File size: 10,008 Bytes
24fc3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d3de94
 
 
24fc3f2
 
 
7d3de94
 
24fc3f2
 
 
 
 
 
 
7d3de94
 
 
 
 
 
 
 
 
 
24fc3f2
 
 
 
 
 
 
e743218
e1f7893
68075bd
35d9bea
a54b140
fe22155
18efd6f
278a958
b99bafa
937f015
912cc0e
cf1cf88
9992f10
911ba5a
f29d144
9947c21
7a15569
e6bac0a
4dda48e
649dcea
54ee0c2
9af876f
34b4305
e1e2328
123326e
3a4d986
1e2c70a
94cef07
453642f
3bd5e83
18de267
0e003fe
60c31ae
8e15daf
a77d56b
d1a29bf
ec2d802
4657916
e0cd6cc
9c4ead1
9d56fc8
ebaf8ed
4f2fa99
b462acd
34ea961
65f4f08
ece6bea
3025ede
bc9d10b
b35f71d
b7a2ce2
8fc6bac
d286149
5086649
6d6ac57
5bb3b4a
42799df
23f9131
5a54871
9c39d58
64b1086
5ea91db
46860ce
83a5c8b
862625a
f2ed9a7
f29cfbb
1e088ad
fe1ec53
237931e
2c8259f
5f6b435
3d22f81
f02ef17
47e7216
4a935b3
b94e56b
5db105f
35eb4ad
1a977a3
5400f54
a49d3a1
67725b1
fa5fc86
e3f43c5
0c2f96d
034d31e
0848616
6261f64
7d3de94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 Reddit Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>


## Dataset Description

- **Repository:** wenknow/reddit_dataset_888
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5EnGTvwiCEascwidsMBnEG8vBL9gph7emMUzCwbw23AquKSo

### Miner Data Compliance Agreement 

In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). 

### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:

- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single Reddit post or comment with the following fields:


### Data Fields

- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{wenknow2025datauniversereddit_dataset_888,
        title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
        author={wenknow},
        year={2025},
        url={https://huggingface.co/datasets/wenknow/reddit_dataset_888},
        }
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 478059864
- **Date Range:** 2025-03-14T00:00:00Z to 2025-07-04T00:00:00Z
- **Last Updated:** 2025-07-04T12:43:33Z

### Data Distribution

- Posts: 5.80%
- Comments: 94.20%

### Top 10 Subreddits

For full statistics, please refer to the `stats.json` file in the repository.

| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/AskReddit | 1962212 | 0.41% |
| 2 | r/Monopoly_GO | 1288365 | 0.27% |
| 3 | r/wallstreetbets | 1201050 | 0.25% |
| 4 | r/nba | 1197467 | 0.25% |
| 5 | r/soccer | 1060785 | 0.22% |
| 6 | r/ufc | 905748 | 0.19% |
| 7 | r/AmIOverreacting | 889658 | 0.19% |
| 8 | r/SquaredCircle | 879405 | 0.18% |
| 9 | r/expedition33 | 846179 | 0.18% |
| 10 | r/whatisit | 840887 | 0.18% |


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-04-14T13:45:38Z | 126657805 | 126657805 |
| 2025-04-15T08:08:28Z | 3457527 | 130115332 |
| 2025-04-16T02:17:28Z | 2678440 | 132793772 |
| 2025-04-16T20:22:49Z | 1967289 | 134761061 |
| 2025-04-17T14:28:08Z | 2053331 | 136814392 |
| 2025-04-18T08:33:59Z | 2411761 | 139226153 |
| 2025-04-19T02:39:31Z | 2206084 | 141432237 |
| 2025-04-19T21:06:52Z | 1969786 | 143402023 |
| 2025-04-20T15:12:31Z | 1960317 | 145362340 |
| 2025-04-21T09:18:26Z | 2220175 | 147582515 |
| 2025-04-22T02:57:15Z | 1966082 | 149548597 |
| 2025-04-22T21:02:27Z | 1594020 | 151142617 |
| 2025-04-23T15:07:59Z | 1888704 | 153031321 |
| 2025-04-24T09:15:54Z | 2260951 | 155292272 |
| 2025-04-25T03:21:33Z | 1807641 | 157099913 |
| 2025-04-26T07:03:11Z | 1531273 | 158631186 |
| 2025-04-27T01:08:30Z | 1710879 | 160342065 |
| 2025-04-27T19:12:42Z | 1581980 | 161924045 |
| 2025-04-28T13:18:13Z | 1730016 | 163654061 |
| 2025-04-29T07:23:37Z | 2052480 | 165706541 |
| 2025-04-30T01:23:53Z | 42239 | 165748780 |
| 2025-04-30T19:28:32Z | 1706919 | 167455699 |
| 2025-05-01T13:33:23Z | 1827888 | 169283587 |
| 2025-05-02T07:39:02Z | 2135889 | 171419476 |
| 2025-05-03T01:44:10Z | 1929226 | 173348702 |
| 2025-05-03T19:05:31Z | 1592396 | 174941098 |
| 2025-05-04T13:10:28Z | 1812050 | 176753148 |
| 2025-05-05T07:16:51Z | 2137999 | 178891147 |
| 2025-05-06T01:22:08Z | 1971210 | 180862357 |
| 2025-05-06T19:27:45Z | 1843940 | 182706297 |
| 2025-05-07T12:51:28Z | 1921999 | 184628296 |
| 2025-05-08T06:57:55Z | 2315209 | 186943505 |
| 2025-05-09T01:03:49Z | 2028931 | 188972436 |
| 2025-05-09T19:09:08Z | 1842623 | 190815059 |
| 2025-05-10T13:15:22Z | 1945292 | 192760351 |
| 2025-05-11T06:25:13Z | 1994836 | 194755187 |
| 2025-05-12T00:30:06Z | 1868552 | 196623739 |
| 2025-05-12T18:35:12Z | 1822155 | 198445894 |
| 2025-05-13T12:40:50Z | 1939867 | 200385761 |
| 2025-05-27T20:25:55Z | 47693869 | 248079630 |
| 2025-05-28T14:14:34Z | 2553574 | 250633204 |
| 2025-05-29T08:20:59Z | 2496916 | 253130120 |
| 2025-05-30T02:26:59Z | 2326006 | 255456126 |
| 2025-05-30T20:32:48Z | 2111589 | 257567715 |
| 2025-05-31T14:38:43Z | 2190891 | 259758606 |
| 2025-06-01T08:00:34Z | 2370231 | 262128837 |
| 2025-06-02T02:06:45Z | 2238526 | 264367363 |
| 2025-06-02T20:13:39Z | 2111311 | 266478674 |
| 2025-06-03T14:19:49Z | 2312452 | 268791126 |
| 2025-06-04T08:26:26Z | 2570268 | 271361394 |
| 2025-06-05T02:32:30Z | 2391726 | 273753120 |
| 2025-06-05T20:38:07Z | 2157349 | 275910469 |
| 2025-06-06T14:42:03Z | 1307222 | 277217691 |
| 2025-06-06T17:41:38Z | 105547324 | 382765015 |
| 2025-06-07T12:13:06Z | 2776684 | 385541699 |
| 2025-06-08T06:16:56Z | 2508205 | 388049904 |
| 2025-06-09T00:20:27Z | 2247193 | 390297097 |
| 2025-06-09T18:34:19Z | 2261347 | 392558444 |
| 2025-06-10T12:38:14Z | 2554233 | 395112677 |
| 2025-06-11T06:42:12Z | 2765552 | 397878229 |
| 2025-06-12T00:45:58Z | 2349444 | 400227673 |
| 2025-06-12T18:10:01Z | 2164782 | 402392455 |
| 2025-06-13T12:14:30Z | 2535877 | 404928332 |
| 2025-06-14T06:18:53Z | 2719010 | 407647342 |
| 2025-06-15T00:23:58Z | 2298580 | 409945922 |
| 2025-06-15T18:13:31Z | 2215130 | 412161052 |
| 2025-06-16T12:18:19Z | 2515746 | 414676798 |
| 2025-06-17T06:23:24Z | 2792796 | 417469594 |
| 2025-06-18T00:27:42Z | 2454428 | 419924022 |
| 2025-06-18T17:39:07Z | 2267552 | 422191574 |
| 2025-06-19T11:44:18Z | 2731651 | 424923225 |
| 2025-06-20T05:49:09Z | 2785995 | 427709220 |
| 2025-06-20T23:53:31Z | 2430307 | 430139527 |
| 2025-06-21T17:58:10Z | 2355383 | 432494910 |
| 2025-06-22T12:03:28Z | 2584800 | 435079710 |
| 2025-06-23T06:08:36Z | 2787041 | 437866751 |
| 2025-06-24T00:12:54Z | 2532690 | 440399441 |
| 2025-06-24T18:17:18Z | 2529263 | 442928704 |
| 2025-06-25T12:22:09Z | 2772131 | 445700835 |
| 2025-06-26T06:27:48Z | 2907752 | 448608587 |
| 2025-06-27T00:12:00Z | 2460544 | 451069131 |
| 2025-06-27T18:16:02Z | 2505968 | 453575099 |
| 2025-06-28T12:20:27Z | 2688935 | 456264034 |
| 2025-06-29T06:25:09Z | 2763021 | 459027055 |
| 2025-06-30T00:29:42Z | 2488384 | 461515439 |
| 2025-06-30T18:04:10Z | 2448351 | 463963790 |
| 2025-07-01T12:09:54Z | 2874141 | 466837931 |
| 2025-07-02T06:29:01Z | 3037360 | 469875291 |
| 2025-07-03T00:33:32Z | 2654789 | 472530080 |
| 2025-07-03T18:38:31Z | 2645682 | 475175762 |
| 2025-07-04T12:43:33Z | 2884102 | 478059864 |