File size: 11,352 Bytes
52de1e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "vllm>=0.6.6",
# "transformers",
# "torch",
# "datasets",
# "huggingface-hub[hf_transfer]",
# ]
# ///
"""
Classify text columns in Hugging Face datasets using vLLM with structured outputs.
This script provides efficient GPU-based classification with guaranteed valid outputs,
optimized for running on HF Jobs.
Example:
uv run classify-dataset.py \\
--input-dataset imdb \\
--column text \\
--labels "positive,negative" \\
--output-dataset user/imdb-classified
HF Jobs example:
hfjobs run --flavor a10 uv run classify-dataset.py \\
--input-dataset user/emails \\
--column content \\
--labels "spam,ham" \\
--output-dataset user/emails-classified \\
--prompt-style reasoning
"""
import argparse
import logging
import os
import sys
from typing import List, Dict, Any, Optional
import torch
from datasets import load_dataset, Dataset
from huggingface_hub import HfApi
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
# Default model - SmolLM3 for good balance of speed and quality
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"
# Prompt styles for classification
PROMPT_STYLES = {
"simple": """Classify this text as one of: {labels}
Text: {text}
Label:""",
"detailed": """Task: Classify the following text into EXACTLY ONE of these categories.
Available categories: {labels}
Text to classify:
{text}
Category:""",
"reasoning": """Analyze the following text and determine which category it belongs to.
Available categories: {labels}
Text to analyze:
{text}
Brief analysis: Let me examine the key aspects of this text.
Category:""",
}
# Minimum text length for valid classification
MIN_TEXT_LENGTH = 3
# Maximum text length (in characters) to avoid context overflow
MAX_TEXT_LENGTH = 4000
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
description="Classify text in HuggingFace datasets using vLLM with structured outputs",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__
)
# Required arguments
parser.add_argument(
"--input-dataset",
type=str,
required=True,
help="Input dataset ID on Hugging Face Hub"
)
parser.add_argument(
"--column",
type=str,
required=True,
help="Name of the text column to classify"
)
parser.add_argument(
"--labels",
type=str,
required=True,
help="Comma-separated list of classification labels (e.g., 'positive,negative')"
)
parser.add_argument(
"--output-dataset",
type=str,
required=True,
help="Output dataset ID on Hugging Face Hub"
)
# Optional arguments
parser.add_argument(
"--model",
type=str,
default=DEFAULT_MODEL,
help=f"Model to use for classification (default: {DEFAULT_MODEL})"
)
# Removed --batch-size argument as vLLM handles batching internally
parser.add_argument(
"--prompt-style",
type=str,
choices=list(PROMPT_STYLES.keys()),
default="simple",
help="Prompt style to use (default: simple)"
)
parser.add_argument(
"--max-samples",
type=int,
default=None,
help="Maximum number of samples to process (for testing)"
)
parser.add_argument(
"--hf-token",
type=str,
default=os.environ.get("HF_TOKEN"),
help="Hugging Face API token (default: HF_TOKEN env var)"
)
parser.add_argument(
"--split",
type=str,
default="train",
help="Dataset split to process (default: train)"
)
parser.add_argument(
"--temperature",
type=float,
default=0.1,
help="Temperature for generation (default: 0.1)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=50,
help="Maximum tokens to generate (default: 50)"
)
parser.add_argument(
"--guided-backend",
type=str,
default="outlines",
help="Guided decoding backend (default: outlines)"
)
return parser.parse_args()
def preprocess_text(text: str) -> str:
"""Preprocess text for classification."""
if not text or not isinstance(text, str):
return ""
# Strip whitespace
text = text.strip()
# Truncate if too long
if len(text) > MAX_TEXT_LENGTH:
text = text[:MAX_TEXT_LENGTH] + "..."
return text
def validate_text(text: str) -> bool:
"""Check if text is valid for classification."""
if not text or len(text) < MIN_TEXT_LENGTH:
return False
return True
def prepare_prompts(
texts: List[str],
labels: List[str],
prompt_template: str
) -> tuple[List[str], List[int]]:
"""Prepare prompts for classification, filtering invalid texts."""
prompts = []
valid_indices = []
for i, text in enumerate(texts):
processed_text = preprocess_text(text)
if validate_text(processed_text):
prompt = prompt_template.format(
labels=", ".join(labels),
text=processed_text
)
prompts.append(prompt)
valid_indices.append(i)
return prompts, valid_indices
def main():
args = parse_args()
# Check CUDA availability
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with GPU support or use HF Jobs.")
sys.exit(1)
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
# Parse and validate labels
labels = [label.strip() for label in args.labels.split(",")]
if len(labels) < 2:
logger.error("At least two labels are required for classification.")
sys.exit(1)
logger.info(f"Classification labels: {labels}")
# Load dataset
logger.info(f"Loading dataset: {args.input_dataset}")
try:
dataset = load_dataset(args.input_dataset, split=args.split)
# Limit samples if specified
if args.max_samples:
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
logger.info(f"Limited dataset to {len(dataset)} samples")
logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
except Exception as e:
logger.error(f"Failed to load dataset: {e}")
sys.exit(1)
# Verify column exists
if args.column not in dataset.column_names:
logger.error(f"Column '{args.column}' not found in dataset.")
logger.error(f"Available columns: {dataset.column_names}")
sys.exit(1)
# Extract texts
texts = dataset[args.column]
# Initialize vLLM
logger.info(f"Initializing vLLM with model: {args.model}")
logger.info(f"Using guided decoding backend: {args.guided_backend}")
try:
llm = LLM(
model=args.model,
trust_remote_code=True,
dtype="auto",
gpu_memory_utilization=0.95,
guided_decoding_backend=args.guided_backend,
)
except Exception as e:
logger.error(f"Failed to initialize vLLM: {e}")
sys.exit(1)
# Set up guided decoding parameters
guided_params = GuidedDecodingParams(choice=labels)
# Set up sampling parameters with structured output
sampling_params = SamplingParams(
guided_decoding=guided_params,
temperature=args.temperature,
max_tokens=args.max_tokens,
)
# Get prompt template
prompt_template = PROMPT_STYLES[args.prompt_style]
logger.info(f"Using prompt style '{args.prompt_style}'")
logger.info("Using structured output with guided_choice - outputs guaranteed to be valid labels")
# Prepare all prompts
logger.info("Preparing prompts for classification...")
all_prompts, valid_indices = prepare_prompts(texts, labels, prompt_template)
if not all_prompts:
logger.error("No valid texts found for classification.")
sys.exit(1)
logger.info(f"Prepared {len(all_prompts)} valid prompts out of {len(texts)} texts")
# Let vLLM handle batching internally
logger.info("Starting classification (vLLM will handle batching internally)...")
try:
# Generate all classifications at once - vLLM handles batching
outputs = llm.generate(all_prompts, sampling_params)
# Map results back to original indices
all_classifications = [None] * len(texts)
for idx, output in enumerate(outputs):
original_idx = valid_indices[idx]
generated_text = output.outputs[0].text.strip()
all_classifications[original_idx] = generated_text
# Count statistics
valid_texts = len(valid_indices)
total_texts = len(texts)
except Exception as e:
logger.error(f"Classification failed: {e}")
sys.exit(1)
# Add classifications to dataset
dataset = dataset.add_column("classification", all_classifications)
# Calculate statistics
none_count = total_texts - valid_texts
if none_count > 0:
logger.warning(f"{none_count} texts were too short or invalid for classification")
# Show classification distribution
label_counts = {label: all_classifications.count(label) for label in labels}
logger.info("Classification distribution:")
for label, count in label_counts.items():
percentage = count / total_texts * 100 if total_texts > 0 else 0
logger.info(f" {label}: {count} ({percentage:.1f}%)")
if none_count > 0:
none_percentage = none_count / total_texts * 100
logger.info(f" Invalid/Skipped: {none_count} ({none_percentage:.1f}%)")
# Log success rate
success_rate = (valid_texts / total_texts * 100) if total_texts > 0 else 0
logger.info(f"Classification success rate: {success_rate:.1f}%")
# Save to Hub
logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
try:
dataset.push_to_hub(
args.output_dataset,
token=args.hf_token,
commit_message=f"Add classifications using {args.model} with structured outputs"
)
logger.info(f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}")
except Exception as e:
logger.error(f"Failed to push to Hub: {e}")
sys.exit(1)
if __name__ == "__main__":
if len(sys.argv) == 1:
print("Example HF Jobs command:")
print("hf jobs uv run \\")
print(" --flavor l4x1 \\")
print(" --image vllm/vllm-openai:latest \\")
print(" classify-dataset.py \\")
print(" --input-dataset stanfordnlp/imdb \\")
print(" --column text \\")
print(" --labels 'positive,negative' \\")
print(" --output-dataset user/imdb-classified")
sys.exit(0)
main() |