File size: 6,183 Bytes
0f0d992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eeaaad
 
0f0d992
 
 
804d60f
0f0d992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804d60f
 
0f0d992
804d60f
 
0f0d992
 
 
 
 
804d60f
 
0f0d992
804d60f
 
0f0d992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe9a36c
0f0d992
fe9a36c
5ad4eba
 
 
0f0d992
 
770d64d
 
0f0d992
 
 
 
1eeaaad
0f0d992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804d60f
 
 
 
0f0d992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804d60f
0f0d992
 
4c590a6
 
 
0f0d992
 
 
 
4c590a6
 
0f0d992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
from pandas import read_csv

from datasets import GeneratorBasedBuilder, Value, Version, BuilderConfig, Features, DatasetInfo, SplitGenerator, Split, Audio, Sequence

_DESCRIPTION = '''
The dataset contains threads parsed from the /b/ board of 2ch archive
'''

_HOMEPAGE = 'https://huggingface.co/datasets/zeio/batch'

_LICENSE = 'Apache License Version 2.0'

_CLUSTER = '{first_page:04d}-{last_page:04d}'
_URLS = {
    'written': 'https://huggingface.co/datasets/zeio/batch/resolve/main/threads-compressed/{cluster}.tar.xz',
    # 'spoken': 'https://huggingface.co/datasets/zeio/batch-speech/raw/main/threads-compressed/{cluster}.tar.xz'
    'spoken': 'https://huggingface.co/datasets/zeio/batch-speech/resolve/main/threads-compressed/{cluster}.tar.xz'
}
_INDEX = 'https://huggingface.co/datasets/zeio/batch/resolve/main/index.tsv'

_N_ITEMS = 1750
_N_BATCH = 20


class Batch(GeneratorBasedBuilder):

    VERSION = Version('06.11.2023')

    BUILDER_CONFIGS = [
        BuilderConfig(
            name = 'written',
            version = VERSION,
            description = 'The base modification which contains only text representation of threads, which are divided into topics, which in turn are made of posts'
        ),
        BuilderConfig(
            name = 'spoken',
            version = VERSION,
            description = (
                'An extended configuration of the dataset in which besides text some threads have an associated audio data with speech '
                'generated for text in the respective thread using an alternating speaker pattern'
            )
        )
    ]

    DEFAULT_CONFIG_NAME = 'written'

    def _info(self):
        if self.config.name == 'written':
            features = Features({
                'title': Value('string'),
                'topics': [{
                    'posts': [{
                        'text': Value('string')
                    }]
                }]
            })
        elif self.config.name == 'spoken':
            features = Features({
                'title': Value('string'),
                'speech': Audio(sampling_rate = 48_000),
                'topics': [{
                    'posts': [{
                        'text': Value('string')
                    }]
                }]
            })
        else:
            raise ValueError(f'Unknown config: {self.config.name}')

        return DatasetInfo(
            description=_DESCRIPTION,
            features = features,
            homepage=_HOMEPAGE,
            license=_LICENSE
        )

    def _split_generators(self, dl_manager):
        name = self.config.name

        url = _URLS['written']
        spoken_url = _URLS['spoken'] if name == 'spoken' else None

        offset = 0

        written = {}
        spoken = None if spoken_url is None else {}

        while offset < _N_ITEMS:
            cluster = _CLUSTER.format(first_page = offset, last_page = (offset := min(offset + _N_BATCH - 1, _N_ITEMS)))
            written[f'threads/{cluster}'] = dl_manager.download_and_extract(url.format(cluster = cluster))
            if spoken is not None:
                formatted_spoken_url = spoken_url.format(cluster = cluster)
                try:
                    spoken[f'threads/{cluster}'] = dl_manager.download_and_extract(formatted_spoken_url)
                except FileNotFoundError:  # speech for some clusters may be missing
                    # print(f'Cant fetch spoken data from url: {formatted_spoken_url}')
                    # print(e)
                    pass

            offset += 1

        index = dl_manager.download_and_extract(_INDEX)

        # print(clusters)
        # print(index)
        # print(spoken)

        return [
            SplitGenerator(
                name = Split.TRAIN,
                gen_kwargs = {
                    'written': written,
                    'spoken': spoken,
                    'index': index
                }
            )
        ]

    def _generate_examples(self, written: dict, index: str, spoken: dict = None):
        for i, row in read_csv(index, sep = '\t').iterrows():
            # print(row)

            try:
                path = os.path.join(written[row['path']], f'{row["thread"]}.txt')
            except KeyError:
                break

            topics = []
            posts = []

            # def append_topic():
            #     nonlocal posts, topics

            #     if len(posts) > 0:
            #         topics.append({'posts': posts})
            #         posts = []

            with open(path, 'r', encoding = 'utf-8') as file:
                for line in file.read().split('\n'):
                    if line:
                        posts.append({'text': line})
                    # else:
                    #     append_topic()
                    elif len(posts) > 0:
                        topics.append({'posts': posts})
                        posts = []

                # append_topic()

            item = {
                'title': row['title'],
                'topics': topics
            }

            if spoken is not None:
                speech_cluster_path = spoken.get(row['path'])

                if speech_cluster_path is None:
                    item['speech'] = None
                else:
                    speech_file_path = os.path.join(speech_cluster_path, f'{row["thread"]}.mp3')

                    if os.path.isfile(speech_file_path):
                        item['speech'] = speech_file_path
                    else:
                        item['speech'] = None

            yield i, item

            # if sound is None:
            #     yield i, dict(row)
            # else:
            #     data = dict(row)

            #     folder = data['folder']
            #     filename = data['filename']

            #     if folder == folder and filename == filename:  # if folder and filename are not nan
            #         data['sound'] = os.path.join(sound, folder, f'{filename}.ogg')
            #     else:
            #         data['sound'] = NA

            #     data.pop('folder')
            #     data.pop('filename')

            #     yield i, data