Icey444 commited on
Commit
5ba2070
Β·
1 Parent(s): 8d20a0a

edit readme

Browse files
Files changed (1) hide show
  1. README.md +113 -6
README.md CHANGED
@@ -1,4 +1,20 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: id
@@ -21,15 +37,106 @@ dataset_info:
21
  dtype: string
22
  - name: image_paths
23
  sequence: image
24
- splits:
25
- - name: train
26
- num_bytes: 267791229.054
27
- num_examples: 1423
28
- download_size: 208648859
29
- dataset_size: 267791229.054
30
  configs:
31
  - config_name: default
32
  data_files:
33
  - split: train
34
  path: data/train-*
 
 
 
 
35
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - visual-question-answering
5
+ language:
6
+ - en
7
+ tags:
8
+ - cognitive-science
9
+ - multimodal
10
+ - vision
11
+ - reasoning
12
+ - webdataset
13
+ - benchmark
14
+ - core-knowledge
15
+ - developmental-psychology
16
+ size_categories:
17
+ - 1K<n<10K
18
  dataset_info:
19
  features:
20
  - name: id
 
37
  dtype: string
38
  - name: image_paths
39
  sequence: image
 
 
 
 
 
 
40
  configs:
41
  - config_name: default
42
  data_files:
43
  - split: train
44
  path: data/train-*
45
+ - config_name: complete
46
+ data_files:
47
+ - split: train
48
+ path: CoreCognition_20250622.zip
49
  ---
50
+
51
+ # CoreCognition: A Core Knowledge Benchmark for Multi-modal Large Language Models
52
+
53
+ ## Dataset Description
54
+
55
+ **CoreCognition** is a large-scale benchmark encompassing **12 core knowledge concepts** grounded in developmental cognitive science, designed to evaluate the fundamental cognitive abilities of Multi-modal Large Language Models (MLLMs).
56
+
57
+ While MLLMs demonstrate impressive abilities over high-level perception and reasoning, their robustness in the wild remains limited, often falling short on tasks that are intuitive and effortless for humans. We examine the hypothesis that these deficiencies stem from the absence of **core knowledge**β€”rudimentary cognitive abilities innate to humans from early childhood.
58
+
59
+ This dataset contains **1,423** multimodal cognitive assessment samples with images and questions, covering fundamental concepts like object permanence, spatial reasoning, counting, and other core cognitive abilities that emerge in human development.
60
+
61
+ (Additional **80 Concept Hacking** questions in our paper will be released separately)
62
+
63
+ πŸ”— **Project Website**: [https://williamium3000.github.io/core-knowledge/](https://williamium3000.github.io/core-knowledge/)
64
+ πŸ”— **Paper**: [https://arxiv.org/abs/2410.10855](https://arxiv.org/abs/2410.10855)
65
+
66
+ ## Repository Formats
67
+
68
+ This repository provides **2 formats**:
69
+
70
+ 1. **HuggingFace Preview** - For browsing and exploration (visible in HuggingFace viewer, contains embedded 448*448-pixel image preview but not videos)
71
+ 2. **Complete Dataset ZIP (Recommended)** - Full data with all images and videos before resizing, 6.41GB
72
+
73
+ ```
74
+ CoreCognition_20250622.zip
75
+ β”œβ”€β”€ CoreCognition.csv # Complete metadata CSV
76
+ └── media/ # All images and videos
77
+ β”œβ”€β”€ imagename1.png
78
+ β”œβ”€β”€ imagename2.png
79
+ β”œβ”€β”€ videoname1.mp4
80
+ └── ...
81
+ ```
82
+
83
+ ## Quick Start
84
+
85
+ 1. Browse metadata and image preview in this huggingface repo
86
+ 2. Download the complete dataset (6.41GB) by
87
+ ```
88
+ from datasets import load_dataset
89
+ dataset = load_dataset("williamium/CoreCognition", "complete")
90
+ # this will download huggingface.co/datasets/williamium/CoreCognition/blob/main/CoreCognition_20250622.zip
91
+ ```
92
+
93
+ ## Dataset Fields
94
+
95
+ ### Metadata Fields (visible in viewer)
96
+ - `id`: Unique sample identifier
97
+ - `concept`: Core knowledge concept detailed below
98
+ - `type`: Question type ("MC" for multiple choice, "TF" for True/False)
99
+ - `question`: The question text with interleaved <image-placeholder: ...> and/or <video-placeholder: ...>
100
+ - `images`: Semicolon-separated image filenames, can be found in [ZIP data](https://huggingface.co/datasets/williamium/CoreCognition/blob/main/CoreCognition_20250622.zip)
101
+ - `videos`: Semicolon-separated video filenames, can be found in [ZIP data](https://huggingface.co/datasets/williamium/CoreCognition/blob/main/CoreCognition_20250622.zip)
102
+ - `answer`: Correct answer choice
103
+ - `choices`: Choice options as JSON string
104
+ - `image_paths`: Embedded image column for HuggingFace viewer only
105
+
106
+
107
+
108
+ ## Core Knowledge Concepts (12 Categories)
109
+
110
+ The benchmark covers these fundamental cognitive concepts grounded in developmental science:
111
+
112
+ - **Boundary**: The transition from one object to another
113
+ - **Continuity**: Objects persist as unified, cohesive entities across space and time
114
+ - **Permanence**: Objects do not cease to exist when they are no longer perceived
115
+ - **Spatiality**: The *a priori* understanding of the Euclidean properties of the world
116
+ - **Perceptual Constancy**: Changes in appearances don't mean changes in physical properties
117
+ - **Intuitive Physics**: Intuitions about the laws of how things interact in the physical world
118
+ - **Perspective**: To see what others see
119
+ - **Hierarchy**: Understanding of inclusion and exclusion of objects and categories
120
+ - **Conservation**: Invariances of properties despite transformations
121
+ - **Tool Use**: The capacity to manipulate specific objects to achieve goals
122
+ - **Intentionality**: To see what others want
123
+ - **Mechanical Reasoning**: Inferring actions from system states and vice versa
124
+
125
+ ## Paper Citation
126
+
127
+ If you use CoreCognition in your research, please cite our paper:
128
+
129
+ ```bibtex
130
+ @inproceedings{
131
+ li2025core,
132
+ title={Core Knowledge Deficits in Multi-Modal Language Models},
133
+ author={Yijiang Li and Qingying Gao and Tianwei Zhao and Bingyang Wang and Haoran Sun and Haiyun Lyu and Robert D. Hawkins and Nuno Vasconcelos and Tal Golan and Dezhi Luo and Hokin Deng},
134
+ booktitle={Forty-second International Conference on Machine Learning},
135
+ year={2025},
136
+ url={https://openreview.net/forum?id=EIK6xxIoCB}
137
+ }
138
+ ```
139
+
140
+ ## License
141
+
142
+ Apache 2.0 License