File size: 2,625 Bytes
5a87e4a
6b23642
92d07f8
33a5854
6b23642
33a5854
009cdd3
33a5854
 
 
 
 
 
 
 
 
5a87e4a
009cdd3
33a5854
 
 
 
009cdd3
33a5854
 
af6b51e
33a5854
 
af22a0d
 
 
 
 
92d07f8
 
 
 
af22a0d
6f701a4
 
af22a0d
6f701a4
af22a0d
 
6f701a4
af22a0d
 
5a87e4a
92d07f8
33a5854
f2b185f
 
33a5854
 
f2b185f
 
 
 
33a5854
 
 
 
 
 
 
92d07f8
33a5854
92d07f8
 
 
 
33a5854
92d07f8
 
33a5854
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import json
from dataclasses import field
from typing import Any, Dict, List, Optional

from datasets import Features, Sequence, Value

from .operator import InstanceOperatorValidator

UNITXT_DATASET_SCHEMA = Features(
    {
        "source": Value("string"),
        "target": Value("string"),
        "references": Sequence(Value("string")),
        "metrics": Sequence(Value("string")),
        "group": Value("string"),
        "postprocessors": Sequence(Value("string")),
        "task_data": Value(dtype="string"),
        "data_classification_policy": Sequence(Value("string")),
    }
)


class ToUnitxtGroup(InstanceOperatorValidator):
    group: str
    metrics: List[str] = None
    postprocessors: List[str] = field(default_factory=lambda: ["to_string_stripped"])
    remove_unnecessary_fields: bool = True

    @staticmethod
    def artifact_to_jsonable(artifact):
        if artifact.__id__ is None:
            return artifact.to_dict()
        return artifact.__id__

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        task_data = {
            **instance["input_fields"],
            **instance["reference_fields"],
            "metadata": {
                "data_classification_policy": instance["data_classification_policy"],
                "template": self.artifact_to_jsonable(
                    instance["recipe_metadata"]["template"]
                ),
            },
        }
        instance["task_data"] = json.dumps(task_data)

        if self.remove_unnecessary_fields:
            keys_to_delete = []

            for key in instance.keys():
                if key not in UNITXT_DATASET_SCHEMA:
                    keys_to_delete.append(key)

            for key in keys_to_delete:
                del instance[key]
        instance["group"] = self.group
        if self.metrics is not None:
            instance["metrics"] = self.metrics
        if self.postprocessors is not None:
            instance["postprocessors"] = self.postprocessors
        return instance

    def validate(self, instance: Dict[str, Any], stream_name: Optional[str] = None):
        # verify the instance has the required schema
        assert instance is not None, "Instance is None"
        assert isinstance(
            instance, dict
        ), f"Instance should be a dict, got {type(instance)}"
        assert all(
            key in instance for key in UNITXT_DATASET_SCHEMA
        ), f"Instance should have the following keys: {UNITXT_DATASET_SCHEMA}. Instance is: {instance}"
        UNITXT_DATASET_SCHEMA.encode_example(instance)