Commit
·
1d07414
1
Parent(s):
5c4f2fd
sglang version
Browse files- classify-dataset-sglang.py +490 -0
classify-dataset-sglang.py
ADDED
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# /// script
|
3 |
+
# requires-python = ">=3.10"
|
4 |
+
# dependencies = [
|
5 |
+
# "sglang[all]",
|
6 |
+
# "flashinfer-python",
|
7 |
+
# "transformers",
|
8 |
+
# "torch",
|
9 |
+
# "datasets",
|
10 |
+
# "huggingface-hub[hf_transfer]",
|
11 |
+
# ]
|
12 |
+
#
|
13 |
+
# [[tool.uv.index]]
|
14 |
+
# name = "flashinfer"
|
15 |
+
# url = "https://flashinfer.ai/whl/cu121/torch2.4/"
|
16 |
+
# ///
|
17 |
+
|
18 |
+
"""
|
19 |
+
Classify text columns in Hugging Face datasets using SGLang with reasoning-aware models.
|
20 |
+
|
21 |
+
This script provides efficient GPU-based classification with optional reasoning support,
|
22 |
+
optimized for models like SmolLM3-3B that use <think> tokens for chain-of-thought.
|
23 |
+
|
24 |
+
Example:
|
25 |
+
# Fast classification without reasoning
|
26 |
+
uv run classify-dataset-sglang.py \\
|
27 |
+
--input-dataset imdb \\
|
28 |
+
--column text \\
|
29 |
+
--labels "positive,negative" \\
|
30 |
+
--output-dataset user/imdb-classified
|
31 |
+
|
32 |
+
# Complex classification with reasoning
|
33 |
+
uv run classify-dataset-sglang.py \\
|
34 |
+
--input-dataset arxiv-papers \\
|
35 |
+
--column abstract \\
|
36 |
+
--labels "reasoning_systems,agents,multimodal,robotics,other" \\
|
37 |
+
--output-dataset user/arxiv-classified \\
|
38 |
+
--reasoning
|
39 |
+
|
40 |
+
HF Jobs example:
|
41 |
+
hf jobs uv run --flavor l4x1 \\
|
42 |
+
https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\
|
43 |
+
--input-dataset user/emails \\
|
44 |
+
--column content \\
|
45 |
+
--labels "spam,ham" \\
|
46 |
+
--output-dataset user/emails-classified \\
|
47 |
+
--reasoning
|
48 |
+
"""
|
49 |
+
|
50 |
+
import argparse
|
51 |
+
import logging
|
52 |
+
import os
|
53 |
+
import sys
|
54 |
+
from typing import List, Dict, Any, Optional, Tuple
|
55 |
+
import json
|
56 |
+
import re
|
57 |
+
|
58 |
+
import torch
|
59 |
+
from datasets import load_dataset, Dataset
|
60 |
+
from huggingface_hub import HfApi, get_token
|
61 |
+
import sglang as sgl
|
62 |
+
|
63 |
+
# Default model - SmolLM3 with reasoning capabilities
|
64 |
+
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"
|
65 |
+
|
66 |
+
# Minimum text length for valid classification
|
67 |
+
MIN_TEXT_LENGTH = 3
|
68 |
+
|
69 |
+
# Maximum text length (in characters) to avoid context overflow
|
70 |
+
MAX_TEXT_LENGTH = 4000
|
71 |
+
|
72 |
+
logging.basicConfig(
|
73 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
74 |
+
)
|
75 |
+
logger = logging.getLogger(__name__)
|
76 |
+
|
77 |
+
|
78 |
+
def parse_args():
|
79 |
+
parser = argparse.ArgumentParser(
|
80 |
+
description="Classify text in HuggingFace datasets using SGLang with reasoning support",
|
81 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
82 |
+
epilog=__doc__,
|
83 |
+
)
|
84 |
+
|
85 |
+
# Required arguments
|
86 |
+
parser.add_argument(
|
87 |
+
"--input-dataset",
|
88 |
+
type=str,
|
89 |
+
required=True,
|
90 |
+
help="Input dataset ID on Hugging Face Hub",
|
91 |
+
)
|
92 |
+
parser.add_argument(
|
93 |
+
"--column", type=str, required=True, help="Name of the text column to classify"
|
94 |
+
)
|
95 |
+
parser.add_argument(
|
96 |
+
"--labels",
|
97 |
+
type=str,
|
98 |
+
required=True,
|
99 |
+
help="Comma-separated list of classification labels (e.g., 'positive,negative')",
|
100 |
+
)
|
101 |
+
parser.add_argument(
|
102 |
+
"--output-dataset",
|
103 |
+
type=str,
|
104 |
+
required=True,
|
105 |
+
help="Output dataset ID on Hugging Face Hub",
|
106 |
+
)
|
107 |
+
|
108 |
+
# Optional arguments
|
109 |
+
parser.add_argument(
|
110 |
+
"--model",
|
111 |
+
type=str,
|
112 |
+
default=DEFAULT_MODEL,
|
113 |
+
help=f"Model to use for classification (default: {DEFAULT_MODEL})",
|
114 |
+
)
|
115 |
+
parser.add_argument(
|
116 |
+
"--reasoning",
|
117 |
+
action="store_true",
|
118 |
+
help="Enable reasoning mode (allows model to think through complex cases)",
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--save-reasoning",
|
122 |
+
action="store_true",
|
123 |
+
help="Save reasoning traces to a separate column (requires --reasoning)",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--max-samples",
|
127 |
+
type=int,
|
128 |
+
default=None,
|
129 |
+
help="Maximum number of samples to process (for testing)",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--hf-token",
|
133 |
+
type=str,
|
134 |
+
default=None,
|
135 |
+
help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)",
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"--split",
|
139 |
+
type=str,
|
140 |
+
default="train",
|
141 |
+
help="Dataset split to process (default: train)",
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--temperature",
|
145 |
+
type=float,
|
146 |
+
default=0.1,
|
147 |
+
help="Temperature for generation (default: 0.1)",
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--max-tokens",
|
151 |
+
type=int,
|
152 |
+
default=500,
|
153 |
+
help="Maximum tokens to generate (default: 500 for reasoning, 50 for non-reasoning)",
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--batch-size",
|
157 |
+
type=int,
|
158 |
+
default=32,
|
159 |
+
help="Batch size for processing (default: 32)",
|
160 |
+
)
|
161 |
+
parser.add_argument(
|
162 |
+
"--grammar-backend",
|
163 |
+
type=str,
|
164 |
+
default="xgrammar",
|
165 |
+
choices=["outlines", "xgrammar", "llguidance"],
|
166 |
+
help="Grammar backend for structured outputs (default: xgrammar)",
|
167 |
+
)
|
168 |
+
|
169 |
+
return parser.parse_args()
|
170 |
+
|
171 |
+
|
172 |
+
def preprocess_text(text: str) -> str:
|
173 |
+
"""Preprocess text for classification."""
|
174 |
+
if not text or not isinstance(text, str):
|
175 |
+
return ""
|
176 |
+
|
177 |
+
# Strip whitespace
|
178 |
+
text = text.strip()
|
179 |
+
|
180 |
+
# Truncate if too long
|
181 |
+
if len(text) > MAX_TEXT_LENGTH:
|
182 |
+
text = f"{text[:MAX_TEXT_LENGTH]}..."
|
183 |
+
|
184 |
+
return text
|
185 |
+
|
186 |
+
|
187 |
+
def validate_text(text: str) -> bool:
|
188 |
+
"""Check if text is valid for classification."""
|
189 |
+
return bool(text and len(text) >= MIN_TEXT_LENGTH)
|
190 |
+
|
191 |
+
|
192 |
+
def create_classification_prompt(text: str, labels: List[str], reasoning: bool) -> str:
|
193 |
+
"""Create a prompt for classification with optional reasoning mode."""
|
194 |
+
if reasoning:
|
195 |
+
system_prompt = "You are a helpful assistant that thinks step-by-step before answering."
|
196 |
+
else:
|
197 |
+
system_prompt = "You are a helpful assistant. /no_think"
|
198 |
+
|
199 |
+
user_prompt = f"""Classify this text as one of: {', '.join(labels)}
|
200 |
+
|
201 |
+
Text: {text}
|
202 |
+
|
203 |
+
Classification:"""
|
204 |
+
|
205 |
+
# Format as a conversation
|
206 |
+
return f"<|system|>\n{system_prompt}\n<|user|>\n{user_prompt}\n<|assistant|>\n"
|
207 |
+
|
208 |
+
|
209 |
+
def create_ebnf_grammar(labels: List[str]) -> str:
|
210 |
+
"""Create an EBNF grammar that constrains output to one of the given labels."""
|
211 |
+
# Escape any special characters in labels
|
212 |
+
escaped_labels = [f'"{label}"' for label in labels]
|
213 |
+
choices = ' | '.join(escaped_labels)
|
214 |
+
return f"root ::= {choices}"
|
215 |
+
|
216 |
+
|
217 |
+
def parse_reasoning_output(output: str, label: str) -> Optional[str]:
|
218 |
+
"""Extract reasoning from output if present."""
|
219 |
+
# Look for thinking tags
|
220 |
+
if "<think>" in output and "</think>" in output:
|
221 |
+
start = output.find("<think>")
|
222 |
+
end = output.find("</think>") + len("</think>")
|
223 |
+
reasoning = output[start:end]
|
224 |
+
return reasoning
|
225 |
+
return None
|
226 |
+
|
227 |
+
|
228 |
+
def classify_batch_with_sglang(
|
229 |
+
engine: sgl.Engine,
|
230 |
+
texts: List[str],
|
231 |
+
labels: List[str],
|
232 |
+
args: argparse.Namespace
|
233 |
+
) -> List[Dict[str, Any]]:
|
234 |
+
"""Classify texts using SGLang with optional reasoning."""
|
235 |
+
|
236 |
+
# Prepare prompts
|
237 |
+
prompts = []
|
238 |
+
valid_indices = []
|
239 |
+
|
240 |
+
for i, text in enumerate(texts):
|
241 |
+
processed_text = preprocess_text(text)
|
242 |
+
if validate_text(processed_text):
|
243 |
+
prompt = create_classification_prompt(processed_text, labels, args.reasoning)
|
244 |
+
prompts.append(prompt)
|
245 |
+
valid_indices.append(i)
|
246 |
+
|
247 |
+
if not prompts:
|
248 |
+
return [{"label": None, "reasoning": None} for _ in texts]
|
249 |
+
|
250 |
+
# Set max tokens based on reasoning mode
|
251 |
+
max_tokens = args.max_tokens if args.reasoning else 50
|
252 |
+
|
253 |
+
# Create EBNF grammar for label constraints
|
254 |
+
ebnf_grammar = create_ebnf_grammar(labels)
|
255 |
+
|
256 |
+
# Set up sampling parameters with EBNF constraint
|
257 |
+
sampling_params = {
|
258 |
+
"temperature": args.temperature,
|
259 |
+
"max_new_tokens": max_tokens,
|
260 |
+
"ebnf": ebnf_grammar, # This ensures output is one of the valid labels
|
261 |
+
}
|
262 |
+
|
263 |
+
try:
|
264 |
+
# Generate with structured output constraint
|
265 |
+
outputs = engine.generate(prompts, sampling_params)
|
266 |
+
|
267 |
+
# Process outputs
|
268 |
+
results = [{"label": None, "reasoning": None} for _ in texts]
|
269 |
+
|
270 |
+
for idx, output in enumerate(outputs):
|
271 |
+
original_idx = valid_indices[idx]
|
272 |
+
|
273 |
+
# The output text should be just the label due to EBNF constraint
|
274 |
+
classification = output.text.strip().strip('"') # Remove quotes if present
|
275 |
+
|
276 |
+
# Extract reasoning if present and requested
|
277 |
+
reasoning = None
|
278 |
+
if args.reasoning and args.save_reasoning:
|
279 |
+
# Get the full output including reasoning
|
280 |
+
# Note: We need to check if SGLang provides access to full output with reasoning
|
281 |
+
reasoning = parse_reasoning_output(output.text, classification)
|
282 |
+
|
283 |
+
results[original_idx] = {
|
284 |
+
"label": classification,
|
285 |
+
"reasoning": reasoning
|
286 |
+
}
|
287 |
+
|
288 |
+
return results
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
logger.error(f"Error during batch classification: {e}")
|
292 |
+
# Return None labels for all texts in case of error
|
293 |
+
return [{"label": None, "reasoning": None} for _ in texts]
|
294 |
+
|
295 |
+
|
296 |
+
def main():
|
297 |
+
args = parse_args()
|
298 |
+
|
299 |
+
# Validate reasoning arguments
|
300 |
+
if args.save_reasoning and not args.reasoning:
|
301 |
+
logger.error("--save-reasoning requires --reasoning to be enabled")
|
302 |
+
sys.exit(1)
|
303 |
+
|
304 |
+
# Check authentication early
|
305 |
+
logger.info("Checking authentication...")
|
306 |
+
token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token())
|
307 |
+
|
308 |
+
if not token:
|
309 |
+
logger.error("No authentication token found. Please either:")
|
310 |
+
logger.error("1. Run 'huggingface-cli login'")
|
311 |
+
logger.error("2. Set HF_TOKEN environment variable")
|
312 |
+
logger.error("3. Pass --hf-token argument")
|
313 |
+
sys.exit(1)
|
314 |
+
|
315 |
+
# Validate token by checking who we are
|
316 |
+
try:
|
317 |
+
api = HfApi(token=token)
|
318 |
+
user_info = api.whoami()
|
319 |
+
logger.info(f"Authenticated as: {user_info['name']}")
|
320 |
+
except Exception as e:
|
321 |
+
logger.error(f"Authentication failed: {e}")
|
322 |
+
logger.error("Please check your token is valid")
|
323 |
+
sys.exit(1)
|
324 |
+
|
325 |
+
# Check CUDA availability
|
326 |
+
if not torch.cuda.is_available():
|
327 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
328 |
+
logger.error("Please run on a machine with GPU support or use HF Jobs.")
|
329 |
+
sys.exit(1)
|
330 |
+
|
331 |
+
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
|
332 |
+
|
333 |
+
# Parse and validate labels
|
334 |
+
labels = [label.strip() for label in args.labels.split(",")]
|
335 |
+
if len(labels) < 2:
|
336 |
+
logger.error("At least two labels are required for classification.")
|
337 |
+
sys.exit(1)
|
338 |
+
logger.info(f"Classification labels: {labels}")
|
339 |
+
|
340 |
+
# Load dataset
|
341 |
+
logger.info(f"Loading dataset: {args.input_dataset}")
|
342 |
+
try:
|
343 |
+
dataset = load_dataset(args.input_dataset, split=args.split)
|
344 |
+
|
345 |
+
# Limit samples if specified
|
346 |
+
if args.max_samples:
|
347 |
+
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
|
348 |
+
logger.info(f"Limited dataset to {len(dataset)} samples")
|
349 |
+
|
350 |
+
logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
|
351 |
+
except Exception as e:
|
352 |
+
logger.error(f"Failed to load dataset: {e}")
|
353 |
+
sys.exit(1)
|
354 |
+
|
355 |
+
# Verify column exists
|
356 |
+
if args.column not in dataset.column_names:
|
357 |
+
logger.error(f"Column '{args.column}' not found in dataset.")
|
358 |
+
logger.error(f"Available columns: {dataset.column_names}")
|
359 |
+
sys.exit(1)
|
360 |
+
|
361 |
+
# Extract texts
|
362 |
+
texts = dataset[args.column]
|
363 |
+
|
364 |
+
# Initialize SGLang Engine
|
365 |
+
logger.info(f"Initializing SGLang Engine with model: {args.model}")
|
366 |
+
logger.info(f"Reasoning mode: {'enabled' if args.reasoning else 'disabled (fast mode)'}")
|
367 |
+
logger.info(f"Grammar backend: {args.grammar_backend}")
|
368 |
+
|
369 |
+
try:
|
370 |
+
# Determine reasoning parser based on model
|
371 |
+
reasoning_parser = None
|
372 |
+
if "smollm3" in args.model.lower() or "qwen" in args.model.lower():
|
373 |
+
reasoning_parser = "qwen" # Uses <think> tokens
|
374 |
+
elif "deepseek-r1" in args.model.lower():
|
375 |
+
reasoning_parser = "deepseek-r1"
|
376 |
+
|
377 |
+
engine_kwargs = {
|
378 |
+
"model_path": args.model,
|
379 |
+
"trust_remote_code": True,
|
380 |
+
"dtype": "auto",
|
381 |
+
"grammar_backend": args.grammar_backend,
|
382 |
+
}
|
383 |
+
|
384 |
+
if reasoning_parser and args.reasoning:
|
385 |
+
engine_kwargs["reasoning_parser"] = reasoning_parser
|
386 |
+
logger.info(f"Using reasoning parser: {reasoning_parser}")
|
387 |
+
|
388 |
+
engine = sgl.Engine(**engine_kwargs)
|
389 |
+
logger.info("SGLang engine initialized successfully")
|
390 |
+
except Exception as e:
|
391 |
+
logger.error(f"Failed to initialize SGLang: {e}")
|
392 |
+
sys.exit(1)
|
393 |
+
|
394 |
+
# Process in batches
|
395 |
+
logger.info(f"Starting classification with batch size {args.batch_size}...")
|
396 |
+
all_results = []
|
397 |
+
|
398 |
+
for i in range(0, len(texts), args.batch_size):
|
399 |
+
batch_end = min(i + args.batch_size, len(texts))
|
400 |
+
batch_texts = texts[i:batch_end]
|
401 |
+
|
402 |
+
logger.info(f"Processing batch {i//args.batch_size + 1}/{(len(texts) + args.batch_size - 1)//args.batch_size}")
|
403 |
+
|
404 |
+
batch_results = classify_batch_with_sglang(
|
405 |
+
engine, batch_texts, labels, args
|
406 |
+
)
|
407 |
+
all_results.extend(batch_results)
|
408 |
+
|
409 |
+
# Extract labels and reasoning
|
410 |
+
all_labels = [r["label"] for r in all_results]
|
411 |
+
all_reasoning = [r["reasoning"] for r in all_results] if args.save_reasoning else None
|
412 |
+
|
413 |
+
# Add classifications to dataset
|
414 |
+
dataset = dataset.add_column("classification", all_labels)
|
415 |
+
|
416 |
+
# Add reasoning column if requested
|
417 |
+
if args.save_reasoning and args.reasoning:
|
418 |
+
dataset = dataset.add_column("reasoning", all_reasoning)
|
419 |
+
logger.info("Added reasoning traces to dataset")
|
420 |
+
|
421 |
+
# Calculate statistics
|
422 |
+
valid_count = sum(1 for label in all_labels if label is not None)
|
423 |
+
invalid_count = len(all_labels) - valid_count
|
424 |
+
|
425 |
+
if invalid_count > 0:
|
426 |
+
logger.warning(
|
427 |
+
f"{invalid_count} texts were too short or invalid for classification"
|
428 |
+
)
|
429 |
+
|
430 |
+
# Show classification distribution
|
431 |
+
label_counts = {label: all_labels.count(label) for label in labels}
|
432 |
+
logger.info("Classification distribution:")
|
433 |
+
for label, count in label_counts.items():
|
434 |
+
percentage = count / len(all_labels) * 100 if all_labels else 0
|
435 |
+
logger.info(f" {label}: {count} ({percentage:.1f}%)")
|
436 |
+
if invalid_count > 0:
|
437 |
+
none_percentage = invalid_count / len(all_labels) * 100
|
438 |
+
logger.info(f" Invalid/Skipped: {invalid_count} ({none_percentage:.1f}%)")
|
439 |
+
|
440 |
+
# Log success rate
|
441 |
+
success_rate = (valid_count / len(all_labels) * 100) if all_labels else 0
|
442 |
+
logger.info(f"Classification success rate: {success_rate:.1f}%")
|
443 |
+
|
444 |
+
# Save to Hub
|
445 |
+
logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
|
446 |
+
try:
|
447 |
+
commit_msg = f"Add classifications using {args.model} with SGLang"
|
448 |
+
if args.reasoning:
|
449 |
+
commit_msg += " (reasoning mode)"
|
450 |
+
|
451 |
+
dataset.push_to_hub(
|
452 |
+
args.output_dataset,
|
453 |
+
token=token,
|
454 |
+
commit_message=commit_msg,
|
455 |
+
)
|
456 |
+
logger.info(
|
457 |
+
f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}"
|
458 |
+
)
|
459 |
+
except Exception as e:
|
460 |
+
logger.error(f"Failed to push to Hub: {e}")
|
461 |
+
sys.exit(1)
|
462 |
+
|
463 |
+
# Clean up
|
464 |
+
engine.shutdown()
|
465 |
+
logger.info("SGLang engine shutdown complete")
|
466 |
+
|
467 |
+
|
468 |
+
if __name__ == "__main__":
|
469 |
+
if len(sys.argv) == 1:
|
470 |
+
print("Example HF Jobs commands:")
|
471 |
+
print("\n# Fast classification (no reasoning):")
|
472 |
+
print("hf jobs uv run \\")
|
473 |
+
print(" --flavor l4x1 \\")
|
474 |
+
print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
|
475 |
+
print(" --input-dataset stanfordnlp/imdb \\")
|
476 |
+
print(" --column text \\")
|
477 |
+
print(" --labels 'positive,negative' \\")
|
478 |
+
print(" --output-dataset user/imdb-classified")
|
479 |
+
print("\n# Complex classification with reasoning:")
|
480 |
+
print("hf jobs uv run \\")
|
481 |
+
print(" --flavor l4x1 \\")
|
482 |
+
print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
|
483 |
+
print(" --input-dataset arxiv-papers \\")
|
484 |
+
print(" --column abstract \\")
|
485 |
+
print(" --labels 'reasoning_systems,agents,multimodal,robotics,other' \\")
|
486 |
+
print(" --output-dataset user/arxiv-classified \\")
|
487 |
+
print(" --reasoning --save-reasoning")
|
488 |
+
sys.exit(0)
|
489 |
+
|
490 |
+
main()
|