocab, textFile): msg = 'load emb from ' + textFile display(msg) vocab_set = set(vocab) word2emb = {} emb_p = re.compile(r" |\t") count = 0 with codecs.open(textFile, "r", "utf8") as filein: for line in filein: count += 1 array = emb_p.split(line.strip()) word = array[0] if word in vocab_set: vector = [float(array[i]) for i in range(1, len(array))] word2emb[word] = vector del vocab_set msg = "find %d words in %s" %(count, textFile) display(msg) msg = "Summary: %d words in the vocabulary and %d of them appear in the %s" %(len(vocab), len(word2emb), textFile) display(msg) return word2emb def positive_evaluation(predict_results): predict_y = predict_results[0] predict_y_prob = predict_results[1] y_given = predict_results[2] positive_num = 0 #find the number of positive examples for yi in range(y_given.shape[0]): if y_given[yi, 0] > 0: positive_num += 1 # if positive_num == 0: # positive_num = 1 # sort prob index = np.argsort(predict_y_prob)[::-1] all_pre = [0] all_rec = [0] p_n = 0 p_p = 0 n_p = 0 # print y_given.shape[0] for i in range(y_given.shape[0]): labels = y_given[index[i],:] # key given labels py = predict_y[index[i]] # answer if labels[0] == 0: # NA bag if py > 0: n_p += 1 else: # positive bag if py == 0: p_n += 1 else: flag = False for j in range(y_given.shape[1]): if j == -1: break if py == labels[j]: flag = True # true positive break if flag: p_p += 1 if (p_p+n_p) == 0: precision = 1 else: precision = float(p_p)/(p_p+n_p) recall = float(p_p)/positive_num if precision != all_pre[-1] or recall != all_rec[-1]: all_pre.append(precision) all_rec.append(recall) return [all_pre[1:], all_rec[1:]]
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
194
yywang0514/dsnre
refs/heads/master
/lib/data_iterator.py
import time import cPickle import numpy as np import torch class InstanceBag(object): def __init__(self, entities, rel, num, sentences, positions, entitiesPos): self.entities = entities self.rel = rel self.num = num self.sentences = sentences self.positions = positions self.entitiesPos = entitiesPos def bags_decompose(data_bags): bag_sent = [data_bag.sentences for data_bag in data_bags] bag_pos = [data_bag.positions for data_bag in data_bags] bag_num = [data_bag.num for data_bag in data_bags] bag_rel = [data_bag.rel for data_bag in data_bags] bag_epos = [data_bag.entitiesPos for data_bag in data_bags] return [bag_rel, bag_num, bag_sent, bag_pos, bag_epos] def select_instance(rels, nums, sents, poss, eposs, model): batch_x = [] batch_len = [] batch_epos = [] batch_y = [] for bagIndex, insNum in enumerate(nums): maxIns = 0 maxP = -1 if insNum > 1: for m in range(insNum): insX = sents[bagIndex][m] epos = eposs[bagIndex][m] sel_x, sel_len, sel_epos = prepare_data([insX], [epos]) results = model(sel_x, sel_len, sel_epos) tmpMax = results.max() if tmpMax > maxP: maxIns = m maxP=tmpMax batch_x.append(sents[bagIndex][maxIns]) batch_epos.append(eposs[bagIndex][maxIns]) batch_y.append(rels[bagIndex]) batch_x, batch_len, batch_epos = prepare_data(batch_x, batch_epos) batch_y = torch.LongTensor(np.array(batch_y).astype("int32")).cuda() return [batch_x, batch_len, batch_epos, batch_y] def prepare_data(sents, epos): lens = [len(sent) for sent in sents] n_samples = len(lens) max_len = max(lens) batch_x = np.zeros((n_samples, max_len)).astype("int32") for idx, s in enumerate(sents): batch_x[idx, :lens[idx]] = s batch_len = np.array(lens).astype("int32") batch_epos = np.array(epos).astype("int32") return torch.LongTensor(batch_x).cuda(), torch.LongTensor(batch_len).cuda(), torch.LongTensor(batch_epos).cuda()
{"/train.py": ["/lib/__init__.py", "/model.py"], "/model.py": ["/lib/__init__.py"]}
210
rodelrod/pomodoro-report
refs/heads/master
/test_notebook_parser.py
#!/usr/bin/env python import unittest from notebook_parser import * import os import errno from datetime import datetime def mkdir_p(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST: pass else: raise class TestParser(unittest.TestCase): """Tests the RedNotebook monthly files parser.""" def setUp(self): self.nb_path = '/tmp/test_pomodoro_report' mkdir_p(self.nb_path) f = open(os.path.join(self.nb_path, '2012-10.txt'), 'w') f.write( "21: {text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk'}\n" "25:\n" " Cat3: {Some other shit: null}\n" " text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk'\n" "27:\n" " Cat1: {Some shit: null}\n" " text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 report incongruencias sewan pdf/cdr\n" " 1/1 fix b''illing db and run\n" " 0/2 guide entretien prestataire\n" " 0/1 org desk'\n") f.close() self.p = Parser(self.nb_path) def test_get_nb_filename(self): self.assertEqual( self.p._get_nb_filename(datetime(2012, 10, 14)), os.path.join(self.nb_path,'2012-10.txt')) def test_parse_day_block(self): block = ['', '5', 'some stuff', '26', 'some other stuff'] expected = {5: 'some stuff', 26: 'some other stuff'} self.assertEqual(self.p._parse_day_block(block), expected) def test_get_day_with_categories(self): """Get day 27.""" expected = ( "\n" " Cat1: {Some shit: null}\n" " text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 report incongruencias sewan pdf/cdr\n" " 1/1 fix b''illing db and run\n" " 0/2 guide entretien prestataire\n" " 0/1 org desk'\n") actual = self.p._get_day(datetime(2012, 10, 27)) self.assertEqual(actual, expected) def test_get_day_without_categories(self): """Get day 21.""" expected = ( " {text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk'}\n") actual = self.p._get_day(datetime(2012, 10, 21)) self.assertEqual(actual, expected) def test_get_inexistant_day(self): """Get 14/10.""" with self.assertRaises(EmptyDayException): self.p._get_day(datetime(2012, 10, 14)) def test_get_inexistant_month(self): """Get 14/04.""" with self.assertRaises(EmptyDayException): self.p._get_day(datetime(2012, 4, 14)) def test_get_text_with_categories(self): block = ( "\n" " Cat1: {Some shit: null}\n" " text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 report incongruencias sewan pdf/cdr\n" " 1/1 fix b''illing db and run\n" " 0/2 guide entretien prestataire\n" " 0/1 org desk'\n") expected = ( "1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 report incongruencias sewan pdf/cdr\n" " 1/1 fix b'illing db and run\n" " 0/2 guide entretien prestataire\n" " 0/1 org desk") self.assertEqual(self.p._get_text(block), expected) def test_get_text_without_categories(self): block = ( " {text: '1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk'}\n") expected = ( "1/1 fix import sewan\n" " 2/2 check fidelidade, delete 0836\n" " 0/1 org desk") self.assertEqual(self.p._get_text(block), expected) def test_get_pomodoros(self): # TODO pass def tearDown(self): os.remove(os.path.join(self.nb_path, '2012-10.txt')) if __name__ == '__main__': unittest.main()
{"/test_notebook_parser.py": ["/notebook_parser.py"]}
211
rodelrod/pomodoro-report
refs/heads/master
/notebook_parser.py
#!/usr/bin/env python import re import os NOTEBOOK_PATH = '/home/rrodrigues/.rednotebook/data' class EmptyDayException(Exception): """No info was entered for this date.""" class Parser(object): """Parses RedNotebook monthly files. This is a very basic parser used to extract Pomodoro references for each day. It has the following limitations: - Basically assumes there is nothing but the Pomodoro references in the day's text. - Ignores any Tags. - Ignores any Categories. - In the fancy cases where the text field ends up surrounded by double quotes instead of single quotes, it breaks. """ def __init__(self, nb_path=NOTEBOOK_PATH): self.nb_path = nb_path def _get_nb_filename(self, date): return os.path.join(self.nb_path, date.strftime('%Y-%m.txt')) @staticmethod def _parse_day_block(day_block_list): day_blocks = {} is_content = False for index, token in enumerate(day_block_list): if token.isdigit() and not is_content: day = int(token) is_content = True elif is_content: day_blocks[day] = token is_content = False else: pass return day_blocks def _get_day(self, date): day_filename = self._get_nb_filename(date) if not os.path.isfile(day_filename): raise EmptyDayException with open(day_filename, 'r') as nb_file: file_contents = nb_file.read() day_blocks_list = re.split('^(\d+):', file_contents, flags=re.MULTILINE) day_blocks = self._parse_day_block(day_blocks_list) try: return day_blocks[date.day] except KeyError: raise EmptyDayException def _get_text(self, block): after_text = re.split('\Wtext:', block)[1] quote_set = False started_text = False ended_text = False text = [] for token in after_text: if token == "'": if not started_text: #first quote, text starts started_text = True elif quote_set and started_text: #second quote text.append("'") quote_set = False elif not quote_set and started_text: # quote in the middle of text, maybe the end or first of an # escape sequence quote_set = True else: if quote_set: # First character after a quote is not a quote, so this # must be the end break elif started_text: # Normal text, add it to the output text.append(token) else: # Text hasn't started yet, discard token continue return ''.join(text) def get_pomodoros(self): # TODO pass
{"/test_notebook_parser.py": ["/notebook_parser.py"]}
220
grizzlypeaksoftware/tankbot
refs/heads/master
/tankbot.py
import RPi.GPIO as GPIO from time import sleep def Init(): GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) GPIO.setup(3,GPIO.OUT,initial=GPIO.LOW) #blue GPIO.setup(5,GPIO.OUT,initial=GPIO.LOW) #green GPIO.setup(16,GPIO.OUT,initial=GPIO.LOW) #yellow GPIO.setup(18,GPIO.OUT,initial=GPIO.LOW) #orange Welcome() def Welcome(): Stop() Forward() sleep(.5) Reverse() sleep(.5) Right() sleep(1) Left() sleep(1) Stop() def No(): Stop() Right() sleep(.25) Left() sleep(.25) Right() sleep(.25) Left() sleep(.25) Stop() def Yes(): Stop() Forward() sleep(.25) Reverse() sleep(.25) Forward() sleep(.25) Reverse() sleep(.25) Stop() def Forward(): GPIO.output(3,GPIO.LOW) GPIO.output(5,GPIO.HIGH) GPIO.output(16,GPIO.LOW) GPIO.output(18,GPIO.HIGH) def Reverse(): GPIO.output(3,GPIO.HIGH) GPIO.output(5,GPIO.LOW) GPIO.output(16,GPIO.HIGH) GPIO.output(18,GPIO.LOW) def Left(): GPIO.output(3,GPIO.LOW) GPIO.output(5,GPIO.HIGH) GPIO.output(16,GPIO.HIGH) GPIO.output(18,GPIO.LOW) def Right(): GPIO.output(3,GPIO.HIGH) GPIO.output(5,GPIO.LOW) GPIO.output(16,GPIO.LOW) GPIO.output(18,GPIO.HIGH) def Stop(): #print("Stop Tankbot") GPIO.output(3,GPIO.LOW) GPIO.output(5,GPIO.LOW) GPIO.output(16,GPIO.LOW) GPIO.output(18,GPIO.LOW) def Close(): GPIO.cleanup()
{"/bot.py": ["/tankbot.py"]}
221
grizzlypeaksoftware/tankbot
refs/heads/master
/bot.py
import tankbot import keyboard import time as _time tankbot.Init() recorded = [] recording_started = False def ControlSwitch(key, event): global recording_started #print(key) #print(event.event_type) if key == "s": tankbot.Stop() if key == "up": tankbot.Forward() if key == "down": tankbot.Reverse() if key == "right": tankbot.Right() if key == "left": tankbot.Left() if key == "1": tankbot.No() if key == "2": tankbot.Yes() if key == "3": tankbot.Welcome() if key == "f1": keyboard.start_recording() recording_started = True if key == "f2": try: if recording_started == True: recording_started = False Playback(keyboard.stop_recording()) else: Playback(recorded) except Exception as inst: print(type(inst)) # the exception instance print(inst.args) # arguments stored in .args print(inst) # __str__ allows args to be printed directly, if key == "q": tankbot.Stop() return False return True def Playback(rec): last_time = None global recorded recorded = rec for event in rec: if last_time is not None: _time.sleep(event.time - last_time) last_time = event.time key = event.scan_code or event.name if event.name != "f2": check = ControlSwitch(event.name, event) continueLoop = True while continueLoop: try: key = keyboard.read_key() event = keyboard.read_event() if event.event_type == "up": continueLoop = ControlSwitch(key, event) except Exception as inst: print(type(inst)) # the exception instance print(inst.args) # arguments stored in .args print(inst) # __str__ allows args to be printed directly, tankbot.Close()
{"/bot.py": ["/tankbot.py"]}
223
jeespinozam/bomberman-ai
refs/heads/master
/plugins/SerpentBombermanGameAgentPlugin/files/helpers/ppo.py
from tensorforce.agents import PPOAgent from serpent.utilities import SerpentError import numpy as np import os # This file is borrowed from SerpentAIsaacGameAgentPlugin: # https://github.com/SerpentAI/SerpentAIsaacGameAgentPlugin/blob/master/files/helpers/ppo.py class SerpentPPO: def __init__(self, frame_shape=None, game_inputs=None): if frame_shape is None: raise SerpentError("A 'frame_shape' tuple kwarg is required...") states_spec = {"type": "float", "shape": frame_shape} if game_inputs is None: raise SerpentError("A 'game_inputs' dict kwarg is required...") self.game_inputs = game_inputs self.game_inputs_mapping = self._generate_game_inputs_mapping() actions_spec = {"type": "int", "num_actions": len(self.game_inputs)} network_spec = [ {"type": "conv2d", "size": 1, "window": 2, "stride": 1}, {"type": "flatten"}, # {"type": "dense", "size": 64}, {"type": "dense", "size": 6} ] self.agent = PPOAgent( states=states_spec, actions=actions_spec, network=network_spec, batched_observe=256, batching_capacity=1000, # BatchAgent #keep_last_timestep=True, # PPOAgent step_optimizer=dict( type='adam', learning_rate=1e-4 ), optimization_steps=10, # Model scope='ppo' #discount=0.97, # DistributionModel #distributions=None, #entropy_regularization=0.01, # PGModel #baseline_mode=None, #baseline=None, #baseline_optimizer=None, #gae_lambda=None, # PGLRModel #likelihood_ratio_clipping=None, #summary_spec=summary_spec, #distributed_spec=None, # More info #device=None, #session_config=None, #saver=None, #variable_noise=None, #states_preprocessing_spec=None, #explorations_spec=None, #reward_preprocessing_spec=None, #execution=None, #actions_exploration=None, #update_mode=None, #memory=None, #subsampling_fraction=0.1 ) def generate_action(self, game_frame_buffer): states = np.stack( game_frame_buffer, axis=2 ) # Get prediction from agent, execute action = self.agent.act(states) label = self.game_inputs_mapping[action] return action, label, self.game_inputs[label] def observe(self, reward=0, terminal=False): self.agent.observe(reward=reward, terminal=terminal) def _generate_game_inputs_mapping(self): mapping = dict() for index, key in enumerate(self.game_inputs): mapping[index] = key return mapping def save_model(self): self.agent.save_model(directory=os.path.join(os.getcwd(), "datasets", "bomberman", "ppo_model"), append_timestep=False) def restore_model(self): self.agent.restore_model(directory=os.path.join(os.getcwd(), "datasets", "bomberman"))
{"/plugins/SerpentBombermanGameAgentPlugin/files/serpent_Bomberman_game_agent.py": ["/plugins/SerpentBombermanGameAgentPlugin/files/helpers/game_status.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/ppo.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/dqn.py"]}
224
jeespinozam/bomberman-ai
refs/heads/master
/plugins/SerpentBombermanGameAgentPlugin/files/serpent_Bomberman_game_agent.py
# import time # import os # import pickle # import serpent.cv # # import numpy as np # import collections # # from datetime import datetime # # # from serpent.frame_transformer import FrameTransformer # from serpent.frame_grabber import FrameGrabber # from serpent.game_agent import GameAgent # from serpent.input_controller import KeyboardKey # from serpent.sprite import Sprite # from serpent.sprite_locator import SpriteLocator # from serpent.sprite_identifier import SpriteIdentifier # # # from .helpers.game_status import Game # from .helpers.terminal_printer import TerminalPrinter # from .helpers.ppo import SerpentPPO # # # import random # # class SerpentBombermanGameAgent(GameAgent): # # def __init__(self, **kwargs): # super().__init__(**kwargs) # # self.frame_handlers["PLAY"] = self.handle_play # # self.frame_handler_setups["PLAY"] = self.setup_play # # self.value = None # print("Sprites") # print(type(self.game.sprites)) # print("game") # print(self.game) # print("game type") # print(type(self.game)) # for i,value in enumerate(self.game.sprites): # if(i==13): # print(value) # self.value = value # self.spriteGO = self.game.sprites.get("SPRITE_GAME_OVER") # self.spriteWO = self.game.sprites.get("SPRITE_GAME_WON") # #self.sprite.image_data # self.printer = TerminalPrinter() # # def setup_play(self): # game_inputs = { # "Move Up": [KeyboardKey.KEY_UP], # "Move Down": [KeyboardKey.KEY_DOWN], # "Move Left": [KeyboardKey.KEY_LEFT], # "Move Right": [KeyboardKey.KEY_RIGHT], # "Leave Bomb": [KeyboardKey.KEY_SPACE] # } # self.game_inputs = game_inputs # # # self.ppo_agent = SerpentPPO( # # frame_shape=(480, 549, 4), # # game_inputs=game_inputs # # ) # # self.first_run = True # self.game_over = False # self.current_attempts = 0 # self.run_reward = 0 # self.started_at = datetime.utcnow().isoformat() # self.paused_at = None # # print("Enter - Auto Save") # self.input_controller.tap_key(KeyboardKey.KEY_ENTER) # time.sleep(2) # # return # # def extract_game_area(self, frame_buffer): # game_area_buffer = [] # # for game_frame in frame_buffer.frames: # game_area = serpent.cv.extract_region_from_image( # game_frame.grayscale_frame, # self.game.screen_regions["GAME_REGION"] # ) # # frame = FrameTransformer.rescale(game_area, 0.25) # game_area_buffer.append(frame) # # return game_area_buffer # # def handle_play(self, game_frame): # if self.first_run: # self.current_attempts += 1 # self.first_run = False # return None # # self.printer.add("") # self.printer.add("BombermanAI") # self.printer.add("Reinforcement Learning: Training a PPO Agent") # self.printer.add("") # self.printer.add(f"Stage Started At: {self.started_at}") # self.printer.add(f"Current Run: #{self.current_attempts}") # self.printer.add("") # # inputs = [KeyboardKey.KEY_UP, # KeyboardKey.KEY_DOWN, # KeyboardKey.KEY_LEFT, # KeyboardKey.KEY_RIGHT, # KeyboardKey.KEY_SPACE] # # #game over? # sprite_to_locate = Sprite("QUERY", image_data=self.spriteGO.image_data) # # sprite_locator = SpriteLocator() # locationGO = sprite_locator.locate(sprite=sprite_to_locate, game_frame=game_frame) # print(locationGO) # # #won game? # sprite_to_locate = Sprite("QUERY", image_data=self.spriteWO.image_data) # sprite_locator = SpriteLocator() # locationWO = sprite_locator.locate(sprite=sprite_to_locate, game_frame=game_frame) # print(locationWO) # # print(type(game_frame)) # # if(locationGO!= None or locationWO!= None): # #enter clic in both cases # self.input_controller.tap_key(KeyboardKey.KEY_ENTER) # else: # game_frame_buffer = FrameGrabber.get_frames([0, 1, 2, 3], frame_type="PIPELINE") # game_frame_buffer = self.extract_game_area(game_frame_buffer) # action, label, value = self.ppo_agent.generate_action(game_frame_buffer) # # print(action, label, value) # self.input_controller.tap_key(value) #!/usr/bin/python # -*- coding: utf-8 -*- import sys import time import os import pickle import serpent.cv import numpy as np import collections from datetime import datetime from serpent.frame_transformer import FrameTransformer from serpent.frame_grabber import FrameGrabber from serpent.game_agent import GameAgent from serpent.input_controller import KeyboardKey from serpent.sprite import Sprite from serpent.sprite_locator import SpriteLocator from serpent.sprite_identifier import SpriteIdentifier import skimage.io from serpent.visual_debugger.visual_debugger import VisualDebugger from .helpers.game_status import Game from .helpers.terminal_printer import TerminalPrinter from .helpers.ppo import SerpentPPO from .helpers.dqn import KerasAgent import random class MyFrame: def __init__ (self, frame): self.frame = frame class SerpentBombermanGameAgent(GameAgent): def __init__(self, **kwargs): super().__init__(**kwargs) self.frame_handlers['PLAY'] = self.handle_play self.frame_handler_setups['PLAY'] = self.setup_play self.value = None #print('Sprites') #print(type(self.game.sprites)) #print('game') #print(self.game) #print('game type') #print(type(self.game)) self.spriteGO = self.game.sprites.get('SPRITE_GAME_OVER') self.spriteWO = self.game.sprites.get('SPRITE_GAME_WON') self.spriteGirl = self.game.sprites.get('SPRITE_BETTY_0') self.printer = TerminalPrinter() self.visual_debugger = VisualDebugger() self.gamestate = Game() def setup_play(self): game_inputs = { "MoveUp": [KeyboardKey.KEY_UP], "MoveDown": [KeyboardKey.KEY_DOWN], "MoveLeft": [KeyboardKey.KEY_LEFT], "MoveRight": [KeyboardKey.KEY_RIGHT], "LeaveBomb": [KeyboardKey.KEY_SPACE], "None": [0] } self.game_inputs = game_inputs self.game_actions = [ KeyboardKey.KEY_UP, KeyboardKey.KEY_DOWN, KeyboardKey.KEY_LEFT, KeyboardKey.KEY_RIGHT, KeyboardKey.KEY_SPACE, None] ##120, 137 self.dqn_agent = KerasAgent(shape=(104, 136, 1), action_size=len(self.game_actions)) #load model #self.ppo_agent.restore_model() self.first_run = True ##states trainning self.epoch = 1 self.total_reward = 0 ##state & action self.prev_state = None self.prev_action = None self.prev_reward = 0 print("Enter - Auto Save") self.input_controller.tap_key(KeyboardKey.KEY_ENTER) self.gamestate.restartState() time.sleep(2) def extract_game_area(self, frame_buffer): game_area_buffer = [] for game_frame in frame_buffer.frames: game_area = \ serpent.cv.extract_region_from_image(game_frame.grayscale_frame,self.game.screen_regions['GAME_REGION']) frame = FrameTransformer.rescale(game_area, 0.25) game_area_buffer.append(frame) print(np.array(game_area_buffer).shape) return np.array(game_area_buffer) def convert_to_rgba(self, matrix): #print(matrix) new_matrix = [] for x in range(0,len(matrix)): line = [] for y in range(0,len(matrix[x])): #pixel pixel = matrix[x][y] new_pixel = [pixel[0],pixel[1],pixel[2], 255] line.append(new_pixel) new_matrix.append(line) return np.array(new_matrix) def update_game_state(self, frame): game_area = \ serpent.cv.extract_region_from_image(frame,self.game.screen_regions['GAME_REGION']) #game ... # 0,0 # 32,32 game_squares = [[None for j in range(0,11)] for i in range(0,15)] const_offset = 8 const = 32 #game variables self.gamestate.bombs = [] #{x, y} self.gamestate.enemies = [] #{x,y} #force girl to die if not found girl_found = False for i in range(0,15): for j in range(0, 11): izq = ((j+1)*const - const_offset, (i+1)*const - const_offset) der = ((j+2)*const + const_offset, (i+2)*const + const_offset) reg = (izq[0], izq[1], der[0], der[1]) square = serpent.cv.extract_region_from_image(game_area, reg) square = self.convert_to_rgba(square) sprite_to_locate = Sprite("QUERY", image_data=square[..., np.newaxis]) sprite = self.sprite_identifier.identify(sprite_to_locate, mode="SIGNATURE_COLORS") game_squares[i][j] = sprite if("SPRITE_BETTY" in sprite): self.girl = {"x": i, "y": j} girl_found = True elif("SPRITE_GEORGE" in sprite): self.gamestate.enemies.append({"x": i, "y": j}) elif("SPRITE_BOMB" in sprite): self.gamestate.bombs.append({"x": i, "y": j}) self.gamestate.girl_alive = girl_found self.gamestate.done = not girl_found return game_squares def handle_play(self, game_frame): #self.printer.add("") #self.printer.add("BombermanAI") #self.printer.add("Reinforcement Learning: Training a PPO Agent") #self.printer.add("") #self.printer.add(f"Stage Started At: {self.started_at}") #self.printer.add(f"Current Run: #{self.current_attempts}") #self.printer.add("") #self.check_game_state(game_frame) #####################CHECK STATE########################### #game over? locationGO = None sprite_to_locate = Sprite("QUERY", image_data=self.spriteGO.image_data) sprite_locator = SpriteLocator() locationGO = sprite_locator.locate(sprite=sprite_to_locate, game_frame=game_frame) #print("Location Game over:",locationGO) #won game? locationWO = None sprite_to_locate = Sprite("QUERY", image_data=self.spriteWO.image_data) sprite_locator = SpriteLocator() locationWO = sprite_locator.locate(sprite=sprite_to_locate, game_frame=game_frame) #print("Location Game won:",locationWO) self.gamestate.victory = locationWO!= None self.gamestate.lose = locationGO!=None self.gamestate.girl_alive = (locationGO== None and locationWO== None) self.gamestate.done = not self.gamestate.girl_alive print(f"Is alive? {self.gamestate.girl_alive}") print(f"Game over? {self.gamestate.lose}") print(f"Won? {self.gamestate.victory}") #####################VISUAL DEBUGGER########################### for i, game_frame in enumerate(self.game_frame_buffer.frames): self.visual_debugger.store_image_data( game_frame.frame, game_frame.frame.shape, str(i) ) #####################MODEL########################### #get buffer frame_buffer = FrameGrabber.get_frames([0, 1, 2, 3], frame_type="PIPELINE") game_frame_buffer = self.extract_game_area(frame_buffer) state = game_frame_buffer.reshape(4, 104, 136, 1) if(self.gamestate.done): print(f"Game over, attemp {self.epoch}") if (self.epoch % 10)== 0: print("saving model") self.dqn_agent.save_model(f"bombergirl_epoch_{self.epoch}.model") self.printer.save_file() self.printer.add(f"{self.gamestate.victory},{self.gamestate.lose},{self.epoch},{self.gamestate.time},{self.total_reward}") self.total_reward = 0 self.dqn_agent.remember(self.prev_state, self.prev_action, self.prev_reward, state, True) self.dqn_agent.replay() self.input_controller.tap_key(KeyboardKey.KEY_ENTER) self.epoch += 1 self.total_reward = 0 self.gamestate.restartState() self.prev_state = None self.prev_action = None else: #update time self.gamestate.updateTime() #print(np.stack(game_frame_buffer,axis=1).shape) #print(game_frame_buffer.shape) #print(state.shape) if(not (self.prev_state is None) and not (self.prev_action is None)): self.dqn_agent.remember(self.prev_state, self.prev_action, self.prev_reward, state, False) #do something action_index = self.dqn_agent.act(state) #get key action = self.game_actions[action_index] #get random frame from buffer game_frame_rand = random.choice(frame_buffer.frames).frame #update enviroment accorind to frame ###################FUN UPDATE STATE######################################### game_area = \ serpent.cv.extract_region_from_image(game_frame_rand,self.game.screen_regions['GAME_REGION']) #game ... # 0,0 # 32,32 game_squares = [[None for j in range(0,11)] for i in range(0,15)] const_offset = 8 const = 32 #game variables self.gamestate.bombs = [] #{x, y} self.gamestate.enemies = [] #{x,y} #force girl to die if not found girl_found = False for i in range(0,15): for j in range(0, 11): izq = ((j+1)*const - const_offset, (i+1)*const - const_offset) der = ((j+2)*const + const_offset, (i+2)*const + const_offset) reg = (izq[0], izq[1], der[0], der[1]) square = serpent.cv.extract_region_from_image(game_area, reg) square = self.convert_to_rgba(square) sprite_to_locate = Sprite("QUERY", image_data=square[..., np.newaxis]) sprite = self.sprite_identifier.identify(sprite_to_locate, mode="SIGNATURE_COLORS") game_squares[i][j] = sprite if("SPRITE_BETTY" in sprite): self.girl = {"x": i, "y": j} girl_found = True elif("SPRITE_GEORGE" in sprite): self.gamestate.enemies.append({"x": i, "y": j}) elif("SPRITE_BOMB" in sprite): self.gamestate.bombs.append({"x": i, "y": j}) elif("SPRITE_BONUSES" in sprite): self.gamestate.bonus.append({"x": i, "y": j}) #####################CHECK STATE########################### #game over? locationGO = None sprite_to_locate = Sprite("QUERY", image_data=self.spriteGO.image_data) sprite_locator = SpriteLocator() locationGO = sprite_locator.locate(sprite=sprite_to_locate, game_frame=game_frame) #print("Location Game over:",locationGO) #won game? locationWO = None sprite_to_locate = Sprite("QUERY", image_data=self.spriteWO.image_data) sprite_locator = SpriteLocator() locationWO = sprite_locator.locate(sprite=sprite_to_locate, game_frame=game_frame) #print("Location Game won:",locationWO) self.gamestate.lose = locationGO!=None self.gamestate.victory = locationWO!= None self.gamestate.girl_alive = (locationGO== None and locationWO== None) self.gamestate.done = not self.gamestate.girl_alive print(f"Is alive? {self.gamestate.girl_alive}") print(f"Game over? {self.gamestate.lose}") print(f"Won? {self.gamestate.victory}") ###################REWARD######################################### #get reward reward = self.gamestate.getReward(action_index) self.total_reward += reward self.prev_state = state self.prev_action = action_index self.prev_reward = reward if(action): self.input_controller.tap_key(action, 0.15 if action_index < 4 else 0.01) print(f"Action: {self.gamestate.game_inputs[action_index]}, reward: {reward}, total_reward: {self.total_reward}") #action, label, value = self.ppo_agent.generate_action(game_frame_buffer) #print(action, label, value) #key, value = random.choice(list(self.game_inputs.items())) #if(value[0]): # self.input_controller.tap_key(value[0]) #game_squares = self.extract_game_squares(game_frame.frame) def check_game_state(self, game_frame): #game over? locationGO = None sprite_to_locate = Sprite("QUERY", image_data=self.spriteGO.image_data) sprite_locator = SpriteLocator() locationGO = sprite_locator.locate(sprite=sprite_to_locate, game_frame=game_frame) print("Location Game over:",locationGO) #won game? locationWO = None sprite_to_locate = Sprite("QUERY", image_data=self.spriteWO.image_data) sprite_locator = SpriteLocator() locationWO = sprite_locator.locate(sprite=sprite_to_locate, game_frame=game_frame.frames) print("Location Game won:",locationWO) self.gamestate.girl_alive = (locationGO== None and locationWO== None) self.gamestate.done = not self.gamestate.girl_alive self.gamestate.victory = locationWO!= None print(f"Is alive? {self.gamestate.girl_alive}") print(f"Game over? {self.gamestate.lose}") print(f"Won? {self.gamestate.victory}")
{"/plugins/SerpentBombermanGameAgentPlugin/files/serpent_Bomberman_game_agent.py": ["/plugins/SerpentBombermanGameAgentPlugin/files/helpers/game_status.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/ppo.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/dqn.py"]}
225
jeespinozam/bomberman-ai
refs/heads/master
/plugins/SerpentBombermanGameAgentPlugin/files/helpers/dqn.py
import json import sys import random import os import numpy as np from collections import deque from keras.models import Sequential from keras.layers import * from keras.optimizers import * class KerasAgent: def __init__(self, shape, action_size): self.weight_backup = "bombergirl_weight.model" self.shape = shape self.action_size = action_size self.memory = deque(maxlen=2000) self.learning_rate = 0.001 self.gamma = 0.95 self.exploration_rate = 1.0 self.exploration_min = 0.01 self.exploration_decay = 0.995 self.model = self._build_model() def _build_model(self): model = Sequential() # Convolutions. model.add(Conv2D( 16, kernel_size=(3, 3), strides=(1, 1), #data_format='channels_first', input_shape=self.shape )) model.add(Activation('relu')) model.add(Conv2D( 32, kernel_size=(3, 3), strides=(1, 1), data_format='channels_first' )) model.add(Activation('relu')) # Dense layers.² model.add(Flatten()) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dense(self.action_size)) model.summary() model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) #model.compile(RMSprop(), 'MSE') if os.path.isfile(self.weight_backup): model.load_weights(self.weight_backup) self.exploration_rate = self.exploration_min return model def save_model(self, name): self.model.save(self.weight_backup) self.model.save(name) def act(self, state): if np.random.rand() <= self.exploration_rate: return random.randrange(self.action_size) act_values = self.model.predict(state) return np.argmax(act_values[0]) def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def replay(self, sample_batch_size=256): if len(self.memory) < sample_batch_size: sample_batch_size=len(self.memory) sample_batch = random.sample(self.memory, sample_batch_size) for state, action, reward, next_state, done in sample_batch: target = reward if not done: target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0])) target_f = self.model.predict(state) target_f[0][action] = target self.model.fit(state, target_f, epochs=1, verbose=0) if self.exploration_rate > self.exploration_min: self.exploration_rate *= self.exploration_decay
{"/plugins/SerpentBombermanGameAgentPlugin/files/serpent_Bomberman_game_agent.py": ["/plugins/SerpentBombermanGameAgentPlugin/files/helpers/game_status.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/ppo.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/dqn.py"]}
226
jeespinozam/bomberman-ai
refs/heads/master
/plugins/SerpentBombermanGamePlugin/files/serpent_Bomberman_game.py
from serpent.game import Game from .api.api import BombermanAPI from serpent.utilities import Singleton from serpent.game_launchers.web_browser_game_launcher import WebBrowser class SerpentBombermanGame(Game, metaclass=Singleton): def __init__(self, **kwargs): kwargs["platform"] = "web_browser" kwargs["window_name"] = "Safari" kwargs["url"] = "http://0.0.0.0:8000" kwargs["browser"] = WebBrowser.DEFAULT super().__init__(**kwargs) self.api_class = BombermanAPI self.api_instance = None @property def screen_regions(self): #t dic_offset = { "WINDOWS_CHROME": { # "top": 81, # "left": 5 "top": 0, "left": 0 } } offset = dic_offset["WINDOWS_CHROME"] regions = { "GAME_REGION": (offset["top"], offset["left"], 416 + offset["top"], 544 + offset["left"]), #544x416 "GAME_OVER_REGION": (118 + offset["top"], 163 + offset["left"], 151 + offset["top"], 383 + offset["left"]), #220x33 - 163,118 "WIN_REGION": (118 + offset["top"], 171 + offset["left"], 149 + offset["top"], 372 + offset["left"]), # 201x31 - 171,118 } return regions @property def ocr_presets(self): presets = { "SAMPLE_PRESET": { "extract": { "gradient_size": 1, "closing_size": 1 }, "perform": { "scale": 10, "order": 1, "horizontal_closing": 1, "vertical_closing": 1 } } } return presets # from serpent.game import Game # # from .api.api import BombermanAPI # # from serpent.utilities import Singleton # # from serpent.game_launchers.web_browser_game_launcher import WebBrowser # # # class SerpentBombermanGame(Game, metaclass=Singleton): # # def __init__(self, **kwargs): # kwargs["platform"] = "web_browser" # # kwargs["window_name"] = "Safari" # # kwargs["url"] = "http://0.0.0.0:8000" # kwargs["browser"] = WebBrowser.DEFAULT # # super().__init__(**kwargs) # # self.api_class = BombermanAPI # self.api_instance = None # # @property # def screen_regions(self): # regions = { # "GAME_REGION": (0, 0, 480, 549), ##545x416 # "GAME_OVER_REGION": (160,160, 225, 404), # "WIN_REGION": (175,130, 220, 421), # } # # return regions # # @property # def ocr_presets(self): # presets = { # "SAMPLE_PRESET": { # "extract": { # "gradient_size": 1, # "closing_size": 1 # }, # "perform": { # "scale": 10, # "order": 1, # "horizontal_closing": 1, # "vertical_closing": 1 # } # } # } # # return presets
{"/plugins/SerpentBombermanGameAgentPlugin/files/serpent_Bomberman_game_agent.py": ["/plugins/SerpentBombermanGameAgentPlugin/files/helpers/game_status.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/ppo.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/dqn.py"]}
227
jeespinozam/bomberman-ai
refs/heads/master
/plugins/SerpentBombermanGameAgentPlugin/files/helpers/game_status.py
#from .memreader import MemoryReader import time class Game: enemies = [] #{x,y} bombs = [] #{x,y} bonus = [] girl = {"x": 0, "y": 0} start_time = 0 time = 0 game_inputs = { 0: "MoveUp", 1: "MoveDown", 2: "MoveLeft", 3: "MoveRight", 4: "LeaveBomb", 5: "None" } girl_alive = True done = False lose = False victory = False ##const TIME_NORM = 10 MOVEMENT_RW = 5 BONUS_RW = 10 ALIVE_RW = 20 ENEMIES_NORM = 5 REWARD_BOMB = 25 REWARD_VICTORY = 100 REWARD_LOSE = 50 MAX_DISTANCE = 8 def restartState(self): self.girl_alive = True self.done = False self.lose = False self.victory = False self.time = 0 self.start_time = time.time() def getCurrentTimeNormalized(self): return self.time / self.TIME_NORM def getDistanceNormalized(self, elem1, elem2): return abs(elem1['x'] - elem2['x']) + abs(elem1['y'] - elem2['y']) def updateTime(self): self.time = time.time() - self.start_time def getReward(self, action): reward = 0 # Para castigar por el numero de enemigos reward -= self.ENEMIES_NORM*len(self.enemies) # Para casticar con el paso del tiempo reward -= self.getCurrentTimeNormalized() # Para castigar/ premiar si la chica está cerca/lejos a una bomba for bomb in self.bombs: distance = self.getDistanceNormalized(bomb, self.girl) if distance < self.MAX_DISTANCE: reward -= distance else reward += distance if(action == 4): # Para premiar que esté colocando una bomba reward += self.REWARD_BOMB for enemy in self.enemies: # Para premiar que la bomba está más cerca a un enemigo distance = self.getDistanceNormalized(enemy, self.girl) if distance< self.MAX_DISTANCE: reward += self.REWARD_BOMB/distance if(action < 4): # Para premiar que se mueve reward += self.MOVEMENT_RW # Para premiar que esté más cerca a un bonus for bonus in self.bonus: reward += self.BONUS_RW / self.getDistanceNormalized(bonus, self.girl) # Para premiar que está jugando if(self.girl_alive): reward += self.ALIVE_RW # Para castigar que ha perdido if self.lose: reward -= self.REWARD_LOSE # Para premiar que ha ganado if self.victory: reward += self.REWARD_VICTORY return reward
{"/plugins/SerpentBombermanGameAgentPlugin/files/serpent_Bomberman_game_agent.py": ["/plugins/SerpentBombermanGameAgentPlugin/files/helpers/game_status.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/ppo.py", "/plugins/SerpentBombermanGameAgentPlugin/files/helpers/dqn.py"]}
230
martkins/images_exif_viewer
refs/heads/master
/labelmodel.py
from kivy.uix.button import Button from kivy.uix.label import Label from kivy.lang import Builder from kivy.event import EventDispatcher class LabelModel(Label): def __init__(self, **kwargs): super(Label, self).__init__(**kwargs)
{"/main.py": ["/imagemodel.py", "/buttonmodel.py", "/labelmodel.py"]}
231
martkins/images_exif_viewer
refs/heads/master
/imagemodel.py
from kivy.uix.image import Image from kivy.properties import NumericProperty class ImageModel(Image): ang = NumericProperty() def __init__(self, **kwargs): super(Image, self).__init__(**kwargs) def rotate_right(self): self.ang += 90 def rotate_left(self): self.ang -= 90 def reset_angle(self): self.ang = 0
{"/main.py": ["/imagemodel.py", "/buttonmodel.py", "/labelmodel.py"]}
232
martkins/images_exif_viewer
refs/heads/master
/main.py
from kivy.app import App from kivy.uix.image import Image from kivy.properties import ObjectProperty from kivy.uix.listview import ListView, SimpleListAdapter from kivy.uix.label import Label from imagemodel import ImageModel from kivy.uix.button import Button from kivy.factory import Factory from buttonmodel import ButtonModel from labelmodel import LabelModel from kivy.core.window import Window class ButtonWithModel(Button): def __init__(self,model, **kwargs): self.model = model super().__init__(**kwargs) class LabelWithModel(Label): def __init__(self,model, **kwargs): self.model = model super().__init__(**kwargs) class ImageWithModel(Image): def __init__(self,model, **kwargs): self.model = model super().__init__(**kwargs) class MainApp(App): image = ObjectProperty() exif = ObjectProperty() def build(self): Window.bind(on_keyboard=self.on_keyboard) self.start_app() def on_keyboard(self, window, key, scancode, codepoint, modifier): if modifier == ['ctrl'] and codepoint == 'r': self.image.model.rotate_right() if modifier == ['ctrl'] and codepoint == 'l': self.image.model.rotate_left() if modifier == ['ctrl'] and codepoint == 'o': self.exif.model.open_image() if modifier == ['ctrl'] and codepoint == 'e': self.exif.model.get_exif_data() if modifier == ['ctrl'] and codepoint == 'n': self.exif.model.next_image() if modifier == ['ctrl'] and codepoint == 'p': self.exif.model.previous_image() if modifier == ['ctrl'] and codepoint == 'g': self.exif.model.get_location() def start_app(self): labels = [LabelModel() for _ in range(100)] self.image = Factory.MainImage(ImageModel()) self.root.ids.image_box.add_widget(self.image) self.exif = Factory.GetExifData(ButtonModel(image=self.image, labels=labels)) self.root.ids.button_box.add_widget(self.exif) right = Factory.RotateRight(self.exif.model) self.root.ids.button_box.add_widget(right) left = Factory.RotateLeft(self.exif.model) self.root.ids.button_box.add_widget(left) loc = Factory.GetLocation(self.exif.model) self.root.ids.button_box.add_widget(loc) next = Factory.NextImage(self.exif.model) self.root.ids.cycle_box.add_widget(next) prev = Factory.PreviousImage(self.exif.model) self.root.ids.cycle_box.add_widget(prev) get = Factory.OpenImage(self.exif.model) self.root.ids.button_box.add_widget(get) lab = Factory.ExifLabel(LabelModel()) self.root.ids.exif_container.add_widget(lab) list_adapter = SimpleListAdapter( data=labels, args_converter=lambda row, model: {'model': model, 'size_hint_y': None, 'height':100}, cls=Factory.ExifTags) self.root.ids.exif_container.add_widget(ListView(adapter=list_adapter)) if __name__ == "__main__": MainApp().run()
{"/main.py": ["/imagemodel.py", "/buttonmodel.py", "/labelmodel.py"]}
233
martkins/images_exif_viewer
refs/heads/master
/buttonmodel.py
import exifread from kivy.uix.button import Button from kivy.lang import Builder from tkinter.filedialog import askopenfilenames from kivy.properties import DictProperty, ListProperty, NumericProperty import webbrowser from tkinter import Tk root = Tk() root.withdraw() Builder.load_file('./actionbutton.kv') def _convert(value): d = float(str(value[0])) m = float(str(value[1])) s1 = (str(value[2])).split('/') s = float((s1[0])) / float((s1[1])) return d + (m / 60.0) + (s / 3600.0) class ButtonModel(Button): tags = DictProperty() images = ListProperty() count = NumericProperty(0) def __init__(self,image='', labels='', **kwargs): self.image = image self.labels = labels super(Button, self).__init__(**kwargs) def rotate_right(self): self.image.model.rotate_right() def rotate_left(self): self.image.model.rotate_left() def open_image(self): try: self.images = askopenfilenames(initialdir="/", title="Select file", filetypes=(("jpeg files", "*.jpg"),("png files","*png"), ("all files", "*.*"))) self.reset_labels() self.image.source = self.images[0] self.image.model.reset_angle() except: pass def get_exif_data(self): print(self.image.source) f = open(self.image.source, 'rb') self.tags = exifread.process_file(f) i = 0 for tag in self.tags.keys(): if tag not in ('EXIF MakerNote','User Comment','JPEGThumbnail', 'EXIF UserComment'): self.labels[i].text = str(tag.split()[1])+' : '+str(self.tags[tag]) i = i+1 def get_location(self): lat = None lon = None try: gps_latitude = self.tags['GPS GPSLatitude'].values gps_latitude_ref = self.tags['GPS GPSLatitudeRef'].values gps_longitude = self.tags['GPS GPSLongitude'].values gps_longitude_ref = self.tags['GPS GPSLongitudeRef'].values if gps_latitude and gps_latitude_ref and gps_longitude and gps_longitude_ref: lat = _convert(gps_latitude) if gps_latitude_ref != 'N': lat = 0 - lat lon = _convert(gps_longitude) if gps_longitude_ref != 'E': lon = 0 - lon webbrowser.open('https://www.google.com/maps/search/?api=1&query='+str(lat)+','+str(lon)) except: pass def next_image(self): if len(self.images) > 1: self.count = self.count + 1 if self.count >= len(self.images): self.count = 0 self.image.model.reset_angle() self.reset_labels() self.image.source = self.images[self.count] def previous_image(self): if len(self.images) > 1: self.count = self.count - 1 if self.count < 0: self.count = len(self.images)-1 self.image.model.reset_angle() self.reset_labels() self.image.source = self.images[self.count] def reset_labels(self): self.tags.clear() for i in range(0,len(self.labels)): self.labels[i].text = ''
{"/main.py": ["/imagemodel.py", "/buttonmodel.py", "/labelmodel.py"]}
234
aejontargaryen/conceal-bot
refs/heads/master
/poolSetup.py
import requests import json import time from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from poolModels import pool, poolBase engine = create_engine('sqlite:///poolData.db') # Bind the engine to the metadata of the Base class so that the # declaratives can be accessed through a DBSession instance poolBase.metadata.bind = engine DBSession = sessionmaker(bind=engine) # A DBSession() instance establishes all conversations with the database # and represents a "staging zone" for all the objects loaded into the # database session object. Any change made against the objects in the # session won't be persisted into the database until you call # session.commit(). If you're not happy about the changes, you can # revert all of them back to the last commit by calling # session.rollback() session = DBSession() # Insert a Person in the person table new_pool = pool(url='http://pool.conceal.network/api/live_stats', name='Official Pool', type="normal", poolurl='https://pool.conceal.network') session.add(new_pool) new_pool = pool(url='https://ccx.scecf.org:21001/live_stats', name='SCECF', type="normal", poolurl='https://ccx.scecf.org') session.add(new_pool) new_pool = pool(url='https://ccx.bluerockpools.net:8119/live_stats', name='Blue Rock Pool', type="normal", poolurl='https://ccx.bluerockpools.net') session.add(new_pool) new_pool = pool(url='http://minexmr24.ru:8124/live_stats', name='CCX Майнинг пул', type="normal", poolurl='http://ccx.minexmr24.ru') session.add(new_pool) new_pool = pool(url='https://ccx.go-mine.it/api/pool/stats', name='go mine it!', type="node", poolurl='https://ccx.go-mine.it') session.add(new_pool) new_pool = pool(url='https://api.ccx.heigh-ho.funkypenguin.co.nz/live_stats', name='Funky Penguin', type="normal", poolurl='https://ccx.heigh-ho.funkypenguin.co.nz') session.add(new_pool) new_pool = pool(url='https://conceal.herominers.com/api/stats', name='herominers', type="normal", poolurl='https://conceal.herominers.com') session.add(new_pool) new_pool = pool(url='https://ccx.thepiratemine.nl:2890/live_stats', name='ThePirateMine', type="normal", poolurl='https://ccx.thepiratemine.nl') session.add(new_pool) session.commit()
{"/bot.py": ["/utils.py"]}
235
aejontargaryen/conceal-bot
refs/heads/master
/utils.py
import random import requests import sys import discord import binascii import json from collections import deque from jsonrpc_requests import Server from models import Transaction, TipJar config = json.load(open('config.json')) class CCXServer(Server): def dumps(self, data): data['password'] = config['rpc_password'] return json.dumps(data) rpc = CCXServer("http://{}:{}/json_rpc".format(config['rpc_host'], config['rpc_port'])) daemon = CCXServer("http://{}:{}/json_rpc".format(config['daemon_host'], config['daemon_port'])) CONFIRMED_TXS = [] def get_supply(): lastblock = daemon.getlastblockheader() bo = daemon.f_block_json(hash=lastblock["block_header"]["hash"]) return float(bo["block"]["alreadyGeneratedCoins"])/1000000 def format_hash(hashrate): i = 0 byteUnits = [" H", " KH", " MH", " GH", " TH", " PH"] while (hashrate > 1000): hashrate = hashrate / 1000 i = i+1 return "{0:,.2f} {1}".format(hashrate, byteUnits[i]) def gen_paymentid(address): rng = random.Random(address+config['token']) length = 32 chunk_size = 65535 chunks = [] while length >= chunk_size: chunks.append(rng.getrandbits(chunk_size * 8).to_bytes(chunk_size, sys.byteorder)) length -= chunk_size if length: chunks.append(rng.getrandbits(length * 8).to_bytes(length, sys.byteorder)) result = b''.join(chunks) return "".join(map(chr, binascii.hexlify(result))) def get_deposits(session): # get the current block height # we only want to insert tx after 10 blocks from the tx data = daemon.getlastblockheader() height = int(data["block_header"]["height"]) print("INFO: Current blockchain height is {}".format(height)) # scan for deposits print("scanning the blockchain for deposits") print("getting list of payment id's in the tipjar database") allPID = session.query(TipJar).all() thePID = 0 totalPID = len(allPID) for thePID in range(0,totalPID): currentPID = allPID[thePID].paymentid print("INFO: checking PID {}".format(currentPID)) params = {"payment_id": currentPID} data = rpc.get_payments(params) #go through each transaction and them to the confirmed transactions array for tx in data['payments']: unlockWindow = int(tx["block_height"]) + 10 if tx['tx_hash'] in CONFIRMED_TXS: # if its already there, ignore it continue if unlockWindow < height: # its a confirmed and unlocked transaction CONFIRMED_TXS.append({'transactionHash': tx['tx_hash'],'amount': tx['amount'], 'ready':True, 'pid':currentPID}) print("CONF: confirmed tx {} for {} ccx at block {}".format(tx['tx_hash'],tx['amount'],tx['block_height'])) else : toUnlock = unlockWindow - height print("UNCF: unconfirmed tx {} for {} ccx will unlock in {} blocks".format(tx['tx_hash'],tx['amount'],toUnlock)) for i,trs in enumerate(CONFIRMED_TXS): #now we go through the array of all transactions from our registered users processed = session.query(Transaction).filter(Transaction.tx == trs['transactionHash']).first() amount = 0 print("INFO: looking at tx: " + trs['transactionHash']) if processed: # done already, lets ignore and remove it from the array print("INFO: already processed: " + trs['transactionHash']) CONFIRMED_TXS.pop(i) continue likestring = trs['pid'] balance = session.query(TipJar).filter(TipJar.paymentid.contains(likestring)).first() #get the balance from that PID print("INFO: Balance for pid {} is: {}".format(likestring,balance)) if not balance: print("user does not exist!") continue amount = trs['amount'] change = 0 if trs['pid']==balance.paymentid: # money entering tipjar, add to user balance print("UPDATE: deposit of {} to PID {}".format(amount,balance.paymentid)) change += amount try: balance.amount += change except: print("no balance, setting balance to: {}".format(change)) balance.amount = change print("new balance: {}".format(balance.amount)) session.commit() if balance: nt = Transaction(trs['transactionHash'], change, trs['pid']) CONFIRMED_TXS.pop(i) yield nt def get_fee(amount): return 100 def build_transfer(amount, transfers, balance): print("SEND PID: {}".format(balance.paymentid[0:58] + balance.withdraw)) params = { 'fee': get_fee(amount), 'paymentId': balance.paymentid[0:58] + balance.withdraw, 'mixin': 3, 'destinations': transfers } return params REACTION_AMP_CACHE = deque([], 500) def reaction_tip_lookup(message): for x in REACTION_AMP_CACHE: if x['msg'] == message: return x def reaction_tip_register(message, user): msg = reaction_tip_lookup(message) if not msg: msg = {'msg': message, 'tips': []} REACTION_AMP_CACHE.append(msg) msg['tips'].append(user) return msg def reaction_tipped_already(message, user): msg = reaction_tip_lookup(message) if msg: return user in msg['tips']
{"/bot.py": ["/utils.py"]}
236
aejontargaryen/conceal-bot
refs/heads/master
/bot.py
import asyncio import discord from discord.ext.commands import Bot, Context import requests from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from poolModels import pool, poolBase from models import Wallet, TipJar, Base, Transaction from utils import config, format_hash, gen_paymentid, rpc, daemon, \ get_deposits, get_fee, build_transfer, get_supply, \ reaction_tip_register, reaction_tipped_already HEADERS = {'Content-Type': 'application/json'} ### DATABASE SETUP ### engine = create_engine('sqlite:///ccxbot.db') Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() ### POOL DATABASE SETUP ### poolEngine = create_engine('sqlite:///poolData.db') poolBase.metadata.create_all(poolEngine) poolSession = sessionmaker(bind=poolEngine) session2 = poolSession() client = Bot( description="{} Discord Bot".format(config['symbol']), command_prefix=config['prefix'], pm_help=False) @client.event async def on_member_join(member): await send_join_pm(member, client) async def wallet_watcher(): await client.wait_until_ready() while not client.is_closed: for tx in get_deposits(session): session.add(tx) try: session.commit() except: session.rollback() balance = session.query(TipJar).filter(TipJar.paymentid == tx.paymentid).first() if not balance: # don't do for withdrawals from jar (basically tips) return good_embed = discord.Embed(title="Deposit Recieved!",colour=discord.Colour(0xD4AF37)) good_embed.description = "Your deposit of {} {} has now been credited.".format(tx.amount/config['units'], config['symbol']) print("TRANSACTION PID IS: " + tx.paymentid) good_embed.add_field(name="New Balance", value="{0:,.2f}".format(balance.amount/config['units'])) user = await client.get_user_info(str(balance.userid)) try: await client.send_message(user, embed=good_embed) except: continue await asyncio.sleep(119) # just less than the block time client.loop.create_task(wallet_watcher()) @client.event async def on_ready(): print("Bot online!") ### TEST COMMANDS ### # test to see if we can a list of users online # and then to a rain function which sends money from a different wallet to everyone # and to test getting a welcome dm async def send_join_pm(member, client): """ Sends a welcome private message to joined members. """ if member.bot: return currently_online = "" for m in member.server.members: if not m.status.__str__() == "offline": if m.roles.__contains__(discord.utils.get(m.server.roles, name="core team")): currently_online += ":white_small_square: " + m.mention + "\n" await client.send_message(member, "**Hey, " + member.name + "! Welcome to the Conceal Discord! :)**\n\n" "If you're new here and have some questions head over to the **#faq** channel for an introduction to the project and answers to common questions.\n" "You can also head over to the **#annoucements##** channel and see the latest news on where we are and what we are doing.\n" "If you have more questions, look for one the admins or devs\n\n" "**Devs currently online:**\n\n%s\n\n" "You can also use this bot to get more information:\n" "Use the command `.help` to get list of commands.\n" "You can also see current network information with `.stats` or other specific commands like `.hashrate`, `.height`, `.difficulty`, and `.supply`\n" "Don't forget to register your wallet address with the bot with the command `.registerwallet` so you can recieve tips.\n" "If you want to send tips then type `.deposit` after you register your wallet address and transfer some funds to your TipJar.\n" % currently_online) @client.command(pass_context=True) async def price(ctx, exchange=None): err_embed = discord.Embed(title=":x:Error:x:", colour=discord.Colour(0xf44242)) coindata = requests.get("https://maplechange.com/api/v2/tickers/ccxbtc.json") btc = requests.get("https://www.bitstamp.net/api/ticker/") try: to_json = coindata.json() except ValueError: err_embed.description = "The MapleChange API is down" await client.say(embed = err_embed) return coindata_embed = discord.Embed(title="Conceal: MapleChange", url="https://maplechange.com/markets/ccxbtc", description="Current pricing of CCX", color=0x7F7FFF) coindata_embed.set_thumbnail(url=config['logo_url']) url = 'https://maplechange.com/api/v2/tickers/ccxbtc.json' coindata_embed.add_field(name="Sell", value="{0:,.0f} sats".format(round(float(coindata.json()['ticker']['sell'])*100000000)), inline=True) coindata_embed.add_field(name="Current", value="{0:,.0f} sats".format(round(float(coindata.json()['ticker']['last'])*100000000)), inline=True) coindata_embed.add_field(name="High", value="{0:,.0f} sats".format(round(float(coindata.json()['ticker']['high'])*100000000)), inline=True) coindata_embed.add_field(name="{}-USD".format(config['symbol']), value="${0:,.4f} USD".format(float(coindata.json()['ticker']['sell'])*float(btc.json()['last'])), inline=True) coindata_embed.add_field(name="BTC-USD", value="${0:,.2f} USD".format(float(btc.json()['last'])), inline=True) await client.say(embed=coindata_embed) ### NETWORK COMMANDS ### @client.command() async def hashrate(): """ .hashrate - Returns network hashrate """ data = daemon.getlastblockheader() hashrate = format_hash(float(data["block_header"]["difficulty"]) / 120) await client.say("The current global hashrate is **{}/s**".format(hashrate)) @client.command() async def difficulty(): """ .difficulty - Returns network difficulty """ data = daemon.getlastblockheader() difficulty = float(data["block_header"]["difficulty"]) await client.say("The current difficulty is **{0:,.0f}**".format(difficulty)) @client.command() async def height(): """ .height - Returns the current blockchain height """ data = daemon.getlastblockheader() height = int(data["block_header"]["height"]) await client.say("The current block height is **{:,}**".format(height)) @client.command() async def supply(): """ .supply - Returns the current circulating supply """ supply = get_supply() await client.say("The current circulating supply is **{:0,.2f}** {}".format(supply, config['symbol'])) @client.command() async def stats(): """ .stats - Returns all network stats """ data = daemon.getlastblockheader() hashrate = format_hash(float(data["block_header"]["difficulty"]) / 120) data = daemon.getlastblockheader() height = int(data["block_header"]["height"]) deposits = int(data["block_header"]["deposits"]) / 1000000 supply = get_supply() data = daemon.getlastblockheader() difficulty = float(data["block_header"]["difficulty"]) stats_embed=discord.Embed(title="Conceal", url="https://github.com/TheCircleFoundation/", description="Complete Network Stats", color=0x7F7FFF) stats_embed.set_thumbnail(url=config['logo_url']) hashFromPools = 0 allPools = session2.query(pool).all() totalPools = len(allPools) for poolNumber in range(0,totalPools): poolHash = allPools[poolNumber].hashrate hashFromPools = hashFromPools + poolHash stats_embed.add_field(name="Hashrate (from Pools)", value="{}KH/s".format(hashFromPools/1000)) stats_embed.add_field(name="Hashrate (from Difficulty)", value="{}/s".format(hashrate)) stats_embed.add_field(name="Height", value="{:,}".format(height)) stats_embed.add_field(name="Difficulty", value="{0:,.0f}".format(difficulty)) stats_embed.add_field(name="Circulating Supply", value="{:0,.2f} CCX".format(supply)) stats_embed.add_field(name="Deposits", value="{:0,.2f}".format(deposits)) stats_embed.set_footer(text="Powered by the Conceal Discord bot. Message @katz for any issues.") await client.say(embed=stats_embed) @client.command() async def pools(): """ .pools - Get a list of pools and current stats """ stats_embed=discord.Embed(title="Conceal", url="https://github.com/TheCircleFoundation/", description="Mining Pool Stats", color=0x7F7FFF) stats_embed.set_thumbnail(url=config['logo_url']) hashFromPools = 0 allPools = session2.query(pool).all() totalPools = len(allPools) for poolNumber in range(0,totalPools): poolName = allPools[poolNumber].name poolSiteURL = allPools[poolNumber].poolurl poolHash = allPools[poolNumber].hashrate hashFromPools = hashFromPools + poolHash poolMiners = allPools[poolNumber].miners stats_embed.add_field(name=poolName, value=poolSiteURL, inline=False) stats_embed.add_field(name="Hashrate", value="{} KH/s".format(poolHash/1000)) stats_embed.add_field(name="Miners", value="{:,}".format(poolMiners)) stats_embed.add_field(name="Hashrate (from Pools)", value="{}KH/s".format(hashFromPools/1000)) stats_embed.set_footer(text="Powered by the Conceal Discord bot. Message @katz for any issues.") await client.say(embed=stats_embed) ### WALLET COMMANDS ### @client.command(pass_context=True) async def members(ctx): members = "" allID = session.query(Wallet).all() theID = 0 totalID = len(allID) await client.say("List of members:") for theID in range(0,totalID): currentID = allID[theID].userid memberName = discord.utils.get(client.get_all_members(), id=str(currentID)) members = members + " @" + str(memberName) await client.say(members) @client.command(pass_context=True) async def registerwallet(ctx, address): """ .registerwallet <addr> - Register your wallet in the database """ err_embed = discord.Embed(title="Error", colour=discord.Colour(0xf44242)) good_embed = discord.Embed(title="{}'s Wallet".format(ctx.message.author.name),colour=discord.Colour(0xD4AF37)) if address is None: err_embed.description = "Please provide an address" await client.send_message(ctx.message.author, embed = err_embed) return exists = session.query(Wallet).filter(Wallet.userid == ctx.message.author.id).first() addr_exists = session.query(Wallet).filter(Wallet.address == address).first() if exists: good_embed.title = "Your wallet exists!".format(exists.address) good_embed.description = "```{}``` use `{}updatewallet <addr>` to change".format(exists.address, config['prefix']) await client.send_message(ctx.message.author, embed = good_embed) return if addr_exists: err_embed.description = "Address already registered by another user!" await client.send_message(ctx.message.author, embed = err_embed) return elif not exists and len(address) == 98: w = Wallet(address, ctx.message.author.id,ctx.message.id) session.add(w) session.commit() good_embed.title = "Successfully registered your wallet" good_embed.description = "```{}```".format(address) await client.send_message(ctx.message.author, embed = good_embed) pid = gen_paymentid(address) balance = session.query(TipJar).filter(TipJar.paymentid == pid).first() if not balance: t = TipJar(pid, ctx.message.author.id, 0) session.add(t) else: balance.paymentid = pid session.commit() tipjar_addr = "ccx7Wga6b232eSVfy8KQmBjho5TRXxX8rZ2zoCTyixfvEBQTj1g2Ysz1hZKxQtw874W3w6BZkMFSn5h3gUenQemZ2xiyyjxBR7" good_embed.title = "Your Tipjar Info" good_embed.description = "Deposit {} to start tipping! ```transfer 3 {} <amount> -p {}```".format(config['symbol'], tipjar_addr, pid) balance = session.query(TipJar).filter(TipJar.paymentid == pid).first() await client.send_message(ctx.message.author, embed = good_embed) return elif len(address) > 98: err_embed.description = "Your wallet must be 98 characeters long, your entry was too long" elif len(address) < 98: err_embed.description = "Your wallet must be 98 characeters long, your entry was too short" await client.say(embed = err_embed) @registerwallet.error async def registerwallet_error(error, ctx): await client.say("Please provide an address: .registerwallet <addr>.") @client.command(pass_context=True) async def updatewallet(ctx, address): """ .updatewallet <addr> - Changes your registred wallet address """ err_embed = discord.Embed(title="Error", colour=discord.Colour(0xf44242)) if address == None: err_embed.description = "Please provide an address!" await client.send_message(ctx.message.author, embed=err_embed) return address = address.strip() good_embed = discord.Embed(title="{}'s Updated Wallet".format(ctx.message.author.name),colour=discord.Colour(0xD4AF37)) exists = session.query(Wallet).filter(Wallet.userid == ctx.message.author.id).first() if not exists: err_embed.description = "You haven't registered a wallet!" addr_exists = session.query(Wallet).filter(Wallet.address == address).first() if addr_exists: err_embed.description = "Address already registered by another user!" await client.send_message(ctx.message.author, embed = err_embed) return elif exists and len(address) == 98: old_pid = gen_paymentid(exists.address) old_balance = session.query(TipJar).filter(TipJar.paymentid == old_pid).first() exists.address = address pid = gen_paymentid(address) old_balance.paymentid = pid good_embed.title = "Successfully updated your wallet" good_embed.description = "```{}```".format(address) session.commit() await client.send_message(ctx.message.author, embed = good_embed) tipjar_addr = "ccx7Wga6b232eSVfy8KQmBjho5TRXxX8rZ2zoCTyixfvEBQTj1g2Ysz1hZKxQtw874W3w6BZkMFSn5h3gUenQemZ2xiyyjxBR7" good_embed.title = "Your Tipjar Info" good_embed.description = "Deposit {} to start tipping! ```transfer 3 {} <amount> -p {}```".format(config['symbol'], tipjar_addr, pid) await client.send_message(ctx.message.author, embed = good_embed) good_embed.title = "Balance Update" good_embed.url = "" good_embed.description = "New Balance: `{:0,.2f}` {1}".format(old_balance.amount / config['units'], config['symbol']) await client.send_message(ctx.message.author, embed = good_embed) return elif len(address) > 98: err_embed.description = "Your wallet must be 98 characeters long, your entry was too long" elif len(address) < 98: err_embed.description = "Your wallet must be 98 characeters long, your entry was too short" await client.say(embed=err_embed) @updatewallet.error async def updatewallet_error(error, ctx): await client.say("Please provide an address: .updatewallet <addr>") @client.command(pass_context=True) async def wallet(ctx, user: discord.User=None): """ .wallet - Returns your registered wallet address """ err_embed = discord.Embed(title=":x:Error:x:", colour=discord.Colour(0xf44242)) good_embed = discord.Embed(colour=discord.Colour(0xD4AF37)) if not user: exists = session.query(Wallet).filter(Wallet.userid == ctx.message.author.id).first() if not exists: err_embed.description = "You haven't registered a wallet or specified a user!" else: good_embed.title = "Your wallet" good_embed.description = "Here's your wallet {}! ```{}```".format(ctx.message.author.mention, exists.address) await client.send_message(ctx.message.author, embed = good_embed) return else: exists = session.query(Wallet).filter(Wallet.userid == user.id).first() if not exists: err_embed.description = "{} hasn't registered a wallet!".format(user.name) else: good_embed.title = "{}'s wallet".format(user.name) good_embed.description = "```{}```".format(exists.address) await client.send_message(ctx.message.author, embed = good_embed) return await client.send_message(ctx.message.author, embed = err_embed) @client.command(pass_context=True) async def deposit(ctx, user: discord.User=None): """ .deposit - Get deposit information so you can start tipping """ err_embed = discord.Embed(title=":x:Error:x:", colour=discord.Colour(0xf44242)) good_embed = discord.Embed(title="Your Tipjar Info") tipjar_addr = "ccx7Wga6b232eSVfy8KQmBjho5TRXxX8rZ2zoCTyixfvEBQTj1g2Ysz1hZKxQtw874W3w6BZkMFSn5h3gUenQemZ2xiyyjxBR7" exists = session.query(Wallet).filter(Wallet.userid == ctx.message.author.id).first() if exists: pid = gen_paymentid(exists.address) good_embed.description = "Deposit {} to start tipping! ,Send the funds you want to deposit to the address: ``{}`` (Pay to: in the GUI) and put ``{}`` in the Payment ID field. CLI users just send a transfer to the same address and payment ID.".format(config['symbol'], tipjar_addr, pid) balance = session.query(TipJar).filter(TipJar.paymentid == pid).first() if not balance: t = TipJar(pid, ctx.message.author.id, 0) session.add(t) session.commit() await client.send_message(ctx.message.author, embed = good_embed) else: err_embed.description = "You haven't registered a wallet!" err_embed.add_field(name="Help", value="Use `{}registerwallet <addr>` before trying to tip!".format(config['prefix'])) await client.say(embed=err_embed) @client.command(pass_context=True) async def balance(ctx, user: discord.User=None): """ .balance - PMs your tipjar balance """ err_embed = discord.Embed(title=":x:Error:x:", colour=discord.Colour(0xf44242)) good_embed = discord.Embed(title="Your Tipjar Balance is") exists = session.query(Wallet).filter(Wallet.userid == ctx.message.author.id).first() if exists: pid = gen_paymentid(exists.address) balance = session.query(TipJar).filter(TipJar.paymentid == pid).first() if not balance: t = TipJar(pid, ctx.message.author.id, 0) session.add(t) session.commit() else: good_embed.description = "`{0:,.2f}` {1}".format(balance.amount / config['units'], config['symbol']) good_embed.add_field(name="Widthrawal", value="You can tip yourself to widthraw CCX to your wallet") await client.send_message(ctx.message.author, embed=good_embed) else: err_embed.description = "You haven't registered a wallet!" err_embed.add_field(name="Help", value="Use `{}registerwallet <addr>` before trying to tip!".format(config['prefix'])) await client.say(embed=err_embed) EMOJI_MONEYBAGS = "\U0001F4B8" EMOJI_SOS = "\U0001F198" EMOJI_ERROR = "\u274C" @client.command(pass_context=True) async def tip(ctx, amount, sender): """ .tip <amount> <username> - Tips a user the specified amount """ await _tip(ctx, amount, None, None) async def _tip(ctx, amount, sender: discord.User=None, receiver: discord.User=None): err_embed = discord.Embed(title=":x:Error:x:", colour=discord.Colour(0xf44242)) good_embed = discord.Embed(title="You were tipped!", colour=discord.Colour(0xD4AF37)) request_desc = "Register with `{}registerwallet <youraddress>` to get started!".format(config['prefix']) request_embed = discord.Embed(title="{} wants to tip you".format(ctx.message.author.name), description=request_desc) if not sender: # regular tip sender = ctx.message.author if not receiver: tipees = ctx.message.mentions else: tipees = [receiver, ] try: amount = int(round(float(amount)*config['units'])) except: await client.say("Amount must be a number equal or greater than {}".format(10000 / config['units'])) return False if amount <= 9999: err_embed.description = "`amount` must be equal or greater than {}".format(10000 / config['units']) await client.say(embed=err_embed) return False fee = get_fee(amount) self_exists = session.query(Wallet).filter(Wallet.userid == sender.id).first() if not self_exists: err_embed.description = "You haven't registered a wallet!" err_embed.add_field(name="Help", value="Use `{}registerwallet <addr>` before trying to tip!".format(config['prefix'])) await client.send_message(sender, embed=err_embed) return False pid = gen_paymentid(self_exists.address) balance = session.query(TipJar).filter(TipJar.paymentid == pid).first() if not balance: t = TipJar(pid, sender.id, 0) session.add(t) session.commit() err_embed.description = "You are not registered, please `{}deposit` to tip".format(config['prefix']) await client.send_message(sender, embed=err_embed) return False if balance.amount < 0: balance.amount = 0 session.commit() err_embed.description = "Your balance was negative!" await client.send_message(sender, embed=err_embed) katz = discord.utils.get(client.get_all_members(), id='408875878328827916') err_embed.title = "{} had a negative balance!!".format(sender.name) err_embed.description = "PID: {}".format(pid) await client.send_message(katz, embed=err_embed) return False if ((len(tipees)*(amount))+fee) > balance.amount: err_embed.description = "Your balance is too low! Amount + Fee = `{}` {}".format(((len(tipees)*(amount))+fee) / config['units'], config['symbol']) await client.add_reaction(ctx.message, "\u274C") await client.send_message(sender, embed=err_embed) return False destinations = [] actual_users = [] failed = 0 for user in tipees: user_exists = session.query(Wallet).filter(Wallet.userid == user.id).first() if user_exists: destinations.append({'amount': amount, 'address': user_exists.address}) if user_exists.userid != sender.id: # multitip shouldn't tip self. actual_users.append(user) else: failed = failed+1 await client.add_reaction(ctx.message, EMOJI_SOS) try: await client.send_message(user, embed = request_embed) except: continue if len(destinations) == 0: await client.add_reaction(ctx.message, EMOJI_SOS) return False transfer = build_transfer(amount, destinations, balance) print(transfer) result = rpc.transfer(transfer) print(result) await client.add_reaction(ctx.message, EMOJI_MONEYBAGS) balance.amount -= ((len(actual_users)*amount)+fee) tx = Transaction(result['tx_hash'], (len(actual_users)*amount)+fee, balance.paymentid) session.add(tx) session.commit() good_embed.title = "Tip Sent!" good_embed.description = ( "Sent `{0:,.2f}` {1} to {2} users! With Transaction Hash ```{3}```" .format(amount / config['units'], config['symbol'], len(actual_users), result['tx_hash'])) good_embed.url = ( "http://www.example.com/#?hash={}#blockchain_transaction" .format(result['tx_hash'])) good_embed.add_field(name="New Balance", value="`{:0,.2f}` {}".format(balance.amount / config['units'], config['symbol'])) good_embed.add_field(name="Transfer Info", value="Successfully sent to {0} users. {1} failed.".format(len(actual_users), failed)) try: await client.send_message(sender, embed=good_embed) except: pass for user in actual_users: good_embed = discord.Embed(title="You were tipped!", colour=discord.Colour(0xD4AF37)) good_embed.description = ( "{0} sent you `{1:,.2f}` {2} with Transaction Hash ```{3}```" .format(sender.mention, amount / config['units'], config['symbol'], result['tx_hash'])) good_embed.url = ( "http://www.example.com/#?hash={}#blockchain_transaction" .format(result['tx_hash'])) try: await client.send_message(user, embed=good_embed) except: continue return True client.run(config['token'])
{"/bot.py": ["/utils.py"]}
237
CENSOREDd/test_fk
refs/heads/master
/fk.py
#!/usr/bin/python3 from time import sleep print("what the fuck???") if __name__ == "__main__": print("here is python code!!!") print("Executing code...") sleep(2)
{"/test.py": ["/fk.py"]}
238
CENSOREDd/test_fk
refs/heads/master
/test.py
#!/usr/bin/python3 import fk print("here is test")
{"/test.py": ["/fk.py"]}
239
ericfourrier/auto-clean
refs/heads/develop
/autoc/utils/corrplot.py
import seaborn as sns import matplotlib.pyplot as plt def plot_corrmatrix(df, square=True, linewidths=0.1, annot=True, size=None, figsize=(12, 9), *args, **kwargs): """ Plot correlation matrix of the dataset see doc at https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.heatmap.html#seaborn.heatmap """ sns.set(context="paper", font="monospace") f, ax = plt.subplots(figsize=figsize) sns.heatmap(df.corr(), vmax=1, square=square, linewidths=linewidths, annot=annot, annot_kws={"size": size}, *args, **kwargs)
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
240
ericfourrier/auto-clean
refs/heads/develop
/setup.py
from setuptools import setup, find_packages def readme(): with open('README.md') as f: return f.read() setup(name='autoc', version="0.1", description='autoc is a package for data cleaning exploration and modelling in pandas', long_description=readme(), author=['Eric Fourrier'], author_email='ericfourrier0@gmail.com', license='MIT', url='https://github.com/ericfourrier/auto-cl', packages=find_packages(), test_suite='test', keywords=['cleaning', 'preprocessing', 'pandas'], install_requires=[ 'numpy>=1.7.0', 'pandas>=0.15.0', 'seaborn>=0.5', 'scipy>=0.14'] )
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
241
ericfourrier/auto-clean
refs/heads/develop
/autoc/utils/getdata.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: efourrier Purpose : Get data from https://github.com/ericfourrier/autoc-datasets """ import pandas as pd def get_dataset(name, *args, **kwargs): """Get a dataset from the online repo https://github.com/ericfourrier/autoc-datasets (requires internet). Parameters ---------- name : str Name of the dataset 'name.csv' """ path = "https://raw.githubusercontent.com/ericfourrier/autoc-datasets/master/{0}.csv".format(name) return pd.read_csv(path, *args, **kwargs)
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
242
ericfourrier/auto-clean
refs/heads/develop
/test.py
# -*- coding: utf-8 -*- """ @author: efourrier Purpose : Automated test suites with unittest run "python -m unittest -v test" in the module directory to run the tests The clock decorator in utils will measure the run time of the test """ ######################################################### # Import Packages and helpers ######################################################### import unittest # internal helpers # from autoc.utils.helpers import clock, create_test_df, removena_numpy, cserie from autoc.utils.helpers import random_pmf, clock, create_test_df, cserie, simu, removena_numpy from autoc.utils.getdata import get_dataset from autoc.explorer import DataExploration from autoc.naimputer import NaImputer from autoc.outliersdetection import OutliersDetection import pandas as pd import numpy as np flatten_list = lambda x: [y for l in x for y in flatten_list( l)] if isinstance(x, list) else [x] # flatten_list = lambda x: [y for l in x for y in flatten_list(l)] if isinstance(x,list) else [x] ######################################################### # Writing the tests ######################################################### class TestDataExploration(unittest.TestCase): @classmethod def setUpClass(cls): """ creating test data set for the test module """ cls._test_df = create_test_df() cls._test_dc = DataExploration(data=cls._test_df) @clock def test_to_lowercase(self): df_lower = self._test_dc.to_lowercase() self.assertNotEqual(id(df_lower), id(self._test_dc.data)) self.assertTrue((pd.Series(['a'] * 500 + ['b'] * 200 + ['c'] * 300)== df_lower.loc[:, 'character_variable_up1']).all()) self.assertTrue((pd.Series(['a'] * 500 + ['b'] * 200 + ['d'] * 300)== df_lower.loc[:, 'character_variable_up2']).all()) @clock def test_copy(self): exploration_copy = DataExploration(data=create_test_df(), copy=True) self.assertEqual(id(self._test_df), id(self._test_dc.data)) self.assertNotEqual(id(self._test_df), id(exploration_copy.data)) @clock def test_cserie(self): char_var = cserie(self._test_dc.data.dtypes == "object") self.assertIsInstance(char_var, list) self.assertIn('character_variable', char_var) @clock def test_removena_numpy(self): test_array = np.array([np.nan, 1, 2, np.nan]) self.assertTrue((removena_numpy(test_array) == np.array([1, 2])).all()) @clock def test_sample_df(self): self.assertEqual(len(self._test_dc.sample_df(pct=0.061)), 0.061 * float(self._test_dc.data.shape[0])) @clock def test_nrow(self): self.assertEqual(self._test_dc._nrow, self._test_dc.data.shape[0]) @clock def test_col(self): self.assertEqual(self._test_dc._ncol, self._test_dc.data.shape[1]) @clock def test_is_numeric(self): self.assertTrue(self._test_dc.is_numeric("num_variable")) self.assertTrue(self._test_dc.is_numeric("many_missing_70")) self.assertFalse(self._test_dc.is_numeric("character_variable")) @clock def test_is_int_factor(self): self.assertFalse(self._test_dc.is_int_factor("num_variable")) self.assertTrue(self._test_dc.is_int_factor("int_factor_10", 0.01)) self.assertTrue(self._test_dc.is_int_factor("int_factor_10", 0.1)) self.assertFalse(self._test_dc.is_int_factor("int_factor_10", 0.005)) self.assertFalse(self._test_dc.is_int_factor("character_variable")) @clock def test_where_numeric(self): self.assertEqual(cserie(self._test_dc.where_numeric().all()), self._test_dc._dfnum) @clock def test_total_missing(self): self.assertEqual(self._test_dc.total_missing, self._test_dc.data.isnull().sum().sum()) @clock def test_None_count(self): nacolcount = self._test_dc.nacolcount() self.assertEqual(nacolcount.loc['None_100', 'Napercentage'], 0.1) self.assertEqual(nacolcount.loc['None_100', 'Nanumber'], 100) self.assertEqual(nacolcount.loc['None_na_200', 'Napercentage'], 0.2) self.assertEqual(nacolcount.loc['None_na_200', 'Nanumber'], 200) @clock def test_nacolcount_capture_na(self): nacolcount = self._test_dc.nacolcount() self.assertEqual(nacolcount.loc['na_col', 'Napercentage'], 1.0) self.assertEqual(nacolcount.loc['many_missing_70', 'Napercentage'], 0.7) @clock def test_nacolcount_is_type_dataframe(self): self.assertIsInstance(self._test_dc.nacolcount(), pd.core.frame.DataFrame) @clock def test_narowcount_capture_na(self): narowcount = self._test_dc.narowcount() self.assertEqual(sum(narowcount['Nanumber'] > 0), self._test_dc._nrow) # # @clock # def test_detect_other_na(self): # other_na = self._test_dc.detect_other_na() # self.assertIsInstance(narowcount, pd.core.frame.DataFrame) @clock def test_narowcount_is_type_dataframe(self): narowcount = self._test_dc.narowcount() self.assertIsInstance(narowcount, pd.core.frame.DataFrame) @clock def test_manymissing_capture(self): manymissing = self._test_dc.manymissing(0.7) self.assertIsInstance(manymissing, list) self.assertIn('many_missing_70', manymissing) self.assertIn('na_col', manymissing) @clock def test_nacols_full(self): nacols_full = self._test_dc.nacols_full self.assertIsInstance(nacols_full, list) self.assertIn('na_col',nacols_full ) @clock def test_narows_full(self): test_df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD')) test_df.loc[99, :] = np.nan self.assertIn(99, DataExploration(test_df).narows_full) self.assertNotIn(1, test_df) @clock def test_constant_col_capture(self): constantcol = self._test_dc.constantcol() self.assertIsInstance(constantcol, list) self.assertIn('constant_col', constantcol) self.assertIn('constant_col_num', constantcol) self.assertIn('na_col', constantcol) @clock def test_count_unique(self): count_unique = self._test_dc.count_unique() self.assertIsInstance(count_unique, pd.Series) self.assertEqual(count_unique.id, 1000) self.assertEqual(count_unique.constant_col, 1) self.assertEqual(count_unique.character_factor, 7) @clock def test_dfchar_check_col(self): dfchar = self._test_dc._dfchar self.assertIsInstance(dfchar, list) self.assertNotIn('num_variable', dfchar) self.assertIn('character_factor', dfchar) self.assertIn('character_variable', dfchar) self.assertNotIn('many_missing_70', dfchar) @clock def test_dfnum_check_col(self): dfnum = self._test_dc._dfnum self.assertIsInstance(dfnum, list) self.assertIn('num_variable', dfnum) self.assertNotIn('character_factor', dfnum) self.assertNotIn('character_variable', dfnum) self.assertIn('many_missing_70', dfnum) @clock def test_factors_check_col(self): factors = self._test_dc.factors() self.assertIsInstance(factors, list) self.assertNotIn('num_factor', factors) self.assertNotIn('character_variable', factors) self.assertIn('character_factor', factors) @clock def test_detectkey_check_col(self): detectkey = self._test_dc.detectkey() self.assertIsInstance(detectkey, list) self.assertIn('id', detectkey) self.assertIn('member_id', detectkey) @clock def test_detectkey_check_col_dropna(self): detectkeyna = self._test_dc.detectkey(dropna=True) self.assertIn('id_na', detectkeyna) self.assertIn('id', detectkeyna) self.assertIn('member_id', detectkeyna) @clock def test_findupcol_check(self): findupcol = self._test_dc.findupcol() self.assertIn(['id', 'duplicated_column'], findupcol) self.assertNotIn('member_id', flatten_list(findupcol)) @clock def test_count_unique(self): count_unique = self._test_dc.count_unique() self.assertIsInstance(count_unique, pd.Series) self.assertEqual(count_unique.id, len(self._test_dc.data.id)) self.assertEqual(count_unique.constant_col, 1) self.assertEqual(count_unique.num_factor, len( pd.unique(self._test_dc.data.num_factor))) @clock def test_structure(self): structure = self._test_dc.structure() self.assertIsInstance(structure, pd.DataFrame) self.assertEqual(len(self._test_dc.data), structure.loc['na_col', 'nb_missing']) self.assertEqual(len(self._test_dc.data), structure.loc[ 'id', 'nb_unique_values']) self.assertTrue(structure.loc['id', 'is_key']) @clock def test_nearzerovar(self): nearzerovar = self._test_dc.nearzerovar(save_metrics=True) self.assertIsInstance(nearzerovar, pd.DataFrame) self.assertIn('nearzerovar_variable', cserie(nearzerovar.nzv)) self.assertIn('constant_col', cserie(nearzerovar.nzv)) self.assertIn('na_col', cserie(nearzerovar.nzv)) class TestNaImputer(unittest.TestCase): @classmethod def setUpClass(cls): """ creating test data set for the test module """ cls._test_na = NaImputer(data=create_test_df()) @clock def test_fillna_serie(self): test_serie = pd.Series([1, 3, np.nan, 5]) self.assertIsInstance( self._test_na.fillna_serie(test_serie), pd.Series) self.assertEqual(self._test_na.fillna_serie(test_serie)[2], 3.0) @clock def test_fillna_serie(self): test_char_variable = self._test_na.fillna_serie('character_variable_fillna') test_num_variable = self._test_na.fillna_serie('numeric_variable_fillna') self.assertTrue(test_char_variable.notnull().any()) self.assertTrue(test_num_variable.notnull().any()) self.assertTrue((pd.Series( ['A'] * 300 + ['B'] * 200 + ['C'] * 200 + ['A'] * 300) == test_char_variable).all()) self.assertTrue( (pd.Series([1] * 400 + [3] * 400 + [2] * 200) == test_num_variable).all()) @clock def test_fill_low_na(self): df_fill_low_na = self._test_na.basic_naimputation(columns_to_process=['character_variable_fillna', 'numeric_variable_fillna']) df_fill_low_na_threshold = self._test_na.basic_naimputation(threshold=0.4) self.assertIsInstance(df_fill_low_na, pd.DataFrame) self.assertIsInstance(df_fill_low_na_threshold, pd.DataFrame) self.assertTrue((pd.Series(['A'] * 300 + ['B'] * 200 + ['C'] * 200 + [ 'A'] * 300) == df_fill_low_na.character_variable_fillna).all()) self.assertTrue((pd.Series([1] * 400 + [3] * 400 + [2] * 200) == df_fill_low_na.numeric_variable_fillna).all()) self.assertTrue((pd.Series(['A'] * 300 + ['B'] * 200 + ['C'] * 200 + [ 'A'] * 300) == df_fill_low_na_threshold.character_variable_fillna).all()) self.assertTrue((pd.Series([1] * 400 + [3] * 400 + [2] * 200) == df_fill_low_na_threshold.numeric_variable_fillna).all()) self.assertTrue( sum(pd.isnull(df_fill_low_na_threshold.many_missing_70)) == 700) class TestOutliersDetection(unittest.TestCase): @classmethod def setUpClass(cls): """ creating test data set for the test module """ cls.data = create_test_df() cls.outlier_d = OutliersDetection(cls.data) @clock def test_outlier_detection_serie_1d(self): strong_cutoff = self.outlier_d.strong_cutoff df_outliers = self.outlier_d.outlier_detection_serie_1d('outlier', strong_cutoff) self.assertIn(1, cserie(df_outliers.loc[:, 'is_outlier'] == 1)) self.assertNotIn(10, cserie(df_outliers.loc[:, 'is_outlier'] == 1)) self.assertIn(100, cserie(df_outliers.loc[:, 'is_outlier'] == 1)) self.assertNotIn(2, cserie(df_outliers.loc[:, 'is_outlier'] == 1)) @clock def test_outlier_detection_serie_1d_with_na(self): strong_cutoff = self.outlier_d.strong_cutoff df_outliers = self.outlier_d.outlier_detection_serie_1d('outlier_na', strong_cutoff) self.assertIn(1, cserie(df_outliers.loc[:, 'is_outlier'] == 1)) self.assertNotIn(10, cserie(df_outliers.loc[:, 'is_outlier'] == 1)) self.assertIn(100, cserie(df_outliers.loc[:, 'is_outlier'] == 1)) self.assertNotIn(2, cserie(df_outliers.loc[:, 'is_outlier'] == 1)) class TestHelper(unittest.TestCase): @classmethod def setUpClass(cls): """ creating test data set for the test module """ cls.data = create_test_df() @clock def test_random_pmf(self): self.assertAlmostEqual(len(random_pmf(10)), 10) self.assertAlmostEqual(random_pmf(10).sum(), 1) @clock def test_simu(self): pmf = random_pmf(4) samples_unique = simu((np.array(['A', 'B']), np.array([0, 1])), 10) self.assertTrue((samples_unique == 'B').all()) # class TestGetData(unittest.TestCase): # # @clock # def test_getdata_titanic(self): # """ Test if downloading titanic data is working """ # titanic = get_dataset('titanic') # self.assertIsInstance(titanic, pd.DataFrame) # self.assertEqual(titanic.shape[0], 891) # self.assertEqual(titanic.shape[1], 15) # Adding new tests sets # def suite(): # suite = unittest.TestSuite() # suite.addTest(TestPandasPatch('test_default_size')) # return suite # Other solution than calling main #suite = unittest.TestLoader().loadTestsFromTestCase(TestPandasPatch) #unittest.TextTestRunner(verbosity = 1 ).run(suite) if __name__ == "__main__": unittest.main(exit=False)
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
243
ericfourrier/auto-clean
refs/heads/develop
/autoc/naimputer.py
from autoc.explorer import DataExploration, pd from autoc.utils.helpers import cserie import seaborn as sns import matplotlib.pyplot as plt #from autoc.utils.helpers import cached_property from autoc.utils.corrplot import plot_corrmatrix import numpy as np from scipy.stats import ttest_ind from scipy.stats.mstats import ks_2samp def missing_map(df, nmax=100, verbose=True, yticklabels=False, figsize=(15, 11), *args, **kwargs): """ Returns missing map plot like in amelia 2 package in R """ f, ax = plt.subplots(figsize=figsize) if nmax < df.shape[0]: df_s = df.sample(n=nmax) # sample rows if dataframe too big return sns.heatmap(df_s.isnull(), yticklabels=yticklabels, vmax=1, *args, **kwargs) # class ColumnNaInfo class NaImputer(DataExploration): def __init__(self, *args, **kwargs): super(NaImputer, self).__init__(*args, **kwargs) self.get_data_isna() @property def nacols(self): """ Returns a list of column with at least one missing values """ return cserie(self.nacolcount().Nanumber > 0) @property def nacols_i(self): """ Returns the index of column with at least one missing values """ return cserie(self.nacolcount().Nanumber > 0) def get_overlapping_matrix(self, normalize=True): """ Look at missing values overlapping """ arr = self.data_isna.astype('float').values arr = np.dot(arr.T, arr) if normalize: arr = arr / (arr.max(axis=1)[:, None]) index = self.nacols res = pd.DataFrame(index=index, data=arr, columns=index) return res def infos_na(self, na_low=0.05, na_high=0.90): """ Returns a dict with various infos about missing values """ infos = {} infos['nacolcount'] = self.nacolcount() infos['narowcount'] = self.narowcount() infos['nb_total_na'] = self.total_missing infos['many_na_col'] = self.manymissing(pct=na_high) infos['low_na_col'] = cserie(self.nacolcount().Napercentage < na_low) infos['total_pct_na'] = self.nacolcount().Napercentage.mean() return infos def get_isna(self, col): """ Returns a dummy variable indicating in a observation of a specific col is na or not 0 -> not na , 1 -> na """ return self.data.loc[:, col].isnull().astype(int) @property def data_isna_m(self): """ Returns merged dataframe (data, data_is_na)""" return pd.concat((self.data, self.data_isna), axis=1) def get_data_isna(self, prefix="is_na_", filter_nna=True): """ Returns dataset with is_na columns from the a dataframe with missing values Parameters ---------- prefix : str the name of the prefix that will be append to the column name. filter_nna: bool True if you want remove column without missing values. """ if not filter_nna: cols_to_keep = self.data.columns else: cols_to_keep = self.nacols data_isna = self.data.loc[:, cols_to_keep].isnull().astype(int) data_isna.columns = ["{}{}".format(prefix, c) for c in cols_to_keep] self.data_isna = data_isna return self.data_isna def get_corrna(self, *args, **kwargs): """ Get matrix of correlation of na """ return self.data_isna.corr(*args, **kwargs) def corrplot_na(self, *args, **kwargs): """ Returns a corrplot of data_isna """ print("This function is deprecated") plot_corrmatrix(self.data_isna, *args, **kwargs) def plot_corrplot_na(self, *args, **kwargs): """ Returns a corrplot of data_isna """ plot_corrmatrix(self.data_isna, *args, **kwargs) def plot_density_m(self, colname, subset=None, prefix="is_na_", size=6, *args, **kwargs): """ Plot conditionnal density plot from all columns or subset based on is_na_colname 0 or 1""" colname_na = prefix + colname density_columns = self.data.columns if subset is None else subset # filter only numeric values and different values from is_na_col density_columns = [c for c in density_columns if ( c in self._dfnum and c != colname)] print(density_columns) for col in density_columns: g = sns.FacetGrid(data=self.data_isna_m, col=colname_na, hue=colname_na, size=size, *args, **kwargs) g.map(sns.distplot, col) def get_isna_mean(self, colname, prefix="is_na_"): """ Returns empirical conditional expectatation, std, and sem of other numerical variable for a certain colname with 0:not_a_na 1:na """ na_colname = "{}{}".format(prefix, colname) cols_to_keep = list(self.data.columns) + [na_colname] measure_var = self.data.columns.tolist() measure_var = [c for c in measure_var if c != colname] functions = ['mean', 'std', 'sem'] return self.data_isna_m.loc[:, cols_to_keep].groupby(na_colname)[measure_var].agg(functions).transpose() def get_isna_ttest_s(self, colname_na, colname, type_test="ks"): """ Returns tt test for colanme-na and a colname """ index_na = self.data.loc[:, colname_na].isnull() measure_var = self.data.loc[:, colname].dropna() # drop na vars if type_test == "ttest": return ttest_ind(measure_var[index_na], measure_var[~index_na]) elif type_test == "ks": return ks_2samp(measure_var[index_na], measure_var[~index_na]) def get_isna_ttest(self, colname_na, type_test="ks"): res = pd.DataFrame() col_to_compare = [c for c in self._dfnum if c != colname_na] # remove colname_na for col in col_to_compare: ttest = self.get_isna_ttest_s(colname_na, col, type_test=type_test) res.loc[col, 'pvalue'] = ttest[1] res.loc[col, 'statistic'] = ttest[0] res.loc[col, 'type_test'] = type_test return res def isna_summary(self, colname, prefix="is_na_"): """ Returns summary from one col with describe """ na_colname = "{}{}".format(prefix, colname) cols_to_keep = list(self.data.columns) + [na_colname] return self.data_isna_m.loc[:, cols_to_keep].groupby(na_colname).describe().transpose() def delete_narows(self, pct, index=False): """ Delete rows with more na percentage than > perc in data Return the index Arguments --------- pct : float percentage of missing values, rows with more na percentage than > perc are deleted index : bool, default False True if you want an index and not a Dataframe verbose : bool, default False True if you want to see percentage of data discarded Returns -------- - a pandas Dataframe with rows deleted if index=False, index of columns to delete either """ index_missing = self.manymissing(pct=pct, axis=0, index=False) pct_missing = len(index_missing) / len(self.data.index) if verbose: print("There is {0:.2%} rows matching conditions".format( pct_missing)) if not index: return self.data.loc[~index_missing, :] else: return index_missing def fillna_serie(self, colname, threshold_factor=0.1, special_value=None, date_method='ffill'): """ fill values in a serie default with the mean for numeric or the most common factor for categorical variable""" if special_value is not None: # "Missing for example" return self.data.loc[:, colname].fillna(special_value) elif self.data.loc[:, colname].dtype == float: # fill with median return self.data.loc[:, colname].fillna(self.data.loc[:, colname].median()) elif self.is_int_factor(colname, threshold_factor): return self.data.loc[:, colname].fillna(self.data.loc[:, colname].mode()[0]) # fillna for datetime with the method provided by pandas elif self.data.loc[:, colname].dtype == '<M8[ns]': return self.data.loc[:, colname].fillna(method=date_method) else: # Fill with most common value return self.data.loc[:, colname].fillna(self.data.loc[:, colname].value_counts().index[0]) def basic_naimputation(self, columns_to_process=[], threshold=None): """ this function will return a dataframe with na value replaced int the columns selected by the mean or the most common value Arguments --------- - columns_to_process : list of columns name with na values you wish to fill with the fillna_serie function Returns -------- - a pandas DataFrame with the columns_to_process filled with the fillena_serie """ # self.data = self.df.copy() if threshold: columns_to_process = columns_to_process + cserie(self.nacolcount().Napercentage < threshold) self.data.loc[:, columns_to_process] = self.data.loc[ :, columns_to_process].apply(lambda x: self.fillna_serie(colname=x.name)) return self.data def split_tt_na(self, colname, index=False): """ Split the dataset returning the index of test , train """ index_na = self.data.loc[:, colname].isnull() index_test = (index_na == True) index_train = (index_na == False) if index: return index_test, index_train else: return self.data.loc[index_test, :], self.data.loc[index_train, :]
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
244
ericfourrier/auto-clean
refs/heads/develop
/autoc/exceptions.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: efourrier Purpose : File with all custom exceptions """ class NotNumericColumn(Exception): """ The column should be numeric """ pass class NumericError(Exception): """ The column should not be numeric """ pass # class NotFactor
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
245
ericfourrier/auto-clean
refs/heads/develop
/autoc/__init__.py
__all__ = ["explorer", "naimputer"] from .explorer import DataExploration from .naimputer import NaImputer from .preprocess import PreProcessor from .utils.getdata import get_dataset # from .preprocess import PreProcessor
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
246
ericfourrier/auto-clean
refs/heads/develop
/autoc/explorer.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: efourrier Purpose : This is a framework for Modeling with pandas, numpy and skicit-learn. The Goal of this module is to rely on a dataframe structure for modelling g """ ######################################################### # Import modules and global helpers ######################################################### import pandas as pd import numpy as np from numpy.random import permutation from autoc.utils.helpers import cserie from pprint import pprint from .exceptions import NotNumericColumn class DataExploration(object): """ This class is designed to provide infos about the dataset such as number of missing values, number of unique values, constant columns, long strings ... For the most useful methods it will store the result into a attributes When you used a method the output will be stored in a instance attribute so you don't have to compute the result again. """ def __init__(self, data, copy=False): """ Parameters ---------- data : pandas.DataFrame the data you want explore copy: bool True if you want make a copy of DataFrame, default False Examples -------- explorer = DataExploration(data = your_DataFrame) explorer.structure() : global structure of your DataFrame explorer.psummary() to get the a global snapchot of the different stuff detected data_cleaned = explorer.basic_cleaning() to clean your data. """ assert isinstance(data, pd.DataFrame) self.is_data_copy = copy self.data = data if not self.is_data_copy else data.copy() # if not self.label: # print("""the label column is empty the data will be considered # as a dataset of predictors""") self._nrow = len(self.data.index) self._ncol = len(self.data.columns) self._dfnumi = (self.data.dtypes == float) | ( self.data.dtypes == int) self._dfnum = cserie(self._dfnumi) self._dfchari = (self.data.dtypes == object) self._dfchar = cserie(self._dfchari) self._nacolcount = pd.DataFrame() self._narowcount = pd.DataFrame() self._count_unique = pd.DataFrame() self._constantcol = [] self._dupcol = [] self._nearzerovar = pd.DataFrame() self._corrcolumns = [] self._dict_info = {} self._structure = pd.DataFrame() self._string_info = "" self._list_other_na = {'unknown', 'na', 'missing', 'n/a', 'not available'} # def get_label(self): # """ return the Serie of label you want predict """ # if not self.label: # print("""the label column is empty the data will be considered # as a dataset of predictors""") # return self.data[self.label] def is_numeric(self, colname): """ Returns True if a the type of column is numeric else False Parameters ---------- colname : str the name of the column of the self.data Notes ------ df._get_numeric_data() is a primitive from pandas to get only numeric data """ dtype_col = self.data.loc[:, colname].dtype return (dtype_col == int) or (dtype_col == float) def is_int_factor(self, colname, threshold=0.1): """ Returns True if a the type of column is numeric else False Parameters ---------- colname : str the name of the column of the self.data threshold : float colname is an 'int_factor' if the number of unique values < threshold * nrows """ dtype_col = self.data.loc[:, colname].dtype if dtype_col == int and self.data.loc[:, colname].nunique() <= (threshold * self.data.shape[0]): return True else: return False def to_lowercase(self): """ Returns a copy of dataset with data to lower """ return self.data.applymap(lambda x: x.lower() if type(x) == str else x) def where_numeric(self): """ Returns a Boolean Dataframe with True for numeric values False for other """ return self.data.applymap(lambda x: isinstance(x, (int, float))) def count_unique(self): """ Return a serie with the number of unique value per columns """ if len(self._count_unique): return self._count_unique self._count_unique = self.data.apply(lambda x: x.nunique(), axis=0) return self._count_unique def sample_df(self, pct=0.05, nr=10, threshold=None): """ sample a number of rows of a dataframe = min(max(0.05*nrow(self,nr),threshold)""" a = max(int(pct * float(len(self.data.index))), nr) if threshold: a = min(a, threshold) return self.data.loc[permutation(self.data.index)[:a],:] def sign_summary(self, subset=None): """ Returns the number and percentage of positive and negative values in a column, a subset of columns or all numeric columns of the dataframe. Parameters ---------- subset : label or list Column name or list of column names to check. Returns ------- summary : pandas.Series or pandas.DataFrame Summary of the signs present in the subset """ if subset: subs = subs if isinstance(subs, list) else [subs] if sum(col not in self._dfnum for col in subs) > 0: raise NotNumericColumn('At least one of the columns you passed ' \ 'as argument are not numeric.') else: subs = self._dfnum summary = pd.DataFrame(columns=['NumOfNegative', 'PctOfNegative', 'NumOfPositive', 'PctOfPositive']) summary['NumOfPositive'] = self.data[subs].apply(lambda x: (x >= 0).sum(), axis=0) summary['NumOfNegative'] = self.data[subs].apply(lambda x: (x <= 0).sum(), axis=0) summary['PctOfPositive'] = summary['NumOfPositive'] / len(self.data) summary['PctOfNegative'] = summary['NumOfNegative'] / len(self.data) return summary @property def total_missing(self): """ Count the total number of missing values """ # return np.count_nonzero(self.data.isnull().values) # optimized for # speed return self.nacolcount().Nanumber.sum() def nacolcount(self): """ count the number of missing values per columns """ if len(self._nacolcount): return self._nacolcount self._nacolcount = self.data.isnull().sum(axis=0) self._nacolcount = pd.DataFrame(self._nacolcount, columns=['Nanumber']) self._nacolcount['Napercentage'] = self._nacolcount[ 'Nanumber'] / (self._nrow) return self._nacolcount def narowcount(self): """ count the number of missing values per columns """ if len(self._narowcount): return self._narowcount self._narowcount = self.data.isnull().sum(axis=1) self._narowcount = pd.DataFrame( self._narowcount, columns=['Nanumber']) self._narowcount['Napercentage'] = self._narowcount[ 'Nanumber'] / (self._ncol) return self._narowcount def detect_other_na(self, verbose=True, auto_replace=False): """ Detect missing values encoded by the creator of the dataset like 'Missing', 'N/A' ... Parameters ---------- verbose : bool True if you want to print some infos auto_replace: bool True if you want replace this value by np.nan, default False Returns ------- an DataFrame of boolean if not auto_replace else cleaned DataFrame with self._list_other_na replaced by np.nan Notes ------ * You can use na_values parameter in pandas.read_csv to specify the missing values to convert to nan a priori * Speed can be improved """ res = self.to_lowercase().applymap(lambda x: x in self._list_other_na) print("We detected {} other type of missing values".format(res.sum().sum())) if auto_replace: return self.data.where((res == False), np.nan) else: return res @property def nacols_full(self): """ Returns a list of columns with only missing values """ return cserie(self.nacolcount().Nanumber == self._nrow) @property def narows_full(self): """ Returns an index of rows with only missing values """ return self.narowcount().Nanumber == self._ncol # def manymissing2(self, pct=0.9, axis=0, index=False): # """ identify columns of a dataframe with many missing values ( >= a), if # row = True row either. # - the output is a index """ # if axis == 1: # self.manymissing = self.narowcount() # self.manymissing = self.manymissing['Napercentage'] >= pct # elif axis == 0: # self.manymissing = self.nacolcount() # self.manymissing = self.manymissing['Napercentage'] >= pct # else: # raise ValueError # if index: # return manymissing # else: # return cserie(manymissing) def manymissing(self, pct=0.9, axis=0): """ identify columns of a dataframe with many missing values ( >= pct), if row = True row either. - the output is a list """ if axis == 1: self._manymissingrow = self.narowcount() self._manymissingrow = self._manymissingrow['Napercentage'] >= pct return self._manymissingrow elif axis == 0: self._manymissingcol = self.nacolcount() self._manymissingcol = cserie( self._manymissingcol['Napercentage'] >= pct) return self._manymissingcol else: raise ValueError("Axis should be 1 for rows and o for columns") def df_len_string(self, drop_num=False): """ Return a Series with the max of the length of the string of string-type columns """ if drop_num: return self.data.drop(self._dfnum, axis=1).apply(lambda x: np.max(x.str.len()), axis=0) else: return self.data.apply(lambda x: np.max(x.str.len()) if x.dtype.kind =='O' else np.nan , axis=0) def detectkey(self, index_format=False, pct=0.15, dropna=False, **kwargs): """ identify id or key columns as an index if index_format = True or as a list if index_format = False """ if not dropna: col_to_keep = self.sample_df( pct=pct, **kwargs).apply(lambda x: len(x.unique()) == len(x), axis=0) if len(col_to_keep) == 0: return [] is_key_index = col_to_keep is_key_index[is_key_index] == self.data.loc[:, is_key_index].apply( lambda x: len(x.unique()) == len(x), axis=0) if index_format: return is_key_index else: return cserie(is_key_index) else: col_to_keep = self.sample_df( pct=pct, **kwargs).apply(lambda x: x.nunique() == len(x.dropna()), axis=0) if len(col_to_keep) == 0: return [] is_key_index = col_to_keep is_key_index[is_key_index] == self.data.loc[:, is_key_index].apply( lambda x: x.nunique() == len(x.dropna()), axis=0) if index_format: return is_key_index else: return cserie(is_key_index) def constantcol(self, **kwargs): """ identify constant columns """ # sample to reduce computation time if len(self._constantcol): return self._constantcol col_to_keep = self.sample_df( **kwargs).apply(lambda x: len(x.unique()) == 1, axis=0) if len(cserie(col_to_keep)) == 0: return [] self._constantcol = cserie(self.data.loc[:, col_to_keep].apply( lambda x: len(x.unique()) == 1, axis=0)) return self._constantcol def constantcol2(self, **kwargs): """ identify constant columns """ return cserie((self.data == self.data.ix[0]).all()) def factors(self, nb_max_levels=10, threshold_value=None, index=False): """ return a list of the detected factor variable, detection is based on ther percentage of unicity perc_unique = 0.05 by default. We follow here the definition of R factors variable considering that a factor variable is a character variable that take value in a list a levels this is a bad implementation Arguments ---------- nb_max_levels: the mac nb of levels you fix for a categorical variable threshold_value : the nb of of unique value in percentage of the dataframe length index : if you want the result as an index or a list """ if threshold_value: max_levels = max(nb_max_levels, threshold_value * self._nrow) else: max_levels = nb_max_levels def helper_factor(x, num_var=self._dfnum): unique_value = set() if x.name in num_var: return False else: for e in x.values: if len(unique_value) >= max_levels: return False else: unique_value.add(e) return True if index: return self.data.apply(lambda x: helper_factor(x)) else: return cserie(self.data.apply(lambda x: helper_factor(x))) @staticmethod def serie_quantiles(array, nb_quantiles=10): binq = 1.0 / nb_quantiles if type(array) == pd.Series: return array.quantile([binq * i for i in xrange(nb_quantiles + 1)]) elif type(array) == np.ndarray: return np.percentile(array, [binq * i for i in xrange(nb_quantiles + 1)]) else: raise("the type of your array is not supported") def dfquantiles(self, nb_quantiles=10, only_numeric=True): """ this function gives you a all the quantiles of the numeric variables of the dataframe only_numeric will calculate it only for numeric variables, for only_numeric = False you will get NaN value for non numeric variables """ binq = 1.0 / nb_quantiles if only_numeric: return self.data.loc[:, self._dfnumi].quantile([binq * i for i in xrange(nb_quantiles + 1)]) else: return self.data.quantile([binq * i for i in xrange(nb_quantiles + 1)]) def numeric_summary(self): """ provide a more complete sumary than describe, it is using only numeric value """ df = self.data.loc[:, self._dfnumi] func_list = [df.count(), df.min(), df.quantile(0.25), df.quantile(0.5), df.mean(), df.std(), df.mad(), df.skew(), df.kurt(), df.quantile(0.75), df.max()] results = [f for f in func_list] return pd.DataFrame(results, index=['Count', 'Min', 'FirstQuartile', 'Median', 'Mean', 'Std', 'Mad', 'Skewness', 'Kurtosis', 'Thirdquartile', 'Max']).T def infer_types(self): """ this function will try to infer the type of the columns of data""" return self.data.apply(lambda x: pd.lib.infer_dtype(x.values)) def structure(self, threshold_factor=10): """ this function return a summary of the structure of the pandas DataFrame data looking at the type of variables, the number of missing values, the number of unique values """ if len(self._structure): return self._structure dtypes = self.data.dtypes nacolcount = self.nacolcount() nb_missing = nacolcount.Nanumber perc_missing = nacolcount.Napercentage nb_unique_values = self.count_unique() dtype_infer = self.infer_types() dtypes_r = self.data.apply(lambda x: "character") dtypes_r[self._dfnumi] = "numeric" dtypes_r[(dtypes_r == 'character') & ( nb_unique_values <= threshold_factor)] = 'factor' constant_columns = (nb_unique_values == 1) na_columns = (perc_missing == 1) is_key = nb_unique_values == self._nrow string_length = self.df_len_string(drop_num=False) # is_key_na = ((nb_unique_values + nb_missing) == self.nrow()) & (~na_columns) dict_str = {'dtypes_r': dtypes_r, 'perc_missing': perc_missing, 'nb_missing': nb_missing, 'is_key': is_key, 'nb_unique_values': nb_unique_values, 'dtypes_p': dtypes, 'constant_columns': constant_columns, 'na_columns': na_columns, 'dtype_infer': dtype_infer, 'string_length': string_length} self._structure = pd.concat(dict_str, axis=1) self._structure = self._structure.loc[:, ['dtypes_p', 'dtypes_r', 'nb_missing', 'perc_missing', 'nb_unique_values', 'constant_columns', 'na_columns', 'is_key', 'dtype_infer', 'string_length']] return self._structure def findupcol(self, threshold=100, **kwargs): """ find duplicated columns and return the result as a list of list """ df_s = self.sample_df(threshold=100, **kwargs).T dup_index_s = (df_s.duplicated()) | ( df_s.duplicated(keep='last')) if len(cserie(dup_index_s)) == 0: return [] df_t = (self.data.loc[:, dup_index_s]).T dup_index = df_t.duplicated() dup_index_complet = cserie( (dup_index) | (df_t.duplicated(keep='last'))) l = [] for col in cserie(dup_index): index_temp = self.data[dup_index_complet].apply( lambda x: (x == self.data[col])).sum() == self._nrow temp = list(self.data[dup_index_complet].columns[index_temp]) l.append(temp) self._dupcol = l return self._dupcol def finduprow(self, subset=[]): """ find duplicated rows and return the result a sorted dataframe of all the duplicates subset is a list of columns to look for duplicates from this specific subset . """ if sum(self.data.duplicated()) == 0: print("there is no duplicated rows") else: if subset: dup_index = (self.data.duplicated(subset=subset)) | ( self.data.duplicated(subset=subset, keep='last')) else: dup_index = (self.data.duplicated()) | ( self.data.duplicated(keep='last')) if subset: return self.data[dup_index].sort(subset) else: return self.data[dup_index].sort(self.data.columns[0]) def nearzerovar(self, freq_cut=95 / 5, unique_cut=10, save_metrics=False): """ identify predictors with near-zero variance. freq_cut: cutoff ratio of frequency of most common value to second most common value. unique_cut: cutoff percentage of unique value over total number of samples. save_metrics: if False, print dataframe and return NON near-zero var col indexes, if True, returns the whole dataframe. """ nb_unique_values = self.count_unique() percent_unique = 100 * nb_unique_values / self._nrow def helper_freq(x): if nb_unique_values[x.name] == 0: return 0.0 elif nb_unique_values[x.name] == 1: return 1.0 else: return float(x.value_counts().iloc[0]) / x.value_counts().iloc[1] freq_ratio = self.data.apply(helper_freq) zerovar = (nb_unique_values == 0) | (nb_unique_values == 1) nzv = ((freq_ratio >= freq_cut) & ( percent_unique <= unique_cut)) | (zerovar) if save_metrics: return pd.DataFrame({'percent_unique': percent_unique, 'freq_ratio': freq_ratio, 'zero_var': zerovar, 'nzv': nzv}, index=self.data.columns) else: print(pd.DataFrame({'percent_unique': percent_unique, 'freq_ratio': freq_ratio, 'zero_var': zerovar, 'nzv': nzv}, index=self.data.columns)) return nzv[nzv == True].index def findcorr(self, cutoff=.90, method='pearson', data_frame=False, print_mode=False): """ implementation of the Recursive Pairwise Elimination. The function finds the highest correlated pair and removes the most highly correlated feature of the pair, then repeats the process until the threshold 'cutoff' is reached. will return a dataframe is 'data_frame' is set to True, and the list of predictors to remove oth Adaptation of 'findCorrelation' function in the caret package in R. """ res = [] df = self.data.copy(0) cor = df.corr(method=method) for col in cor.columns: cor[col][col] = 0 max_cor = cor.max() if print_mode: print(max_cor.max()) while max_cor.max() > cutoff: A = max_cor.idxmax() B = cor[A].idxmax() if cor[A].mean() > cor[B].mean(): cor.drop(A, 1, inplace=True) cor.drop(A, 0, inplace=True) res += [A] else: cor.drop(B, 1, inplace=True) cor.drop(B, 0, inplace=True) res += [B] max_cor = cor.max() if print_mode: print(max_cor.max()) if data_frame: return df.drop(res, 1) else: return res self._corrcolumns = res def get_infos_consistency(self): """ Update self._dict_info and returns infos about duplicates rows and cols, constant col,narows and cols """ infos = {'duplicated_rows': {'value': cserie(self.data.duplicated(), index=True), 'level': 'ERROR', 'action': 'delete','comment': 'You should delete this rows with df.drop_duplicates()'}, 'dup_columns': {'value': self.findupcol(), 'level': 'ERROR', 'action': 'delete', 'comment': 'You should delete one of the column with df.drop({}, axis=1)'.format(self.findupcol())}, 'constant_columns': {'value': self.constantcol(), 'level': 'WARNING', 'action': 'delete', 'comment': 'You should delete one of the column with df.drop({}, axis=1)'.format(self.constantcol())}, 'narows_full': {'value': cserie(self.narows_full), 'level': 'ERROR', 'action': 'delete','comment': 'You should delete this rows with df.drop_duplicates()'}, 'nacols_full': {'value': self.nacols_full, 'level': 'ERROR', 'action': 'delete', 'comment': 'You should delete one of the column with df.drop({}, axis=1)'.format(self.nacols_full)} } # update self._dict_info.update(infos) return infos def get_infos_na(self, manymissing_ph=0.9, manymissing_pl=0.05): """ Update self._dict_info and returns infos about duplicates rows and cols, constant col, narows and cols """ nacolcount_p = self.nacolcount().Napercentage infos = {'nb_total_missing': {'value': self.total_missing, 'level': 'INFO', 'action': None}, 'pct_total_missing': {'value': float(self.total_missing) / self._nrow, 'level': 'INFO', 'action': None}, 'many_na_columns': {'value': cserie((nacolcount_p > manymissing_ph)), 'level': 'ERROR', 'action': 'delete or impute'}, 'low_na_columns': {'value': cserie((nacolcount_p > 0) & (nacolcount_p <= manymissing_pl)), 'level': 'WARNING', 'action': 'impute'}, } # update self._dict_info.update(infos) return infos def print_infos(self, infos="consistency", print_empty=False): """ pprint of get_infos Parameters ---------- print_empty: bool: False if you don't want print the empty infos ( no missing colum for example)""" if infos == "consistency": dict_infos = self.get_infos_consistency() if not print_empty: dict_infos = {k: v for k, v in dict_infos.items() if len(v['value']) > 0} pprint(dict_infos) def psummary(self, manymissing_ph=0.70, manymissing_pl=0.05, nzv_freq_cut=95 / 5, nzv_unique_cut=10, threshold=100, string_threshold=40, dynamic=False): """ This function will print you a summary of the dataset, based on function designed is this package - Output : python print It will store the string output and the dictionnary of results in private variables """ nacolcount_p = self.nacolcount().Napercentage if dynamic: print('there are {0} duplicated rows\n'.format( self.data.duplicated().sum())) print('the columns with more than {0:.2%} manymissing values:\n{1} \n'.format(manymissing_ph, cserie((nacolcount_p > manymissing_ph)))) print('the columns with less than {0:.2%} manymissing values are :\n{1} \n you should fill them with median or most common value \n'.format( manymissing_pl, cserie((nacolcount_p > 0) & (nacolcount_p <= manymissing_pl)))) print('the detected keys of the dataset are:\n{0} \n'.format( self.detectkey())) print('the duplicated columns of the dataset are:\n{0}\n'.format( self.findupcol(threshold=100))) print('the constant columns of the dataset are:\n{0}\n'.format( self.constantcol())) print('the columns with nearzerovariance are:\n{0}\n'.format( list(cserie(self.nearzerovar(nzv_freq_cut, nzv_unique_cut, save_metrics=True).nzv)))) print('the columns highly correlated to others to remove are:\n{0}\n'.format( self.findcorr(data_frame=False))) print('these columns contains big strings :\n{0}\n'.format( cserie(self.df_len_string() > string_threshold))) else: self._dict_info = {'nb_duplicated_rows': np.sum(self.data.duplicated()), 'many_missing_percentage': manymissing_ph, 'manymissing_columns': cserie((nacolcount_p > manymissing_ph)), 'low_missing_percentage': manymissing_pl, 'lowmissing_columns': cserie((nacolcount_p > 0) & (nacolcount_p <= manymissing_pl)), 'keys_detected': self.detectkey(), 'dup_columns': self.findupcol(threshold=100), 'constant_columns': self.constantcol(), 'nearzerovar_columns': cserie(self.nearzerovar(nzv_freq_cut, nzv_unique_cut, save_metrics=True).nzv), 'high_correlated_col': self.findcorr(data_frame=False), 'big_strings_col': cserie(self.df_len_string() > string_threshold) } self._string_info = u""" there are {nb_duplicated_rows} duplicated rows\n the columns with more than {many_missing_percentage:.2%} manymissing values:\n{manymissing_columns} \n the columns with less than {low_missing_percentage:.2%}% manymissing values are :\n{lowmissing_columns} \n you should fill them with median or most common value\n the detected keys of the dataset are:\n{keys_detected} \n the duplicated columns of the dataset are:\n{dup_columns}\n the constant columns of the dataset are:\n{constant_columns}\n the columns with nearzerovariance are:\n{nearzerovar_columns}\n the columns highly correlated to others to remove are:\n{high_correlated_col}\n these columns contains big strings :\n{big_strings_col}\n """.format(**self._dict_info) print(self._string_info) def metadata(self): """ Return a dict/json full of infos about the dataset """ meta = {} meta['mem_size'] = self.data.memory_usage(index=True).sum() # in bytes meta['columns_name'] = self.data.columns.tolist() meta['columns_name_n'] = [e.lower() for e in self.data.columns] meta['nb_rows'] = self.data.shape[0] meta['nb_columns'] = self.data.shape[1] # drop dtype_p for mongodb compatibility structure_data = self.structure().drop(labels='dtypes_p', axis=1) structure_data = structure_data.to_dict('index') meta['structure'] = structure_data meta['numeric_summary'] = self.numeric_summary().to_dict('index') return meta
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
247
ericfourrier/auto-clean
refs/heads/develop
/autoc/outliersdetection.py
""" @author: efourrier Purpose : This is a simple experimental class to detect outliers. This class can be used to detect missing values encoded as outlier (-999, -1, ...) """ from autoc.explorer import DataExploration, pd import numpy as np #from autoc.utils.helpers import cserie from exceptions import NotNumericColumn def iqr(ndarray, dropna=True): if dropna: ndarray = ndarray[~np.isnan(ndarray)] return np.percentile(ndarray, 75) - np.percentile(ndarray, 25) def z_score(ndarray, dropna=True): if dropna: ndarray = ndarray[~np.isnan(ndarray)] return (ndarray - np.mean(ndarray)) / (np.std(ndarray)) def iqr_score(ndarray, dropna=True): if dropna: ndarray = ndarray[~np.isnan(ndarray)] return (ndarray - np.median(ndarray)) / (iqr(ndarray)) def mad_score(ndarray, dropna=True): if dropna: ndarray = ndarray[~np.isnan(ndarray)] return (ndarray - np.median(ndarray)) / (np.median(np.absolute(ndarray - np.median(ndarray))) / 0.6745) class OutliersDetection(DataExploration): """ this class focuses on identifying outliers Parameters ---------- data : DataFrame Examples -------- * od = OutliersDetection(data = your_DataFrame) * od.structure() : global structure of your DataFrame """ def __init__(self, *args, **kwargs): super(OutliersDetection, self).__init__(*args, **kwargs) self.strong_cutoff = {'cutoff_z': 6, 'cutoff_iqr': 6, 'cutoff_mad': 6} self.basic_cutoff = {'cutoff_z': 3, 'cutoff_iqr': 2, 'cutoff_mad': 2} def check_negative_value(self, colname): """ this function will detect if there is at leat one negative value and calculate the ratio negative postive/ """ if not self.is_numeric(colname): NotNumericColumn("The serie should be numeric values") return sum(serie < 0) def outlier_detection_serie_1d(self, colname, cutoff_params, scores=[z_score, iqr_score, mad_score]): if not self.is_numeric(colname): raise("auto-clean doesn't support outliers detection for Non numeric variable") keys = [str(func.__name__) for func in scores] df = pd.DataFrame(dict((key, func(self.data.loc[:, colname])) for key, func in zip(keys, scores))) df['is_outlier'] = 0 for s in keys: cutoff_colname = "cutoff_{}".format(s.split('_')[0]) index_outliers = np.absolute(df[s]) >= cutoff_params[cutoff_colname] df.loc[index_outliers, 'is_outlier'] = 1 return df def check_negative_value(self): """ this will return a the ratio negative/positve for each numeric variable of the DataFrame """ return self.data[self._dfnum].apply(lambda x: self.check_negative_value_serie(x.name)) def outlier_detection_1d(self, cutoff_params, subset=None, scores=[z_score, iqr_score, mad_score]): """ Return a dictionnary with z_score,iqr_score,mad_score as keys and the associate dataframe of distance as value of the dictionnnary""" df = self.data.copy() numeric_var = self._dfnum if subset: df = df.drop(subset, axis=1) df = df.loc[:, numeric_var] # take only numeric variable # if remove_constant_col: # df = df.drop(self.constantcol(), axis = 1) # remove constant variable # df_outlier = pd.DataFrame() for col in df: df_temp = self.outlier_detection_serie_1d(col, cutoff_params, scores) df_temp.columns = [col + '_' + col_name for col_name in df_temp.columns] #df_outlier = pd.concat([df_outlier, df_temp], axis=1) return df_temp
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
248
ericfourrier/auto-clean
refs/heads/develop
/autoc/preprocess.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: efourrier Purpose : The purpose of this class is too automaticely transfrom a DataFrame into a numpy ndarray in order to use an aglorithm """ ######################################################### # Import modules and global helpers ######################################################### from autoc.explorer import DataExploration, pd import numpy as np from numpy.random import permutation from autoc.utils.helpers import cserie from autoc.exceptions import NumericError class PreProcessor(DataExploration): subtypes = ['text_raw', 'text_categorical', 'ordinal', 'binary', 'other'] def __init__(self, *args, **kwargs): super(PreProcessor, self).__init__(*args, **kwargs) self.long_str_cutoff = 80 self.short_str_cutoff = 30 self.perc_unique_cutoff = 0.2 self.nb_max_levels = 20 def basic_cleaning(self,filter_nacols=True, drop_col=None, filter_constantcol=True, filer_narows=True, verbose=True, filter_rows_duplicates=True, inplace=False): """ Basic cleaning of the data by deleting manymissing columns, constantcol, full missing rows, and drop_col specified by the user. """ col_to_remove = [] index_to_remove = [] if filter_nacols: col_to_remove += self.nacols_full if filter_constantcol: col_to_remove += list(self.constantcol()) if filer_narows: index_to_remove += cserie(self.narows_full) if filter_rows_duplicates: index_to_remove += cserie(self.data.duplicated()) if isinstance(drop_col, list): col_to_remove += drop_col elif isinstance(drop_col, str): col_to_remove += [drop_col] else: pass col_to_remove = list(set(col_to_remove)) index_to_remove = list(set(index_to_remove)) if verbose: print("We are removing the folowing columns : {}".format(col_to_remove)) print("We are removing the folowing rows : {}".format(index_to_remove)) if inplace: return self.data.drop(index_to_remove).drop(col_to_remove, axis=1) else: return self.data.copy().drop(index_to_remove).drop(col_to_remove, axis=1) def _infer_subtype_col(self, colname): """ This fonction tries to infer subtypes in order to preprocess them better for skicit learn. You can find the different subtypes in the class variable subtypes To be completed .... """ serie_col = self.data.loc[:, colname] if serie_col.nunique() == 2: return 'binary' elif serie_col.dtype.kind == 'O': if serie_col.str.len().mean() > self.long_str_cutoff and serie_col.nunique()/len(serie_col) > self.perc_unique_cutoff: return "text_long" elif serie_col.str.len().mean() <= self.short_str_cutoff and serie_col.nunique() <= self.nb_max_levels: return 'text_categorical' elif self.is_numeric(colname): if serie_col.dtype == int and serie_col.nunique() <= self.nb_max_levels: return "ordinal" else : return "other" def infer_subtypes(self): """ Apply _infer_subtype_col to the whole DataFrame as a dictionnary """ return {col: {'dtype': self.data.loc[:,col].dtype, 'subtype':self._infer_subtype_col(col)} for col in self.data.columns} def infer_categorical_str(self, colname, nb_max_levels=10, threshold_value=0.01): """ Returns True if we detect in the serie a factor variable A string factor is based on the following caracteristics : ther percentage of unicity perc_unique = 0.05 by default. We follow here the definition of R factors variable considering that a factor variable is a character variable that take value in a list a levels Arguments ---------- nb_max_levels: int the max nb of levels you fix for a categorical variable threshold_value : float the nb of of unique value in percentage of the dataframe length """ # False for numeric columns if threshold_value: max_levels = max(nb_max_levels, threshold_value * self._nrow) else: max_levels = nb_max_levels if self.is_numeric(colname): return False # False for categorical columns if self.data.loc[:, colname].dtype == "category": return False unique_value = set() for i, v in self.data.loc[:, colname], iteritems(): if len(unique_value) >= max_levels: return False else: unique_value.add(v) return True def get_factors(self, nb_max_levels=10, threshold_value=None, index=False): """ Return a list of the detected factor variable, detection is based on ther percentage of unicity perc_unique = 0.05 by default. We follow here the definition of R factors variable considering that a factor variable is a character variable that take value in a list a levels this is a bad implementation Arguments ---------- nb_max_levels: int the max nb of levels you fix for a categorical variable. threshold_value : float the nb of of unique value in percentage of the dataframe length. index: bool False, returns a list, True if you want an index. """ res = self.data.apply(lambda x: self.infer_categorical_str(x)) if index: return res else: return cserie(res) def factors_to_categorical(self, inplace=True, verbose=True, *args, **kwargs): factors_col = self.get_factors(*args, **kwargs) if verbose: print("We are converting following columns to categorical :{}".format( factors_col)) if inplace: self.df.loc[:, factors_col] = self.df.loc[:, factors_col].astype(category) else: return self.df.loc[:, factors_col].astype(category) def remove_category(self, colname, nb_max_levels, replace_value='other', verbose=True): """ Replace a variable with too many categories by grouping minor categories to one """ if self.data.loc[:, colname].nunique() < nb_max_levels: if verbose: print("{} has not been processed because levels < {}".format( colname, nb_max_levels)) else: if self.is_numeric(colname): raise NumericError( '{} is a numeric columns you cannot use this function'.format()) top_levels = self.data.loc[ :, colname].value_counts[0:nb_max_levels].index self.data.loc[~self.data.loc[:, colname].isin( top_levels), colname] = replace_value
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
249
ericfourrier/auto-clean
refs/heads/develop
/autoc/utils/helpers.py
# -*- coding: utf-8 -*- """ @author: efourrier Purpose : Create toolbox functions to use for the different pieces of code ot the package """ from numpy.random import normal from numpy.random import choice import time import pandas as pd import numpy as np import functools def print_section(section_name, width=120): """ print centered section for reports in DataExplora""" section_name = ' ' + section_name + ' ' print('{:=^{ }}'.format(section_name, width)) # def get_dataset(name, *args, **kwargs): # """Get a dataset from the online repo # https://github.com/ericfourrier/autoc-datasets (requires internet). # # Parameters # ---------- # name : str # Name of the dataset 'name.csv' # """ # path = "https://raw.githubusercontent.com/ericfourrier/autoc-datasets/master/{0}.csv".format(name) # return pd.read_csv(path, *args, **kwargs) def flatten_list(x): return [y for l in x for y in flatten_list(l)] if isinstance(x, list) else [x] def cserie(serie, index=False): if index: return serie[serie].index else: return serie[serie].index.tolist() def removena_numpy(array): return array[~(np.isnan(array))] def common_cols(df1, df2): """ Return the intersection of commun columns name """ return list(set(df1.columns) & set(df2.columns)) def bootstrap_ci(x, n=300, ci=0.95): """ this is a function depending on numpy to compute bootstrap percentile confidence intervalfor the mean of a numpy array Arguments --------- x : a numpy ndarray n : the number of boostrap samples ci : the percentage confidence (float) interval in ]0,1[ Return ------- a tuple (ci_inf,ci_up) """ low_per = 100 * (1 - ci) / 2 high_per = 100 * ci + low_per x = removena_numpy(x) if not len(x): return (np.nan, np.nan) bootstrap_samples = choice(a=x, size=( len(x), n), replace = True).mean(axis = 0) return np.percentile(bootstrap_samples, [low_per, high_per]) def clock(func): """ decorator to measure the duration of each test of the unittest suite, this is extensible for any kind of functions it will just add a print """ def clocked(*args): t0 = time.time() result = func(*args) elapsed = (time.time() - t0) * 1000 # in ms print('elapsed : [{0:0.3f}ms]'.format(elapsed)) return result return clocked def cached_property(fun): """A memoize decorator for class properties.""" @functools.wraps(fun) def get(self): try: return self._cache[fun] except AttributeError: self._cache = {} except KeyError: pass ret = self._cache[fun] = fun(self) return ret return property(get) def create_test_df(): """ Creating a test pandas DataFrame for the unittest suite """ test_df = pd.DataFrame({'id': [i for i in range(1, 1001)], 'member_id': [ 10 * i for i in range(1, 1001)]}) test_df['na_col'] = np.nan test_df['id_na'] = test_df.id test_df.loc[1:3, 'id_na'] = np.nan test_df['constant_col'] = 'constant' test_df['constant_col_num'] = 0 test_df['character_factor'] = [ choice(list('ABCDEFG')) for _ in range(1000)] test_df['num_factor'] = [choice([1, 2, 3, 4]) for _ in range(1000)] test_df['nearzerovar_variable'] = 'most_common_value' test_df.loc[0, 'nearzerovar_variable'] = 'one_value' test_df['binary_variable'] = [choice([0, 1]) for _ in range(1000)] test_df['character_variable'] = [str(i) for i in range(1000)] test_df['duplicated_column'] = test_df.id test_df['many_missing_70'] = [1] * 300 + [np.nan] * 700 test_df['character_variable_fillna'] = ['A'] * \ 300 + ['B'] * 200 + ['C'] * 200 + [np.nan] * 300 test_df['numeric_variable_fillna'] = [1] * 400 + [3] * 400 + [np.nan] * 200 test_df['num_variable'] = 100.0 test_df['int_factor_10'] = [choice(range(10)) for _ in range(1000)] test_df['outlier'] = normal(size=1000) test_df.loc[[1, 10, 100], 'outlier'] = [999, 3, 999] test_df['outlier_na'] = test_df['outlier'] test_df.loc[[300, 500], 'outlier_na'] = np.nan test_df['datetime'] = pd.date_range('1/1/2015', periods=1000, freq='H') test_df['None_100'] = [1] * 900 + [None] * 100 test_df['None_na_200'] = [1] * 800 + [None] * 100 + [np.nan] * 100 test_df['character_variable_up1'] = ['A'] * 500 + ['B'] * 200 + ['C'] * 300 test_df['character_variable_up2'] = ['A'] * 500 + ['B'] * 200 + ['D'] * 300 test_df['other_na'] = ['Missing'] * 100 + ['missing'] * 100 + ['N/a'] * 100 + \ ['NA'] * 100 + ['na'] * 100 + ['n/a'] * 100 + ['Not Available'] * 100 + \ ['Unknown'] * 100 + ['do_not_touch'] * 200 return test_df def simu(pmf, size): """ Draw one sample from of a discrete distribution, pmf is supposed to be in ascending order Parameters ---------- pmf : tuple(ndarray, ndarray) a tuple with (labels,probs) labels are supposed to be in ascending order size: int the number of sampel you want generate Returns ------ int (depends of the type of labels) draw a random sample from the pmf """ labels, probs = pmf[0], pmf[1] u = np.random.rand(size) cumulative_sum = probs.cumsum() return labels[(u >= cumulative_sum[:, None]).argmin(axis=0)] def shuffle_df(df, reindex=False): new_df = df.sample(frac=1) if not reindex else df.sample( frac=1).reset_index() return new_df def random_pmf(nb_labels): """ Return a random probability mass function of nb_labels""" random_numbers = np.random.random(nb_labels) return random_numbers / np.sum(random_numbers) def random_histogram(nb_labels, nb_observations): """ Return a random probability mass function of nb_labels""" random_histo = np.random.choice(np.arange(0, nb_observations), nb_labels) return random_histo / np.sum(random_histo) def keep_category(df, colname, pct=0.05, n=5): """ Keep a pct or number of every levels of a categorical variable Parameters ---------- pct : float Keep at least pct of the nb of observations having a specific category n : int Keep at least n of the variables having a specific category Returns -------- Returns an index of rows to keep """ tokeep = [] nmin = df.groupby(colname).apply(lambda x: x.sample( max(1, min(x.shape[0], n, int(x.shape[0] * pct)))).index) for index in nmin: tokeep += index.tolist() return pd.Index(tokeep) # for k, i in df.groupby(colname).groups: # to_keep += np.random.choice(i, max(1, min(g.shape[0], n, int(g.shape[0] * pct))), replace=False) # return to_keep # def simulate_na_col(df, colname, n=None, pct=None, weights=None, safety=True, *args, **kwargs): """ Simulate missing values in a column of categorical variables Notes ----- Fix issue with category variable""" # if df.loc[:,colname].dtype == 'float' or df.loc[:,colname].dtype == 'int': # raise ValueError('This function only support categorical variables') if (n is None) and (pct is not None): # be careful here especially if cols has a lot of missing values n = int(pct * df.shape[0]) if isinstance(colname, pd.core.index.Index) or isinstance(colname, list): for c in colname: simulate_na_col(df, colname=c, n=n, pct=pct, weights=weights) else: if safety: tokeep = keep_category(df, colname, *args, **kwargs) # we are not smapling from tokeep col = df.loc[:, colname].drop(tokeep) col = col.dropna() print(colname) col_distribution = col.value_counts(normalize=True, sort=False) labels = col_distribution.index # characters # generate random pmf pmf_na = weights if weights else random_pmf(len(labels)) na_distribution = pd.Series(data=pmf_na, index=labels) # draw samples from this pmf weights_na = col.apply(lambda x: na_distribution[x]) weights_na /= weights_na.sum() index_to_replace = col.sample( n=n, weights=weights_na, replace=False).index df.loc[index_to_replace, colname] = np.nan def get_test_df_complete(): """ get the full test dataset from Lending Club open source database, the purpose of this fuction is to be used in a demo ipython notebook """ import requests from zipfile import ZipFile import StringIO zip_to_download = "https://resources.lendingclub.com/LoanStats3b.csv.zip" r = requests.get(zip_to_download) zipfile = ZipFile(StringIO.StringIO(r.content)) file_csv = zipfile.namelist()[0] # we are using the c parser for speed df = pd.read_csv(zipfile.open(file_csv), skiprows=[0], na_values=['n/a', 'N/A', ''], parse_dates=['issue_d', 'last_pymnt_d', 'next_pymnt_d', 'last_credit_pull_d']) zipfile.close() df = df[:-2] nb_row = float(len(df.index)) df['na_col'] = np.nan df['constant_col'] = 'constant' df['duplicated_column'] = df.id df['many_missing_70'] = np.nan df.loc[1:int(0.3 * nb_row), 'many_missing_70'] = 1 df['bad'] = 1 index_good = df['loan_status'].isin( ['Fully Paid', 'Current', 'In Grace Period']) df.loc[index_good, 'bad'] = 0 return df def kl(p, q): """ Kullback-Leibler divergence for discrete distributions Parameters ---------- p: ndarray probability mass function q: ndarray probability mass function Returns -------- float : D(P || Q) = sum(p(i) * log(p(i)/q(i)) Discrete probability distributions. """ return np.sum(np.where(p != 0, p * np.log(p / q), 0)) def kl_series(serie1, serie2, dropna=True): if dropna: serie1 = serie1.dropna() serie2 = serie2.dropna() return kl(serie1.value_counts(normalize=True).values, serie2.value_counts(normalize=True).values) def plot_hist_na(df, colname): df_h = df.copy() na_name = "is_na_{}".format(colname) df_h[na_name] = df_h[colname].isnull().astype(int) measure_col = cserie((df.dtypes == int) | (df.dtypes == float)) df_h.groupby(na_name)[measure_col].hist() def psi(bench, target, group, print_df=True): """ This function return the Population Stability Index, quantifying if the distribution is stable between two states. This statistic make sense and works is only working for numeric variables for bench and target. Params: - bench is a numpy array with the reference variable. - target is a numpy array of the new variable. - group is the number of group you want consider. """ labels_q = np.percentile( bench, [(100.0 / group) * i for i in range(group + 1)], interpolation="nearest") # This is the right approach when you have not a lot of unique value ben_pct = (pd.cut(bench, bins=np.unique(labels_q), include_lowest=True).value_counts()) / len(bench) target_pct = (pd.cut(target, bins=np.unique(labels_q), include_lowest=True).value_counts()) / len(target) target_pct = target_pct.sort_index() # sort the index ben_pct = ben_pct.sort_index() # sort the index psi = sum((target_pct - ben_pct) * np.log(target_pct / ben_pct)) # Print results for better understanding if print_df: results = pd.DataFrame({'ben_pct': ben_pct.values, 'target_pct': target_pct.values}, index=ben_pct.index) return {'data': results, 'statistic': psi} return psi
{"/test.py": ["/autoc/utils/helpers.py", "/autoc/utils/getdata.py", "/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/outliersdetection.py"], "/autoc/naimputer.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/utils/corrplot.py"], "/autoc/__init__.py": ["/autoc/explorer.py", "/autoc/naimputer.py", "/autoc/preprocess.py", "/autoc/utils/getdata.py"], "/autoc/explorer.py": ["/autoc/utils/helpers.py", "/autoc/exceptions.py"], "/autoc/outliersdetection.py": ["/autoc/explorer.py"], "/autoc/preprocess.py": ["/autoc/explorer.py", "/autoc/utils/helpers.py", "/autoc/exceptions.py"]}
281
lukemadera/ml-learning
refs/heads/master
/breakout_ai_a2c.py
import numpy as np import os import random import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.autograd as autograd # Implementing a function to make sure the models share the same gradient # def ensure_shared_grads(model, shared_model): # for param, shared_param in zip(model.parameters(), shared_model.parameters()): # if shared_param.grad is not None: # return # shared_param._grad = param.grad class ActorCritic(nn.Module): def __init__(self, numActions, numInputs=84): super(ActorCritic, self).__init__() # self.conv1 = nn.Conv2d(numInputs, 32, kernel_size=8, stride=4) # self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) # self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.conv1 = nn.Conv2d(numInputs, 32, 3, stride=2, padding=1) self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1) self.conv4 = nn.Conv2d(32, 32, 3, stride=2, padding=1) self.linear1 = nn.Linear(192, 512) self.actor = nn.Linear(512, numActions) self.critic = nn.Linear(512, 1) # In a PyTorch model, you only have to define the forward pass. # PyTorch computes the backwards pass for you! def forward(self, x): # Normalize image pixels (from rgb 0 to 255) to between 0 and 1. x = x / 255. x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = x.view(x.size(0), -1) x = F.relu(self.linear1(x)) return x # Only the Actor head def get_action_probs(self, x): x = self(x) actionProbs = F.softmax(self.actor(x), dim=1) actionProbs = torch.clamp(actionProbs, 0.0001, 0.9999) return actionProbs # Only the Critic head def getStateValue(self, x): x = self(x) stateValue = self.critic(x) return stateValue # Both heads def evaluate_actions(self, x): x = self(x) actionProbs = F.softmax(self.actor(x), dim=1) actionProbs = torch.clamp(actionProbs, 0.0001, 0.9999) stateValues = self.critic(x) return actionProbs, stateValues class A2C(): def __init__(self, numActions, gamma=None, learningRate=None, maxGradNorm=0.5, entropyCoefficient=0.01, valueLossFactor=0.5, sharedModel=None, sharedOptimizer=None, device='cpu'): self.gamma = gamma if gamma is not None else 0.99 self.learningRate = learningRate if learningRate is not None else 0.0007 self.maxGradNorm = maxGradNorm self.entropyCoefficient = entropyCoefficient self.valueLossFactor = valueLossFactor self.model = ActorCritic(numActions).to(device=device) self.sharedModel = sharedModel self.optimizer = sharedOptimizer if sharedOptimizer is not None else \ optim.Adam(self.model.parameters(), lr=self.learningRate) self.device = device print ('A2C hyperparameters', 'learningRate', self.learningRate, 'gamma', self.gamma, 'entropyCoefficient', self.entropyCoefficient, 'valueLossFactor', self.valueLossFactor, 'maxGradNorm', self.maxGradNorm) def save(self, filePath='training-runs/a2c.pth'): torch.save({'state_dict': self.model.state_dict(), 'optimizer' : self.optimizer.state_dict(), }, filePath) print("=> saved checkpoint... ", filePath) def load(self, filePath='training-runs/a2c.pth'): if os.path.isfile(filePath): print("=> loading checkpoint... ", filePath) checkpoint = torch.load(filePath) self.model.load_state_dict(checkpoint['state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer']) print("done!") else: print("no checkpoint found...", filePath) # def syncSharedModel(self): # if self.sharedModel is not None: # # Synchronizing with the shared model # self.model.load_state_dict(self.sharedModel.state_dict()) def getValues(self, state): stateTensor = torch.tensor(state, dtype=torch.float32, device=self.device) return self.model.get_action_probs(stateTensor) def pickAction(self, bestAction, validActions=None, randomRatio=-1): action = bestAction if randomRatio >= 0 and validActions is not None: randNum = random.uniform(0, 1) if randNum < randomRatio: action = np.random.choice(validActions) # print ('random action') # action = actionProbs.multinomial(num_samples=1) # action = action[0,0].tolist() if validActions is not None and action not in validActions: action = np.random.choice(validActions) return action def selectActions(self, states, validActions=None, randomRatio=-1): statesTensor = torch.tensor(states, dtype=torch.float32, device=self.device) actionProbs, stateValues = self.model.evaluate_actions(statesTensor) actions = [] for item in actionProbs: bestAction = item.max(0)[1].tolist() action = self.pickAction(bestAction, validActions, randomRatio) actions.append(action) return actions, stateValues.tolist() def selectAction(self, state, validActions=None, randomRatio=-1): # Need to add dimension to simulate stack of states, even though just have one. stateTensor = torch.tensor(state, dtype=torch.float32, device=self.device) actionProbs, stateValues = self.model.evaluate_actions(stateTensor) _, bestAction = actionProbs.max(maxIndex) bestAction = bestAction[0].tolist() action = self.pickAction(bestAction, validActions, randomRatio) return action, stateValues def calcActualStateValues(self, rewards, dones, statesTensor): rewards = rewards.tolist() dones = dones.tolist() # R is the cumulative reward. R = [] rewards.reverse() if dones[-1]: # if 0: nextReturn = 0 else: stateTensor = statesTensor[-1].unsqueeze(0) nextReturn = self.model.getStateValue(stateTensor)[0][0].tolist() # Backup from last state to calculate "true" returns for each state in the set R.append(nextReturn) dones.reverse() for r in range(1, len(rewards)): if dones[r]: # if 0: thisReturn = 0 else: thisReturn = rewards[r] + nextReturn * self.gamma # print ('thisReturn', thisReturn, rewards[r], nextReturn, self.gamma, rewards, r) R.append(thisReturn) nextReturn = thisReturn R.reverse() # print ('rewards', rewards) stateValuesActual = torch.tensor(R, dtype=torch.float32, device=self.device).unsqueeze(1) # print ('stateValuesActual', stateValuesActual) # print ('R', R) return stateValuesActual def learn(self, states, actions, rewards, dones, values=None): statesTensor = torch.tensor(states, dtype=torch.float32, device=self.device) # s = torch.tensor(states, dtype=torch.float32, device=self.device) # Need to convert from array of tensors to tensor of tensors. # actionProbs, stateValuesEst = self.model.evaluate_actions(torch.cat(statesTensor, 0)) actionProbs, stateValuesEst = self.model.evaluate_actions(statesTensor) # print ('actionProbs', actionProbs) # print ('stateValuesEst', stateValuesEst) actionLogProbs = actionProbs.log() # print ('actionProbs', actionProbs) # print ('actionLogProbs', actionLogProbs) a = torch.tensor(actions, dtype=torch.int64, device=self.device).view(-1,1) chosenActionLogProbs = actionLogProbs.gather(1, a) # print ('chosenActionLogProbs', chosenActionLogProbs) versionToUse = 'v1' # v1 - original if versionToUse == 'v1': # Calculating the actual values. stateValuesActual = self.calcActualStateValues(rewards, dones, statesTensor) # print ('stateValuesActual', stateValuesActual) # This is also the TD (Temporal Difference) error advantages = stateValuesActual - stateValuesEst # print ('advantages', advantages) valueLoss = advantages.pow(2).mean() # print ('value_loss', value_loss) entropy = (actionProbs * actionLogProbs).sum(1).mean() # print ('entropy', entropy, actionProbs, actionLogProbs) actionGain = (chosenActionLogProbs * advantages).mean() # print ('actiongain', actionGain) totalLoss = self.valueLossFactor * valueLoss - \ actionGain - self.entropyCoefficient * entropy # print ('totalLoss', totalLoss, valueLoss, actionGain) # v2 - http://steven-anker.nl/blog/?p=184 if versionToUse == 'v2': R = 0 if not dones[-1]: stateTensor = statesTensor[-1] R = self.model.getStateValue(stateTensor)[0][0].tolist() n = len(statesTensor) VF = stateValuesEst RW = np.zeros(n) ADV = np.zeros(n) A = np.array(actions) for i in range(n - 1, -1, -1): R = rewards[i] + self.gamma * R RW[i] = R ADV[i] = R - VF[i] advantages = torch.from_numpy(ADV, device=self.device) # rewardsTensor = [] # for reward in rewards: # print (reward, torch.tensor([reward], device=self.device)) # rewardsTensor.append(torch.tensor(reward, device=self.device)) rewardsTensor = list(map(lambda x: torch.tensor([x], device=self.device), rewards)) rewardsTensor = torch.cat(rewardsTensor, 0) valueLoss = 0.5 * (stateValuesEst - rewardsTensor).pow(2).mean() # valueLoss = 0.5 * (stateValuesEst - torch.from_numpy(RW, device=self.device)).pow(2).mean() actionOneHot = chosenActionLogProbs #Is this correct?? negLogPolicy = -1 * actionLogProbs # Only the output related to the action needs to be adjusted, since we only know the result of that action. # By multiplying the negative log of the policy output with the one hot encoded vectors, we force all outputs # other than the one of the action to zero. policyLoss = ((negLogPolicy * actionOneHot).sum(1) * advantages.float()).mean() entropy = (actionProbs * negLogPolicy).sum(1).mean() # Training works best if the value loss has less influence than the policy loss, so reduce value loss by a factor. # Optimizing with this loss function could result in converging too quickly to a sub optimal solution. # I.e. the probability of a single action is significant higher than any other, causing it to always be chosen. # To prevent this we add a penalty on having a high entropy. totalLoss = self.valueLossFactor * valueLoss + policyLoss - self.entropyCoefficient * entropy self.optimizer.zero_grad() totalLoss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.maxGradNorm) # if self.sharedModel is not None: # ensure_shared_grads(self.model, self.sharedModel) self.optimizer.step()
{"/breakout_run_train.py": ["/breakout_ai_a2c.py", "/date_time.py", "/number.py"]}
282
lukemadera/ml-learning
refs/heads/master
/number.py
# Decimal is causing rounding errors? E.g. 1/3 is 3.333333333334 and 1/3 of 30 is 9.9999999999990 # We want to keep precision at a max, but don't increase precision for numbers that start as less. # For example, change 33.33333333333334 to 33.33333333 and keep 1 as 1 (not 1.0000000001) from decimal import * # decimals = 8 # def set_decimals(decimals1): # global decimals # decimals = decimals1 # def precision_string(decimals): # if decimals == 0: # return '1' # precision = '.' # # -1 because add a '1' at the end as last digit # for count in range(0, (decimals-1)): # precision += '0' # precision += '1' # return precision # def number(num, decimals1 = False): # global decimals # num_decimals_max = decimals1 or decimals # num_str = str(num) # index_dot = num_str.find('.') # if index_dot < 0: # num_decimals = 0 # else: # num_decimals_str = len(num_str) - (index_dot + 1) # if num_decimals_str < num_decimals_max: # num_decimals = num_decimals_str # else: # num_decimals = num_decimals_max # precision = precision_string(num_decimals) # return Decimal(num).quantize(Decimal(precision), rounding=ROUND_HALF_UP) # decimal type does not store in MongoDB def number(num): if not isinstance(num, float): return float(num) return num def toFixed(num, precision1='.01'): numFixed = precision(num, precision1) numNoZeroes = removeZeroes(str(numFixed)) if numNoZeroes[-1] == '.': return str(num) return numNoZeroes # '0.010000' will return a precision of 6 decimals, instead of 2! So fix by # removing any trailing zeroes. def removeZeroes(str1): newStr = str1 lastIndex = len(str1) for index, char in reversed(list(enumerate(str1))): if char != '0': break lastIndex = index newStr = str1[slice(0, lastIndex)] return newStr def decimalCount(numString): index = numString.find('.') if index > -1: return len(numString) - index - 1 return -1 def precision(num, precision1 = '.01', round1='down'): precision = removeZeroes(precision1) # See if value is already correct precision. if decimalCount(str(num)) == decimalCount(precision): return num rounding = ROUND_UP if round1 == 'up' else ROUND_DOWN newVal = float(Decimal(num).quantize(Decimal(precision), rounding=rounding)) if newVal == 0.0: newVal = float(Decimal(num).quantize(Decimal(precision), rounding=ROUND_UP)) return newVal
{"/breakout_run_train.py": ["/breakout_ai_a2c.py", "/date_time.py", "/number.py"]}
283
lukemadera/ml-learning
refs/heads/master
/breakout_run_train.py
import gym import logging import numpy as np import torch import time import breakout_ai_a2c as ai_a2c import date_time import number from subproc_vec_env import SubprocVecEnv from atari_wrappers import make_atari, wrap_deepmind, Monitor def updateState(obs, state, nc): # Do frame-stacking here instead of the FrameStack wrapper to reduce IPC overhead state = np.roll(state, shift=-nc, axis=3) state[:, :, :, -nc:] = obs return state def runTrain(gymId='BreakoutNoFrameskip-v4', numEnvs=16, seed=0, filePathBrain='training/breakout-v1.pth', numSteps=5, numBatches=20000, outputBatchInterval=1000, joinEnvs=1, epsilon=0.00001): def make_env(rank): def _thunk(): env = make_atari(gymId) env.seed(seed + rank) gym.logger.setLevel(logging.WARN) env = wrap_deepmind(env) # wrap the env one more time for getting total reward env = Monitor(env, rank) return env return _thunk print ('training starting', numBatches, outputBatchInterval, 'epsilon', epsilon) env = SubprocVecEnv([make_env(i) for i in range(numEnvs)]) numActions = env.action_space.n torchDevice = 'cpu' if torch.cuda.is_available(): torchDevice = 'cuda' agent = ai_a2c.A2C(numActions, device=torchDevice) if filePathBrain: agent.load(filePath=filePathBrain) timingStart = date_time.now() batchCount = 0 states, actions, rewards, dones, values = [], [], [], [], [] for ii in range(numEnvs): states.append([]) actions.append([]) rewards.append([]) dones.append([]) values.append([]) # Set first state. # Environment returns 1 frame, but we want multiple, so we stack the new # state on top of the past ones. nh, nw, nc = env.observation_space.shape nstack = 4 batchStateShape = (numEnvs * numSteps, nh, nw, nc * nstack) emptyState = np.zeros((numEnvs, nh, nw, nc * nstack), dtype=np.uint8) obs = env.reset() # states = updateState(obs, emptyState, nc) lastStates = updateState(obs, emptyState, nc) lastDones = [False for _ in range(numEnvs)] totalRewards = [] realTotalRewards = [] # All actions are always valid. validActions = [0,1,2,3] while batchCount < numBatches: states, actions, rewards, dones, values = [], [], [], [], [] stepCount = 0 while stepCount < numSteps: actionsStep, valuesStep = agent.selectActions(lastStates, validActions=validActions, randomRatio=epsilon) # print ('actionsStep', actionsStep) states.append(np.copy(lastStates)) actions.append(actionsStep) values.append(valuesStep) if stepCount > 0: dones.append(lastDones) # Input the action (run a step) for all environments. statesStep, rewardsStep, donesStep, infosStep = env.step(actionsStep) # Update state for any dones. for n, done in enumerate(donesStep): if done: lastStates[n] = lastStates[n] * 0 lastStates = updateState(obs, lastStates, nc) # Update rewards for logging / tracking. for done, info in zip(donesStep, infosStep): if done: totalRewards.append(info['reward']) if info['total_reward'] != -1: realTotalRewards.append(info['total_reward']) lastDones = donesStep rewards.append(rewardsStep) stepCount += 1 # Dones is one off, so add the last one. dones.append(lastDones) # discount/bootstrap off value fn # lastValues = self.agent.value(lastStates).tolist() # Can skip this as it is done in the learn function with calcActualStateValues? # Join all (combine batches and steps). states = np.asarray(states, dtype='float32').swapaxes(1, 0).reshape(batchStateShape) actions = np.asarray(actions).swapaxes(1, 0).flatten() rewards = np.asarray(rewards).swapaxes(1, 0).flatten() dones = np.asarray(dones).swapaxes(1, 0).flatten() values = np.asarray(values).swapaxes(1, 0).flatten() agent.learn(states, actions, rewards, dones, values) batchCount += 1 if batchCount % outputBatchInterval == 0: runTime = date_time.diff(date_time.now(), timingStart, 'minutes') totalSteps = batchCount * numSteps runTimePerStep = runTime / totalSteps runTimePerStepUnit = 'minutes' if runTimePerStep < 0.02: runTimePerStep *= 60 runTimePerStepUnit = 'seconds' print (batchCount, numBatches, '(batch done)', number.toFixed(runTime), 'run time minutes,', totalSteps, 'steps,', number.toFixed(runTimePerStep), runTimePerStepUnit, 'per step') r = totalRewards[-100:] # get last 100 tr = realTotalRewards[-100:] if len(r) == 100: print("avg reward (last 100):", np.mean(r)) if len(tr) == 100: print("avg total reward (last 100):", np.mean(tr)) print("max (last 100):", np.max(tr)) # Only save periodically as well. if filePathBrain: agent.save(filePathBrain) env.close() if filePathBrain: agent.save(filePathBrain) runTime = date_time.diff(date_time.now(), timingStart, 'minutes') totalSteps = numBatches * numSteps runTimePerStep = runTime / totalSteps runTimePerStepUnit = 'minutes' if runTimePerStep < 0.02: runTimePerStep *= 60 runTimePerStepUnit = 'seconds' print ('training done:', number.toFixed(runTime), 'run time minutes,', totalSteps, 'steps,', number.toFixed(runTimePerStep), runTimePerStepUnit, 'per step') return None runTrain(filePathBrain='training/breakout-v1-2.pth', epsilon=0.0001)
{"/breakout_run_train.py": ["/breakout_ai_a2c.py", "/date_time.py", "/number.py"]}
284
lukemadera/ml-learning
refs/heads/master
/date_time.py
import datetime import dateutil.parser import dateparser import math import pytz def now(tz = 'UTC', microseconds = False): # return pytz.utc.localize(datetime.datetime.utcnow()) dt = datetime.datetime.now(pytz.timezone(tz)) if not microseconds: dt = dt.replace(microsecond = 0) return dt def now_string(format = '%Y-%m-%d %H:%M:%S %z', tz = 'UTC'): return string(now(tz), format) def arrayString(datetimes, format = '%Y-%m-%d %H:%M:%S %z'): return list(map(lambda datetime1: string(datetime1, format), datetimes)) def arrayStringFields(array1, fields=[], format = '%Y-%m-%d %H:%M:%S %z'): def mapString1(obj1): return dictStringFields(obj1, fields, format) return list(map(mapString1, array1)) def dictStringFields(object1, fields=[], format = '%Y-%m-%d %H:%M:%S %z'): newObject = {} for key in object1: if key in fields: newObject[key] = string(object1[key], format) else: newObject[key] = object1[key] return newObject def string(datetime1, format = '%Y-%m-%d %H:%M:%S %z'): # return datetime1.strftime('%Y-%m-%d %H:%M:%S %z') # Much more performant. return datetime1.isoformat() def stringFormat(datetime1, format = '%Y-%m-%d %H:%M:%S %z'): return datetime1.strftime('%Y-%m-%d %H:%M:%S %z') # def from_string(datetime_string, format = '%Y-%m-%d %H:%M:%S %z'): # return datetime.strptime(datetime_string, format) def from_string(dt_string): return dateutil.parser.parse(dt_string) def remove_seconds(datetime1): return datetime1.replace(second = 0, microsecond = 0) def remove_microseconds(datetime1): return datetime1.replace(microsecond = 0) # Sets seconds (and microseconds) to 0. def remove_seconds_string(datetime_string, format_in = '%Y-%m-%d %H:%M:%S %z', format_out = '%Y-%m-%d %H:%M:%S %z'): datetime1 = from_string(datetime_string) datetime1 = remove_seconds(datetime1) return string(datetime1, format_out) def diff(datetime1, datetime2, unit='minutes'): if datetime2 > datetime1: dt_diff = datetime2 - datetime1 else: dt_diff = datetime1 - datetime2 # Note only total_seconds works - otherwise it just gives the remainer # (e.g. if more than one hour, time will be 1 hour and 5 seconds, not 3605 seconds). # https://stackoverflow.com/questions/2788871/date-difference-in-minutes-in-python if unit == 'seconds': return float(dt_diff.total_seconds()) if unit == 'minutes': return float(dt_diff.total_seconds() / 60) elif unit == 'hours': return float(dt_diff.total_seconds() / (60*60)) # Unlike seconds, apparently days will not cut off weeks and months, so this # still works if more than 7 days. elif unit == 'days': return float(dt_diff.days) return None def to_biggest_unit(value, unit = 'minutes'): if unit == 'minutes': if value < 60: return { 'value': math.floor(value), 'unit': 'minutes' } if value < (60 * 24): return { 'value': math.floor(value / 60), 'unit': 'hours' } if value < (60 * 24 * 28): return { 'value': math.floor(value / 60 / 24), 'unit': 'days' } return None # Note this will not handle intervals larger than the size of the # next bigger unit (e.g. >60 minutes). So 90 minutes (1.5 hours) for example, # could not be done with this; need whole numbers of each unit. # E.g. turn 10:51 into 10:45 if interval is 15 minutes. def floor_time_interval(datetime1, interval, unit = 'minutes'): if unit == 'seconds': seconds = math.floor(datetime1.second / interval) * interval return datetime1.replace(second = seconds, microsecond = 0) elif unit == 'minutes': minutes = math.floor(datetime1.minute / interval) * interval return datetime1.replace(minute = minutes, second = 0, microsecond = 0) elif unit == 'hours': hours = math.floor(datetime1.hour / interval) * interval return datetime1.replace(hour = hours, minute = 0, second = 0, microsecond = 0) elif unit == 'days': days = math.floor(datetime1.day / interval) * interval return datetime1.replace(day = days, hour = 0, minute = 0, second = 0, microsecond = 0) elif unit == 'months': months = math.floor(datetime1.month / interval) * interval return datetime1.replace(month = months, day = 0, hour = 0, minute = 0, second = 0, microsecond = 0) elif unit == 'years': years = math.floor(datetime1.year / interval) * interval return datetime1.replace(year = years, month = 0, day = 0, hour = 0, minute = 0, second = 0, microsecond = 0) return None def nextMonth(datetime1, hour=0, minute=0): currentMonth = datetime1.month currentYear = datetime1.year if currentMonth == 12: nextMonth = 1 nextYear = currentYear + 1 else: nextMonth = currentMonth + 1 nextYear = currentYear nextDatetime = datetime.datetime(nextYear, nextMonth, 1, hour, minute, 0, \ tzinfo=pytz.timezone('UTC')) return nextDatetime def previousMonth(datetime1, hour=0, minute=0): currentMonth = datetime1.month currentYear = datetime1.year if currentMonth == 1: previousMonth = 12 previousYear = currentYear - 1 else: previousMonth = currentMonth - 1 previousYear = currentYear previousDatetime = datetime.datetime(previousYear, previousMonth, 1, hour, minute, 0, \ tzinfo=pytz.timezone('UTC')) return previousDatetime def dateToMilliseconds(date_str): """Convert UTC date to milliseconds If using offset strings add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" See dateparse docs for formats http://dateparser.readthedocs.io/en/latest/ :param date_str: date in readable format, i.e. "January 01, 2018", "11 hours ago UTC", "now UTC" :type date_str: str """ # get epoch value in UTC epoch = datetime.datetime.utcfromtimestamp(0).replace(tzinfo=pytz.utc) # parse our date string d = dateparser.parse(date_str) # if the date is not timezone aware apply UTC timezone if d.tzinfo is None or d.tzinfo.utcoffset(d) is None: d = d.replace(tzinfo=pytz.utc) # return the difference in time return int((d - epoch).total_seconds() * 1000.0)
{"/breakout_run_train.py": ["/breakout_ai_a2c.py", "/date_time.py", "/number.py"]}
285
lukemadera/ml-learning
refs/heads/master
/lodash.py
import copy import random def findIndex(array1, key, value): return find_index(array1, key, value) def find_index(array1, key, value): for index, arr_item in enumerate(array1): if key in arr_item and arr_item[key] == value: return index return -1 def extend_object(default, new): final = {} # Go through defaults first for key in default: if key not in new: final[key] = default[key] else: final[key] = new[key] # In case any keys in new but not in default, add them for key in new: if key not in final: final[key] = new[key] return final def sort2D(array1, key, order = 'ascending'): if len(array1) < 2: return array1 # def compare(a, b): # aVal = a[key] # bVal = b[key] # if aVal == bVal: # return 0 # if (aVal > bVal and order == 'ascending') or (aVal < bVal and order == 'descending'): # return 1 # return -1 def getValue(item): return item[key] reverse = True if order == 'descending' else False return sorted(array1, key=getValue, reverse=reverse) def omit(object1, keys = []): new_object = {} for key in object1: if key not in keys: new_object[key] = object1[key] return new_object def pick(object1, keys = []): new_object = {} for key in object1: if key in keys: new_object[key] = object1[key] return new_object def map_pick(array1, keys = []): def pick1(obj1): return pick(obj1, keys) return list(map(pick1, array1)) def mapOmit(array1, omitKeys = []): def omit1(obj1): return omit(obj1, omitKeys) return list(map(omit1, array1)) def get_key_array(items, key, skipEmpty=0, emptyValue=None): if skipEmpty: return list(map(lambda item: item[key] if key in item else emptyValue, items)) else: return list(map(lambda item: item[key], items)) # def append_if_unique(array1, value): # if value not in array1: # array1.append(value) def random_string(length = 10): text = '' chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' chars_length = len(chars) counter = 0 while counter < length: index = random.randint(0, (chars_length - 1)) text = text + chars[index] counter = counter + 1 return text def removeArrayIndices(array, indices): array1 = copy.deepcopy(array) for index, item in reversed(list(enumerate(array1))): if index in indices: del array1[index] return array1
{"/breakout_run_train.py": ["/breakout_ai_a2c.py", "/date_time.py", "/number.py"]}
311
Sssssbo/SDCNet
refs/heads/master
/infer_SDCNet.py
import numpy as np import os import torch import torch.nn.functional as F from PIL import Image from torch.autograd import Variable from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm from misc import check_mkdir, AvgMeter, cal_precision_recall_mae, cal_fmeasure, cal_sizec, cal_sc from datasets import TestFolder_joint import joint_transforms from model import R3Net, SDCNet torch.manual_seed(2021) # set which gpu to use torch.cuda.set_device(6) # the following two args specify the location of the file of trained model (pth extension) # you should have the pth file in the folder './$ckpt_path$/$exp_name$' ckpt_path = './ckpt' exp_name = 'SDCNet' msra10k_path = './SOD_label/label_msra10k.csv' ecssd_path = './SOD_label/label_ECSSD.csv' dutomrom_path = './SOD_label/label_DUT-OMROM.csv' dutste_path = './SOD_label/label_DUTS-TE.csv' hkuis_path = './SOD_label/label_HKU-IS.csv' pascals_path = './SOD_label/label_PASCAL-S.csv' sed2_path = './SOD_label/label_SED2.csv' socval_path = './SOD_label/label_SOC-Val.csv' sod_path = './SOD_label/label_SOD.csv' thur15k_path = './SOD_label/label_THUR-15K.csv' args = { 'snapshot': '30000', # your snapshot filename (exclude extension name) 'save_results': True, # whether to save the resulting masks 'test_mode': 1 } joint_transform = joint_transforms.Compose([ #joint_transforms.RandomCrop(300), #joint_transforms.RandomHorizontallyFlip(), #joint_transforms.RandomRotate(10) ]) img_transform = transforms.Compose([ transforms.Resize((300, 300)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) target_transform = transforms.ToTensor() to_pil = transforms.ToPILImage() to_test ={'ECSSD': ecssd_path,'SOD': sod_path, 'DUTS-TE': dutste_path} #{'DUTS-TE': dutste_path,'ECSSD': ecssd_path,'SOD': sod_path, 'SED2': sed2_path, 'PASCAL-S': pascals_path, 'HKU-IS': hkuis_path, 'DUT-OMROM': dutomrom_path} def main(): net = SDCNet(num_classes = 5).cuda() print('load snapshot \'%s\' for testing, mode:\'%s\'' % (args['snapshot'], args['test_mode'])) print(exp_name) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'))) net.eval() results = {} with torch.no_grad(): for name, root in to_test.items(): print('load snapshot \'%s\' for testing %s' %(args['snapshot'], name)) test_data = pd.read_csv(root) test_set = TestFolder_joint(test_data, joint_transform, img_transform, target_transform) test_loader = DataLoader(test_set, batch_size=1, num_workers=0, shuffle=False) precision0_record, recall0_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision1_record, recall1_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision2_record, recall2_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision3_record, recall3_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision4_record, recall4_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision5_record, recall5_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] precision6_record, recall6_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] mae0_record = AvgMeter() mae1_record = AvgMeter() mae2_record = AvgMeter() mae3_record = AvgMeter() mae4_record = AvgMeter() mae5_record = AvgMeter() mae6_record = AvgMeter() n0, n1, n2, n3, n4, n5 = 0, 0, 0, 0, 0, 0 if args['save_results']: check_mkdir(os.path.join(ckpt_path, exp_name, '%s_%s' % (name, args['snapshot']))) for i, (inputs, gt, labels, img_path) in enumerate(tqdm(test_loader)): shape = gt.size()[2:] img_var = Variable(inputs).cuda() img = np.array(to_pil(img_var.data.squeeze(0).cpu())) gt = np.array(to_pil(gt.data.squeeze(0).cpu())) sizec = labels.numpy() pred2021 = net(img_var, sizec) pred2021 = F.interpolate(pred2021, size=shape, mode='bilinear', align_corners=True) pred2021 = np.array(to_pil(pred2021.data.squeeze(0).cpu())) if labels == 0: precision1, recall1, mae1 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision1, recall1)): p, r = pdata precision1_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall1_record[pidx].update(r) mae1_record.update(mae1) n1 += 1 elif labels == 1: precision2, recall2, mae2 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision2, recall2)): p, r = pdata precision2_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall2_record[pidx].update(r) mae2_record.update(mae2) n2 += 1 elif labels == 2: precision3, recall3, mae3 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision3, recall3)): p, r = pdata precision3_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall3_record[pidx].update(r) mae3_record.update(mae3) n3 += 1 elif labels == 3: precision4, recall4, mae4 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision4, recall4)): p, r = pdata precision4_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall4_record[pidx].update(r) mae4_record.update(mae4) n4 += 1 elif labels == 4: precision5, recall5, mae5 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision5, recall5)): p, r = pdata precision5_record[pidx].update(p) #print('Presicion:', p, 'Recall:', r) recall5_record[pidx].update(r) mae5_record.update(mae5) n5 += 1 precision6, recall6, mae6 = cal_precision_recall_mae(pred2021, gt) for pidx, pdata in enumerate(zip(precision6, recall6)): p, r = pdata precision6_record[pidx].update(p) recall6_record[pidx].update(r) mae6_record.update(mae6) img_name = os.path.split(str(img_path))[1] img_name = os.path.splitext(img_name)[0] n0 += 1 if args['save_results']: Image.fromarray(pred2021).save(os.path.join(ckpt_path, exp_name, '%s_%s' % ( name, args['snapshot']), img_name + '_2021.png')) fmeasure1 = cal_fmeasure([precord.avg for precord in precision1_record], [rrecord.avg for rrecord in recall1_record]) fmeasure2 = cal_fmeasure([precord.avg for precord in precision2_record], [rrecord.avg for rrecord in recall2_record]) fmeasure3 = cal_fmeasure([precord.avg for precord in precision3_record], [rrecord.avg for rrecord in recall3_record]) fmeasure4 = cal_fmeasure([precord.avg for precord in precision4_record], [rrecord.avg for rrecord in recall4_record]) fmeasure5 = cal_fmeasure([precord.avg for precord in precision5_record], [rrecord.avg for rrecord in recall5_record]) fmeasure6 = cal_fmeasure([precord.avg for precord in precision6_record], [rrecord.avg for rrecord in recall6_record]) results[name] = {'fmeasure1': fmeasure1, 'mae1': mae1_record.avg,'fmeasure2': fmeasure2, 'mae2': mae2_record.avg, 'fmeasure3': fmeasure3, 'mae3': mae3_record.avg, 'fmeasure4': fmeasure4, 'mae4': mae4_record.avg, 'fmeasure5': fmeasure5, 'mae5': mae5_record.avg, 'fmeasure6': fmeasure6, 'mae6': mae6_record.avg} print('test results:') print('[fmeasure1 %.3f], [mae1 %.4f], [class1 %.0f]\n'\ '[fmeasure2 %.3f], [mae2 %.4f], [class2 %.0f]\n'\ '[fmeasure3 %.3f], [mae3 %.4f], [class3 %.0f]\n'\ '[fmeasure4 %.3f], [mae4 %.4f], [class4 %.0f]\n'\ '[fmeasure5 %.3f], [mae5 %.4f], [class5 %.0f]\n'\ '[fmeasure6 %.3f], [mae6 %.4f], [all %.0f]\n'%\ (fmeasure1, mae1_record.avg, n1, fmeasure2, mae2_record.avg, n2, fmeasure3, mae3_record.avg, n3, fmeasure4, mae4_record.avg, n4, fmeasure5, mae5_record.avg, n5, fmeasure6, mae6_record.avg, n0)) def accuracy(y_pred, y_actual, topk=(1,)): """Computes the precision@k for the specified values of k""" final_acc = 0 maxk = max(topk) # for prob_threshold in np.arange(0, 1, 0.01): PRED_COUNT = y_actual.size(0) PRED_CORRECT_COUNT = 0 prob, pred = y_pred.topk(maxk, 1, True, True) # prob = np.where(prob > prob_threshold, prob, 0) for j in range(pred.size(0)): if int(y_actual[j]) == int(pred[j]): PRED_CORRECT_COUNT += 1 if PRED_COUNT == 0: final_acc = 0 else: final_acc = float(PRED_CORRECT_COUNT / PRED_COUNT) return final_acc * 100, PRED_COUNT if __name__ == '__main__': main()
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
312
Sssssbo/SDCNet
refs/heads/master
/resnext/__init__.py
from .resnext101 import ResNeXt101
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
313
Sssssbo/SDCNet
refs/heads/master
/misc.py
import numpy as np import os import pylab as pl #import pydensecrf.densecrf as dcrf class AvgMeter(object): def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def check_mkdir(dir_name): if not os.path.exists(dir_name): os.mkdir(dir_name) def cal_precision_recall_mae(prediction, gt): # input should be np array with data type uint8 assert prediction.dtype == np.uint8 assert gt.dtype == np.uint8 assert prediction.shape == gt.shape eps = 1e-4 prediction = prediction / 255. gt = gt / 255. mae = np.mean(np.abs(prediction - gt)) hard_gt = np.zeros(prediction.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) #t is sum of 1 precision, recall, TPR, FP = [], [], [], [] # calculating precision and recall at 255 different binarizing thresholds for threshold in range(256): threshold = threshold / 255. hard_prediction = np.zeros(prediction.shape) hard_prediction[prediction > threshold] = 1 #false_pred = np.zeros(prediction.shape) #false_prediction[prediction < threshold] = 1 a = prediction.shape tp = np.sum(hard_prediction * hard_gt) p = np.sum(hard_prediction) #for roc #fp = np.sum(false_pred * hard_gt) #tpr = (tp + eps)/(a + eps) fp = p - tp #TPR.append(tpr) FP.append(fp) precision.append((tp + eps) / (p + eps)) recall.append((tp + eps) / (t + eps)) return precision, recall, mae#, TPR, FP def cal_fmeasure(precision, recall): assert len(precision) == 256 assert len(recall) == 256 beta_square = 0.3 max_fmeasure = max([(1 + beta_square) * p * r / (beta_square * p + r) for p, r in zip(precision, recall)]) return max_fmeasure def cal_sizec(prediction, gt): # input should be np array with data type uint8 assert prediction.dtype == np.uint8 assert gt.dtype == np.uint8 assert prediction.shape == gt.shape eps = 1e-4 #print(gt.shape) prediction = prediction / 255. gt = gt / 255. hard_gt = np.zeros(prediction.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) #t is sum of 1 precision, recall, TPR, FP = [], [], [], [] # calculating precision and recall at 255 different binarizing thresholds best_threshold = 0 best_F = 0 for threshold in range(256): threshold = threshold / 255. gt_size = np.ones(prediction.shape) a = np.sum(gt_size) hard_prediction = np.zeros(prediction.shape) hard_prediction[prediction > threshold] = 1 tp = np.sum(hard_prediction * hard_gt) p = np.sum(hard_prediction) #print(a, p) precision = (tp + eps) / (p + eps) recall = (tp + eps) / (t + eps) beta_square = 0.3 fmeasure = (1 + beta_square) * precision * recall / (beta_square * precision + recall) if fmeasure > best_F: best_threshold = threshold*255 best_F = fmeasure sm_size = p / a if 0 <= sm_size < 0.1: sizec = 0 elif 0.1 <= sm_size < 0.2: sizec = 1 elif 0.2 <= sm_size < 0.3: sizec = 2 elif 0.3 <= sm_size < 0.4: sizec = 3 elif 0.4 <= sm_size <= 1.0: sizec = 4 return sizec, best_threshold#, TPR, FP def cal_sc(gt): # input should be np array with data type uint8 assert gt.dtype == np.uint8 eps = 1e-4 gt = gt / 255. #print(gt.shape) img_size = np.ones(gt.shape) a = np.sum(img_size) hard_gt = np.zeros(gt.shape) hard_gt[gt > 0.5] = 1 p = np.sum(hard_gt) b = np.sum(gt) sm_size = float(p) / float(a) #print(p, a, sm_size, b) #print(gt) if 0 <= sm_size < 0.1: sizec = 0 elif 0.1 <= sm_size < 0.2: sizec = 1 elif 0.2 <= sm_size < 0.3: sizec = 2 elif 0.3 <= sm_size < 0.4: sizec = 3 elif 0.4 <= sm_size <= 1.0: sizec = 4 return sizec def pr_cruve(precision, recall): assert len(precision) == 256 assert len(recall) == 256 r = [a[1] for a in zip(precision, recall)] p = [a[0] for a in zip(precision, recall)] pl.title('PR curve') pl.xlabel('Recall') pl.xlabel('Precision') pl.plot(r, p) pl.show() # for define the size type of the salient object def size_aware(gt): assert gt.dtype == np.uint8 eps = 1e-4 gt = gt / 255. hard_gt = np.zeros(gt.shape) hard_gt[gt > 0.5] = 1 t = np.sum(hard_gt) pic = np.size(hard_gt) rate = t/pic return rate # # codes of this function are borrowed from https://github.com/Andrew-Qibin/dss_crf # def crf_refine(img, annos): # def _sigmoid(x): # return 1 / (1 + np.exp(-x)) # assert img.dtype == np.uint8 # assert annos.dtype == np.uint8 # assert img.shape[:2] == annos.shape # # img and annos should be np array with data type uint8 # EPSILON = 1e-8 # M = 2 # salient or not # tau = 1.05 # # Setup the CRF model # d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M) # anno_norm = annos / 255. # n_energy = -np.log((1.0 - anno_norm + EPSILON)) / (tau * _sigmoid(1 - anno_norm)) # p_energy = -np.log(anno_norm + EPSILON) / (tau * _sigmoid(anno_norm)) # U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32') # U[0, :] = n_energy.flatten() # U[1, :] = p_energy.flatten() # d.setUnaryEnergy(U) # d.addPairwiseGaussian(sxy=3, compat=3) # d.addPairwiseBilateral(sxy=60, srgb=5, rgbim=img, compat=5) # # Do the inference # infer = np.array(d.inference(1)).astype('float32') # res = infer[1, :] # res = res * 255 # res = res.reshape(img.shape[:2]) # return res.astype('uint8')
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
314
Sssssbo/SDCNet
refs/heads/master
/resnet/__init__.py
from .make_model import ResNet50, ResNet50_BIN, ResNet50_LowIN
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
315
Sssssbo/SDCNet
refs/heads/master
/resnet/make_model.py
from .resnet import ResNet, BasicBlock, Bottleneck import torch from torch import nn from .config import resnet50_path model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class ResNet50(nn.Module): def __init__(self): super(ResNet50, self).__init__() net = ResNet(last_stride=2, block=Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path)) class ResNet50_BIN(nn.Module): def __init__(self): super(ResNet50_BIN, self).__init__() net = ResNet(last_stride=2, block=IN_Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path)) class ResNet50_LowIN(nn.Module): def __init__(self): super(ResNet50_LowIN, self).__init__() net = ResNet_LowIN(last_stride=2, block=Bottleneck, frozen_stages=False, layers=[3, 4, 6, 3]) net.load_param(resnet50_path) self.layer0 = net.layer0 self.layer1 = net.layer1 self.layer2 = net.layer2 self.layer3 = net.layer3 self.layer4 = net.layer4 def forward(self, x): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer4 def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path))
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
316
Sssssbo/SDCNet
refs/heads/master
/datasets.py
import os import os.path import torch.utils.data as data from PIL import Image class ImageFolder_joint(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] self.label_list = label_list for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.label_list) def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, label class ImageFolder_joint_for_edge(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] edge_path = "."+gt_path.split(".")[1]+"_edge."+gt_path.split(".")[2] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') target_edge = Image.open(edge_path).convert('L') if self.joint_transform is not None: if img.size != target.size or img.size != target_edge.size: print("error path:", img_path, gt_path) print("size:", img.size, target.size, target_edge.size) img, target, target_edge = self.joint_transform(img, target, target_edge) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) target_edge = self.target_transform(target_edge) return img, target, target_edge, label def __len__(self): return len(self.imgs) class TestFolder_joint(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, label_list, joint_transform=None, transform=None, target_transform=None): imgs = [] for index, row in label_list.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) self.imgs = imgs self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path, label = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, label, img_path def __len__(self): return len(self.imgs) def make_dataset(root): img_list = [os.path.splitext(f)[0] for f in os.listdir(root) if f.endswith('.jpg')] return [(os.path.join(root, img_name + '.jpg'), os.path.join(root, img_name + '.png')) for img_name in img_list] class ImageFolder(data.Dataset): # image and gt should be in the same folder and have same filename except extended name (jpg and png respectively) def __init__(self, root, joint_transform=None, transform=None, target_transform=None): self.root = root self.imgs = make_dataset(root) self.joint_transform = joint_transform self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img_path, gt_path = self.imgs[index] img = Image.open(img_path).convert('RGB') target = Image.open(gt_path).convert('L') if self.joint_transform is not None: img, target = self.joint_transform(img, target) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.imgs)
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
317
Sssssbo/SDCNet
refs/heads/master
/model/make_model.py
import torch import torch.nn as nn from .backbones.resnet import ResNet, Comb_ResNet, Pure_ResNet, Jointin_ResNet, Jointout_ResNet, BasicBlock, Bottleneck, GDN_Bottleneck, IN_Bottleneck, IN2_Bottleneck, SNR_Bottleneck, SNR2_Bottleneck, SNR3_Bottleneck from loss.arcface import ArcFace from .backbones.resnet_ibn_a import resnet50_ibn_a, resnet101_ibn_a from .backbones.se_resnet_ibn_a import se_resnet50_ibn_a, se_resnet101_ibn_a import torch.nn.functional as F model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_out') nn.init.constant_(m.bias, 0.0) elif classname.find('Conv') != -1: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') if m.bias is not None: nn.init.constant_(m.bias, 0.0) elif classname.find('BatchNorm') != -1: if m.affine: nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0.0) def weights_init_classifier(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.normal_(m.weight, std=0.001) if m.bias: nn.init.constant_(m.bias, 0.0) class Backbone(nn.Module): def __init__(self, num_classes, cfg): super(Backbone, self).__init__() last_stride = cfg.MODEL.LAST_STRIDE model_path = cfg.MODEL.PRETRAIN_PATH model_name = cfg.MODEL.NAME self.model_name = cfg.MODEL.NAME pretrain_choice = cfg.MODEL.PRETRAIN_CHOICE #block = cfg.MODEL.BLOCK self.cos_layer = cfg.MODEL.COS_LAYER self.neck = cfg.MODEL.NECK self.neck_feat = cfg.TEST.NECK_FEAT if model_name == 'Pure_resnet50_GDN': self.in_planes = 2048 self.base = ResNet(last_stride=last_stride, block=GDN_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Comb_resnet50_IN': self.in_planes = 2048 self.base = Comb_ResNet(last_stride=last_stride, block=IN_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Pure_resnet50_IN2': self.in_planes = 2048 self.base = Pure_ResNet(last_stride=last_stride, block=IN2_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # elif model_name == 'Pure_resnet50_IN': self.in_planes = 2048 self.base = Pure_ResNet(last_stride=last_stride, block=IN_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Pure_resnet50_SNR': self.in_planes = 2048 self.base = Pure_ResNet(last_stride=last_stride, block=SNR_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Pure_resnet50_SNR2': self.in_planes = 2048 self.base = Pure_ResNet(last_stride=last_stride, block=SNR2_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Jointin_resnet50_SNR3': self.in_planes = 2048 self.base = Jointin_ResNet(last_stride=last_stride, block=SNR3_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Jointout_resnet50_None': self.in_planes = 2048 self.base = Jointout_ResNet(last_stride=last_stride, block=Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'Jointout_resnet50_IN': self.in_planes = 2048 self.base = Jointout_ResNet(last_stride=last_stride, block=IN_Bottleneck, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) # print('using resnet50 as a backbone') print(self.base) elif model_name == 'resnet18': self.in_planes = 512 self.base = ResNet(last_stride=last_stride, block=BasicBlock, frozen_stages=cfg.MODEL.FROZEN, layers=[2, 2, 2, 2]) print('using resnet18 as a backbone') elif model_name == 'resnet34': self.in_planes = 512 self.base = ResNet(last_stride=last_stride, block=BasicBlock, frozen_stages=cfg.MODEL.FROZEN, layers=[3, 4, 6, 3]) print('using resnet34 as a backbone') elif model_name == 'resnet50_ibn_a': self.in_planes = 2048 self.base = resnet50_ibn_a(last_stride) print('using se_resnet50_ibn_a as a backbone') elif model_name == 'se_resnet50_ibn_a': self.in_planes = 2048 self.base = se_resnet50_ibn_a( last_stride, frozen_stages=cfg.MODEL.FROZEN) print('using se_resnet50_ibn_a as a backbone') elif model_name == 'resnet101_ibn_a': self.in_planes = 2048 self.base = resnet101_ibn_a( last_stride, frozen_stages=cfg.MODEL.FROZEN) print('using resnet101_ibn_a as a backbone') elif model_name == 'se_resnet101_ibn_a': self.in_planes = 2048 self.base = se_resnet101_ibn_a( last_stride, frozen_stages=cfg.MODEL.FROZEN) print('using se_resnet101_ibn_a as a backbone') else: print('unsupported backbone! but got {}'.format(model_name)) if pretrain_choice == 'imagenet': self.base.load_param(model_path) print('Loading pretrained ImageNet model......from {}'.format(model_path)) self.gap = nn.AdaptiveAvgPool2d(1) self.num_classes = num_classes if self.cos_layer: print('using cosine layer') self.arcface = ArcFace( self.in_planes, self.num_classes, s=30.0, m=0.50) else: self.classifier = nn.Linear( self.in_planes, self.num_classes, bias=False) self.classifier.apply(weights_init_classifier) if model_name == 'Jointin_resnet50_SNR3': self.classifier = nn.Linear( self.in_planes, self.num_classes, bias=False) self.classifier.apply(weights_init_classifier) self.classifier1 = nn.Linear(512, self.num_classes, bias=False) self.classifier1.apply(weights_init_classifier) self.classifier2 = nn.Linear(512, self.num_classes, bias=False) self.classifier2.apply(weights_init_classifier) self.classifier3 = nn.Linear(512, self.num_classes, bias=False) self.classifier3.apply(weights_init_classifier) self.classifier4 = nn.Linear(512, self.num_classes, bias=False) self.classifier4.apply(weights_init_classifier) self.classifier5 = nn.Linear(1024, self.num_classes, bias=False) self.classifier5.apply(weights_init_classifier) self.classifier6 = nn.Linear(256, self.num_classes, bias=False) self.classifier6.apply(weights_init_classifier) self.classifier7 = nn.Linear(256, self.num_classes, bias=False) self.classifier7.apply(weights_init_classifier) self.classifier8 = nn.Linear(256, self.num_classes, bias=False) self.classifier8.apply(weights_init_classifier) self.classifier9 = nn.Linear(256, self.num_classes, bias=False) self.classifier9.apply(weights_init_classifier) self.classifier10 = nn.Linear(512, self.num_classes, bias=False) self.classifier10.apply(weights_init_classifier) self.classifier11 = nn.Linear(128, self.num_classes, bias=False) self.classifier11.apply(weights_init_classifier) self.classifier12 = nn.Linear(128, self.num_classes, bias=False) self.classifier12.apply(weights_init_classifier) self.classifier13 = nn.Linear(128, self.num_classes, bias=False) self.classifier13.apply(weights_init_classifier) self.classifier14 = nn.Linear(128, self.num_classes, bias=False) self.classifier14.apply(weights_init_classifier) self.classifier15 = nn.Linear(256, self.num_classes, bias=False) self.classifier15.apply(weights_init_classifier) self.classifier16 = nn.Linear(64, self.num_classes, bias=False) self.classifier16.apply(weights_init_classifier) self.classifier17 = nn.Linear(64, self.num_classes, bias=False) self.classifier17.apply(weights_init_classifier) self.classifier18 = nn.Linear(64, self.num_classes, bias=False) self.classifier18.apply(weights_init_classifier) self.classifier19 = nn.Linear(64, self.num_classes, bias=False) self.classifier19.apply(weights_init_classifier) elif 'Jointout' in model_name: self.classifier0 = nn.Linear(64, self.num_classes, bias=False) self.classifier0.apply(weights_init_classifier) self.classifier0_1 = nn.Linear(64, self.num_classes, bias=False) self.classifier0_1.apply(weights_init_classifier) self.classifier1 = nn.Linear(256, self.num_classes, bias=False) self.classifier1.apply(weights_init_classifier) self.classifier1_1 = nn.Linear(256, self.num_classes, bias=False) self.classifier1_1.apply(weights_init_classifier) self.classifier2 = nn.Linear(512, self.num_classes, bias=False) self.classifier2.apply(weights_init_classifier) self.classifier2_1 = nn.Linear(512, self.num_classes, bias=False) self.classifier2_1.apply(weights_init_classifier) self.classifier3 = nn.Linear(1024, self.num_classes, bias=False) self.classifier3.apply(weights_init_classifier) self.classifier3_1 = nn.Linear(1024, self.num_classes, bias=False) self.classifier3_1.apply(weights_init_classifier) self.classifier4 = nn.Linear(2048, self.num_classes, bias=False) self.classifier4.apply(weights_init_classifier) self.classifier4_1 = nn.Linear(2048, self.num_classes, bias=False) self.classifier4_1.apply(weights_init_classifier) self.bottleneck = nn.BatchNorm1d(self.in_planes) self.bottleneck.bias.requires_grad_(False) self.bottleneck.apply(weights_init_kaiming) def forward(self, x, label=None, camid=None): # label is unused if self.cos_layer == 'no' if self.training and self.model_name == 'Jointin_resnet50_SNR3': x, x4_2, x4_1, res4_2, res4_1, x3_3, x3_2, x3_1, res3_2, res3_1, x2_3, x2_2, x2_1, res2_2, res2_1, x1_3, x1_2, x1_1, res1_2, res1_1 = self.base(x, camid) global_feat = nn.functional.avg_pool2d(x, x.shape[2:4]) global_feat = global_feat.view(global_feat.shape[0], -1) feat = self.bottleneck(global_feat) cls_score = self.classifier(feat) fx4_2 = nn.functional.avg_pool2d(x4_2, x4_2.shape[2:4]) fx4_2 = fx4_2.view(fx4_2.shape[0], -1) ax4_2 = self.classifier1(fx4_2) fx4_1 = nn.functional.avg_pool2d(x4_1, x4_1.shape[2:4]) fx4_1 = fx4_1.view(fx4_1.shape[0], -1) ax4_1 = self.classifier2(fx4_1) fres4_2 = nn.functional.avg_pool2d(res4_2, res4_2.shape[2:4]) fres4_2 = fres4_2.view(fres4_2.shape[0], -1) ares4_2 = self.classifier3(fres4_2) fres4_1 = nn.functional.avg_pool2d(res4_1, res4_1.shape[2:4]) fres4_1 = fres4_1.view(fres4_1.shape[0], -1) ares4_1 = self.classifier4(fres4_1) fx3_3 = nn.functional.avg_pool2d(x3_3, x3_3.shape[2:4]) fx3_3 = fx3_3.view(fx3_3.shape[0], -1) ax3_3 = self.classifier5(fx3_3) fx3_2 = nn.functional.avg_pool2d(x3_2, x3_2.shape[2:4]) fx3_2 = fx3_2.view(fx3_2.shape[0], -1) ax3_2 = self.classifier6(fx3_2) fx3_1 = nn.functional.avg_pool2d(x3_1, x3_1.shape[2:4]) fx3_1 = fx3_1.view(fx3_1.shape[0], -1) ax3_1 = self.classifier7(fx3_1) fres3_2 = nn.functional.avg_pool2d(res3_2, res3_2.shape[2:4]) fres3_2 = fres3_2.view(fres3_2.shape[0], -1) ares3_2 = self.classifier8(fres3_2) fres3_1 = nn.functional.avg_pool2d(res3_1, res3_1.shape[2:4]) fres3_1 = fres3_1.view(fres3_1.shape[0], -1) ares3_1 = self.classifier9(fres3_1) fx2_3 = nn.functional.avg_pool2d(x2_3, x2_3.shape[2:4]) fx2_3 = fx2_3.view(fx2_3.shape[0], -1) ax2_3 = self.classifier10(fx2_3) fx2_2 = nn.functional.avg_pool2d(x2_2, x2_2.shape[2:4]) fx2_2 = fx2_2.view(fx2_2.shape[0], -1) ax2_2 = self.classifier11(fx2_2) fx2_1 = nn.functional.avg_pool2d(x2_1, x2_1.shape[2:4]) fx2_1 = fx2_1.view(fx2_1.shape[0], -1) ax2_1 = self.classifier12(fx2_1) fres2_2 = nn.functional.avg_pool2d(res2_2, res2_2.shape[2:4]) fres2_2 = fres2_2.view(fres2_2.shape[0], -1) ares2_2 = self.classifier13(fres2_2) fres2_1 = nn.functional.avg_pool2d(res2_1, res2_1.shape[2:4]) fres2_1 = fres2_1.view(fres2_1.shape[0], -1) ares2_1 = self.classifier14(fres2_1) fx1_3 = nn.functional.avg_pool2d(x1_3, x1_3.shape[2:4]) fx1_3 = fx1_3.view(fx1_3.shape[0], -1) ax1_3 = self.classifier15(fx1_3) fx1_2 = nn.functional.avg_pool2d(x1_2, x1_2.shape[2:4]) fx1_2 = fx1_2.view(fx1_2.shape[0], -1) ax1_2 = self.classifier16(fx1_2) fx1_1 = nn.functional.avg_pool2d(x1_1, x1_1.shape[2:4]) fx1_1 = fx1_1.view(fx1_1.shape[0], -1) ax1_1 = self.classifier17(fx1_1) fres1_2 = nn.functional.avg_pool2d(res1_2, res1_2.shape[2:4]) fres1_2 = fres1_2.view(fres1_2.shape[0], -1) ares1_2 = self.classifier18(fres1_2) fres1_1 = nn.functional.avg_pool2d(res1_1, res1_1.shape[2:4]) fres1_1 = fres1_1.view(fres1_1.shape[0], -1) ares1_1 = self.classifier19(fres1_1) return cls_score, global_feat, ax4_2, ax4_1, ares4_2, ares4_1, ax3_3, ax3_2, ax3_1, ares3_2, ares3_1, ax2_3, ax2_2, ax2_1, ares2_2, ares2_1, ax1_3, ax1_2, ax1_1, ares1_2, ares1_1 elif 'Jointout' in self.model_name and self.training: x0, x1, x2, x3, x4, res0, res1, res2, res3, res4 = self.base(x, camid) global_feat = nn.functional.avg_pool2d(x4, x4.shape[2:4]) global_feat = global_feat.view(global_feat.shape[0], -1) feat = self.bottleneck(global_feat) cls_score = self.classifier4(feat) res4 = nn.functional.avg_pool2d(res4, res4.shape[2:4]) res4 = res4.view(res4.shape[0], -1) res4 = self.classifier4_1(res4) x3 = nn.functional.avg_pool2d(x3, x3.shape[2:4]) x3 = x3.view(x3.shape[0], -1) x3 = self.classifier3_1(x3) res3 = nn.functional.avg_pool2d(res3, res3.shape[2:4]) res3 = res3.view(res3.shape[0], -1) res3 = self.classifier3(res3) x2 = nn.functional.avg_pool2d(x2, x2.shape[2:4]) x2 = x2.view(x2.shape[0], -1) x2 = self.classifier2(x2) res2 = nn.functional.avg_pool2d(res2, res2.shape[2:4]) res2 = res2.view(res2.shape[0], -1) res2 = self.classifier2_1(res2) x1 = nn.functional.avg_pool2d(x1, x1.shape[2:4]) x1 = x1.view(x1.shape[0], -1) x1 = self.classifier1(x1) res1 = nn.functional.avg_pool2d(res1, res1.shape[2:4]) res1 = res1.view(res1.shape[0], -1) res1 = self.classifier1_1(res1) x0 = nn.functional.avg_pool2d(x0, x0.shape[2:4]) x0 = x0.view(x0.shape[0], -1) x0 = self.classifier0(x0) res0 = nn.functional.avg_pool2d(res0, res0.shape[2:4]) res0 = res0.view(res0.shape[0], -1) res0 = self.classifier0_1(res0) return global_feat, x0, x1, x2, x3, cls_score, res0, res1, res2, res3, res4 x = self.base(x, camid) # print(x.shape) global_feat = nn.functional.avg_pool2d(x, x.shape[2:4]) # print(global_feat.shape) # print(x.shape) # for convert to onnx, kernel size must be from x.shape[2:4] to a constant [20,20] #global_feat = nn.functional.avg_pool2d(x, [16, 16]) # flatten to (bs, 2048), global_feat.shape[0] global_feat = global_feat.view(global_feat.shape[0], -1) feat = self.bottleneck(global_feat) if self.neck == 'no': feat = global_feat elif self.neck == 'bnneck': feat = self.bottleneck(global_feat) if self.training: if self.cos_layer: cls_score = self.arcface(feat, label) else: cls_score = self.classifier(feat) return cls_score, global_feat # global feature for triplet loss else: if self.neck_feat == 'after': # print("Test with feature after BN") return feat else: # print("Test with feature before BN") return global_feat def load_param(self, trained_path): param_dict = torch.load(trained_path) for i in param_dict: if 'classifier' in i or 'arcface' in i: continue self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model from {}'.format(trained_path)) def load_param_finetune(self, model_path): param_dict = torch.load(model_path) # for i in param_dict: # print(i)#change by sb # self.state_dict()[i].copy_(param_dict[i]) print('Loading pretrained model for finetuning from {}'.format(model_path)) def make_model(cfg, num_class): model = Backbone(num_class, cfg) return model
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
318
Sssssbo/SDCNet
refs/heads/master
/resnet/config.py
resnet50_path = './resnet/resnet50-19c8e357.pth'
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
319
Sssssbo/SDCNet
refs/heads/master
/model.py
import torch import torch.nn.functional as F from torch import nn from resnext import ResNeXt101 class R3Net(nn.Module): def __init__(self): super(R3Net, self).__init__() res50 = ResNeXt101() self.layer0 = res50.layer0 self.layer1 = res50.layer1 self.layer2 = res50.layer2 self.layer3 = res50.layer3 self.layer4 = res50.layer4 self.reduce_low = nn.Sequential( nn.Conv2d(64 + 256 + 512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce_high = nn.Sequential( nn.Conv2d(1024 + 2048, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), _ASPP(256) ) self.predict0 = nn.Conv2d(256, 1, kernel_size=1) self.predict1 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict2 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict3 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict4 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict5 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict6 = nn.Sequential( nn.Conv2d(257, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) for m in self.modules(): if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout): m.inplace = True def forward(self, x, label = None): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) l0_size = layer0.size()[2:] reduce_low = self.reduce_low(torch.cat(( layer0, F.interpolate(layer1, size=l0_size, mode='bilinear', align_corners=True), F.interpolate(layer2, size=l0_size, mode='bilinear', align_corners=True)), 1)) reduce_high = self.reduce_high(torch.cat(( layer3, F.interpolate(layer4, size=layer3.size()[2:], mode='bilinear', align_corners=True)), 1)) reduce_high = F.interpolate(reduce_high, size=l0_size, mode='bilinear', align_corners=True) predict0 = self.predict0(reduce_high) predict1 = self.predict1(torch.cat((predict0, reduce_low), 1)) + predict0 predict2 = self.predict2(torch.cat((predict1, reduce_high), 1)) + predict1 predict3 = self.predict3(torch.cat((predict2, reduce_low), 1)) + predict2 predict4 = self.predict4(torch.cat((predict3, reduce_high), 1)) + predict3 predict5 = self.predict5(torch.cat((predict4, reduce_low), 1)) + predict4 predict6 = self.predict6(torch.cat((predict5, reduce_high), 1)) + predict5 predict0 = F.interpolate(predict0, size=x.size()[2:], mode='bilinear', align_corners=True) predict1 = F.interpolate(predict1, size=x.size()[2:], mode='bilinear', align_corners=True) predict2 = F.interpolate(predict2, size=x.size()[2:], mode='bilinear', align_corners=True) predict3 = F.interpolate(predict3, size=x.size()[2:], mode='bilinear', align_corners=True) predict4 = F.interpolate(predict4, size=x.size()[2:], mode='bilinear', align_corners=True) predict5 = F.interpolate(predict5, size=x.size()[2:], mode='bilinear', align_corners=True) predict6 = F.interpolate(predict6, size=x.size()[2:], mode='bilinear', align_corners=True) if self.training: return predict0, predict1, predict2, predict3, predict4, predict5, predict6 return F.sigmoid(predict6) #-------------------------------------------------------------------------------------------- class SDCNet(nn.Module): def __init__(self, num_classes): super(SDCNet, self).__init__() res50 = ResNeXt101() self.layer0 = res50.layer0 self.layer1 = res50.layer1 self.layer2 = res50.layer2 self.layer3 = res50.layer3 self.layer4 = res50.layer4 self.reducex = nn.Sequential( nn.Conv2d(2048, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), _ASPP(256) ) self.reduce5 = nn.Sequential( nn.Conv2d(64 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce6 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce7 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce8 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce9 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce10 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) # --------------extra module--------------- self.reduce3_0 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce3_1 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce3_2 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce3_3 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce3_4 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_0 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_1 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_2 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_3 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce2_4 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_0 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_1 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_2 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_3 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce1_4 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_0 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_1 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_2 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_3 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reduce0_4 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) # self.predict0 = nn.Conv2d(256, 1, kernel_size=1) self.predict1 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict2 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict3 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict4 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict5 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict6 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict7 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict8 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict9 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.predict10 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 1, kernel_size=1) ) self.pre4 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 2, kernel_size=1) ) self.pre3 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 2, kernel_size=1) ) self.pre2 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 2, kernel_size=1) ) self.pre1 = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(), nn.Conv2d(128, 2, kernel_size=1) ) self.reducex_1 = nn.Sequential( nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reducex_2 = nn.Sequential( nn.Conv2d(512 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) self.reducex_3 = nn.Sequential( nn.Conv2d(1024 + 256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 256, kernel_size=1), nn.BatchNorm2d(256), nn.PReLU() ) for m in self.modules(): if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout): m.inplace = True self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc0 = nn.Sequential( nn.BatchNorm1d(256), nn.Dropout(0.5), nn.Linear(256, num_classes), ) def forward(self, x, c): layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) l0_size = layer0.size()[2:] l1_size = layer1.size()[2:] l2_size = layer2.size()[2:] l3_size = layer3.size()[2:] F1 = self.reducex(layer4) p4 = self.pre4(F1) p4 = F.interpolate(p4, size=x.size()[2:], mode='bilinear', align_corners=True) F0_4 = F.interpolate(F1, size=l3_size, mode='bilinear', align_corners=True) F0_3 = self.reducex_3(torch.cat((F0_4, layer3), 1)) p3 = self.pre3(F0_3) p3 = F.interpolate(p3, size=x.size()[2:], mode='bilinear', align_corners=True) F0_3 = F.interpolate(F0_3, size=l2_size, mode='bilinear', align_corners=True) F0_2 = self.reducex_2(torch.cat((F0_3, layer2), 1)) p2 = self.pre2(F0_2) p2 = F.interpolate(p2, size=x.size()[2:], mode='bilinear', align_corners=True) F0_2 = F.interpolate(F0_2, size=l1_size, mode='bilinear', align_corners=True) F0_1 = self.reducex_1(torch.cat((F0_2, layer1), 1)) p1 = self.pre1(F0_1) p1 = F.interpolate(p1, size=x.size()[2:], mode='bilinear', align_corners=True) p5 = p4 + p3 + p2 + p1 #saliency detect predict1 = self.predict1(F1) predict1 = F.interpolate(predict1, size=l3_size, mode='bilinear', align_corners=True) F1 = F.interpolate(F1, size=l3_size, mode='bilinear', align_corners=True) F2 = F1[:, :, :, :].clone().detach() for i in range(len(c)): if c[i] == 0: F2[i, :, :, :] = self.reduce3_0( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 1: F2[i, :, :, :] = self.reduce3_1( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 2: F2[i, :, :, :] = self.reduce3_2( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 3: F2[i, :, :, :] = self.reduce3_3( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 4: F2[i, :, :, :] = self.reduce3_4( torch.cat((F1[i, :, :, :].unsqueeze(0), layer3[i, :, :, :].unsqueeze(0)), 1)) predict2 = self.predict2(F2) + predict1 predict2 = F.interpolate(predict2, size=l2_size, mode='bilinear', align_corners=True) F2 = F.interpolate(F2, size=l2_size, mode='bilinear', align_corners=True) F3 = F2[:, :, :, :].clone().detach() for i in range(len(c)): if c[i] == 0: F3[i, :, :, :] = self.reduce2_0( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 1: F3[i, :, :, :] = self.reduce2_1( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 2: F3[i, :, :, :] = self.reduce2_2( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 3: F3[i, :, :, :] = self.reduce2_3( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 4: F3[i, :, :, :] = self.reduce2_4( torch.cat((F2[i, :, :, :].unsqueeze(0), layer2[i, :, :, :].unsqueeze(0)), 1)) predict3 = self.predict3(F3) + predict2 predict3 = F.interpolate(predict3, size=l1_size, mode='bilinear', align_corners=True) F3 = F.interpolate(F3, size=l1_size, mode='bilinear', align_corners=True) F4 = F3[:, :, :, :].clone().detach() for i in range(len(c)): if c[i] == 0: F4[i, :, :, :] = self.reduce1_0( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 1: F4[i, :, :, :] = self.reduce1_1( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 2: F4[i, :, :, :] = self.reduce1_2( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 3: F4[i, :, :, :] = self.reduce1_3( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) elif c[i] == 4: F4[i, :, :, :] = self.reduce1_4( torch.cat((F3[i, :, :, :].unsqueeze(0), layer1[i, :, :, :].unsqueeze(0)), 1)) predict4 = self.predict4(F4) + predict3 F5 = self.reduce5(torch.cat((F4, layer0), 1)) predict5 = self.predict5(F5) + predict4 F0 = F4[:, :, :, :].clone().detach() for i in range(len(c)): if c[i] == 0: F0[i, :, :, :] = self.reduce0_0(layer0[i, :, :, :].unsqueeze(0)) elif c[i] == 1: F0[i, :, :, :] = self.reduce0_1(layer0[i, :, :, :].unsqueeze(0)) elif c[i] == 2: F0[i, :, :, :] = self.reduce0_2(layer0[i, :, :, :].unsqueeze(0)) elif c[i] == 3: F0[i, :, :, :] = self.reduce0_3(layer0[i, :, :, :].unsqueeze(0)) elif c[i] == 4: F0[i, :, :, :] = self.reduce0_4(layer0[i, :, :, :].unsqueeze(0)) F1 = F.interpolate(F1, size=l1_size, mode='bilinear', align_corners=True) F2 = F.interpolate(F2, size=l1_size, mode='bilinear', align_corners=True) F6 = self.reduce6(torch.cat((F0, F5), 1)) F7 = self.reduce7(torch.cat((F0, F4), 1)) F8 = self.reduce8(torch.cat((F0, F3), 1)) F9 = self.reduce9(torch.cat((F0, F2), 1)) F10 = self.reduce10(torch.cat((F0, F1), 1)) predict6 = self.predict6(F6) + predict5 predict7 = self.predict7(F7) + predict6 predict8 = self.predict8(F8) + predict7 predict9 = self.predict9(F9) + predict8 predict10 = self.predict10(F10) + predict9 predict11 = predict6 + predict7 + predict8 + predict9 + predict10 predict1 = F.interpolate(predict1, size=x.size()[2:], mode='bilinear', align_corners=True) predict2 = F.interpolate(predict2, size=x.size()[2:], mode='bilinear', align_corners=True) predict3 = F.interpolate(predict3, size=x.size()[2:], mode='bilinear', align_corners=True) predict4 = F.interpolate(predict4, size=x.size()[2:], mode='bilinear', align_corners=True) predict5 = F.interpolate(predict5, size=x.size()[2:], mode='bilinear', align_corners=True) predict6 = F.interpolate(predict6, size=x.size()[2:], mode='bilinear', align_corners=True) predict7 = F.interpolate(predict7, size=x.size()[2:], mode='bilinear', align_corners=True) predict8 = F.interpolate(predict8, size=x.size()[2:], mode='bilinear', align_corners=True) predict9 = F.interpolate(predict9, size=x.size()[2:], mode='bilinear', align_corners=True) predict10 = F.interpolate(predict10, size=x.size()[2:], mode='bilinear', align_corners=True) predict11 = F.interpolate(predict11, size=x.size()[2:], mode='bilinear', align_corners=True) if self.training: return p5, p4, p3, p2, p1, predict1, predict2, predict3, predict4, predict5, predict6, predict7, predict8, predict9, predict10, predict11 return F.sigmoid(predict11) #---------------------------------------------------------------------------------------- class _ASPP(nn.Module): def __init__(self, in_dim): super(_ASPP, self).__init__() down_dim = in_dim // 2 self.conv1 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=1), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.conv2 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=3, dilation=2, padding=2), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.conv3 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=3, dilation=4, padding=4), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.conv4 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=3, dilation=6, padding=6), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.conv5 = nn.Sequential( nn.Conv2d(in_dim, down_dim, kernel_size=1), nn.BatchNorm2d(down_dim), nn.PReLU() ) self.fuse = nn.Sequential( nn.Conv2d(5 * down_dim, in_dim, kernel_size=1), nn.BatchNorm2d(in_dim), nn.PReLU() ) def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(x) conv3 = self.conv3(x) conv4 = self.conv4(x) conv5 = F.interpolate(self.conv5(F.adaptive_avg_pool2d(x, 1)), size=x.size()[2:], mode='bilinear', align_corners=True) return self.fuse(torch.cat((conv1, conv2, conv3, conv4, conv5), 1))
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
320
Sssssbo/SDCNet
refs/heads/master
/create_free.py
import numpy as np import os import torch from PIL import Image from torch.autograd import Variable from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm import cv2 import numpy as np from config import ecssd_path, hkuis_path, pascals_path, sod_path, dutomron_path, MTDD_test_path from misc import check_mkdir, crf_refine, AvgMeter, cal_precision_recall_mae, cal_fmeasure from datasets import TestFolder_joint import joint_transforms from model import HSNet_single1, HSNet_single1_ASPP, HSNet_single1_NR, HSNet_single2, SDMS_A, SDMS_C torch.manual_seed(2018) # set which gpu to use torch.cuda.set_device(0) ckpt_path = './ckpt' test_path = './test_ECSSD.csv' def main(): img = np.zeros((512, 512),dtype = np.uint8) img2 = cv2.imread('./0595.PNG', 0) cv2.imshow('img',img2) #cv2.waitKey(0) print(img, img2) Image.fromarray(img).save('./free.png') if __name__ == '__main__': main()
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
321
Sssssbo/SDCNet
refs/heads/master
/count_dataset.py
import numpy as np import os import torch from PIL import Image from torch.autograd import Variable from torchvision import transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm path_list = ['msra10k', 'ECSSD', 'DUT-OMROM', 'DUTS-TR', 'DUTS-TE', 'HKU-IS', 'PASCAL-S', 'SED2', 'SOC', 'SOD', 'THUR-15K'] def main(): Dataset, Class0, Class1, Class2, Class3, Class4, Class5, Class6, Class7, Class8, Class9, Class10, Total = [], [], [], [], [], [], [], [], [], [], [], [], [] for data_path in path_list: test_path = './SOD_label/label_' + data_path + '.csv' print('Evalute for ' + test_path) test_data = pd.read_csv(test_path) imgs = [] num, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 for index, row in test_data.iterrows(): imgs.append((row['img_path'], row['gt_path'], row['label'])) img_path, gt_path, label = imgs[index] if label == 0: c0 += 1 elif label == 1: c1 += 1 elif label == 2: c2 += 1 elif label == 3: c3 += 1 elif label == 4: c4 += 1 elif label == 5: c5 += 1 elif label == 6: c6 += 1 elif label == 7: c7 += 1 elif label == 8: c8 += 1 elif label == 9: c9 += 1 elif label == 10: c10 += 1 num += 1 print('[Class0 %.f], [Class1 %.f], [Class2 %.f], [Class3 %.f]\n'\ '[Class4 %.f], [Class5 %.f], [Class6 %.f], [Class7 %.f]\n'\ '[Class8 %.f], [Class9 %.f], [Class10 %.f], [Total %.f]\n'%\ (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, num) ) Dataset.append(data_path) Class0.append(c0) Class1.append(c1) Class2.append(c2) Class3.append(c3) Class4.append(c4) Class5.append(c5) Class6.append(c6) Class7.append(c7) Class8.append(c8) Class9.append(c9) Class10.append(c10) Total.append(num) label_file = pd.DataFrame({'Datasets': Dataset, 'Class 0': Class0, 'Class 1': Class1, 'Class 2': Class2, 'Class 3': Class3, 'Class 4': Class4, 'Class 5': Class5, 'Class 6': Class6, 'Class 7': Class7, 'Class 8': Class8, 'Class 9': Class9, 'Class 10': Class10, 'Num of Pic': Total}) label_file = label_file[['Datasets', 'Class 0', 'Class 1', 'Class 2', 'Class 3', 'Class 4', 'Class 5', 'Class 6', 'Class 7', 'Class 8', 'Class 9', 'Class 10', 'Num of Pic']] label_file.to_csv('./Dataset_statistics.csv', index=False) if __name__ == '__main__': main()
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
322
Sssssbo/SDCNet
refs/heads/master
/SDCNet.py
import datetime import os import time import torch from torch import nn from torch import optim from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import transforms import pandas as pd import numpy as np import joint_transforms from config import msra10k_path, MTDD_train_path from datasets import ImageFolder_joint from misc import AvgMeter, check_mkdir, cal_sc from model import R3Net, SDCNet from torch.backends import cudnn cudnn.benchmark = True torch.manual_seed(2021) torch.cuda.set_device(6) csv_path = './label_DUTS-TR.csv' ckpt_path = './ckpt' exp_name ='SDCNet' args = { 'iter_num': 30000, 'train_batch_size': 16, 'last_iter': 0, 'lr': 1e-3, 'lr_decay': 0.9, 'weight_decay': 5e-4, 'momentum': 0.9, 'snapshot': '' } joint_transform = joint_transforms.Compose([ joint_transforms.RandomCrop(300), joint_transforms.RandomHorizontallyFlip(), joint_transforms.RandomRotate(10) ]) img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) target_transform = transforms.ToTensor() to_pil = transforms.ToPILImage() all_data = pd.read_csv(csv_path) train_set = ImageFolder_joint(all_data, joint_transform, img_transform, target_transform) train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=0, shuffle=True, drop_last=True)# log_path = os.path.join(ckpt_path, exp_name, str(datetime.datetime.now()) + '.txt') def main(): net = SDCNet(num_classes = 5).cuda().train() # print('training in ' + exp_name) optimizer = optim.SGD([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': args['lr'], 'weight_decay': args['weight_decay']} ], momentum=args['momentum']) if len(args['snapshot']) > 0: print('training resumes from ' + args['snapshot']) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'))) optimizer.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '_optim.pth'))) optimizer.param_groups[0]['lr'] = 2 * args['lr'] optimizer.param_groups[1]['lr'] = args['lr'] check_mkdir(ckpt_path) check_mkdir(os.path.join(ckpt_path, exp_name)) open(log_path, 'w').write(str(args) + '\n\n') train(net, optimizer) def train(net, optimizer): start_time = time.time() curr_iter = args['last_iter'] num_class = [0, 0, 0, 0, 0] while True: total_loss_record, loss0_record, loss1_record, loss2_record = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter() batch_time = AvgMeter() end = time.time() print('-----begining the first stage, train_mode==0-----') for i, data in enumerate(train_loader): optimizer.param_groups[0]['lr'] = 2 * args['lr'] * (1 - float(curr_iter) / args['iter_num'] ) ** args['lr_decay'] optimizer.param_groups[1]['lr'] = args['lr'] * (1 - float(curr_iter) / args['iter_num'] ) ** args['lr_decay'] inputs, gt, labels = data print(labels) # depends on the num of classes cweight = torch.tensor([0.5, 0.75, 1, 1.25, 1.5]) #weight = torch.ones(size=gt.shape) weight = gt.clone().detach() sizec = labels.numpy() #ta = np.zeros(shape=gt.shape) ''' np.zeros(shape=labels.shape) sc = gt.clone().detach() for i in range(len(sizec)): gta = np.array(to_pil(sc[i,:].data.squeeze(0).cpu()))# #print(gta.shape) labels[i] = cal_sc(gta) sizec[i] = labels[i] print(labels) ''' batch_size = inputs.size(0) inputs = Variable(inputs).cuda() gt = Variable(gt).cuda() labels = Variable(labels).cuda() #print(sizec.shape) optimizer.zero_grad() p5, p4, p3, p2, p1, predict1, predict2, predict3, predict4, predict5, predict6, predict7, predict8, predict9, predict10, predict11 = net(inputs, sizec) # mode=1 criterion = nn.BCEWithLogitsLoss().cuda() criterion2 = nn.CrossEntropyLoss().cuda() gt2 = gt.long() gt2 = gt2.squeeze(1) l5 = criterion2(p5, gt2) l4 = criterion2(p4, gt2) l3 = criterion2(p3, gt2) l2 = criterion2(p2, gt2) l1 = criterion2(p1, gt2) loss0 = criterion(predict11, gt) loss10 = criterion(predict10, gt) loss9 = criterion(predict9, gt) loss8 = criterion(predict8, gt) loss7 = criterion(predict7, gt) loss6 = criterion(predict6, gt) loss5 = criterion(predict5, gt) loss4 = criterion(predict4, gt) loss3 = criterion(predict3, gt) loss2 = criterion(predict2, gt) loss1 = criterion(predict1, gt) total_loss = l1 + l2 + l3 + l4 + l5 + loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6 + loss7 + loss8 + loss9 + loss10 total_loss.backward() optimizer.step() total_loss_record.update(total_loss.item(), batch_size) loss1_record.update(l5.item(), batch_size) loss0_record.update(loss0.item(), batch_size) curr_iter += 1.0 batch_time.update(time.time() - end) end = time.time() log = '[iter %d], [R1/Mode0], [total loss %.5f]\n' \ '[l5 %.5f], [loss0 %.5f]\n' \ '[lr %.13f], [time %.4f]' % \ (curr_iter, total_loss_record.avg, loss1_record.avg, loss0_record.avg, optimizer.param_groups[1]['lr'], batch_time.avg) print(log) print('Num of class:', num_class) open(log_path, 'a').write(log + '\n') if curr_iter == args['iter_num']: torch.save(net.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % curr_iter)) torch.save(optimizer.state_dict(), os.path.join(ckpt_path, exp_name, '%d_optim.pth' % curr_iter)) total_time = time.time() - start_time print(total_time) return if __name__ == '__main__': main()
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
323
Sssssbo/SDCNet
refs/heads/master
/model/backbones/resnet.py
import math import torch from torch import nn def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class GDN_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(GDN_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1_0 = nn.BatchNorm2d( planes, affine=False, track_running_stats=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2_0 = nn.BatchNorm2d( planes, affine=False, track_running_stats=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3_0 = nn.BatchNorm2d( planes * 4, affine=False, track_running_stats=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.in1 = nn.InstanceNorm2d(planes) self.in2 = nn.InstanceNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out1 = torch.zeros_like(out) if self.training == True: #print("training with gdn block") out1[:8] = self.bn1_0(out[:8]) out1[8:16] = self.bn1_0(out[8:16]) out1[16:] = self.bn1_0(out[16:]) else: #print("test for gdn block") out1 = self.in1(out) out = self.bn1(out1) out = self.relu(out) out = self.conv2(out) out1 = torch.zeros_like(out) if self.training == True: out1[:8] = self.bn2_0(out[:8]) out1[8:16] = self.bn2_0(out[8:16]) out1[16:] = self.bn2_0(out[16:]) else: out1 = self.in1(out) out = self.bn2(out1) out = self.relu(out) out = self.conv3(out) out1 = torch.zeros_like(out) if self.training == True: out1[:8] = self.bn3_0(out[:8]) out1[8:16] = self.bn3_0(out[8:16]) out1[16:] = self.bn3_0(out[16:]) else: out1 = self.in2(out) out = self.bn3(out1) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class IN_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(IN_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.in1_0 = nn.InstanceNorm2d(planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.in2_0 = nn.InstanceNorm2d(planes) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3_0 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.in1_0(out) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.in2_0(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.in3_0(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class IN2_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(IN2_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.in1_0 = nn.InstanceNorm2d(planes) self.conv1_1 = nn.Sequential( nn.Conv2d(planes * 2, planes, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(planes), nn.ReLU(inplace=True) ) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.in2_0 = nn.InstanceNorm2d(planes) self.conv2_1 = nn.Sequential( nn.Conv2d(planes * 2, planes, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(planes), nn.ReLU(inplace=True) ) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3_0 = nn.InstanceNorm2d(planes * 4) self.conv3_1 = nn.Sequential( nn.Conv2d(planes * 8, planes * 4, kernel_size=1, bias=False), nn.BatchNorm2d(planes * 4) ) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x x1 = self.conv1(x) out1 = self.in1_0(x1) out1 = self.bn1(out1) out1 = self.relu(out1) x1 = self.conv1_1(torch.cat((out1,x1),1)) x2 = self.conv2(x1) out2 = self.in2_0(x2) out2 = self.bn2(out2) out2 = self.relu(out2) x2 = self.conv2_1(torch.cat((out2,x2),1)) x3 = self.conv3(x2) out3 = self.in3_0(x3) out3 = self.bn3(out3) out3 = self.relu(out3) x3 = self.conv3_1(torch.cat((out3,x3),1)) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) return x3 class SNR_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(SNR_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.in1_0 = nn.InstanceNorm2d(planes) self.conv1_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.in2_0 = nn.InstanceNorm2d(planes) self.conv2_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2_1 = nn.BatchNorm2d(planes) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3_0 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x x1 = self.conv1(x) out1 = self.in1_0(x1) res1 = x1 - out1 res1 = self.conv1_1(res1) res1 = self.bn1_1(res1) res1 = self.relu(res1) x1 = self.bn1(x1) x1 = out1 + res1 x1 = self.relu(x1) x2 = self.conv2(x1) out2 = self.in2_0(x2) res2 = x2 - out2 res2 = self.conv2_1(res2) res2 = self.bn2_1(res2) res2 = self.relu(res2) x2 = self.bn2(x2) x2 = out2 + res2 x2 = self.relu(x2) x3 = self.conv3(x2) x3 = self.bn3(x3) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) return x3 class SNR2_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(SNR2_Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.in1_0 = nn.InstanceNorm2d(planes) self.conv1_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.in2_0 = nn.InstanceNorm2d(planes) self.conv2_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2_1 = nn.BatchNorm2d(planes) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3_0 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) def forward(self, x): residual = x x1 = self.conv1(x) out1 = self.in1_0(x1) res1 = x1 - out1 res1 = self.conv1_1(res1) res1 = self.bn1_1(res1) res1 = self.relu(res1) x1 = out1 + res1 x1 = self.bn1(x1) x1 = self.relu(x1) x2 = self.conv2(x1) out2 = self.in2_0(x2) if self.stride == 2: res1 = self.maxpool(res1) res2 = x2 - out2 + res1 res2 = self.conv2_1(res2) res2 = self.bn2_1(res2) res2 = self.relu(res2) x2 = out2 + res2 x2 = self.bn2(x2) x2 = self.relu(x2) x3 = self.conv3(x2) x3 = self.bn3(x3) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) return x3 class SNR3_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(SNR3_Bottleneck, self).__init__() self.in1 = nn.InstanceNorm2d(planes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv1_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2_1 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) def forward(self, x, x_2=None, x_1=None, r2=None, r1=None): if type(x) is tuple: # print(len(x)) x_2 = x[1] x_1 = x[2] r2 = x[3] r1 = x[4] x = x[0] residual = x x1 = self.conv1(x) out1 = self.in1(x1) res1 = x1 - out1 res1 = self.conv1_1(res1) res1 = self.bn1_1(res1) res1 = self.relu(res1) # print(out1.shape) # print(res1.shape) # print(x1.shape) x1 = out1 + res1 x1 = self.bn1(x1) x1 = self.relu(x1) x2 = self.conv2(x1) out2 = self.in1(x2) res2 = x2 - out2 res2 = self.conv2_1(res2) res2 = self.bn2_1(res2) res2 = self.relu(res2) x2 = out2 + res2 x2 = self.bn2(x2) x2 = self.relu(x2) x3 = self.conv3(x2) x3 = self.bn3(x3) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) if x_2 is not None: x2 = x2 + x_2 if x_1 is not None: x1 = x1 + x_1 if r2 is not None: res2 = res2 + r2 if r1 is not None: res1 = res1 + r1 ''' print(x3.shape) print(x2.shape) print(x1.shape) print(res2.shape) print(res1.shape) ''' if self.stride == 2: x1 = self.maxpool(x1) res1 = self.maxpool(res1) return x3, x2, x1, res2, res1 class SNR4_Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(SNR4_Bottleneck, self).__init__() self.in1 = nn.InstanceNorm2d(planes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv1_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn1_1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2_1 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2_1 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.in3 = nn.InstanceNorm2d(planes * 4) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) def forward(self, x, x_2=None, x_1=None, r2=None, r1=None): if type(x) is tuple: # print(len(x)) x_2 = x[1] x_1 = x[2] r2 = x[3] r1 = x[4] x = x[0] residual = x x1 = self.conv1(x) out1 = self.in1(x1) res1 = x1 - out1 res1 = self.conv1_1(res1) res1 = self.bn1_1(res1) res1 = self.relu(res1) # print(out1.shape) # print(res1.shape) # print(x1.shape) x1 = out1 + res1 x1 = self.bn1(x1) x1 = self.relu(x1) x2 = self.conv2(x1) out2 = self.in1(x2) res2 = x2 - out2 res2 = self.conv2_1(res2) res2 = self.bn2_1(res2) res2 = self.relu(res2) x2 = out2 + res2 x2 = self.bn2(x2) x2 = self.relu(x2) x3 = self.conv3(x2) x3 = self.bn3(x3) if self.downsample is not None: residual = self.downsample(residual) x3 += residual x3 = self.relu(x3) if x_2 is not None: x2 = x2 + x_2 if x_1 is not None: x1 = x1 + x_1 if r2 is not None: res2 = res2 + r2 if r1 is not None: res1 = res1 + r1 ''' print(x3.shape) print(x2.shape) print(x1.shape) print(res2.shape) print(res1.shape) ''' if self.stride == 2: x1 = self.maxpool(x1) res1 = self.maxpool(res1) return x3, x2, x1, res2, res1 # --------------------------------- resnet----------------------------------- class ResNet(nn.Module): def __init__(self, last_stride=2, block=Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) # self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x = self.bn1(x) # x = self.relu(x) # add missed relu x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------Comb resnet----------------------------------- class Comb_ResNet(nn.Module): def __init__(self, last_stride=2, block=Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.in1 = nn.InstanceNorm2d(64) self.bn1_1 = nn.BatchNorm2d(64) self.conv2 = nn.Sequential( nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=1) ) self.in2 = nn.InstanceNorm2d(256) self.bn2_1 = nn.BatchNorm2d(256) self.conv3 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=1) ) self.in3 = nn.InstanceNorm2d(512) self.bn3_1 = nn.BatchNorm2d(512) self.conv4 = nn.Sequential( nn.Conv2d(1024, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, kernel_size=1) ) self.in4 = nn.InstanceNorm2d(1024) self.bn4_1 = nn.BatchNorm2d(1024) self.conv5 = nn.Sequential( nn.Conv2d(2048, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, kernel_size=1) ) self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x = self.bn1(x) # x = self.relu(x) # add missed relu x = self.maxpool(x) xin = self.in1(x) xin = self.bn1_1(xin) xin = self.relu(xin) x = self.conv2(torch.cat((xin,x),1)) x = self.layer1(x) xin = self.in2(x) xin = self.bn2_1(xin) xin = self.relu(xin) x = self.conv3(torch.cat((xin,x),1)) x = self.layer2(x) xin = self.in3(x) xin = self.bn3_1(xin) xin = self.relu(xin) x = self.conv4(torch.cat((xin,x),1)) x = self.layer3(x) xin = self.in4(x) xin = self.bn4_1(xin) xin = self.relu(xin) x = self.conv5(torch.cat((xin,x),1)) x = self.layer4(x) return x def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------Pure resnet----------------------------------- class Pure_ResNet(nn.Module): def __init__(self, last_stride=2, block=Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) # self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x = self.bn1(x) #print(camid) # x = self.relu(x) # add missed relu x = self.maxpool(x) if False: x,_,_,_,_ = self.layer1(x) x,_,_,_,_ = self.layer2(x) x,_,_,_,_ = self.layer3(x) x,_,_,_,_ = self.layer4(x) else: x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------jointin resnet----------------------------------- class Jointin_ResNet(nn.Module): def __init__(self, last_stride=2, block=SNR3_Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.conv1_1 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.bn1_1 = nn.BatchNorm2d(64) self.in1 = nn.InstanceNorm2d(64) # self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x0 = self.in1(x) ''' res0 = x - x0 res0 = self.conv1_1(res0) res0 = self.bn1_1(res0) x0 = x0 + res0 ''' x0 = self.bn1(x0) # x = self.relu(x) # add missed relu x0 = self.maxpool(x0) x1_3, x1_2, x1_1, res1_2, res1_1 = self.layer1(x0) x2_3, x2_2, x2_1, res2_2, res2_1 = self.layer2(x1_3) x3_3, x3_2, x3_1, res3_2, res3_1 = self.layer3(x2_3) x4_3, x4_2, x4_1, res4_2, res4_1 = self.layer4(x3_3) if self.training: return x4_3, x4_2, x4_1, res4_2, res4_1, x3_3, x3_2, x3_1, res3_2, res3_1, x2_3, x2_2, x2_1, res2_2, res2_1, x1_3, x1_2, x1_1, res1_2, res1_1 else: return x4_3 def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------jointout resnet----------------------------------- class Jointout_ResNet(nn.Module): def __init__(self, last_stride=2, block=SNR3_Bottleneck, frozen_stages=-1, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() print(block) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.conv1_res = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace = True), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace = True), nn.Conv2d(64, 64, kernel_size=1) ) self.in1 = nn.InstanceNorm2d(64) self.bn1 = nn.BatchNorm2d(64) self.bn1_1 = nn.BatchNorm2d(64) self.in2 = nn.InstanceNorm2d(256) self.bn2_1 = nn.BatchNorm2d(256) self.bn2_0 = nn.BatchNorm2d(256) self.in3 = nn.InstanceNorm2d(512) self.bn3_1 = nn.BatchNorm2d(512) self.bn3_0 = nn.BatchNorm2d(512) self.in4 = nn.InstanceNorm2d(1024) self.bn4_1 = nn.BatchNorm2d(1024) self.bn4_0 = nn.BatchNorm2d(1024) self.in5 = nn.InstanceNorm2d(2048) self.bn5_1 = nn.BatchNorm2d(2048) self.bn5_0 = nn.BatchNorm2d(2048) self.relu = nn.ReLU(inplace=True) # add missed relu self.maxpool = nn.MaxPool2d(kernel_size=2, stride=None, padding=0) self.frozen_stages = frozen_stages self.layer1 = self._make_layer(block, 64, layers[0]) self.conv2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.conv2_res = nn.Sequential( nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace = True), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace = True), nn.Conv2d(128, 256, kernel_size=1) ) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.conv3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.conv3_res = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace = True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace = True), nn.Conv2d(256, 512, kernel_size=1) ) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.conv4 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False) self.conv4_res = nn.Sequential( nn.Conv2d(1024, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace = True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace = True), nn.Conv2d(512, 1024, kernel_size=1) ) self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride) self.conv5 = nn.Conv2d(2048, 2048, kernel_size=3, stride=1, padding=1, bias=False) self.conv5_res = nn.Sequential( nn.Conv2d(2048, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(inplace = True), nn.Conv2d(1024, 1024, kernel_size=3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(inplace = True), nn.Conv2d(1024, 2048, kernel_size=1) ) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _freeze_stages(self): if self.frozen_stages >= 0: self.bn1.eval() for m in [self.conv1, self.bn1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) print('layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False def forward(self, x, camid=None): x = self.conv1(x) x0 = self.in1(x) res0 = x - x0 x0 = self.bn1(x0) x0 = self.relu(x0) res0 = self.conv1_res(res0) x0 = x0 + res0 x0 = self.bn1_1(x0) # x = self.relu(x) # add missed relu x0 = self.maxpool(x0) x1 = self.layer1(x0) px1 = self.conv2(x1) x1 = self.in2(px1) res1 = px1 - x1 x1 = self.bn2_0(x1) x1 = self.relu(x1) res1 = self.conv2_res(res1) x1 = x1 + res1 x1 = self.bn2_1(x1) x1 = self.relu(x1) x2 = self.layer2(x1) px2 = self.conv3(x2) x2 = self.in3(px2) res2 = px2 - x2 x2 = self.bn3_0(x2) x2 = self.relu(x2) res2 = self.conv3_res(res2) x2 = x2 + res2 x2 = self.bn3_1(x2) x2 = self.relu(x2) x3 = self.layer3(x2) px3 = self.conv4(x3) x3 = self.in4(px3) res3 = px3 - x3 x3 = self.bn4_0(x3) x3 = self.relu(x3) res3 = self.conv4_res(res3) x3 = x3 + res3 x3 = self.bn4_1(x3) x3 = self.relu(x3) x4 = self.layer4(x3) px4 = self.conv5(x4) x4 = self.in5(px4) res4 = px4 - x4 x4 = self.bn5_0(x4) x4 = self.relu(x4) res4 = self.conv5_res(res4) x4 = x4 + res4 x4 = self.bn5_1(x4) x4 = self.relu(x4) if self.training: return x0, x1, x2, x3, x4, res0, res1, res2, res3, res4 else: return x4 def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
{"/infer_SDCNet.py": ["/misc.py", "/datasets.py", "/model.py"], "/resnet/__init__.py": ["/resnet/make_model.py"], "/resnet/make_model.py": ["/resnet/config.py"], "/model/make_model.py": ["/model/backbones/resnet.py"], "/model.py": ["/resnext/__init__.py"], "/create_free.py": ["/misc.py", "/datasets.py", "/model.py"], "/SDCNet.py": ["/datasets.py", "/misc.py", "/model.py"]}
326
lukasld/Flask-Video-Editor
refs/heads/main
/app/api/videoApi.py
import os from flask import Flask, request, redirect, \ url_for, session, jsonify, send_from_directory, make_response, send_file from . import api from . import utils from .. import VIDEO_UPLOAD_PATH, FRAMES_UPLOAD_PATH, IMG_EXTENSION, VIDEO_EXTENSION, CACHE from . VideoProcessing import Frame, VideoUploader, VideoDownloader, Filter from . decorators import parameter_check, url_arg_check, metadata_check from . errors import InvalidAPIUsage @api.route('/upload/', methods=['POST']) @parameter_check(does_return=False, req_c_type='multipart/form-data') @metadata_check(does_return=False, req_type='video/mp4') def upload_video(): """ uploads the video """ byteStream = request.files['file'] vu = VideoUploader() vu.upload_from_bytestream(byteStream) session['s_id'] = vu.id f_c = utils.framecount_from_vid_id(vu.id) session['video_frame_count'] = f_c session['is_uploaded'] = True return jsonify({'status' : '201', 'message' : 'video uploaded!'}), 201 @api.route('/preview/', defaults={'frame_idx':1}, methods=['GET']) @api.route('/preview/<frame_idx>/', methods=['GET', 'POST']) @parameter_check(does_return=False, req_c_type='application/json') @url_arg_check(does_return=True, req_type=int, arg='frame_idx', session=session) def preview_thumbnail(frame_idx): """ Preview a frame by index, given filter parameters """ if session.get('is_uploaded'): data = request.get_json() filter_params = data['filter_params'] session['filter_params'] = filter_params frame = Frame(session['s_id']) frame_i = frame.get_by_idx(frame_idx) filter_frame = Filter(frame_i).run_func(filter_params) frame.f_save(filter_frame, session['s_id']) return send_from_directory(directory=f'{FRAMES_UPLOAD_PATH}', path=f'{session["s_id"]}{IMG_EXTENSION}', as_attachment=True), 200 raise InvalidAPIUsage('Invalid usage: please upload a video first') @api.route('/download/', methods=['POST']) @parameter_check(does_return=True, req_c_type='application/json', session=session) def download_video(vid_range): """ Download a video given filter parameters """ if session.get('is_uploaded'): data = request.get_json() fps = data['fps'] filter_params = data['filter_params'] frame_count = session['video_frame_count'] vd = VideoDownloader(fps, vid_range) filter_vid = vd.download(session['s_id'], frame_count, filter_params) session['is_downloaded'] = True return send_from_directory(directory=f'{VIDEO_UPLOAD_PATH}', path=f'{filter_vid}{VIDEO_EXTENSION}', as_attachment=True), 200 raise InvalidAPIUsage('Invalid usage: please upload a video first') @api.route('/status/', methods=['GET']) @parameter_check(req_c_type='application/json') def status(): """ The progress of the user, uploaded, download / frames """ resp = {} try: if session['is_uploaded']: resp["upload"] = "done" if CACHE.get(f"{session['s_id']}_d"): d_status = CACHE.get(f"{session['s_id']}_d") resp["downloaded_frames"] = f'{d_status}/{session["video_frame_count"]}' if session["is_downloaded"]: resp["is_downloaded"] = True except KeyError: pass return jsonify({"status" : resp}), 200
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
327
lukasld/Flask-Video-Editor
refs/heads/main
/app/docs/__init__.py
from flask_swagger_ui import get_swaggerui_blueprint swagger_ui = get_swaggerui_blueprint( '/docs', '/static/swagger.json', config={ "app_name": "videoApi" } )
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
328
lukasld/Flask-Video-Editor
refs/heads/main
/app/api/__init__.py
from flask import Blueprint api = Blueprint('videoApi', __name__) from . import videoApi, errors, help
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
329
lukasld/Flask-Video-Editor
refs/heads/main
/app/main/errors.py
from flask import redirect, url_for, jsonify from . import main @main.app_errorhandler(404) def page_not_found(e): return jsonify(error=str(e)), 404 @main.app_errorhandler(405) def method_not_allowed(e): return jsonify(error=str(e)), 405
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
330
lukasld/Flask-Video-Editor
refs/heads/main
/app/api/decorators.py
from flask import request, jsonify from functools import wraps from .errors import InvalidAPIUsage, InvalidFilterParams, IncorrectVideoFormat """ Almost like an Architect - makes decorations """ def decorator_maker(func): def param_decorator(fn=None, does_return=None, req_c_type=None, req_type=None, arg=None, session=None): def deco(fn): @wraps(fn) def wrapper(*args, **kwargs): result = func(does_return, req_c_type, req_type, arg, session) if does_return: return fn(result) return fn(*args, **kwargs) return wrapper if callable(fn): return deco(fn) return deco return param_decorator """ Checks if user input is not out of bounds, and also Content-Type """ def wrap_param_check(does_return, req_c_type, req_type, arg, session): check_content_type(req_c_type) return check_correct_filter_params(session) def check_content_type(req_c_type): if not request.content_type.startswith(req_c_type): raise InvalidAPIUsage(f'Content-Type should be of type: {req_c_type}', 400) def check_correct_filter_params(session): if request.data: data = request.get_json() f_params = data['filter_params'] if 'filter_params' not in data: raise InvalidFilterParams(1) elif 'type' not in f_params: raise InvalidFilterParams(1) if 'download' in request.url: if 'fps' not in data: raise InvalidFilterParams(1) if 'max_f' in f_params and 'min_f' in f_params: max_fr = session['video_frame_count'] min_f_raw = f_params['min_f'] max_f_raw = f_params['max_f'] if min_f_raw == "": min_f_raw = 0 if max_f_raw == "": max_f_raw = max_fr min_f = _check_for_req_type(int, min_f_raw, 4) max_f = _check_for_req_type(int, max_f_raw, 4) a = check_bounds(min_f_raw, max_fr) b = check_bounds(max_f_raw, max_fr) return sorted([a, b]) def _check_for_req_type(req_type, val, ex): try: req_type(val) except Exception: raise InvalidFilterParams(ex) return val parameter_check = decorator_maker(wrap_param_check) """ Checks if user input is not out of bounds, and also Content-Type """ def wrap_url_arg_check(does_return, req_c_type, req_type, arg, session): check_arg_urls(req_type, arg) frame_idx = request.view_args[arg] return check_bounds(frame_idx, session['video_frame_count']) def check_arg_urls(req_type, arg): try: req_type(request.view_args[arg]) except ValueError: raise InvalidAPIUsage(f'Content-Type should be of type: {req_type.__name__}', 400) def check_bounds(frame_idx, max_frames): f_max = int(max_frames) f_idx = int(frame_idx) if f_idx > f_max: f_idx = f_max-50 elif f_idx < 1: f_idx = 1 return f_idx url_arg_check = decorator_maker(wrap_url_arg_check) """ Checks Video Metadata """ def wrap_metadata_check(does_return, req_c_type, req_type, arg, session): check_metadata(req_type) def check_metadata(req_type): byteStream = request.files['file'] vid_type = byteStream.__dict__['headers'].get('Content-Type') if vid_type != req_type: raise IncorrectVideoFormat(1) metadata_check = decorator_maker(wrap_metadata_check) """ Excpetion Handler for non-Endpoints """ def exception_handler(fn=None, ex=None, type=None, pas=False): def deco(fn): @wraps(fn) def wrapper(*args, **kwargs): try: fn(*args, **kwargs) except Exception: if not pas: raise ex(type) pass return fn(*args, **kwargs) return wrapper if callable(fn): return deco(fn) return deco
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
331
lukasld/Flask-Video-Editor
refs/heads/main
/app/api/utils.py
import cv2 import math import string import random import numpy as np import skvideo.io from PIL import Image from .. import VIDEO_EXTENSION, VIDEO_UPLOAD_PATH, \ FRAMES_UPLOAD_PATH, IMG_EXTENSION, CACHE FPS = 23.98 SK_CODEC = 'libx264' def create_vid_path(name): return f'{VIDEO_UPLOAD_PATH}/{name}{VIDEO_EXTENSION}' def create_frame_path(name): return f'{FRAMES_UPLOAD_PATH}/{name}{IMG_EXTENSION}' def framecount_from_vid_id(video_id): video_path = create_vid_path(video_id) cap = cv2.VideoCapture(video_path) return math.floor(cap.get(7)) def id_generator(size, chars=string.ascii_lowercase + string.digits) -> str: return ''.join(random.choice(chars) for _ in range(size)) def create_sk_video_writer(video_f_path, fps = None): if not fps : fps = FPS return skvideo.io.FFmpegWriter(video_f_path, outputdict={'-c:v':SK_CODEC, '-profile:v':'main', '-pix_fmt': 'yuv420p', '-r':str(fps)}) def set_cache_f_count(s_id: str, ud: str, fc: str) -> None: CACHE.set(f'{s_id}_{ud}', fc) def bgr_to_rgb(frame: np.ndarray) -> np.ndarray: return frame[:, :, ::-1] def is_greyscale(frame) -> bool: return frame.ndim == 2 def is_rgb(frame) -> bool: return frame.ndim == 3 def img_from_greyscale(frame: np.ndarray) -> Image: return Image.fromarray(frame).convert("L") def img_from_bgr(frame: np.ndarray) -> Image: return Image.fromarray(bgr_to_rgb(frame))
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
332
lukasld/Flask-Video-Editor
refs/heads/main
/config.py
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config: """ """ SECRET_KEY = os.environ.get('SECRET_KEY') FLASK_CONFIG = os.environ.get('FLASK_CONFIG') VIDEO_EXTENSION = os.environ.get('VIDEO_EXTENSION') VIDEO_WIDTH = os.environ.get('VIDEO_WIDTH') VIDEO_HEIGHT = os.environ.get('VIDEO_HEIGHT') IMG_EXTENSION = os.environ.get('IMG_EXTENSION') @staticmethod def init_app(app): pass class DevelopmentConfig(Config): """ """ DEBUG = True config = { 'development': DevelopmentConfig, 'default': DevelopmentConfig }
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
333
lukasld/Flask-Video-Editor
refs/heads/main
/app/api/VideoProcessing.py
from werkzeug.utils import secure_filename from functools import partial import subprocess as sp import time import skvideo.io import numpy as np import threading import ffmpeg import shlex import cv2 import re from PIL import Image from werkzeug.datastructures import FileStorage as FStorage from .. import VIDEO_EXTENSION, VIDEO_WIDTH, VIDEO_HEIGHT, \ VIDEO_UPLOAD_PATH, FRAMES_UPLOAD_PATH, IMG_EXTENSION from . import utils from . errors import IncorrectVideoFormat, InvalidFilterParams, InvalidAPIUsage from . decorators import exception_handler FRAME_SIZE = VIDEO_WIDTH * VIDEO_HEIGHT * 3 FRAME_WH = (VIDEO_WIDTH, VIDEO_HEIGHT) FFMPEG_COMMAND = 'ffmpeg -i pipe: -f rawvideo -pix_fmt bgr24 -an -sn pipe: -loglevel quiet' ID_LEN = 32 class Frame: def __init__(self, id=None): self.id = id @exception_handler(ex=IncorrectVideoFormat, type=2) def from_bytes(self, in_bytes: bytes) -> np.ndarray: """ """ frame_arr = np.frombuffer(in_bytes, np.uint8) f_arr = frame_arr.reshape([VIDEO_HEIGHT, VIDEO_WIDTH, 3]) return utils.bgr_to_rgb(f_arr) def f_save(self, frame: np.ndarray, frame_id: str) -> None: upload_path = utils.create_frame_path(frame_id) if utils.is_rgb(frame): Image.fromarray(frame).save(upload_path) return utils.img_from_greyscale(frame).save(upload_path) return def get_by_idx(self, frame_idx): vid = utils.create_vid_path(self.id) cap = cv2.VideoCapture(vid) cap.set(1, frame_idx) _, frame = cap.read() return frame class VideoUploader(Frame): def __init__(self): id = utils.id_generator(ID_LEN) super().__init__(id) self.frame_count = 0 def upload_from_bytestream(self, byte_stream: FStorage): video_f_path = utils.create_vid_path(self.id) sk_writer = utils.create_sk_video_writer(video_f_path) sh_command = shlex.split(FFMPEG_COMMAND) process = sp.Popen(sh_command, stdin=sp.PIPE, stdout=sp.PIPE, bufsize=10**8) thread = threading.Thread(target=self._writer, args=(process, byte_stream, )) thread.start() while True: in_bytes = process.stdout.read(FRAME_SIZE) if not in_bytes: break frame = self.from_bytes(in_bytes) self.frame_count += 1 if self.frame_count == 1: self.f_save(frame, self.id) sk_writer.writeFrame(frame) thread.join() sk_writer.close() def _writer(self, process, byte_stream): for chunk in iter(partial(byte_stream.read, 1024), b''): process.stdin.write(chunk) try: process.stdin.close() except (BrokenPipeError): pass class Filter: def __init__(self, img=None): self.img = img def applyCanny(self, params): if 'thresh1' in params and 'thresh2' in params: gs_img = self.applyGreyScale(params) return cv2.Canny(gs_img, int(params['thresh1']), int(params['thresh2'])) raise InvalidFilterParams(3, 'canny') def applyGauss(self, params): if 'ksize_x' and 'ksize_y' in params and \ params['ksize_x'] % 2 != 0 and \ params['ksize_y'] % 2 != 0: g_img = self.img.copy() if np.ndim(g_img) == 3: g_img = utils.bgr_to_rgb(g_img) return cv2.GaussianBlur(g_img, (int(params["ksize_x"]), int(params["ksize_y"])), 0) raise InvalidFilterParams(3, 'gauss') def applyGreyScale(self, _): c_img = self.img.copy() return cv2.cvtColor(c_img, cv2.COLOR_RGB2GRAY) def applyLaplacian(self, params): gs_img = self.applyGreyScale(params) return cv2.Laplacian(gs_img, cv2.CV_8U) def run_func(self, params): if params["type"] in self.filter_map: func = self.filter_map[params["type"]].__get__(self, type(self)) return func(params) raise InvalidFilterParams(2) def _default(self, _): return utils.bgr_to_rgb(self.img) filter_map = {'canny': applyCanny, 'gauss': applyGauss, 'greyscale': applyGreyScale, 'laplacian': applyLaplacian, '': _default} class VideoDownloader(Frame, Filter): def __init__(self, fps, vid_range=None): Frame.__init__(self) Filter.__init__(self) self.fps = fps self.vid_range = vid_range self.curr_f_frame = None if vid_range: self.range_min = vid_range[0] self.range_max = vid_range[1] def download(self, s_id, tot_video_frames, params): f_vid_name = f'{s_id}_{params["type"]}' video_f_path = utils.create_vid_path(f_vid_name) local_vid = cv2.VideoCapture(utils.create_vid_path(s_id)) vid_writer = utils.create_sk_video_writer(video_f_path, self.fps) for i in range(tot_video_frames-1): utils.set_cache_f_count(s_id, 'd', i) _, curr_frame = local_vid.read() if curr_frame is None: break self.img = curr_frame f_frame = self._filter_apply(i, params) vid_writer.writeFrame(f_frame) vid_writer.close() return f_vid_name def _filter_apply(self, i, params): """ we simply check if a range is given, then if we get a gs-img from the filter we add three dimensions """ if self.vid_range: if(i >= self.vid_range[0] and i <= self.vid_range[1]): f_frame = self.run_func(params) if not utils.is_rgb(f_frame): return np.dstack(3*[f_frame]) return f_frame else: return self.run_func({"type":""}) else: return self.run_func(params)
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
334
lukasld/Flask-Video-Editor
refs/heads/main
/app/api/help.py
from flask import jsonify, request, send_from_directory from . decorators import parameter_check from . import api from ..import HELP_MSG_PATH import json AV_EP = ["upload", "preview", "download", "stats", "filters"] AV_FILTERS = ["canny", "greyscale", "laplacian", "gauss"] @api.route('/help/', methods=['GET']) @api.route('/help/<endpts>/', methods=['GET']) @api.route('/help/filters/<filter_type>/', methods=['GET']) @parameter_check(req_c_type='application/json') def help(endpts=None, filter_type=None): if endpts and endpts in AV_EP: return jsonify(load_json_from_val(endpts)), 200 elif filter_type and filter_type in AV_FILTERS: return jsonify(load_json_from_val(filter_type)), 200 else: return jsonify(load_json_from_val('help')), 200 def load_json_from_val(val): f = open(HELP_MSG_PATH+f'/{val}.json') return json.load(f)
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
335
lukasld/Flask-Video-Editor
refs/heads/main
/app/__init__.py
from flask import Flask from config import config from flask_caching import Cache from flask_swagger_ui import get_swaggerui_blueprint VIDEO_EXTENSION=None VIDEO_WIDTH=None VIDEO_HEIGHT=None VIDEO_UPLOAD_PATH=None FRAMES_UPLOAD_PATH=None IMG_EXTENSION=None HELP_MSG_PATH=None CACHE=None def create_app(config_name): global VIDEO_EXTENSION global VIDEO_WIDTH global VIDEO_HEIGHT global VIDEO_UPLOAD_PATH global FRAMES_UPLOAD_PATH global IMG_EXTENSION global HELP_MSG_PATH global CACHE app = Flask(__name__) app.config.from_object(config[config_name]) config[config_name].init_app(app) cache = Cache(config={"CACHE_TYPE": "filesystem", "CACHE_DIR": app.root_path + '/static/cache'}) cache.init_app(app) CACHE = cache VIDEO_EXTENSION = app.config["VIDEO_EXTENSION"] VIDEO_WIDTH = int(app.config["VIDEO_WIDTH"]) VIDEO_HEIGHT = int(app.config["VIDEO_HEIGHT"]) IMG_EXTENSION = app.config["IMG_EXTENSION"] VIDEO_UPLOAD_PATH = app.root_path + '/static/uploads/videos' FRAMES_UPLOAD_PATH = app.root_path + '/static/uploads/frames' HELP_MSG_PATH = app.root_path + '/static/helpmessages' #TODO: video max dimensions, video max length from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .api import api as api_blueprint app.register_blueprint(api_blueprint, url_prefix='/videoApi/v1') from .docs import swagger_ui app.register_blueprint(swagger_ui, url_prefix="/docs") return app
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}
336
lukasld/Flask-Video-Editor
refs/heads/main
/app/api/errors.py
import sys import traceback from flask import jsonify, request from . import api class InvalidAPIUsage(Exception): status_code = 400 def __init__(self, message='', status_code=None): super().__init__() self.message = message self.path = request.path if status_code is None: self.status_code = InvalidAPIUsage.status_code def to_dict(self): rv = {} rv['path'] = self.path rv['status'] = self.status_code rv['message'] = self.message return rv class IncorrectVideoFormat(InvalidAPIUsage): def __init__(self, message_id): super().__init__() self.message = self.msg[message_id] msg = {1:'Incorrect video type: only RGB - Type=video/mp4 allowed', 2:'Incorrect video dimensions: only 720p supported (1280*720)'} class InvalidFilterParams(InvalidAPIUsage): def __init__(self, message_id, filter_name=''): super().__init__() self.message = self.msg(message_id, filter_name) def msg(self, id, filter_name): # TODO:Lukas [07252021] messges could be stored in static files as JSON avail_msg = {1:'Incorrect filter parameters: should be {"fps": "<fps: float>", "filter_params":{"type":"<filter: str>"}} \ or for default preview, {"filter_params":{"type":""}}', 2:f'Incorrect filter parameters: filter does not exist, for more go to /api/v1/help/filters/', 3:f'Incorrect filter parameters: required parameters are missing or invalid, for more go to /api/v1/help/filters/{filter_name}/', 4:f'Incorrect download parameters: for more go to /api/v1/help/download/', } return avail_msg[id] @api.errorhandler(InvalidAPIUsage) def invalid_api_usage(e): return jsonify(e.to_dict()), 400
{"/app/api/videoApi.py": ["/app/api/__init__.py", "/app/__init__.py", "/app/api/VideoProcessing.py", "/app/api/decorators.py", "/app/api/errors.py"], "/app/api/decorators.py": ["/app/api/errors.py"], "/app/api/utils.py": ["/app/__init__.py"], "/app/api/VideoProcessing.py": ["/app/__init__.py", "/app/api/__init__.py", "/app/api/errors.py", "/app/api/decorators.py"], "/app/api/help.py": ["/app/api/decorators.py", "/app/api/__init__.py", "/app/__init__.py"], "/app/__init__.py": ["/config.py", "/app/api/__init__.py", "/app/docs/__init__.py"], "/app/api/errors.py": ["/app/api/__init__.py"]}