File size: 1,148 Bytes
604ba29
 
 
 
 
 
39ae1ea
 
 
 
 
 
 
 
 
 
 
 
 
 
604ba29
 
 
39ae1ea
604ba29
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pandas as pd
from pandas_image_methods import PILMethods

from pathlib import Path


SKILLS = [
    "single_skill/counting_only-paired-distance_and_counting",
    "single_skill/counting_only-paired-position_and_counting",
    "single_skill/distance_only",
    "single_skill/position_only",
    "single_skill/size_only",
    "combine_2_skill/distance_and_counting",
    "combine_2_skill/distance_and_size",
    "combine_2_skill/position_and_counting",
    "reasoning/object_manipulation",
    "reasoning/object_manipulation_w_intermediate",
    "reasoning/object_occlusion",
    "reasoning/object_occlusion_w_intermediate",
]

pd.api.extensions.register_series_accessor("pil")(PILMethods)

for skill in SKILLS:
    print(skill)
    fn_json = f"eval_datasets/coco_test2017_annotations/{skill}.json"
    df = pd.read_json(fn_json)
    df["image"] = df["metadata"].map(
        lambda dict: f"eval_datasets/coco_test2017/{dict['source_img_id']:0>12}.jpg"
    ).pil.open()

    fn_parquet = f"eval_datasets/coco_test2017_annotations_hf/{skill}.parquet"
    Path(fn_parquet).parent.mkdir(parents=True, exist_ok=True)
    df.to_parquet(fn_parquet)