|
import torch,sys |
|
from PIL import Image |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
|
|
processor = BlipProcessor.from_pretrained("image2text") |
|
model = BlipForConditionalGeneration.from_pretrained('image2text') |
|
|
|
|
|
image_path = sys.argv[1] |
|
raw_image = Image.open(image_path).convert('RGB') |
|
|
|
|
|
inputs = processor(images=raw_image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate(**inputs) |
|
|
|
|
|
description = processor.decode(generated_ids[0], skip_special_tokens=True) |
|
|
|
|
|
print("Generated Description:\n", description) |
|
|
|
|