#!/usr/bin/env python3 # /// script # requires-python = ">=3.10" # dependencies = [ # "vllm>=0.6.6", # "transformers", # "torch", # "datasets", # "huggingface-hub[hf_transfer]", # ] # /// """ Classify text columns in Hugging Face datasets using vLLM with structured outputs. This script provides efficient GPU-based classification with guaranteed valid outputs, optimized for running on HF Jobs. Example: uv run classify-dataset.py \\ --input-dataset imdb \\ --column text \\ --labels "positive,negative" \\ --output-dataset user/imdb-classified HF Jobs example: hfjobs run --flavor a10 uv run classify-dataset.py \\ --input-dataset user/emails \\ --column content \\ --labels "spam,ham" \\ --output-dataset user/emails-classified \\ --prompt-style reasoning """ import argparse import logging import os import sys from typing import List, Dict, Any, Optional import torch from datasets import load_dataset, Dataset from huggingface_hub import HfApi from vllm import LLM, SamplingParams from vllm.sampling_params import GuidedDecodingParams # Default model - SmolLM3 for good balance of speed and quality DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B" # Prompt styles for classification PROMPT_STYLES = { "simple": """Classify this text as one of: {labels} Text: {text} Label:""", "detailed": """Task: Classify the following text into EXACTLY ONE of these categories. Available categories: {labels} Text to classify: {text} Category:""", "reasoning": """Analyze the following text and determine which category it belongs to. Available categories: {labels} Text to analyze: {text} Brief analysis: Let me examine the key aspects of this text. Category:""", } # Minimum text length for valid classification MIN_TEXT_LENGTH = 3 # Maximum text length (in characters) to avoid context overflow MAX_TEXT_LENGTH = 4000 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser( description="Classify text in HuggingFace datasets using vLLM with structured outputs", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=__doc__ ) # Required arguments parser.add_argument( "--input-dataset", type=str, required=True, help="Input dataset ID on Hugging Face Hub" ) parser.add_argument( "--column", type=str, required=True, help="Name of the text column to classify" ) parser.add_argument( "--labels", type=str, required=True, help="Comma-separated list of classification labels (e.g., 'positive,negative')" ) parser.add_argument( "--output-dataset", type=str, required=True, help="Output dataset ID on Hugging Face Hub" ) # Optional arguments parser.add_argument( "--model", type=str, default=DEFAULT_MODEL, help=f"Model to use for classification (default: {DEFAULT_MODEL})" ) # Removed --batch-size argument as vLLM handles batching internally parser.add_argument( "--prompt-style", type=str, choices=list(PROMPT_STYLES.keys()), default="simple", help="Prompt style to use (default: simple)" ) parser.add_argument( "--max-samples", type=int, default=None, help="Maximum number of samples to process (for testing)" ) parser.add_argument( "--hf-token", type=str, default=os.environ.get("HF_TOKEN"), help="Hugging Face API token (default: HF_TOKEN env var)" ) parser.add_argument( "--split", type=str, default="train", help="Dataset split to process (default: train)" ) parser.add_argument( "--temperature", type=float, default=0.1, help="Temperature for generation (default: 0.1)" ) parser.add_argument( "--max-tokens", type=int, default=50, help="Maximum tokens to generate (default: 50)" ) parser.add_argument( "--guided-backend", type=str, default="outlines", help="Guided decoding backend (default: outlines)" ) return parser.parse_args() def preprocess_text(text: str) -> str: """Preprocess text for classification.""" if not text or not isinstance(text, str): return "" # Strip whitespace text = text.strip() # Truncate if too long if len(text) > MAX_TEXT_LENGTH: text = text[:MAX_TEXT_LENGTH] + "..." return text def validate_text(text: str) -> bool: """Check if text is valid for classification.""" if not text or len(text) < MIN_TEXT_LENGTH: return False return True def prepare_prompts( texts: List[str], labels: List[str], prompt_template: str ) -> tuple[List[str], List[int]]: """Prepare prompts for classification, filtering invalid texts.""" prompts = [] valid_indices = [] for i, text in enumerate(texts): processed_text = preprocess_text(text) if validate_text(processed_text): prompt = prompt_template.format( labels=", ".join(labels), text=processed_text ) prompts.append(prompt) valid_indices.append(i) return prompts, valid_indices def main(): args = parse_args() # Check CUDA availability if not torch.cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error("Please run on a machine with GPU support or use HF Jobs.") sys.exit(1) logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}") # Parse and validate labels labels = [label.strip() for label in args.labels.split(",")] if len(labels) < 2: logger.error("At least two labels are required for classification.") sys.exit(1) logger.info(f"Classification labels: {labels}") # Load dataset logger.info(f"Loading dataset: {args.input_dataset}") try: dataset = load_dataset(args.input_dataset, split=args.split) # Limit samples if specified if args.max_samples: dataset = dataset.select(range(min(args.max_samples, len(dataset)))) logger.info(f"Limited dataset to {len(dataset)} samples") logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'") except Exception as e: logger.error(f"Failed to load dataset: {e}") sys.exit(1) # Verify column exists if args.column not in dataset.column_names: logger.error(f"Column '{args.column}' not found in dataset.") logger.error(f"Available columns: {dataset.column_names}") sys.exit(1) # Extract texts texts = dataset[args.column] # Initialize vLLM logger.info(f"Initializing vLLM with model: {args.model}") logger.info(f"Using guided decoding backend: {args.guided_backend}") try: llm = LLM( model=args.model, trust_remote_code=True, dtype="auto", gpu_memory_utilization=0.95, guided_decoding_backend=args.guided_backend, ) except Exception as e: logger.error(f"Failed to initialize vLLM: {e}") sys.exit(1) # Set up guided decoding parameters guided_params = GuidedDecodingParams(choice=labels) # Set up sampling parameters with structured output sampling_params = SamplingParams( guided_decoding=guided_params, temperature=args.temperature, max_tokens=args.max_tokens, ) # Get prompt template prompt_template = PROMPT_STYLES[args.prompt_style] logger.info(f"Using prompt style '{args.prompt_style}'") logger.info("Using structured output with guided_choice - outputs guaranteed to be valid labels") # Prepare all prompts logger.info("Preparing prompts for classification...") all_prompts, valid_indices = prepare_prompts(texts, labels, prompt_template) if not all_prompts: logger.error("No valid texts found for classification.") sys.exit(1) logger.info(f"Prepared {len(all_prompts)} valid prompts out of {len(texts)} texts") # Let vLLM handle batching internally logger.info("Starting classification (vLLM will handle batching internally)...") try: # Generate all classifications at once - vLLM handles batching outputs = llm.generate(all_prompts, sampling_params) # Map results back to original indices all_classifications = [None] * len(texts) for idx, output in enumerate(outputs): original_idx = valid_indices[idx] generated_text = output.outputs[0].text.strip() all_classifications[original_idx] = generated_text # Count statistics valid_texts = len(valid_indices) total_texts = len(texts) except Exception as e: logger.error(f"Classification failed: {e}") sys.exit(1) # Add classifications to dataset dataset = dataset.add_column("classification", all_classifications) # Calculate statistics none_count = total_texts - valid_texts if none_count > 0: logger.warning(f"{none_count} texts were too short or invalid for classification") # Show classification distribution label_counts = {label: all_classifications.count(label) for label in labels} logger.info("Classification distribution:") for label, count in label_counts.items(): percentage = count / total_texts * 100 if total_texts > 0 else 0 logger.info(f" {label}: {count} ({percentage:.1f}%)") if none_count > 0: none_percentage = none_count / total_texts * 100 logger.info(f" Invalid/Skipped: {none_count} ({none_percentage:.1f}%)") # Log success rate success_rate = (valid_texts / total_texts * 100) if total_texts > 0 else 0 logger.info(f"Classification success rate: {success_rate:.1f}%") # Save to Hub logger.info(f"Pushing dataset to Hub: {args.output_dataset}") try: dataset.push_to_hub( args.output_dataset, token=args.hf_token, commit_message=f"Add classifications using {args.model} with structured outputs" ) logger.info(f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}") except Exception as e: logger.error(f"Failed to push to Hub: {e}") sys.exit(1) if __name__ == "__main__": if len(sys.argv) == 1: print("Example HF Jobs command:") print("hf jobs uv run \\") print(" --flavor l4x1 \\") print(" --image vllm/vllm-openai:latest \\") print(" classify-dataset.py \\") print(" --input-dataset stanfordnlp/imdb \\") print(" --column text \\") print(" --labels 'positive,negative' \\") print(" --output-dataset user/imdb-classified") sys.exit(0) main()