Datasets:
File size: 6,143 Bytes
5fbf7f3 48c5062 5fbf7f3 48c5062 5fbf7f3 48c5062 5fbf7f3 48c5062 5fbf7f3 48c5062 5fbf7f3 41eed26 48c5062 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 5fbf7f3 41eed26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
dataset_name: europarlvote
pretty_name: EuroParlVote
paperswithcode_id: null
task_categories:
- text-classification
tasks:
- gender-classification
- stance-detection
- vote-prediction
multilinguality: multilingual
language:
- bg
- cs
- da
- de
- el
- en
- es
- et
- fi
- fr
- ga
- hr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sk
- sl
- sv
license: cc-by-nc-4.0
size_categories:
- 10K<n<100K
annotations_creators:
- expert-generated
source_datasets:
- original
domain:
- politics
- public-policy
demographics:
- adult
- public-figures
creators:
- Jinrui Yang
- Xudong Han
- Timothy Baldwin
maintainers:
- Jinrui Yang <[email protected]>
---
# EuroParlVote
EuroParlVote links **European Parliament debate speeches** to **roll-call votes** and **MEP demographics** (gender, age, country, political group) across up to **24 EU languages**.
It supports two primary benchmark tasks:
1. **Gender Classification** – predict the MEP’s gender from a debate speech.
2. **Vote Prediction** – predict a FOR/AGAINST vote from the topic and speech (optionally with demographic context).
## Dataset Details
- **Curated by:** Jinrui Yang, Xudong Han, Timothy Baldwin
- **Funded by:** Melbourne Research Scholarship; LIEF HPC-GPGPU Facility (LE170100200)
- **Shared by:** University of Melbourne
- **Language(s):** see list above (`language`)
- **License:** CC BY-NC 4.0
### Dataset Sources
- **Repository:** [https://huggingface.co/datasets/unimelb-nlp/EuroParlVote](https://huggingface.co/datasets/unimelb-nlp/EuroParlVote)
- **Paper:** _Demographics and Democracy: Benchmarking LLMs’ Gender Bias and Political Leaning in European Parliament_ (EMNLP 2024, camera-ready)
- **Demo:** [[EuroParlVote website](https://parlvote-demo.vercel.app/)]
## Uses
### Direct Use
- Benchmark LLM fairness/bias in political discourse.
- Multilingual political text classification and vote prediction.
- Study demographic effects (gender, group) on model behavior.
### Out-of-Scope Use
- Real-time vote forecasting or influencing political processes.
- Targeting individuals or groups.
- Disinformation or harassment.
## Dataset Structure
### File Structure
The dataset is split into **train**, **dev**, and **test** (~8:1:1).
This example shows the `dev_set.csv` structure.
### Columns
| Column | Type | Description |
|--------------------|---------|-------------|
| `Chapter` | float | Debate chapter number |
| `Chapter_ID` | string | Debate chapter unique identifier |
| `Act_ID` | string | Legislative act ID (may be "MISSING") |
| `Report_ID` | string | Parliamentary report ID |
| `Debate_ID` | string | Unique debate ID + language suffix |
| `Vote_ID` | int | Unique roll-call vote ID |
| `Vote_Description` | string | English description of the vote topic |
| `Vote_Timestamp` | string | Date-time of the vote |
| `Language` | string | ISO language code of the speech |
| `Speaker` | string | Speaker’s full name |
| `MEP_ID` | int | Unique MEP identifier |
| `Party` | string | Party affiliation (if available) |
| `Role` | string | Role in debate (e.g., rapporteur) |
| `CODICT` | int | Speaker unique code |
| `Speaker_Type` | string | Type of speaker (e.g., MEP, Chair) |
| `Start_Time` | string | Start time (uniform in this split) |
| `End_Time` | string | End time (uniform in this split) |
| `Title_[XX]` | string | Debate title in language `XX` (24 variants, e.g., Title_EN, Title_FR, Title_DE) |
| `Speech` | string | Full debate speech text |
| `position` | string | Vote label: FOR / AGAINST |
| `country_code_x` | string | Country code (original source) |
| `group_code` | string | Political group code (8 possible) |
| `first_name` | string | MEP first name |
| `last_name` | string | MEP last name |
| `country_code_y` | string | Country code (from demographic scrape) |
| `date_of_birth` | string | Date of birth (YYYY-MM-DD) |
| `email` | string | Public MEP email (if available) |
| `facebook` | string | Facebook profile URL (if available) |
| `twitter` | string | Twitter/X profile URL (if available) |
| `gender` | string | Binary label: MALE / FEMALE |
**Note:** Title columns cover all official EU languages; `Speech` is in the original debate language (`Language`).
### Label Distribution (dev split)
- **position**: `FOR` and `AGAINST` are balanced in dev/test.
- **gender**: MALE, FEMALE.
## Dataset Creation
### Curation Rationale
Existing multilingual political datasets rarely link actual speeches to **real-world vote outcomes** and demographics, making fairness and bias studies difficult. This dataset bridges that gap.
### Source Data
- Votes from **HowTheyVote.eu**.
- Debates aligned via vote metadata references.
- Demographics from Wikipedia & official EP sources.
### Processing
- Removed abstentions & missing topic/speech.
- Gender inferred from pronouns and manually checked.
### Annotation
- Gender labels created via semi-automatic heuristics, with manual validation.
- Vote labels come directly from official roll-call data.
### Sensitive Information
- Contains names, countries, political groups of public figures (MEPs).
- Binary gender labels do not reflect all identities.
## Bias, Risks, and Limitations
- Binary gender assumption.
- Political group may not fully capture ideology.
- Translation hurts performance; originals recommended.
- Biases in speeches may reflect political context, not individual ideology.
## Citation
**BibTeX:**
```bibtex
@inproceedings{yang2024europarlvote,
title={Demographics and Democracy: Benchmarking LLMs’ Gender Bias and Political Leaning in European Parliament},
author={Yang, Jinrui and Han, Xudong and Baldwin, Timothy},
booktitle={Proceedings of the 8th International Conference on Natural Language and Speech Processing},
year={2025}
}
|