import torch from torch.utils.data import Dataset, DataLoader import os import rasterio import numpy as np from datetime import date from pyproj import Transformer S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539, 0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267, 0.00493004,0.00549962,0.00502847,0.00326378,0.00324118] Cls_index_binary = { 'invalid': 0, 'clear': 1, 'cloud': 2, } Cls_index_multi = { 'invalid': 0, 'clear': 1, 'cloud-sure': 2, 'cloud-ambiguous': 3, 'cloud shadow': 4, 'snow and ice': 5, } class S3OLCI_CloudDataset(Dataset): ''' 1596/399 train/test images 256x256 21 bands nodata: nan ''' def __init__(self, root_dir, split='train', mode='multi', meta=True): self.root_dir = root_dir self.meta = meta self.img_dir = os.path.join(root_dir, split, 's3_olci') self.fpaths = os.listdir(self.img_dir) self.fpaths = [f for f in self.fpaths if f.endswith('.tif')] if mode == 'multi': self.cloud_dir = os.path.join(root_dir, split, 'cloud_multi') elif mode == 'binary': self.cloud_dir = os.path.join(root_dir, split, 'cloud_binary') if self.meta: self.reference_date = date(1970, 1, 1) def __len__(self): return len(self.fpaths) def __getitem__(self, idx): fpath = self.fpaths[idx] fpath_img = os.path.join(self.img_dir, fpath) fpath_cloud = os.path.join(self.cloud_dir, fpath) with rasterio.open(fpath_img) as src: img = src.read() # convert nan pixels to 0 img[np.isnan(img)] = 0 for b in range(21): img[b] = img[b] * S3_OLCI_SCALE[b] if self.meta: cx,cy = src.xy(src.height // 2, src.width // 2) crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326') lon, lat = crs_transformer.transform(cx,cy) img_fname = os.path.basename(fpath_img) date_str = img_fname.split('____')[1][:8] date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8])) delta = (date_obj - self.reference_date).days meta_info = np.array([lon, lat, delta, np.nan]).astype(np.float32) else: meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32) img = torch.from_numpy(img).float() with rasterio.open(fpath_cloud) as src: cloud = src.read(1) cloud = torch.from_numpy(cloud).long() return img, cloud, meta_info if __name__ == '__main__': dataset = S3OLCI_CloudDataset(root_dir='./cloud_s3olci', split='train', mode='multi') dataloader = DataLoader(dataset, batch_size=2, shuffle=False) for img, cloud, meta in dataloader: print(img.shape, cloud.shape, meta.shape) break