Datasets:

ArXiv:
Elron commited on
Commit
76a55fb
·
verified ·
1 Parent(s): d7d9855

Upload inference.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. inference.py +124 -2
inference.py CHANGED
@@ -1,6 +1,11 @@
1
  import abc
 
 
 
2
 
3
  from .artifact import Artifact
 
 
4
 
5
 
6
  class InferenceEngine(abc.ABC, Artifact):
@@ -11,12 +16,21 @@ class InferenceEngine(abc.ABC, Artifact):
11
  """Perform inference on the input dataset."""
12
  pass
13
 
 
 
 
 
 
 
 
14
 
15
- class HFPipelineBasedInferenceEngine(Artifact):
16
- """Abstract base class for inference."""
17
 
 
18
  model_name: str
19
  max_new_tokens: int
 
 
 
20
 
21
  def prepare(self):
22
  from transformers import pipeline
@@ -31,3 +45,111 @@ class HFPipelineBasedInferenceEngine(Artifact):
31
  max_new_tokens=self.max_new_tokens,
32
  )
33
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import abc
2
+ import os
3
+ from dataclasses import dataclass
4
+ from typing import List, Optional, Union
5
 
6
  from .artifact import Artifact
7
+ from .operator import PackageRequirementsMixin
8
+ from .settings_utils import get_settings
9
 
10
 
11
  class InferenceEngine(abc.ABC, Artifact):
 
16
  """Perform inference on the input dataset."""
17
  pass
18
 
19
+ @staticmethod
20
+ def _assert_allow_passing_data_to_remote_api(remote_api_label: str):
21
+ assert get_settings().allow_passing_data_to_remote_api, (
22
+ f"LlmAsJudge metric cannot run send data to remote APIs ({remote_api_label}) when"
23
+ f" unitxt.settings.allow_passing_data_to_remote_api=False."
24
+ f" Set UNITXT_ALLOW_PASSING_DATA_TO_REMOTE_API environment variable, if you want to allow this. "
25
+ )
26
 
 
 
27
 
28
+ class HFPipelineBasedInferenceEngine(InferenceEngine, PackageRequirementsMixin):
29
  model_name: str
30
  max_new_tokens: int
31
+ _requirement = {
32
+ "transformers": "Install huggingface package using 'pip install --upgrade transformers"
33
+ }
34
 
35
  def prepare(self):
36
  from transformers import pipeline
 
45
  max_new_tokens=self.max_new_tokens,
46
  )
47
  ]
48
+
49
+
50
+ @dataclass()
51
+ class IbmGenAiInferenceEngineParams:
52
+ decoding_method: str = None
53
+ max_new_tokens: Optional[int] = None
54
+ min_new_tokens: Optional[int] = None
55
+ random_seed: Optional[int] = None
56
+ repetition_penalty: Optional[float] = None
57
+ stop_sequences: Optional[List[str]] = None
58
+ temperature: Optional[float] = None
59
+ top_k: Optional[int] = None
60
+ top_p: Optional[float] = None
61
+ typical_p: Optional[float] = None
62
+
63
+
64
+ class IbmGenAiInferenceEngine(InferenceEngine, PackageRequirementsMixin):
65
+ label: str = "ibm_genai"
66
+ model_name: str
67
+ parameters: IbmGenAiInferenceEngineParams = IbmGenAiInferenceEngineParams()
68
+ _requirement = {
69
+ "genai": "Install ibm-genai package using 'pip install --upgrade ibm-generative-ai"
70
+ }
71
+
72
+ def prepare(self):
73
+ from genai import Client, Credentials
74
+
75
+ api_key_env_var_name = "GENAI_KEY"
76
+ api_key = os.environ.get(api_key_env_var_name)
77
+ assert api_key is not None, (
78
+ f"Error while trying to run IbmGenAiInferenceEngine."
79
+ f" Please set the environment param '{api_key_env_var_name}'."
80
+ )
81
+ api_endpoint = os.environ.get("GENAI_KEY")
82
+ credentials = Credentials(api_key=api_key, api_endpoint=api_endpoint)
83
+ self.client = Client(credentials=credentials)
84
+
85
+ self._assert_allow_passing_data_to_remote_api(self.label)
86
+
87
+ def infer(self, dataset):
88
+ from genai.schema import TextGenerationParameters
89
+
90
+ genai_params = TextGenerationParameters(**self.parameters.__dict__)
91
+ return list(
92
+ self.client.text.generation.create(
93
+ model_id=self.model_name,
94
+ inputs=[instance["source"] for instance in dataset],
95
+ parameters=genai_params,
96
+ )
97
+ )
98
+
99
+
100
+ @dataclass
101
+ class OpenAiInferenceEngineParams:
102
+ frequency_penalty: Optional[float] = None
103
+ presence_penalty: Optional[float] = None
104
+ max_tokens: Optional[int] = None
105
+ seed: Optional[int] = None
106
+ stop: Union[Optional[str], List[str]] = None
107
+ temperature: Optional[float] = None
108
+ top_p: Optional[float] = None
109
+
110
+
111
+ class OpenAiInferenceEngine(InferenceEngine, PackageRequirementsMixin):
112
+ label: str = "openai"
113
+ model_name: str
114
+ parameters: OpenAiInferenceEngineParams = OpenAiInferenceEngineParams()
115
+ _requirement = {
116
+ "openai": "Install openai package using 'pip install --upgrade openai"
117
+ }
118
+
119
+ def prepare(self):
120
+ from openai import OpenAI
121
+
122
+ api_key_env_var_name = "OPENAI_API_KEY"
123
+ api_key = os.environ.get(api_key_env_var_name)
124
+ assert api_key is not None, (
125
+ f"Error while trying to run OpenAiInferenceEngine."
126
+ f" Please set the environment param '{api_key_env_var_name}'."
127
+ )
128
+
129
+ self.client = OpenAI(api_key=api_key)
130
+ self._assert_allow_passing_data_to_remote_api(self.label)
131
+
132
+ def infer(self, dataset):
133
+ return [
134
+ self.client.chat.completions.create(
135
+ messages=[
136
+ # {
137
+ # "role": "system",
138
+ # "content": self.system_prompt,
139
+ # },
140
+ {
141
+ "role": "user",
142
+ "content": instance["source"],
143
+ }
144
+ ],
145
+ model=self.model_name,
146
+ frequency_penalty=self.parameters.frequency_penalty,
147
+ presence_penalty=self.parameters.presence_penalty,
148
+ max_tokens=self.parameters.max_tokens,
149
+ seed=self.parameters.seed,
150
+ stop=self.parameters.stop,
151
+ temperature=self.parameters.temperature,
152
+ top_p=self.parameters.top_p,
153
+ )
154
+ for instance in dataset
155
+ ]